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Summary. The definition of a bracket operation for multivector fields and an extension of the 

notion of the Lie derivative are given. With the new bracket operation the exterior algebra of 

multivector fields acquires the structure of a graded Lie algebra. 

1. Introduction. The object of this paper is to define for multivector fields 
a bracket operation which is a natural extension of the Lie bracket of vector fields. 
With this bracket operation the exterior algebra of multivector fields acquires the 

structure of a graded Lie algebra. The bracket is a special case of a bilinear differential 

concomitant for arbitrary contravariant tensor fields defined by Schouten [1]. 

A discussion of this special case of Schouten’s concomitant is included in a paper by 

Nijenhuis [2]. Most properties of the bracket are derived there by coordinate methods 

of classical differential geometry. .. | 
Section 2 is a summary of generally known definitions and results stated without 

proofs. The main results of the paper are formulated in Sec. 3. Sec. 4 is 

devoted to a discussion of the possibility of further generalizations. It is shown that 
the construction of the bracket operation for multivector fields is formally the same 

a8 that used by Frolicher and Nijenhuis [3] for the bracket of vector-valued forms. 

It is also shown that the construction-does not extend to multivector-valued- forms. 

The generalized Lie derivative of forms is defined in the last section. | 

2. The graded algebras of multivector fields and forms. Let M be a para- 

Compact C* manifold and F the ring of differentiable functions on M. Constant 

functions on M form a subring of F identified with the field R of real numbers. 

2.1 DEFINITION. A derivation D of a commutative ring A relative to a subring K 

15 a map D: A—A which satisfies 

(@ Dk=0if kek, 

(b) D(a+b)=Da+Db, 

¢) D (ab)=(Da) b+aDb. 
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938 W. M. Tulezyjew 
_——— 

Derivations of F relative to R form the F-module of vector fields on M, denotg 
by V. 

Let A?= A? V denote the p-fold exterior power of V. Also let 4° denote F apy 
let A?=0 for p<0. Elements of A? are called multivector fields of degree p. The nop. 

negative graded F-module A={4?} is called the exterior algebra of V. It is 4 
commutative, associative graded algebra with a product A, called the exterip 

product, satisfying 

(a) degree (XA Y)=degree X+ degree Y, 

(b) XAY=(—1)P2YAX if degree X=p and degree Y=gq, | 

(©) XA(YAZ)=(XATY)AZ, 

(d) XA +Z)=XAY+XAZ if degree Y=degree Z. 

Let 4, denote the F-module Hom (A?, F) dual to 47. Elements of 4, are called 
forms of degree p. The non-negative graded F-module A*={4,}, dual to A, is 

isomorphic to the exterior algebra of V*=Hom (V, F). Formal properties of the 

exterior product A of forms are the same as those of the exterior product of multi- 

vector fields. 

Duality between 4 and 4* implies the existence of the evaluation map A x A— 

=F: (X, f)—=»{X| uy, where {X| w=pu(X) if degree X=degree u and {(X| u)=0 

if degree X+degree ut. 

The interior products _| and | are operations: AX A*—A*:(X, W)—X _|u 

such that degree (X _|p)=degree u—degree X and {Y |X _|)={XAY| pu) for 

each multivector field Y; and Ax A*—A4:(X, pu) X|_u such that degree (X|_ p= 

=degree X —degree u and {X|_u|v>=<{X|unav) for each form v. 

2.2 PROPOSITION. Relation (XA Y)|_u=X|_WAY+(—12 XA(Y|_ pn) holds if 

pis a form of degree 1, X a multivector field of degree p and Y any multivector 

field. Also 

X (pan) =(X1_ pu) _v+(~=1? gA(X _Iv) 
holds if degree X=p, degree p=1 and v is any form. 

2.3 PROPOSITION. There is a unique differential d in A* satisfying {X|df>=Xf 

Jor each vector field Xe V and each function fe F, and 

(a) degree du=degree u+1, 
(b) ddu=0, 

(© d(utv)=du+dv if degree u=degree v, 

@  d@uav)=dunv+(=1)° undv if degree p=p. 

3. The graded Lie algebra of multivector fields. Let X and Y be multivector 

fields of degree p and g¢, respectively. 

3.1. PROPOSITION. There is a unique multivector field [X, Y] of degree p+q—1 

such that 

(IX, Yl dy =(X |d(¥ _|du)y+(—Dpe++a(Y|d(X _| dw).
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proof. To define a multivector field it is sufficient to give its evaluation with 
forms of the type fdu, where f is a function. Let f; f' be functions and x, u” 

forms such that fdu=f"dy'. Then 

AXA dp) +(=1)perrr ea fKY dX du) 
=(X|d(Y _J fay + (=D era Y dX _| fawy —(— DP KYA Yd(f du)> 
=(X|d(Y _1f'du’)y +(=1p*r Pra Yd X_|f'dp’)) — (= 1)" KX AY |d(f dp’) 
=f (X|d(Y _{du' y+ (—1)Perea f° Y dX _|du')) 

Thus a multivector field [X, Y'] of degree p+¢g—1 is correctly defined by 

IX, Y1| fdpy=f<X|d(¥ _|dpy+(—1)rrr+a f{Y dX _| dp). 
Uniqueness of [X, Y] is obvious. | | 

3.2 PROPOSITION. The multivector field |X, Y] satisfies | 

1X, YI df=I[X, Y|_df]-(-1D?[X|_df, Y] 

for each function f. 

Proof. 

CX, YI df |duwy=<IX, Y]ld(f dw) 
=X |d(Y _{(dfrdw))+(—Drere+al(Y|d(X _|(dfndw)> 
=(Xd((Y df) Jdu)>—(—DHX|_df |[d(¥Y _ldw)y 
=(—=1per?* a Y [dX _Ldf) dup — (1 YL_df |d(X _{dw) 
=X, YL_df ]ldwy—(— DX, Y_df]| dp 

for each function f and each form wu. Hence [X, Y]| _df=I[X, Y|_df]— 

-(-D)XLd, Yl 

3.3. PROPOSITION. The multivector field [X, Y] satisfies 

[X, Y] _{p=X_1d(Y {p+ (-1re"?*1Y {dX _|u) 
— (=P? (XA Y) pu) —(—=1PH (XA TY) _ldu 

for each form u. | 

Proof. The proposition is true for degree u=0, and if the proposition is true for 

degree pu=p then 

1X, Y]_1@fA =X, YIL_df) _{u+(=DP* 1 dfa(lX, Y] _1 p) 
=X, Y_df] _lp—(—DXL df, Y]_{p—(—1y* df A(X, Y] _J 1) 
=X _1d((YL_df)_lw)— (=D (Y df) _dX_|wy— (12 d((XA(Y_df)) lu) 
+(=1yperr ta (XA (YL df) _ldu—(=DUX_df)_Jd(¥ _|@)+(=Dpretr+a 
Y_1d((X df) 1g) — (= 12 d(((XL_df)A Y) du) +(— 1p ((XL_df)A Y) dpe 
~(=DPredfa(X _1d(Y _1p)— (=D dfa(Y _1d(X _i p)) 
+(—Dparagfad(XAY) |p) +(—1P4 2 dfa (XA Y) _] dp) 

=X _1d(Y _1(dfAw)—(=1petrrey [dX _{(dfrpw) 
(=p? d((XAY) _{@d Aw) —(—=1)P* (XAT) _Jddfrp. 
Hence proof by induction. | 

3.4 THEOREM. There is a unique operation AX A—A:(X, Y)—[X, Y] whick 

satisfies [X, f1=Xf for each vector field Xe V and each function fe F, and
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(a) degree [X, Y]=degreeX {degree Y—1, 

b) [X, Y]+(—DE-D@=-D[Y, X1=0 if degree X=p and degree Y=gq, 
c) (—~D)-1DE-1) [X, [Y, Z| +(— 1)(a-1 2-1) [Y, [Z, X71] | 

+(=1De-D@=D[Z [X, Y1]|=0 if degree x=p, degree Y=q and deg, 
Z=r, 

(d) [X, Y+Z]=[X, Y]1+I|X, Z] if degree Y=degree Z, 

€) [X, YAZ]=YALX, Z]+(—1y®-D[X, YIAZ if degree X=p and degre, 
=r. 

Proof. It follows from elementary computation that (X, Y)—[X, Y], where 

TX, Y]is defined in Proposition 3.1, has all the required properties. TO prove uniqye. 

ness note that [X,f]=Xf=X| df for degree X=1, and [Y,f]=Y[_df imply 

IXAY f= INY=XAY fl=X Ld )ANY—=XA(Y|_df)=(XAY)_df by the 
use of (b) and (e). Hence [X, f]=X|_df by induction on degree X. This result, together 

with (b) and (0), implies [X, Y]L_df=[[X; Y], f1=IX, [¥, f1]—(~1)*[[X, f1, Y]~ 
=[X, Y| _df]-(—D?[X|_df, Y]. An inductive argument similar to that used to 
prove Proposition 3.3 leads to {[X, YI =<X|d(Y _| p)> +(—1)P4+?+* LY |d(X _| pn) 

—(—=1)P2*2{XAY| duy. Hence [X, Y] is unique. 

3.5 DermNiTION. The graded algebra of multivector fields with the operation 

{X, Y)—[X, Y] is called the graded Lie algebra of multivector fields. 

4. Multivector forms. Let 4] denote the F-module Hom (47, 49). Elements 

of 4% are called multivector forms of degree (p, q). The module AY is identified with 

A% and 4)=4,. Elements of 4; are the vector forms discussed by Frolicher and 
‘Nijenhuis [3]. | 

For each multivector form XK of degree (p, q) and each form x of degree r let 

K _{u be a form of degree p+r—g such that K | u=0 for r—g<0 and for r—g=0 

K_1p (XA AX pp g)= 

ar Sol TTI | 
==) 2, SEN au (K (Xe, A A Xa ) A Xo), A ver A XD) ’ 

where X,, ..., X. reg are vector fields and « ranges over the.symmetric group Sp+r—q- 
Also let K| ux be a multivector form of degree (p, g—r) such that K|:. u)(X)= 
'=K(X)|_ pu for each multivector field X of degree p. 

The above definitions extend in a natural way the applicability of interior 
products. Relation 

K_1(pav)=E|_p) _v+(=1F"7 pua(K_]v) 

for degree K=(p, q) and degree p=1, is an immediate consequence of the definitions. 

To each multivector form K of degree (p, q) there correspond operators ig: A™*— 

—>A*: u—»K_Ju, and di=igd—(—=1)?P"9dig: A* > A*: pK _ dy —(—1)?"12 

A(K _|p). The operator ix is an operator of degree p—g since degree (ix 1)= 

=degree u+p—gq, and dg is an operator of degree p—qg-+1 since degree (dy p)=
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= u+p—q+1. For two operators a and b of degrees r and s respectively let 

# p] denote the commutator ab—(—1)" ba. Then dy=[ik, d]. Also [ig, L]=ix| 4 

fF 1 u is a form of degree 1 and (dk, ir]=lix, iar] =ix, ar if f is a function. 

} 4.1 PROPOSITION. Let Xe A? ond Y € A* be multivector fields. There is a unique 
Sultivector field |X, Ye A?* 41 such that 

¥ (dx, Iyl=irx,v . 

ls 
: { [dy, dy] =dx, YJ 

; The proof of this proposition follows directly from Propositions 3.1 and 3.3. 

fhe following proposition is due to Frolicher and Nijenhuis. 

4.2 PROPOSITION. Let Ke A: and L € A be vector forms. There is a unique vector 

form [K, L] € As, such that [dk, dr]=dg, Ly 

Proposition 4.2 implies the existence of a bracket operation for vector forms. 

ft has been shown by Frolicher and Nijenhuis that this operation makes the module 

of vector forms a graded Lie algebra over R. The intersection of this algebra with 
the graded Lie algebra of multivector fields is the Lie algebra of vector fields. 

Let Red), Sed; and Ke 4) be multivector forms such that n—m= 

=p+q—r—s-+1. Then | [d, irl; ig =lix, ars i,]=0 for any functions f and g. 
However [[[dr, dsl, ir], i) =lir| as» is| agl+[ir| ag» Is) ar] is in general different 

from zero. Hence re’ations of the type 

[dR, ds] =dx 

do not exist in general and Propositions 4.1 and 4.2 do not generalize to the 

case of arbitrary multivector forms. 

5. The generalized Lie derivative 

5.1 DEFINITION. Let’ X be a multivector field of degree p and ux a form. Then 

Eyp=X_|du—(=1)?d(X_|p) is called the generalized Lie derivative of un with 

respect to X. 

5.2 PROPOSITION. The following relations hold for all multivector fields X and 7Y, 

all forms pu and v and each function f: 

(a) degree £5 yu=degree—degree X+1 

(b) Lxutv)=Ly u+Lxv, if degree u=degree v 

© Lx(fw=fLxu+XL_d) _lu 
dD Lydu=dLyp | 
€) Lx(¥Y | w=[X,Y]_|u+(=D1"=DY | Ly u, if degree X=p and degree 

Y=q 

6) Lxiyu=Lypu+Ly un, if degree X=degree Y 

(8) Lxpyu=flypu—(—DPdf AX _|p), if degree X=p 
) Ly ru=Y_Ly p+ (122 X _| Ly u+(— DP [X, Y]_| 4, if degree X=p 

and degree Y=gq 

0)  Lrxy pZLy Ly u— (=) Ly Oyu, if degree X=p and degree 
Y=gq. 

6
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The proof of this proposition follows easily from Definition 5.1 and the resyjt, 
of the preceding sections. 

In agreement with a theorem by Frolicher and Nijenhuis [3], the generalized I, 

derivative with respect to a .multivector field X is not a derivation of the gradeg 

algebra of forms unless degree X=1. 
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Ba M. Tynpunen, Aiaredopa Jin ¢ rpaganmeil MyJbTHBEKTODHBIX Hoel un ofo0lienHas Npon3BGRnas 

dopm Jin 

Copepacanne. [laercs onpenesienre CKOOkd JIA MyJIETHBEKTODHEIX IOjelt, 1 00o0HIeHHe TOHATHS 

npou3BoaaOoi Jin. HoBeie CKOOKM mpHIAIOT HApYKHOM anreOpe MYJIbTHBECKTOPHBIX IOJICH CTpYyK~ 

TYpYy anrebprl Ju crpamanueii.


