BULLETIN ©DE L’ACADEMIE
POLONAISE DES SCIENCES
série des sciences math., astr.
et phys. — Viol, XXII, No, 9, 1974

MATHEMATICS
( DIFFER.EN TIAL GEOMETRY)

The Graded Lie Algebra of Multivector Fields and
the Generalized Lie Derivative of Forms

by
W. M. TULCZYJEW

Presented by A. TRAUTMAN on November 28, 1973

Summary. The definition of a bracket operation for multivector fields and an extension of the
notion of the Lie derivative are given. With the new bracket operation the exterior algebra of
multivector fields acquires the structure of a graded Lie algebra.

1. Introduction. The object of this paper is to define for multivector fields
a bracket operation which is a natural extension of the Lie bracket of vector fields.
With this bracket operation the exterior algebra of multivector fields acquires the
structure of a graded Lie algebra. The bracket is a special case of a bilinear differential
concomitant for arbitrary contravariant tensor fields defined by Schouten [1].
A discussion of this special case of Schouten’s concomitant is included in a paper by
Nijenhuis [2]. Most properties of the bracket are derived there by coordinate methods
of classical differential geometry. . : '

Section 2 is a summary of generally known definitions and results stated without
proofs. The main results of the paper are formulated in Sec. 3. Sec. 4 is
devoted to a discussion of the possibility, of further generalizations. It is shown that
the construction of the bracket operation for multivector fields is formally the same
s that used by Froélicher and Nijenhuis [3] for the bracket of vector-valued forms.
It is also shown that the construction-does not extend to multivector-valued: forms.
The generalized Lie derivative of forms is defined in the last section.

2. The graded algebras of multivector fields and forms. Let M be a para-
Compact C* manifold and F the ring of differentiable functions on M. Constant
functions on M form a subring of F identified with the field R of real numbers.

2.1 DEFINITION. A derivation D of a commutative ring 4 relative to a subring K
S a map D: A—~A4 which satisfies

(@) Dk=0if keK,

(b) D (a+b)=Da-+Db,

(&) D (ab)=(Da) b+aDb.
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Derivations of F relative to R form the F-module of vector fields on M, denotgy
by V.

Let A4?= A? ¥V denote the p-fold exterior power of V. Also let A° denote F apg
let A?=0 for p<0. Elements of A? are called multivector fields of degree p. The noy.
negative graded F-module A={4?} is called the exterior algebra of V. It is ,
commutative; associative graded algebra with a product A, called the exteriy
product, satisfying '

(@) degree (XA Y)=degree X-+degree Y,

(b) XAY=(—1)P2YAX if degree X=p and degree Y=g,

(©0 XATYAZ)=(XAY)AZ,

(@ XATY+Z)=XANY+XAZ if degree Y=degree Z.

Let 4, denote the F-module Hom (47, F) dual to 4?. Elements of 4, are called
forms of degree p. The non-negative graded F-module A4*={4,}, dual to A, is
isomorphic to the exterior algebra of V*=Hom (¥, F). Formal properties of the
exterior product A of forms are the same as those of the exterior product of multi-
vector fields.

Duality between 4 and A* implies the existence of the evaluation map A x A
—=F: (X, n)—<X| 1y, where {X|uy=u (X) if degree X=degree p and {X| u)=0
if degree X+ degree .

The interior products _| and | are operations: AxX A*—A*: (X, WX _u
such that degree (X _|u)=degree p—degree X and (Y| X _|py=<{XAY|p) for
each multivector field Y; and Ax A*—A4: (X, @)X u such that degree (X|_ p)=
=degree X —degree u and (X[ _u|v)=<{X|unAv) for each form v.

2.2 PROPOSITION. Relation (XAY)|_u=X|_pAY+(—1D? XA(Y|_ p) holds if
wis a form of degree 1, X a multivector field of degree p and Y any multivector

field. Also
X _(ua)=&EL_p) _v+(=17 ua(X _1)
holds if degree X=p, degree u=1 and v is any form.
2.3 PROPOSITION. There is a unique differential d in A* satisfying {X|df>=Xf

Jor each vector field X € V and each function fe F, and
(@) degree du=degree u+1,
(b) ddu=0,
(© d(u+v)=du+dv if degree pu=degree v,
(d  duavy=dunv+(=1? undv if degree u=p.

3. The graded Lie algebra of multivector fields. Let X and Y be multivector
fields of degree p and ¢, respectively.

3.1. PROPOSITION. There is a unique multivector field [X, Y] of degree p+4q -1
such that

<X Y] dpp =<X|d(Y _ldp)y +(=1yr*»+e<Y|d(X _|dp)y .
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proof. To define a multivector field it is sufficient to give its evaluation with
forms of ‘the type fdu, where f is a function. Let f; /' be functions and u, u”
forms such that fdu=f"dy’. Then
KXY _Ldp)y+(=1yperrra fKY | d(X _|du))
—CX 1Y | fapy+ (=D e Y| d(X | fdp)y—(— 1P a(X a Y| d(F dp)
=( XY _1f'du’)y + (=127 Y [d(X _1f'du’)) — (= DPT KX A Y| d(f'dp’)y
=f(X|d(Y _Jdu')y+(=1)rere+a f/ Y d(X _|du')y.

Thus a multivector field [X, ¥ of degree p+g~1 is correctly defined by
(X, Y1 fdid=f<X|d(Y _di)>+(—~1ypr+o+a £CY X | di)
Uniqueness of [X, Y] is obvious. ‘ . .

3.2 PROPOSITION. The multivector field [X, Y] satisfies

[X, YL df=[X, YI_df]-(-1)* [X_df, Y]
for each function f.

Proof.
<[, Y]I_dfldu> X, Y1ld(faw>
={Xd(Y _dfrdm)>+(—1D)P1+7+ LY |d(X _|(df ndw))
=X |d((Y_df) dau)y—(— DX |_df |d(Y _ldw> -
=(—Dparrra Y |d(X _Ldf) _lduwy— (-1 YL df |[d(X _ldw>
=([X, YL_df1ldwy—(— DX, Y_df]1dw

for each function f and each form u. Hence [X, Y]l df=I[X, Y| df]—
- (-D)X_df, Y]

3.3. PROPOSITION. The multivector field [X, Y] satisfies
[X, Y] _{p=X_1d(Y _1p)+(=1ye+?*ey_|d(X_|p)
— (=P d(XAY) _|p)— (1P 4(XAY) _ldu
for each form p.

Proof. The proposition is true for degree u=0, and if the proposmon is true for
degree p=p then
X, Y] @A @)=(X, Y1 df) _1pu+ (=12 gFA([X, Y1 _1p)
=[X, Y|_df] Ju—(=DXL_df, Y] _Jp—(=1y*1dfn([X, Y] _J )
=X _Jd((XL_d)_Lp)~ (=104 (Y_df)_dX_| )~ (=1 d((X A (Y |_df)) 1)
H(=1rerrr (XA (Y L df) _ldp—(=D2(XL_df)_1d(¥ |+ (-1reer+e .
Y_Jd((Xdf) 1) — (=1 2d(((XL_df) A Y)_ldp)+ (=1 (XL d)A Y) _ldp
~(=1)7*¢ dfA (X _1d(¥ _1 @) —(— 1) dfA(Y _IdX _| )
(=Dt dfAd((XAY) 1 @) +(—= 1?2 dfa (XA Y) _ldw)
=X _|d(Y _J(@fn )~ (=122 Y _|d(X _| (dfA )
~(=1pe? (XA Y) (@A @) — (=12 (XA Y) _1d(dfrp).

Hence proof by induction.

3.4 THEOREM. There is a unique operation Ax A—A: (X, Y)—[X, Y] which
satisfies [X, f1=Xf for each vector field X eV and each function fe F, and
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(@) degree [X, Y]=degreeX+degree Y1,

®b) X, Y]+ (—De-D @D [Y, X1=0 if degree X=p and degree Y=g,

© (~De-DE=D[x, [¥, Z]]+(~ D) De-D 7, [Z, X]] |

+(=DE-D@=D[7 [X, Y]|=0 if degree x=p, degree Y=q and degy,
Z=r,
d [X, Y+Z]=[X, YI+[X, Z] if degree Y=degree Z, |
(e) [X YAZ]=YA[X, Z1+(—1y@-D[X, YIAZ if degree X=p and degre, '
Z —

Proof. It follows from elementary computation that (X, Y)—[X, Y], wher
TX, Y] is defined in Proposition 3.1, has all the required properties. TO prove unigue.
ness note that [X,f]=Xf=X| df for degree X=1, and [Y,f]=Y[_df imply
IXAYfI=[XfINY=XA Y fl=X L d)AY-XA(Y_df)=(XAY)L_df by the
-use of (b) and (). Hence [X, f]=X|_df by induction on degree X. This result, together
with (b) and (c), implies [X, YL df=[[X, Y1, 1=, [¥, f]] - (~D[[X, ], ¥]=
=[X, Y| _df]-(—D?[X]|_df, Y]. An inductive argument similar to that used to

prove Proposition 3.3 leads to {[X, Y]|1> ={X[d(Y _1p))>+(— 1)1"1““1’”(1’[ dX _w)
—(=1DPet2 (XA Y| duy. Hence [X, Y] is unique.

3.5 DermNiTION. The graded algebra of multivector fields with the operation
(X, Y)—[X, Y] is called the graded Lie algebra of multivector fields.

4. Multivector forms. Let A7 denote the F-module Hom (47, 4%). Elements
-of 4 are called multivector forms of degree (p, q). The module Aj is identified with
A% and A3=4,. Elements of 4] are the vector forms discussed by Frolicher and
"Nijenhuis [3]

For each multivector form K of degree (p, g) and each form u of degree r let
K _jubea form of degree p+r—gq such that K _|u=0 for r—g<0 and for r—g>0

K1) XA AX )=

AR | ! PR )
?(1 q)' Z sgn ot (K (XA AXIANX,, A /\X%H )
‘where X3, ..., X, p+;._ are vector fields and « raingeé ovei‘ the.symmetric group S, +r—g
Also let K |_ 4 be a multivector form of degree (p, g—r) such that K| p)(X)=
‘=K (X)|_u for each multivector field X of degree p.

The above definitions extend in a natural “way the applicability of interior
products. Relation

K_J(uav)=EKL_ @) _v+(=1F~* pa(K_]v)

for degree K=(p, q) and degree u=1, is an immediate consequence of the definitions.

To each multivector form K of degree (p, q) there correspond operators ig: A*—
=A% p—K_|p, and dig=igd—(—1)P"9dig: A* > A*: pr>K_|dp— (=174
d(K _]u). The operator ix is an operator of degree p—g since degree (ix )=
=degree u+p—gq, and dg is an operator of degree p—g-+1 since degree (dx 1)=
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degl ee p+p—q-+1. For two operators a and b of degrees r and s respectively let
2 2] denote the commutator ab—(—1) ba. Then dx=[ix, d]. Also [ix, {,]=ix .
by ds 2 form of degree 1 and [dk,i;]=[ix, lsr]=ix_ar if fis a functlon

- 4.1 PROPOSITION. Let X e A? ond Y e A% be multivéctor Jields. There is a umque
i’jiultlvecwl field [X, Y] e APt 9~ such that

;,. [dx, iy] =1Ix,y]-

«Aba !
U e dd=dpy.
f' The proof of this proposition follows directly from Propositions 3.1 and 3.3.

%fhe following proposition is due to Froélicher and Nijenhuis.
% 4.2 PROPOSITION. Let K€ /11 and L e Al be vector forms There is a unique vector
form [K, L] e_/ip +q Such that [dK, di]= d[K Ly

Proposition 4.2 implies the existence of a bracket operation for vector forms.
It has been shown by Frolicher and Nijenhuis that this operation makes the module
of vector forms a graded Lie algebra over R. The intersection of this algebra with
the graded Lie algebra of multivector fields is the Lie algebra of vector fields.

Let Red], Sed; and KeA] be multivector forms such that n—m=
=p+g—r—s+1. Then [[dx, is], {,|=[ix, ar,i]=0 for any functions f and g.
However [[[dr, dsl, is], 1] =[ir|_as» is|_agl+[ir(_ag Is|_ar] is in general different
from zero. Hence re'ations of the type

[dr, ds]=dx

do not exist in general and Propositions 4.1 and 4.2 do not generalize to the
case of arbitrary multivector forms.

5. The generalized Lie derivative

5.1 DerFINITION. Let' X be a multivector field of degree p and y a form. Then
Eyu=X_ldu—(=1? d(X _|p) is called the generalized Lie derivative of u with
respect to X.

5.2 PROPOSITION. The following relations hold for all multivector fields X and 7,
all forms p and v and each function f:

(@) degree £2x u=degree—degree X+1

(b)  Lx(u+v)=Lx u+Lxv, if degree u=degree v

©  Lx(fwy=fLxp+&X1_df) In

(d) ;QY du=d L5 u
(e) Ly (Y _| )= [X, Y] _ u+(—=1)1@-D Y | £y u, if degree X=p and degree
Y=¢q

€)  Pxiyu=Lx u+Ly u, if degree X=degree Y

(& Lxyu=fLypu—(—D?dAX_1p), if degree X=p

) Ly ru=Y_Ly p+(=1D)" X _| Ly u+(—1?[X, Y] _|p, if degree X=p
and degree Y=q

() Loy p2Ly Ly p—(=DE-DED Ly Oy . if degree X=p and degree
Y=gq.
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The proof of this proposition follows easily from Definition 5.1 and the resyj
of the preceding sections.

In agreement with a theorem by Frolicher and Nijenhuis [3], the generalized 1,
derivative with respect to a.multivector field X is not a derivation of the gradeg
algebra of forms unless degree X=1.
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B, M. Tynrpumes, Aaredpa JIn ¢ rpagampeil MyJbTHBEKTOPHBIX MoJel H 0Go0UIeHHAs HPON3BOANAR
dopm JIn

Copepxxanne. Jlaercsa onpenenceane CKOOkA Jlum MynbTHBEKTODHBIX mojelt, # 00001 e HOHATHS
npousBonroit JIu. HoBele CkOOKM OpHEAAIOT HAapYXHOM anredpe MYyJILTHBEKTOPHBIX LOJICH CTPYK-
Typy anrebprr JIu crpamanueii.



