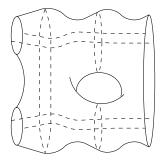
The classification of two-dimensional extended nontopological field theories

Dmitri Pavlov (Texas Tech University, Lubbock, Texas)

Texas Geometry and Topology Conference Texas A&M University, November 9, 2024

These slides: https://dmitripavlov.org/tamu.pdf

arXiv:2011.01208, arXiv:2111.01095 (joint with Daniel Grady)



Main theorem 1: conformal field theory

Theorem

The following smooth ∞ -categories are equivalent:

- extended conformal field theories;
- Serre-twisted homotopy coherent representations of the Lie group R² ⋊ Conf(2) on a 2-dualizable* object.

Notation:

- Conf(2): the universal covering of Conf(2).
- Conf(2): $z \mapsto \sum_{k \ge 1} a_k z^k$, $a_1 \ne 0$, group operation: composition.
- Serre-twisted: restricting to Z ⊂ Conf(2) ⊂ R² ⋊ Conf(2) yields Serre automorphisms.
- Example: if Serre automorphisms are trivial, get representations of **R**² ⋊ Conf(2).

Theorem

The following smooth ∞ -categories are equivalent:

- extended 2|1-Euclidean field theories;
- Serre-twisted homotopy coherent representations of the Lie supergroup Euc(2|1) on a 2-dualizable object.

Notation:

- Euc(2|1): the universal covering of $Euc(2|1) = \mathbf{R}^{2|1} \rtimes Spin(2)$.
- Serre-twisted: restricting to Z ⊂ Euc(2|1) yields Serre automorphisms.
- Serre automorphisms trivial \implies representations of Euc(2|1).

Want to study integrals of the form

$$\int_arphi \exp(i\hbar^{-1}S(arphi))\in {\sf C}.$$

- φ : field: section of $\mathcal{F}: E \to X$;
- $\mathcal{F}: E \to X$: field bundle;
- X: spacetime;
- $S: \Gamma_{\mathcal{F}}(X) \to \mathbf{R}$: action functional.

What kind of manifold is the spacetime X?

- Closed manifold.
- More generally: X is compact with boundary $\partial X = M_0 \sqcup M_1$; write X: $M_0 \to M_1$, i.e., X is a bordism from M_0 to M_1 .

$$\int_{\varphi} \exp(i\hbar^{-1}S(\varphi)) \in \mathbf{C}, \qquad \varphi \in \Gamma_{\mathcal{F}}(X), \qquad X \colon M_0 \to M_1.$$

- For fixed $\alpha_i = \varphi|_{M_i} \in \Gamma_{\mathcal{F}}(M_i)$, get $\mathcal{K}(\alpha_1, \alpha_0) = \int_{\varphi} \in \mathbf{C}$.
- K is the integral kernel of an operator F(X): $F(M_0) \rightarrow F(M_1)$ (propagator).
- Here $F(M_i) = O(\Gamma_{\mathcal{F}}(M_i))$ (space of states).
- Fubini property (Segal gluing): if $X_1: M_0 \to M_1$, $X_2: M_1 \to M_2$, then $F(X_2 \sqcup_{M_1} X_1) = F(X_2) \circ F(X_1)$.

$$\int_{\varphi} \exp(i\hbar^{-1}S(\varphi)) = \int_{\alpha_1} \int_{\varphi_1} \int_{\varphi_2} \exp(i\hbar^{-1}(S(\varphi_1) + S(\varphi_2)))$$

 $\mathcal{F}: E \to X$ (field bundle); $F(M) = \mathcal{O}(\Gamma_{\mathcal{F}}(M))$ (space of states)

$$F(M \sqcup N) = \mathcal{O}(\Gamma_{\mathcal{F}}(M \sqcup N)) \cong \mathcal{O}(\Gamma_{\mathcal{F}}(M) \oplus \Gamma_{\mathcal{F}}(N))$$
$$\cong \mathcal{O}(\Gamma_{\mathcal{F}}(M)) \otimes \mathcal{O}_{\mathcal{F}}(\Gamma_{\mathcal{F}}(N)) = F(M) \otimes F(N).$$

- Segal gluing (Fubini): $F(X_2 \sqcup_{M_1} X_1) = F(X_2) \circ F(X_1)$.
- Monoidality: $F(M \sqcup N) \cong F(M) \otimes F(N)$.
- Segal (following Feynman, Witten): axiomatize Fubini and monoidality as a symmetric monoidal functor (i.e., a functorial field theory)

$$\mathsf{F}:\mathsf{Bord}\to\mathsf{Vect}.$$

- Bord: objects: (d-1)-manifolds M; morphisms: bordisms $X: M_0 \to M_1$.
- Vect: objects: vector spaces; morphisms: linear maps.

Features of the geometric bordism category

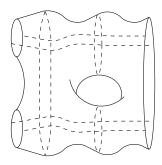
- Locality (Freed, Lawrence): k-bordisms with corners of all codimensions (up to d) with compositions in d directions
 ⇒ symmetric monoidal d-category of bordisms
- Isotopy (Hopkins, Lurie): chain complexes to encode BV-BRST
 - \implies must encode (higher) diffeomorphisms between bordisms

 \implies symmetric monoidal (∞ , *d*)-categories

- Geometric (nontopological) structures on bordisms (Segal, Stolz, Teichner): Riemannian/Lorentzian metrics, complex/conformal/symplectic/contact structures, principal G-bundles with connection and isos, higher gauge fields (Kalb-Ramond, Ramond-Ramond)
 ⇒ an (∞, 1)-sheaf of geometric structures
- Smoothness (Stolz, Teichner): values of field theories depend smoothly on bordisms

 \Longrightarrow (∞ , 1)-sheaf of (∞ , d)-categories of bordisms

How to compose bordisms



Geometric structures

Definition

Given $d \ge 0$, the site FEmb_d has

- Objects: submersions $T \rightarrow U$ with *d*-dimensional fibers, where $U \cong \mathbf{R}^n$ is a cartesian manifold;
- Morphisms: commutative squares with $T \rightarrow T'$ a fiberwise open embedding over a smooth map $U \rightarrow U'$;
- Covering families: open covers on total spaces T.

Geometric structures

Definition

Given $d \ge 0$, the site FEmb_d has

- Objects: submersions with *d*-dimensional fibers;
- Morphisms: fiberwise open embeddings;
- Covering families: open covers on total spaces T.

Definition

Given $d \ge 0$, a *d*-dimensional geometric structure is a simplicial presheaf S: FEmb_d^{op} \rightarrow sSet.

Example:

- $T \rightarrow U \mapsto$ the set of fiberwise Riemannian metrics on $T \rightarrow U$;
- $(T \rightarrow T', U \rightarrow U') \mapsto$ the restriction map from T' to T.

Examples of geometric structures

- fiberwise Riemannian, Lorentzian, pseudo-Riemannian metrics; positive/negative sectional/Ricci curvature;
- fiberwise conformal, complex, symplectic, contact, Kähler structures;
- fiberwise foliations, possibly with transversal metrics;
- smooth map to a target manifold M (traditional σ -model);
- smooth map to an orbifold or ∞-sheaf on manifolds;
- fiberwise etale map or an open embedding into a target manifold N;
- fiberwise topological structures: orientation, framing, etc.
- fiberwise differential n-forms (possibly closed).

Definition

- Send a *d*-manifold *M* to (the nerve of) the groupoid $B_{\nabla}G(M)$:
 - Objects: principal G-bundles on T with a fiberwise connection on T → U (gauge fields);
 - Morphisms: connection-preserving isomorphisms (gauge transformations).

Examples of geometric structures: (higher) gauge transformations

- Principal G-bundles with connection on M (gauge fields, e.g., the electromagnetic field);
- Bundle gerbe with connection on M (B-field, Kalb-Ramond field).
- Bundle 2-gerbe with connection on M (supergravity C-field).
- Bundle (d 1)-gerbes with connection on M (Deligne cohomology, Cheeger–Simons characters, ordinary differential cohomology, circle d-bundles).
- Geometric tangential structures: geometric Spin^c-structure, String (Waldorf), Fivebrane (Sati–Schreiber–Stasheff), Ninebrane (Sati). (Vanishing of anomaly.)
- differential K-theory (Ramond–Ramond field). Requires ∞-groupoids.

The geometric cobordism hypothesis

Ingredients:

- A dimension $d \ge 0$.
- A smooth symmetric monoidal (∞, d) -category \mathcal{V} of values.
- A *d*-dimensional geometric structure S: FEmb_d^{op} \rightarrow sSet.

Constructions:

- The smooth symmetric monoidal (∞, d) -category of bordisms \mathfrak{Bord}_d^S with geometric structure S.
- A *d*-dimensional functorial field theory valued in \mathcal{V} with geometric structure S is a smooth symmetric monoidal (∞, d) -functor $\mathfrak{Bot} \mathfrak{d}_d^S \to \mathcal{V}$.
- The simplicial set of *d*-dimensional functorial field theories valued in V with geometric structure S is the derived mapping simplicial set

$$\mathsf{FFT}_{d,\mathcal{V}}(\mathcal{S}) = \mathbf{R} \operatorname{Map}(\mathfrak{Bord}^{\mathcal{S}}_{d},\mathcal{V}).$$

Can be refined to a derived internal hom.

Conjectures (for topological field theories):

- Freed, Lawrence (1992): $FFT_{d,V}$ is an ∞ -sheaf.
- Baez–Dolan (1995), Hopkins–Lurie (2008):

$$\mathsf{FFT}_{d,\mathcal{V}}(\mathcal{S}) \simeq \mathbf{R}\operatorname{Map}(\mathcal{S},\mathcal{V}^{\times}).$$

 $\mathcal{V}^{\times}:$ fully dualizable objects and invertible morphisms.

The geometric cobordism hypothesis

Conjectures (for topological field theories):

- Freed, Lawrence (1992): $FFT_{d,V}$ is an ∞ -sheaf.
- Baez–Dolan (1995), Hopkins–Lurie (2008):
 FFT_{d,V}(S) ≃ R Map(S, V[×]).

Theorem (Grady–P., The geometric cobordism hypothesis)

Part I (Locality): \mathfrak{Bord}_d is a left adjoint functor:

$$\mathsf{R}\operatorname{Map}(\mathfrak{Bord}_d^{\mathcal{S}},\mathcal{V})\simeq\mathsf{R}\operatorname{Map}(\mathcal{S},\mathcal{V}_d^{\times}),$$

where $\mathcal{V}_d^{\times} = \mathsf{FFT}_{d,\mathcal{V}}$, i.e., $\mathcal{V}_d^{\times}(T \to U) = \mathsf{FFT}_{d,\mathcal{V}}(T \to U)$.

Part II (Framed GCH): The evaluation-at-points map

$$\mathcal{V}_{d}^{\times}(\mathbf{R}^{d} \times U \to U) = \mathsf{FFT}_{d,\mathcal{V}}(\mathbf{R}^{d} \times U \to U) \to \mathcal{V}^{\times}(U)$$

is a weak equivalence of simplicial sets functorial in U.

- How to compute \mathcal{V}_d^{\times} ?
- How to compute \mathbf{R} Map $(\mathcal{S}, \mathcal{V}_d^{\times})$?

Computing \mathcal{V}_d^{\times}

- Already know $\mathcal{V}_d^{\times}(\mathbf{R}^d \times U \to U) \simeq \mathcal{V}^{\times}(U)$, functorial in $U \in Cart$.
- What are the structure maps for functoriality in FEmb_d?
- Step 1: Guess a map $\mathcal{W} \to \mathcal{V}_d^{\times}$.
- Step 2: For every U, prove $\mathcal{W}(\mathbf{R}^d \times U \to U) \to \mathcal{V}_d^{\times}(\mathbf{R}^d \times U \to U) \to \mathcal{V}^{\times}(U)$ is a weak equivalence.

Example ($\mathcal{V} = \mathsf{B}^d \mathrm{U}(1)$; prequantum FFTs)

- Step 1a: $\mathcal{W}(\mathbf{R}^d \times U \to U) = U\Gamma(\Omega^d_U(\mathbf{R}^d \times U) \leftarrow \cdots \leftarrow \Omega^1_U(\mathbf{R}^d \times U) \leftarrow \mathbb{C}^{\infty}(\mathbf{R}^d \times U, \mathbb{U}(1))).$
- Step 1b: $\mathcal{W} \to \mathcal{V}_d^{\times}$: $\omega \mapsto (B \mapsto \exp(\frac{i}{\hbar} \int_B \omega)).$

• Step 2: Poincaré lemma: $\mathcal{W}(\mathbf{R}^d \times U \to U) \xrightarrow{\sim} B^d C^{\infty}(U, U(1))$ Two main options:

 Use the theory of natural operations, working on the site FEmb_d.
 Examples: differential characteristic classes yield prequantum field theories.

 Use an adjunction to switch to a different category: Fun(Cart^{op}, sSet^{O(d)}).
 Examples: classification of conformal or Euclidean field theories.

Categories of geometric structures

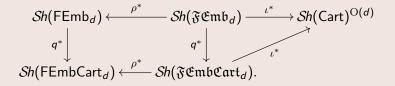
Proposition

The functors q^* and ι^* are right Quillen equivalences.

- Sh(C): simplicial presheaves on C, Čech-local model structure
- \mathfrak{FEmb}_d : like FEmb_d, but enriched in spaces
- FEmbCart_d: full subcategory of FEmb_d on $D_U := (\mathbf{R}^d \times U \rightarrow U)$
- $\mathfrak{FEmbCart}_d$: equivalent to Cart $imes \mathrm{BO}(d)$ by C^{∞} Kister–Mazur

Proposition

The functors q^* and ι^* are right Quillen equivalences.



The functor ρ_1 adds "*d*-thin homotopies" to a geometric structure. *d*-dimensional holonomy is invariant under *d*-thin homotopies. d = 1: Kobayashi, Barrett, Caetano–Picken d > 1: Bunke–Turner–Willerton, Picken, Mackaay–Picken

Categories of geometric structures

Proposition

The functors q^* and ι^* are right Quillen equivalences.

Recipe to compute \mathbf{R} Map $(\mathcal{S}, \rho^* \mathcal{V}_d^{\times})$.

- Use q* to move to FEmbCart_d / SEmbCart_d. (Suppressed from the notation.)
- \mathbf{R} Map $(\mathcal{S}, \rho^* \mathcal{V}_d^{\times}) \simeq \mathbf{R}$ Map $(\rho_! \mathcal{S}, \mathcal{V}_d^{\times})$.
- Compute $\rho_! S$.
- $\mathbf{R}\operatorname{Map}(\rho_!\mathcal{S},\mathcal{V}_d^{\times}) \simeq \mathbf{R}\operatorname{Map}(\iota^*\rho_!\mathcal{S},\iota^*\mathcal{V}_d^{\times}).$ (C^{\infty} Kister–Mazur)

22/22 17/23

Notation:

- FEmbCart_d: Objects $D_U = (\mathbf{R}^d \times U \to U)$, morphisms: fiberwise open embeddings.
- $\mathfrak{FEmbCart}_d$: Objects \mathfrak{D}_U , space of morphisms.
- ρ : FEmbCart_d $\rightarrow \mathfrak{FEmbCart}_d$: inclusion.
- $\rho_{!}: Sh(FEmbCart_{d}) \rightarrow Sh(\mathfrak{FembCart}_{d}):$ left Kan extension.

Computation:

- $\rho_! S = \rho_! \operatorname{hocolim}_{\mathsf{D}_U \to S} Y(\mathsf{D}_U) = \operatorname{hocolim}_{\mathsf{D}_U \to S} Y(\mathfrak{D}_U).$
- Evaluate on D_W:

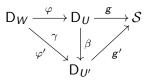
$$(\rho_! S)(\mathfrak{D}_W) = \underset{\mathsf{D}_U \to S}{\operatorname{hocolim}} \mathfrak{FembCart}_d(\mathfrak{D}_W, \mathfrak{D}_U).$$

• $\mathfrak{FCmbCart}_d(\mathfrak{D}_W,\mathfrak{D}_U)$ is 1-truncated. Ob: $\varphi: \mathsf{D}_W \to \mathsf{D}_U$. Mor $\gamma: \varphi \to \varphi'$: isotopy classes of isotopies from φ to φ' (form a **Z**-torsor).

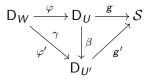
ρ!S = ρ! hocolim_{DU→S} Y(DU) = hocolim_{DU→S} Y(DU).
 Evaluate on DW:

$$(\rho_! S)(\mathfrak{D}_W) = \underset{\mathsf{D}_U \to S}{\operatorname{hocolim}} \mathfrak{FembCart}_d(\mathfrak{D}_W, \mathfrak{D}_U).$$

- ℑ€mbCatt_d(𝔅_W, 𝔅_U) is 1-truncated. Ob: φ: D_W → D_U. Mor γ: φ → φ': isotopy classes of isotopies from φ to φ' (form a Z-torsor).
- Thomason's theorem: hocolim computed as the Grothendieck construction F. Ob: $D_W \xrightarrow{\varphi} D_U \xrightarrow{g} S$. Mor $(\varphi, g) \rightarrow (\varphi', g')$: $\beta: D_U \rightarrow D_{U'}: g = g'\beta, \gamma: \beta\varphi \rightarrow \varphi'.$

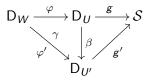


- ℑEmbCatt_d(ℑ_W, ℑ_U) is 1-truncated. Ob: φ: D_W → D_U.
 Mor γ: φ → φ': isotopy classes of isotopies from φ to φ' (form a Z-torsor).
- Thomason's theorem: hocolim computed as the Grothendieck construction F. Ob: $D_W \xrightarrow{\varphi} D_U \xrightarrow{g} S$. Mor $(\varphi, g) \rightarrow (\varphi', g')$: $\beta: D_U \rightarrow D_{U'}: g = g'\beta, \gamma: \beta\varphi \rightarrow \varphi'.$



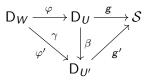
■ BC[∞]($W, \mathbb{R}^2 \rtimes \widetilde{\text{Conf}}(2)$). Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.

• Thomason's theorem: hocolim computed as the Grothendieck construction F. Ob: $D_W \xrightarrow{\varphi} D_U \xrightarrow{g} S$. Mor $(\varphi, g) \rightarrow (\varphi', g')$: $\beta: D_U \rightarrow D_{U'}: g = g'\beta, \gamma: \beta\varphi \rightarrow \varphi'.$



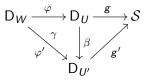
- BC[∞](W, R² × Conf(2)). Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \to BC^{\infty}(W, \mathbb{R}^2 \rtimes \widetilde{Conf}(2)).$
 - $(\varphi, g) \mapsto \text{germ of } D_W \text{ around } 0.$
 - $(\beta, \gamma) \mapsto B: W \to \mathbb{R}^2 \rtimes \widetilde{\mathrm{Conf}}(2)$

Grothendieck construction *F*:



- BC[∞](W, R² ⋊ Conf(2)). Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \to BC^{\infty}(W, \mathbb{R}^2 \rtimes \widetilde{Conf}(2)).$
 - $(\varphi, g) \mapsto \text{germ of } \mathsf{D}_W \text{ around } 0.$
 - $(\beta, \gamma) \mapsto B: W \to \mathbb{R}^2 \rtimes \widetilde{\mathrm{Conf}}(2)$
 - $(\varphi')^{-1}\gamma$ is an isotopy class of isotopies $(\varphi')^{-1}\beta\varphi \to \mathrm{id}_{\mathsf{D}_W}$.
 - $W \to \mathbf{R}^2$: the displacement of the origin.
 - $W \to \widetilde{\text{Conf}}(2)$: the germ of embedding + winding number.

Grothendieck construction *F*:



- BC[∞]($W, \mathbb{R}^2 \rtimes \widetilde{\text{Conf}}(2)$). Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \to BC^{\infty}(W, \mathbb{R}^2 \rtimes \widetilde{Conf}(2)).$
 - $(\varphi, g) \mapsto \text{germ of } \mathsf{D}_W \text{ around } 0.$
 - $(\beta, \gamma) \mapsto B: W \to \mathbb{R}^2 \rtimes \widetilde{\mathrm{Conf}}(2)$
 - $(\varphi')^{-1}\gamma$ is an isotopy class of isotopies $(\varphi')^{-1}\beta\varphi \to \mathrm{id}_{\mathsf{D}_W}$.
 - $W \to \mathbf{R}^2$: the displacement of the origin.
 - $W \rightarrow Conf(2)$: the germ of embedding + winding number.
- \blacksquare Quillen's Theorem A: $*/\pi$ is a directed poset \Longrightarrow weakly contractible nerve

- BC[∞]($W, \mathbb{R}^2 \rtimes \widetilde{\text{Conf}}(2)$). Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \to BC^{\infty}(W, \mathbb{R}^2 \rtimes \widetilde{Conf}(2)).$
 - $(\varphi, g) \mapsto \text{germ of } \mathsf{D}_W \text{ around } 0.$

•
$$(\beta, \gamma) \mapsto B: W \to \mathbb{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2)$$

- $(\varphi')^{-1}\gamma$ is an isotopy class of isotopies $(\varphi')^{-1}\beta\varphi \to \mathrm{id}_{\mathsf{D}_W}$.
- $W \to \mathbf{R}^2$: the displacement of the origin.
- $W \rightarrow Conf(2)$: the germ of embedding + winding number.
- \blacksquare Quillen's Theorem A: $*/\pi$ is a directed poset \Longrightarrow weakly contractible nerve
- Theorem: $(\rho_! S)(\mathfrak{D}_W) \simeq \mathrm{BC}^{\infty}(W, \mathbf{R}^2 \rtimes \widetilde{\mathrm{Conf}}(2)).$

- BC[∞]($W, \mathbb{R}^2 \rtimes \widetilde{\text{Conf}}(2)$). Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \to BC^{\infty}(W, \mathbb{R}^2 \rtimes \widetilde{Conf}(2)).$
 - $(\varphi, g) \mapsto \text{germ of } \mathsf{D}_W \text{ around } 0.$
 - $(\beta, \gamma) \mapsto B: W \to \mathbb{R}^2 \rtimes \widetilde{\mathrm{Conf}}(2)$
 - $(\varphi')^{-1}\gamma$ is an isotopy class of isotopies $(\varphi')^{-1}\beta\varphi \to \mathrm{id}_{\mathsf{D}_W}$.
 - $W \to \mathbf{R}^2$: the displacement of the origin.
 - $W \to \widetilde{\text{Conf}}(2)$: the germ of embedding + winding number.
- Quillen's Theorem A: $*/\pi$ is a directed poset \implies weakly contractible nerve
- Theorem: $(\rho_! S)(\mathfrak{D}_W) \simeq \mathrm{BC}^{\infty}(W, \mathbf{R}^2 \rtimes \widetilde{\mathrm{Conf}}(2)).$

• Theorem: $\mathbf{R}\operatorname{Map}(\mathcal{S},\mathcal{V}_d^{\times}) \simeq \mathbf{R}\operatorname{Map}(\operatorname{B}(\mathbf{R}^2 \rtimes \widetilde{\operatorname{Conf}}(2)), \iota^*\mathcal{V}_d^{\times}).$

Applications (current)

- Consequence of the GCH: smooth invertible FFTs are classified by the smooth Madsen–Tillmann spectrum. (Previous work: Galatius–Madsen–Tillmann–Weiss, Bökstedt–Madsen, Schommer-Pries.)
- The Stolz-Teichner conjecture: concordance classes of extended FFTs have a classifying space. (Proof: Locality + the smooth Oka principle (Berwick-Evans-Boavida de Brito-P.).
- Construction of power operations on the level of FFTs (extending Barthel–Berwick-Evans–Stapleton).
- (Grady) The Freed-Hopkins conjecture (Conjecture 8.37 in Reflection positivity and invertible topological phases)

- Construction of prequantum FFTs from geometric/topological data. Differential characteristic classes as FFTs. (cf. Berthomieu 2008; Bunke–Schick 2010; Bunke 2010).
- Atiyah–Singer index invariants (index, η-invariant, determinant line, index gerbe) as a fully extended FFT (cf. Bunke 2002; Hopkins–Singer 2002; Bunke–Schick 2007).
- Quantization of functorial field theories. Examples: 2d Yang–Mills.

Example: the prequantum Chern–Simons theory (1)

Input data:

- G: a Lie group;
- $S = B_{\nabla}G$ (fiberwise principal *G*-bundles with connection);
- 𝒱 = B³U(1) (a single k-morphism for k < 3; 3-morphisms are U(1) as a Lie group).

Output data: a fully extended 3-dimensional G-gauged FFT:

$$\mathfrak{Bord}_3^{\mathsf{B}_{\nabla} \mathsf{G}} \to \mathsf{B}^3\mathrm{U}(1).$$

- Closed 3-manifold $M \mapsto$ the Chern–Simons action of M;
- Closed 2-manifold $B \mapsto$ the prequantum line bundle of B;
- Closed 1-manifold C → the Wess–Zumino–Witten gerbe (B-field) of C (Carey–Johnson–Murray–Stevenson–Wang);
- Point \mapsto the Chern–Simons 2-gerbe (Waldorf).

Example: the prequantum Chern–Simons theory (2)

Step 1 Compute $\mathcal{V}_{3}^{\times} = (B^{3}U(1))_{3}^{\times}$. Step 1a *W* is the fiberwise Deligne complex of $T \to U$: $W(T \to U) = \Omega^{3} \leftarrow \Omega^{2} \leftarrow \Omega^{1} \leftarrow C^{\infty}(T, U(1))$. Step 1b $W \to \mathcal{V}_{3}^{\times}$: a fiberwise 3-form ω on $T \to U$ \mapsto framed FFT: 3-bordism $B \mapsto \exp(\int_{B} \omega)$. Step 1c The composition

 $W(T \to U) \to \mathcal{V}_3^{\times}(T \to U) \to \mathcal{V}^{\times}(U) = \mathsf{B}^3\mathrm{C}^\infty_{\mathsf{fconst}}(T, \mathrm{U}(1))$

is a weak equivalence by the Poincaré lemma.

Example: the prequantum Chern–Simons theory (2)

Step 1 Compute $\mathcal{V}_3^{\times} = (B^3 U(1))_3^{\times}$. Step 1a W is the fiberwise Deligne complex of $T \to U$: $W(T \to U) = \Omega^3 \leftarrow \Omega^2 \leftarrow \Omega^1 \leftarrow C^{\infty}(T, U(1))$. Step 1b $W \to \mathcal{V}_3^{\times}$: a fiberwise 3-form ω on $T \to U$ \mapsto framed FFT: 3-bordism $B \mapsto \exp(\int_B \omega)$. Step 1c The composition

 $W(T \to U) \to \mathcal{V}_3^{\times}(T \to U) \to \mathcal{V}^{\times}(U) = \mathsf{B}^3\mathrm{C}^\infty_{\mathsf{fconst}}(T, \mathrm{U}(1))$

is a weak equivalence by the Poincaré lemma.

Step 2 Construct a point in

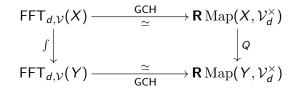
$$\begin{split} & \textbf{R}\operatorname{Map}(\mathsf{B}_\nabla {\mathcal{G}}, {\mathcal{W}}) \\ &= \textbf{R}\operatorname{Map}(\Omega^1(-,\mathfrak{g})/\!/\mathrm{C}^\infty(-,{\mathcal{G}}),\mathsf{B}^3\mathrm{C}^\infty_{\mathsf{fconst}}(-,\mathrm{U}(1))). \end{split}$$

(Brylinski–McLaughlin 1996, Fiorenza–Sati–Schreiber 2013) Step 2' Even better: can compute the whole space \mathbf{R} Map $(B_{\nabla}G, W)$. Step 1 Result: $\mathcal{V}_3^{\times} = (B^3U(1))_3^{\times} = B^3C_{fconst}^{\infty}(-, U(1)).$ Step 2 Construct a point in

$$\begin{split} & \mathsf{R}\operatorname{Map}(\mathsf{B}_\nabla {\mathcal{G}}, {\mathcal{W}}) \\ &= \mathsf{R}\operatorname{Map}(\Omega^1(-,\mathfrak{g})/\!/\mathrm{C}^\infty(-,{\mathcal{G}}),\mathsf{B}^3\mathrm{C}^\infty_{\mathsf{fconst}}(-,\mathrm{U}(1))). \end{split}$$

(Brylinski–McLaughlin 1996, Fiorenza–Sati–Schreiber 2013) Step 2' Even better: can compute the whole space \mathbf{R} Map $(B_{\nabla}G, W)$.

- X: the prequantum geometric structure
- Y: the quantum geometric structure (e.g., a point)



d = 1: recover the Spin^c geometric quantization when X is a smooth manifold, $Y = \text{Riem}_{1|1}$, $\mathcal{V} = \text{Fredholm complexes}$.