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This note is a direct continuation of [1]. Here we construct a spectral sequence {EP-q}

one of whose differentials is the operator Er, which associates the corresponding Euler-Lagrange

equations to a Lagrangian. As a result, in field theory with constraints it is possible to avoid

Lagrange multipliers and to obtain conceptual clarity. The terms E%-? are described indepen-

dently as the Spencer-type homology of the differential operator that is used to find the

symmetries (in the sense of [6]) of the constraint equations. When there are no constraints

this homology is trivial, which allows us to compute completely the spectral sequence and to

compute the cohomology of the complex introduced in [1], prolonging the operator Er (see

also [2]).

Below we shall use the definitions and notation of [1], [3]-[6].

1. Some facts from the projective theory of nonlinear differential equations. Let V be

a smooth manifold, dim N =n + m, m > 1. The term k-jet will designate the class of n-

dimensional submanifolds L C N that are mutually tangent to order £ => 0 at a point x EN,

(L)® will denote the k-jet of the submanifold L C N at the point x, N¥ =, NE (x), where

NE(x) is the set of all kets at the point x, and Tei: Ni, —> Nb, k >1, is such that

Te (LE) = L),; Ny, = lim inv,_, NK.

We note that N = Ny. In case m = 1 we take as N! some contact manifold of dimen-

sion 27 + 1 and we set NY = (WV)TL Nn {UEL)E1 x €NL, L is an integral manifold}.

Let L" CN (L C N} for m = 1) be some submanifold (an integral submanifold for m = 1).

We set j (L): L — N¥| j (L)x) = (LY: (= (L)E! for m = 1). We denote by j(L) the

inverse limit of the mappings j,(L) relative to the chain Te k—1 Kk => °°.

Let m > 1, let a: E"TTM —> MTM be a submersion and let f: E —~> f(E)C N be a dif-

feomorphism. Then, setting Fao) = (o(a))f (e)> Where 0 € Ty, (a), we obtain an injec-

tive mapping fi: J¥(a) — N*. The pair Fey J¥(e)) is called an affine chart on N¥,

and we introduce on N¥, a smooth structure that is compatible with all the possible affine

charts. We denote by F¥ (NV) the corresponding ring of smooth functions on N% | and we

denote by F,, (NV) the direct limit of the rings Fud (NV) relative to the chain of homomorphisms

Ty. x—1 Observing that the subrings F¥ (V) form a filtration of F, (N). The inverse limit

fy: I° (a) — N,, of the system fry k& — oo, will be called an affine chart in ¥;,. If

m = 1, for the definition of the affine charts Fry J*(0)) we need to start with some con-

tact diffeomorphism fi;y: J la) — fy Y(@)) C NL.
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Every system of nonlinear differential equations of order < k on an n-dimensional sub-

manifold of N**+TM can betreated as a submanifold & C NX. We denote by & 4, the Ith

prolongation of the equation & and we set &, = m,_,(&) for I <k. It is obvious that

75, (& 9) C 6, so that the inverse limit & ,, of the chain ++ - — & Astls, § —> - --

is defined as is the direct limit F(&) of the chain - + + — F(&) ils, Fo (8) — ee
F(&)=C “(& g), so that F(&) is filtered by the images of the subrings F(&). By an

affine chart on & ,, we will mean the intersection of an affine chart on NV, with &...
In what follows our considerations will originate exclusively in the category of filtered

R- differential operators (d.o.) over the filtered ring F(&). If & is the functor of differential

calculus in the sense of [3], and ® is the object representing it in the category that we are

considering, then we set

FO={o=®|[j(L) (9) ] (z)=0, Ve=L <N, (L)."=8.},

¢F=Ann ¢0, O&=0/FO.

The localization of the module ® to an affine chart is canonically identified with

F(&) ®¢ = anPM), where ®(M) is the representing object for the functor & over CTM(M)

in a geometric subcategory of [5]. In particular, A¥ = 0 if k > n. Further the cohomology

of the complex (A*, d) is denoted by H9(&), and the de Rham cohomology of the mani-

fold & is denoted by HI(&).

2. Symmetries of nonlinear equations. An automorphism 4 of the filtered ring K =

F(&) is called an (intrinsic) symmetry of the equation & if 4*° C = Co 4* IfX€E

D(K) and X(C ®) C C® for all &, then X is called an infinitesimal symmetry of the equa-

tion & and we denote by Sym & the Lie algebra of all such symmetries. Then C.D(K) C

Sym & and we can consider the quotient k(&) = Sym &/CD(K). We also set k = k(N),

noting that xk does not depend on k.

THEOREM 1. The following assertions hold:

1) Let Norm & be the normalizer of the subring C Diffs K C Diffs K. Then the

natural imbedding k(&) — Norm &/C Diff« K is an isomorphism.

2) Every intrinsic infinitesimal symmetry is the restriction to & of some external

infinitesimal symmetry.

3) If P= {P,} is a filtered projective module over K and the equation ¢ = 0, ¢ € Py,

gives & C N% , then k( &) = ker l,| £? where ly is the operator of universal linearization

(see [5], [6]), and 1,\¢ is its restriction to & .

THEOREM 2 (B. A. KurErSMIDT). If &. = J (a), then (EF) is equal to the module

of all evolution differentiations of the ring dif«(a, 1,7).

For the proof see [5].

3. A C -spectral sequence. In what follows A’ denotes the object representing the

functors D; in our category of differential operators over F(&) = K. It is not difficult to

show that CA = CA! A A! and C A* is an ideal in A*. We denote by C¥A* the

kth power of the ideal C A* and we consider the filtration of the K-module A* by these

ideals: A* = COA*D CIA*D ++ C¥A* D-.. | The ideal CA* is stable relative to

the exterior differentiation d, since any natural operator obviously commutes with the opera-

tion @. Therefore the C¥A* are subcomplexes of A* and the filtration indicated above
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leads to a spectral sequence {EP:9, dP'9} which converges to the de Rham cohomology alge.

bra of the “manifold” & .,. Here p is the filtration index and p + g is the degree. For

“good” equations &, for example for formally integrable ones, this cohomology is identical

with H*(&).

Let C (yDiff (+P denote the kth exterior power of the K-module C Diff§*)P,

P = Homg(P, A") and the equation & has the form ¢ = 0, € P, where the module P =

{P,} is projective, and ¢ is such that functions of the form y(y), v € Pf, generate the ideal

of the submanifold &. We recall also that every operator A € Diff«(P, OQ) generates a map-

ping on the chain level §«(A): S xP) — S «(0), where Sx(W) is the Spencer complex

=D; (Diff. *W) —-—~D (Ditt.*W) ~ Diff.W.

In Theorem 3 we shall use Spencer complexes in the € -category of filtered differential

operators over K, in which we consider only operators of the form € Diff«(P, 0). In this

category all the general constructions of differential calculus in the sense of [3] hold in a

natural way, so we need only make the substitutions 8— C8 , & — P.

THEOREM 3. 1) EQ? = A%,d, =d.

2) E%9, p > 1, is canonically isomorphic to the cokernel of the homomorphism

- : 168 ng) lg Ca
B (p-1) Difiine ® GDn_q (8 Diff, P) ————> B(p-1) Diff;x:®Q% Dn q(6 Diff xg ) :

where S (A) is the restriction of S (A) to D (Diff{ P). Here the differential de? is identi-

fied with the operator 1® S%79, where Sk: D, (Diff) — D (Diff §) is the Spencer

operator.

COROLLARY 1. EA =H 9 &), and the term ER, p > 0, is equal to the (n = q)th

Spencer homology group (see [3]) of the operator 5! g with coefficients in € (,_)Diff oy Ke.

4. The absolute case: & ,, = N,, or J”(a). In this situation we can set P = 0 in the

notation of Theorem 3, which allows us to use the following result, where } <(P) denotes

the s-dimensional homology of the Spencer complex S «(P) (see [3]) in the (-category.

TueoreM 4. H (P) = 0,5 > 0, and XH 4(P) = P for an arbitrary equation & and an

arbitrary filtered K-module P.

COROLLARY 2. In the absolute case E91 = HIN), EF =0,p>0,q #n, and

ER" is identified with the set of all skew K-valued (p — 1)-forms w on the K-module x such

that Y, 1(* + (Yp_p dW) * + + ) as a 1-form of Y € « is an antisymmetric (relative to *)

differential operator in the C -category for any Y; € kx. Here the operator d, = dP":

EP" — EPL pestricted to an affine chart, acts according to the formula

(dw) (f1, se , fo) = y (—1)°+9; (w (fs, RAL Fs, RR fx)

+) TOFfd afore Fae)
s<t

1 »+) {f-, w(fi,..., Fs coer fi) } ’
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where we write W(f, . . .) in place of w(d4, . . .) and {J g}* = 5 — Ig).

COROLLARY 3. Ifi <n, then HN) = HYNES), wheree=1 form > 1,and € = 2

form =1; EL" = HITTM(NE) ifj > 0. Furthermore, fori < n, we have H'(J “()) = H'(E)
(where E = JO (a) and EL" = H*t"(E) ifj > 0.

5. Absolute Lagrangian formalism. A form w € A” is called a Lagrangian density, and

its d -cohomology class £ = [w] € H "(NV,,) is called a Lagrangian. Thus, the set of all

Lagrangians on N is E?>". Further, the Euler equation corresponding to £ will be under-

stood to be the element d,(£) € Ej" = k. More precisely, let d,(£) € kj ({K;} is the

filtration of kK). Then L C N is an extremal for £ if the restriction of d,(£) to the sub-

manifold im j, (L) is equal to zero.

We shall say that the Lagrangian L is trivial if d,(£) = 0.

COROLLARY 4. The vector space of trivial Lagrangians in the projective (respectively

affine) case is H"(N,) (respectively HTM(J°(a))).

REMARK. The consideration of variational problems with boundary conditions is

carried out according to the scheme described above. In this case it is necessary to introduce,

in a suitable manner, a submanifold B,, C N,,, which will realize the boundary conditions,

and then to consider the C-spectral sequence generated by the filtration of the relative com-

plex A*(N,,, B,) by powers of the ideal C A*(NZ, B..).

6. The (°-spectral sequence of the equation &. In this case, in the notation of Theo-

rem 3 we have

THEOREM 5. 1) E14 = HU(§);

2) E21 =0ifp>0,q#n—1,n;

3) Ep"! =ker If, E}" = coker [7].

COROLLARY 5. E57 = EP9,

We note that the group E91 = H ""1(§&) is the group of conservation laws of the

equation &, and ker [| = Sym & [5], [6].

COROLLARY 6. If l |g =I%|c (i.e. & is self- or anti-conjugate), then d3°" pis an

infinitesimal symmetry of & for every conservation law p of &.

COROLLARY 7. If & is formally integrable, then HU(&) = HX (&),q <n —2, and

ker a9"! = H*71(§).

7. Lagrangian theory with constraints. Such a theory in the language used by us is

formulated exactly as in the case in which there are no constraints. More precisely, suppose

that we have a variational problem with constraints, i.e. the varying quantities satisfy some

equation & (the equation of the constraints) and we are required to find the extremals of

the Lagrangian &£ under such variations. Then it is natural to understand the Lagrangian £

as an element of the group H *(&) = E 97 and the “Euler-Lagrange equation” corre-

sponding to it as an element dy"*(£) € E}". If d,(L) is an element of the k-th filtration,

then a solution L C NV to the equation & is an extremal of the variational problem under

consideration if and only if the value of d,( £) on the submanifold im j,(L) is equal to

zero. It is natural to call the condition on L C N arising in this way an Euler-Lagrange

equation.
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The details of the theory described here and its variants will be given elsewhere.

REMARK.* The proposed conception of the Euler-Lagrange equation is natural in the

category of nonlinear partial differential equations (see [6]). For example, Euler-Lagrange

equations are invariance under morphisms &. — §&., which corresponds to nonlinear dif-

ferential operators defined on solutions of &' with values in solutions of &. This variance

property is well known for transformations of the set of dependent and independent variables.
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