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Main theorem 1: conformal field theory

The following smooth oo-categories are equivalent:
m extended conformal field theories;
m Serre-twisted homotopy coherent representations of the Lie
group R? x Conf(2) on a 2-dualizable* object.
Notation:
] Eo\n/f(Z): the universal covering of Conf(2).
m Conf(2): z> 37,5 axz", a1 # 0, group operation:
composition.
m Serre-twisted: restricting to Z C (/Zg_n/f(2) C R2 x Eg_n/f(2)
yields Serre automorphisms.
m Example: if Serre automorphisms are trivial, get
representations of R? x Conf(2).
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Main theorem 2: 2|1-Euclidean field theory

The following smooth co-categories are equivalent:
m extended 2|1-Euclidean field theories;

m Serre-twisted homotopy coherent representations of the Lie
supergroup Euc(2|1) on a 2-dualizable object.

Notation:
= Euc(2|1): the universal covering of Euc(2]1) = R2! x Spin(2).
m Serre-twisted: restricting to Z C EJE(Z|1) yields Serre
automorphisms.

m Serre automorphisms trivial = representations of Euc(2|1).
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What is functorial field theory?

Want to study integrals of the form

/exp(ih_15(<p)) eC.

m ¢: field: section of F: E — X;
m F: E — X: field bundle;
m X: spacetime;
m S:[x(X) — R: action functional.
What kind of manifold is the spacetime X7
m Closed manifold.
m More generally: X is compact with boundary 0X = My U My;
write X: Mg — My, i.e., X is a bordism from My to Mj.
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Quantum propagators and Segal gluing

/exp(ih_IS(ap)) €C,  pelA(X),  X:My— M.
®

m For fixed o = ¢|m, € T#(M;), get K(o, ) = f(p e C

m K is the integral kernel of an operator F(X): F(My) — F(M)
(propagator).

m Here F(M;) = O(I' #(M;)) (space of states).

m Fubini property (Segal gluing): if X1: My — My,
Xo: My — Mo, then F(Xp Upy X1) = F(X2) o F(X1).

/exp (iIh15(p)) = /a1 /cm [02 exp(ih ' (S(p1) + S(¢2)))
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Axioms for quantum propagators in the Schrodinger picture

F: E — X (field bundle); F(M) = O(I' #(M)) (space of states)

FIMUN)=0Tsz(MUN))ZOTx(M)aT£(N))
= O(F7(M)) ® Ox(T#(N)) = F(M) ® F(N).
m Segal gluing (Fubini): F(Xz2 Upm, X1) = F(X2) o F(X1).
m Monoidality: F(MU N) = F(M) ® F(N).
m Segal (following Feynman, Witten): axiomatize Fubini and
monoidality as a symmetric monoidal functor (i.e., a functorial

field theory)
F:Bord — Vect.

m Bord: objects: (d — 1)-manifolds M; morphisms: bordisms
X: Mo — Ml.

m Vect: objects: vector spaces; morphisms: linear maps.
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Features of the geometric bordism category

m Locality (Freed, Lawrence): k-bordisms with corners of all
codimensions (up to d) with compositions in d directions
= symmetric monoidal d-category of bordisms

m Isotopy (Hopkins, Lurie): chain complexes to encode
BV-BRST
= must encode (higher) diffeomorphisms between bordisms
= symmetric monoidal (oo, d)-categories

m Geometric (nontopological) structures on bordisms (Segal,
Stolz, Teichner): Riemannian/Lorentzian metrics,
complex/conformal /symplectic/contact structures,
principal G-bundles with connection and isos,
higher gauge fields (Kalb—Ramond, Ramond—Ramond)
= an (00, 1)-sheaf of geometric structures

m Smoothness (Stolz, Teichner): values of field theories depend
smoothly on bordisms

= (00, 1)-sheaf of (o0, d)-categories of bordisms
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Geometric structures

Given d > 0, the site FEmby has

m Objects: submersions T — U with d-dimensional fibers,
where U = R" is a cartesian manifold;

m Morphisms: commutative squares with T — T’ a fiberwise
open embedding over a smooth map U — U’;

m Covering families: open covers on total spaces T.
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Geometric structures

Given d > 0, the site FEmby has
m Objects: submersions with d-dimensional fibers;
m Morphisms: fiberwise open embeddings;

m Covering families: open covers on total spaces T.

Definition

Given d > 0, a d-dimensional geometric structure is a simplicial
presheaf S: FEmb:® — sSet.
Example:

m T — U — the set of fiberwise Riemannian metricson T — U;

m (T — T',U— U) — the restriction map from T’ to T.
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Examples of geometric structures

m fiberwise Riemannian, Lorentzian, pseudo-Riemannian metrics;
positive/negative sectional/Ricci curvature;

m fiberwise conformal, complex, symplectic, contact, Kahler
structures;

m fiberwise foliations, possibly with transversal metrics;

m smooth map to a target manifold M (traditional o-model);

m smooth map to an orbifold or co-sheaf on manifolds;

m fiberwise etale map or an open embedding into a target
manifold N;

m fiberwise topological structures: orientation, framing, etc.

m fiberwise differential n-forms (possibly closed).
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Examples of geometric structures: gauge transformations

m Send a d-manifold M to (the nerve of) the groupoid
BvG(M):
m Objects: principal G-bundles on T with a fiberwise connection
on T — U (gauge fields);
m Morphisms: connection-preserving isomorphisms (gauge
transformations).
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Examples of geometric structures: (higher) gauge

transformations

m Principal G-bundles with connection on M (gauge fields, e.g.,
the electromagnetic field);

m Bundle gerbe with connection on M (B-field, Kalb—Ramond
field).
m Bundle 2-gerbe with connection on M (supergravity C-field).

m Bundle (d — 1)-gerbes with connection on M (Deligne
cohomology, Cheeger—Simons characters, ordinary differential
cohomology, circle d-bundles).

m Geometric tangential structures: geometric Spin©-structure,
String (Waldorf), Fivebrane (Sati—Schreiber—Stasheff),
Ninebrane (Sati). (Vanishing of anomaly.)

m differential K-theory (Ramond—Ramond field). Requires
oo-groupoids.
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The geometric cobordism hypothesis

Ingredients:
m A dimension d > 0.
m A smooth symmetric monoidal (co, d)-category V of values.
m A d-dimensional geometric structure S: FEmb)? — sSet.
Constructions:
m The smooth symmetric monoidal (oo, d)-category of bordisms
Bord§ with geometric structure S.
m A d-dimensional functorial field theory valued in V with
geometric structure S is a smooth symmetric monoidal
(00, d)-functor Bord§ — V.
m The simplicial set of d-dimensional functorial field theories
valued in V with geometric structure S is the derived mapping
simplicial set

FFT41(S) = RMap(Bordg, V).

Can be refined to a derived internal hom.
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The geometric cobordism hypothesis

Conjectures (for topological field theories):
m Freed, Lawrence (1992): FFTy4y is an oco-sheaf.
m Baez-Dolan (1995), Hopkins—Lurie (2008):

FFT4v(S) ~ RMap(S, V).

V*: fully dualizable objects and invertible morphisms.
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The geometric cobordism hypothesis

Conjectures (for topological field theories):
m Freed, Lawrence (1992): FFT4y is an oco-sheaf.
m Baez-Dolan (1995), Hopkins—Lurie (2008):
FFT4v(S) ~ RMap(S,V*).

Theorem (Grady—P., The geometric cobordism hypothesis)

Part | (Locality): Bordy is a left adjoint functor:
R Map(Bord3, V) ~ RMap(S, V),

where VX = FFT gy, i.e, V(T — U) = FFT4 (T — U).
Part Il (Framed GCH): The evaluation-at-points map

VI(RYx U— U)=FFTyu(RY x U— U) = V*(U)

is a weak equivalence of simplicial sets functorial in U.
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Computing with GCH

m How to compute V;7?
= How to compute RMap(S,V,)?
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Computing V;

= Already know V(RY x U — U) =~ V*(U), functorial in
U e Cart.

m What are the structure maps for functoriality in FEmby4?

m Step 1: Guess a map W — V.

m Step 2: For every U, prove
W(R? x U— U) = V(R x U— U) = V*(U) is a weak
equivalence.

Example (V = BIU(1); prequantum FFTs)

m Step 1la: W(RY x U — U) = UF(ij(Rd X U) -«
Q}J(Rd x U) + C®(R? x U, TU(1))).

m Step 1b: W — V) w— (B exp(4 [zw)

m Step 2: Poincaré lemma:
W(R? x U — U) 5 BIC>®(U,U(1))
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How to compute R Map(S, W)?

Two main options:
m Use the theory of natural operations, working on the site

FEmb,.
Examples: differential characteristic classes yield prequantum
field theories.

m Use an adjunction to switch to a different category:
Fun(Cart®?, sSet®(9)).
Examples: classification of conformal or Euclidean field
theories.
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Categories of geometric structures

The functors q* and * are right Quillen equivalences.

Sh(FEmbg) «—/— Sh(FEmby) —“+ Sh(Cart)O()

| |

Sh(FEmbCart,) «~— Sh(3EmbCarty).

m Sh(C): simplicial presheaves on C, Cech-local model structure
B §¢mby: like FEmby, but enriched in spaces
m FEmbCarty: full subcategory of FEmby on
Dy :=(RYx U — U)
m F¢mbCarty: equivalent to Cart x BO(d) by C* Kister—Mazur
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Categories of geometric structures

Proposition

The functors q* and (* are right Quillen equivalences.

Sh(FEmby) «—— Sh(FEmby) —- Sh(Cart)O()

/| |

Sh(FEmbCarty) +— Sh(3EmbCarty).

The functor py adds “d-thin homotopies” to a geometric structure.
d-dimensional holonomy is invariant under d-thin homotopies.

d = 1: Kobayashi, Barrett, Caetano—Picken

d > 1: Bunke-Turner—Willerton, Picken, Mackaay—Picken
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Categories of geometric structures

The functors q* and * are right Quillen equivalences.

Sh(FEmbg) «—/—— Sh(FEmby) —“+ Sh(Cart)O()

v |

Sh(FEmbCarty) +— Sh(3€mbCarty).

Recipe to compute R Map(S, p*V}).
m Use ¢* to move to FEmbCarty / FEmbCarty. (Suppressed
from the notation.)
m RMap(S, p*V}) ~ RMap(piS, V).
m Compute piS.
m RMap(piS, V) ~ RMap(:*pS,* V). (C* Kister-Mazur)
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How to compute p/S7?

Notation:

m FEmbCarty: Objects Dy = (RY x U — U), morphisms:

fiberwise open embeddings.

m FEmbCarty: Objects Dy, space of morphisms.

m p: FEmbCarty — FEmbCarty: inclusion.

m pi: Sh(FEmbCarty) — Sh(FEmbCarty): left Kan extension.
Computation:

m pS = pirhocolimp,,—,s Y(Dy) = hocolimp, 5 Y(Dy).

m Evaluate on Dyy:

(mS)(®w) = hocolim FEmbCarty(Dw, Dy).
Dy—S

m F¢mbCarty(Dyw,Dy) is 1-truncated. Ob: ¢: Dy — Dy.
Mor ~v: ¢ — ¢': isotopy classes of isotopies from ¢ to ¢’
(form a Z-torsor).
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How to compute p/S7?

L] p;S = P hOCOlimDU_>S Y(Du) = hOCOlimDU_>3 Y(@U)
m Evaluate on Dy:

(1 S)(Dw) = hocolim FEmbCarty (D, Dy).
Du*)S

m F¢mbCarty(Dyw,Dy) is 1-truncated. Ob: ¢: Dy — Dy.
Mor ~: ¢ — ¢': isotopy classes of isotopies from ¢ to ¢’
(form a Z-torsor).

m Thomason's theorem: hocolim computed as the Grothendieck
construction F. Ob: Dy 5% Dy & S. Mor (¢,8) = (¢, &):

B:Dy = Dy: g =¢g'B, v: e — ¢
Dw ——Dy—2-38
N lﬁ/
® g
DU/
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How to compute p/S7?

m Fe¢mbCarty(Dyw,Dy) is 1-truncated. Ob: ¢: Dy — Dy.
Mor ~: p — ¢': isotopy classes of isotopies from ¢ to ¢’
(form a Z-torsor).

m Thomason's theorem: hocolim computed as the Grothendieck
construction F. Ob: Dy 5 Dy % S. Mor (¢,g) — (¢, g"):
B:Dy — Dy g =g'8, v: By = ¢'.

DWL)DUg—hS

,7 lﬁ/
¢ g

DU/

= BC®(W,R? x Eg_n/f(2)) Ob: germ of Dy around 0. Mor:
displacement + automorphism of a germ.
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How to compute p/S7?

m Thomason's theorem: hocolim computed as the Grothendieck
construction F. Ob: Dy 5 Dy % S. Mor (¢,g) — (¢, g"):

B:Dy — Dy g=g'8,v: e — ¢

DWL)DUg—>S

,V lﬂ/
4 g

DU/

m BC®(W,R? x 6&1?(2)) Ob: germ of Dy around 0. Mor:
displacement 4 automorphism of a germ.

m Projection functor 7: F — BC*(W,R? x 6&1/1‘(2))
m (p,g) — germ of Dy around 0.
= (8,7) = B: W — R2 x Conf(2)
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How to compute p/S7?

m Grothendieck construction F:

DWL)DUg—hS

,7 lﬁ/
¢ g

DU/

= BC®(W,R? x Eg_n/f(2)) Ob: germ of Dy around 0. Mor:
displacement + automorphism of a germ.

m Projection functor m: F — BC>®(W, R? x Conf(2)).
m (o, g) — germ of Dy around 0.
» (8,7) — B: W — R? x Conf(2)
m (¢')71y is an isotopy class of isotopies (') 1By — idp,, .
m W — R?: the displacement of the origin.
s W— Cfo\ﬁ(2): the germ of embedding + winding number.
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How to compute p/S7?

m Grothendieck construction F:

DWL)DUg—hS

/ ﬁ//
¥ g

DU/

BC>®(W,R? x C/c;rf(2)) Ob: germ of Dy around 0. Mor:
displacement + automorphism of a germ. -
Projection functor m: F — BC®(W, R? x Conf(2)).

m (¢, g) — germ of Dy around 0.

= (8,7) — B: W — R? x Conf(2)

m (') 1y is an isotopy class of isotopies (¢’) B¢ — idp,,-

m W — R?: the displacement of the origin.

m W 68;1/1‘(2): the germ of embedding + winding number.
Quillen's Theorem A: x/m is a directed poset = weakly
contractible nerve
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How to compute p/S7?

BC>®(W,R? x 635(2)) Ob: germ of Dy around 0. Mor:
displacement 4 automorphism of a germ.

Projection functor m: F — BC®(W, R? x Conf(2)).
m (¢, g) — germ of Dy around 0.
= (3,7) = B: W — R? x Conf(2)
m (/)" 1y is an isotopy class of isotopies (¢’) B¢ — idp,,.
m W — R?: the displacement of the origin.
m V- 6(51?(2): the germ of embedding + winding number.

Quillen’s Theorem A: %/ is a directed poset = weakly
contractible nerve

Theorem: (p1S)(Dw) =~ BC®(W, R? x Conf(2)).
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How to compute p/S7?

BC>®(W,R? x 6&(2)) Ob: germ of Dy around 0. Mor:
displacement + automorphism of a germ.

Projection functor m: F — BC®(W, R? x Conf(2)).
m (¢, g) — germ of Dy around 0.
= (8,7) — B: W — R? x Conf(2)
m (')~ 1y is an isotopy class of isotopies (¢’) B¢ — idp,,.
m W — R?: the displacement of the origin.
s W— Egn/f(2): the germ of embedding + winding number.

Quillen’s Theorem A: %/ is a directed poset =—> weakly
contractible nerve

Theorem: (pS)(Dw) ~ BC®(W,R? x €o\r1/f(2))
Theorem: RMap(S, V) ~ RMap(B(R? x Conf(2)), UV,
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Applications (current)

m Consequence of the GCH: smooth invertible FFTs are
classified by the smooth Madsen—Tillmann spectrum.
(Previous work: Galatius—Madsen—Tillmann—\Weiss,
Bokstedt—-Madsen, Schommer-Pries.)

m The Stolz—Teichner conjecture: concordance classes of
extended FFTs have a classifying space. (Proof: Locality +
the smooth Oka principle (Berwick-Evans—Boavida de
Brito—P.).

m Construction of power operations on the level of FFTs
(extending Barthel-Berwick-Evans—Stapleton).

m (Grady) The Freed—Hopkins conjecture (Conjecture 8.37 in
Reflection positivity and invertible topological phases)
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Applications (ongoing)

m Construction of prequantum FFTs from geometric/topological
data. Differential characteristic classes as FFTs.
(cf. Berthomieu 2008; Bunke—Schick 2010; Bunke 2010).

m Atiyah—Singer index invariants (index, n-invariant,
determinant line, index gerbe) as a fully extended FFT
(cf. Bunke 2002; Hopkins—Singer 2002; Bunke—Schick 2007).

m Quantization of functorial field theories. Examples: 2d
Yang—Mills.
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Example: the prequantum Chern—Simons theory (1)

Input data:
m G: a Lie group;
m S = ByG (fiberwise principal G-bundles with connection);
m V = B3U(1) (a single k-morphism for k < 3; 3-morphisms are
U(1) as a Lie group).
Output data: a fully extended 3-dimensional G-gauged FFT:

Boros¥ ¢ — B3U(1).

m Closed 3-manifold M — the Chern—Simons action of M;
m Closed 2-manifold B > the prequantum line bundle of B;

m Closed 1-manifold C — the Wess—Zumino—Witten gerbe
(B-field) of C (Carey—Johnson—Murray—Stevenson-Wang);

m Point — the Chern—-Simons 2-gerbe (Waldorf).
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Example: the prequantum Chern—Simons theory (2)

Step 1 Compute V5 = (B3U(1))5 .
Step 1la W is the fiberwise Deligne complex of T — U:

W(T — U) = Q% « Q% « Q! « C=(T,U(1)).

Step 1b W — V5: a fiberwise 3-form w on T — U
+— framed FFT: 3-bordism B — exp( [z w).
Step 1c The composition

W(T — U) = V(T — U) = V¥(U) = B3C2,(T,U(1))

is a weak equivalence by the Poincaré lemma.
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Example: the prequantum Chern—Simons theory (2)

Step 1 Compute V5 = (B3U(1))5 .
Step 1la W is the fiberwise Deligne complex of T — U:
W(T — U) = Q% « Q% « Q! « C=(T,U(1)).
Step 1b W — V5: a fiberwise 3-form w on T — U
+— framed FFT: 3-bordism B — exp( [z w).
Step 1c The composition
W(T — U) = VI(T = U) = V*(U) = B3C2(T, U(1))
is a weak equivalence by the Poincaré lemma.
Step 2 Construct a point in
R Map(Bvy G, W)
= RMap(Ql(—, g)//coo(_7 G)? B3C?§onst(_a U(l)))
(Brylinski-McLaughlin 1996, Fiorenza—Sati-Schreiber 2013)
Step 2" Even better: can compute the whole space RMap(Bvy G, W).
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Example: the prequantum Chern—Simons theory (2)

Step 1 Result: V5 = (B3U(1))5 = B3CgS (=, U(2)).
Step 2 Construct a point in

R Map(Bvy G, W)
= RMap(Q'(—,9)//C®(—, G), B> Cnet(—, U(1)))-

(Brylinski-McLaughlin 1996, Fiorenza—Sati—Schreiber 2013)
Step 2’ Even better: can compute the whole space R Map(By G, W).
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Quantization of functorial field theories

X: the prequantum geometric structure
Y: the quantum geometric structure (e.g., a point)

FFT g0 (X) een R Map(X, V)
J l lo
FFTa(Y) = R Map(Y, V)

d = 1: recover the Spin® geometric quantization when X is a
smooth manifold, Y = Riemy;, V = Fredholm complexes.
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