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INTRODUCTION

0.1. In 1970, I. M. Gelfand introduced the idea of formal geometry: By ap-

plying the differential-geometric and homological concepts to infinite jet spaces,

various objects such as the characteristic classes of differential-geometric struc-

tures can be studied systematically. This idea was carried out with success in

the study of the characteristic classes of foliations [14] and the combinatorial

formulas of the Pontrjagin classes [7]. Furthermore, it seems that this idea was

in the background of the formal calculus of variations introduced in the study

of the conserved densities of the Korteweg-de Vries equation [29].

In this article, by applying this idea to systems of differential equations, we

obtain a geometric ? framework for the study of general systems of differential
equations. In spite of its simplicity, this framework turns out to be quite useful.

Now we list two salient aspects of this framework:

> We can speak about the “de Rham complex and vector fields” on the solu-

tion spaces, which clarify interrelations among various geometric concepts so

far introduced in the study of systems of differential equations. For exam-

ple, such concepts as first integrals, the integral invariants of Poincaré-Cartan,

conservation laws, the characteristic classes of foliations, Bott’s vanishing the-

orem and variational operators can be captured uniformly by “the de Rham

complex and its cohomology” of the solution spaces of various systems of

differential equations. Such concepts as contact transformations and the so-

called Lie-Bicklund transformations can be understood as “vector fields” on

the solution spaces. Furthermore, the formal calculus of variations men-

tioned above, which is a formalization of the functional calculus, is obtained

as “the differential calculus” on the solution spaces.

> This framework makes the totality of all the systems of differential equations

into a category, which seems to give us an advantageous viewpoint in the

! This was added in translation and includes some developments which came to light after the
publication of the original paper.

2 In this article, we use the word “geometric” as a synonym of the adjective “manifold theoretic.”
An approach is called geometric when it is based on such concepts as tangent vectors, differential

forms, the de Rham complex, vector fields, Lie derivation, etc.
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study of various differential correspondences, such as the classical Backlund

transformations and the Penrose transformation.

0.2. Basic constituents. The technical construction of the framework can be

summarized as follows.

Let & be a system of differential equations. Let R__(Z) be the space of its

formal solutions, which can be introduced either as the infinite jet space of its

solutions or by the process of its infinite prolongation. This space R_(Z) is a

fiber bundle over the space B of independent variables.

This fiber bundle has a natural connection H, which is a subbundle of

the tangent bundle ) TR_(Z), complementary to the subbundle VV formed
by the vectors tangent to the fibers. This connection is integrable, that is,

[I'(H),I'(H)] Cc I'(H) holds, where I'(H) denotes the space of all CTM sec-

tions of the vector bundle H — R__(<) and [ , ] denotes the bracket product

of vector fields. The solutions of & can be identified with the H-flat * sections”
of the fiber bundle R_(<) — B. This pair (R_(Z), H) is the basic element

of our framework, which plays the role of the solution space of & .

The decomposition of the tangent bundle TR__ = V ®& H produces the vari-

ation bicomplex {QQ (Z),d,0} whose total complex is the de Rham complex

{(Q"(R_(D)),d}, where Q” =T(A'V*®A H") and § and & denote respec-

tively the (1,0) and (0,1) components of exterior differentiation 4 .

The spectral sequence E(2) = {E”?,d?"?} induced from the filtration by

the first index plays the role of the de Rham complex and the de Rham coho-

mology of the solution space. This spectral sequence was first introduced by A.

M. Vinogradov [16].

The Lie algebra Z (2) of all symmetries of & is defined by

LD) = {X e I'(V) | [X,T(H)] C I'(H)} ,

whose elements are sometimes called Lie-Biacklund transformations of & and

are in a sense the vector fields on the solution space.

The following remarks deserve to be kept in mind:

> It is much easier to go from & to R_(Z) than from & to its solution

space. There is no general method to determine the solution space of a

general <7, but there does exist an algorithm to determine R_(Z) . (See

the remark in §3.3.)

3 Throughout this article, we use the following notations. Fora C°°-manifold M we denote its
smooth function algebra by C°° (M), its tangent bundle by TM , the Lie algebra of its vector fields

by ¥(M), the de Rham complex by Q"(M): = {P Q'(M),d}, and the de Rham cohomology

by HTM(M,R). The notation “M = R]” is an abbreviation for the sentence that AM = R" and

x=(x",...,x") is the standard system of linear coordinates on M . We write C*°(R%) also as

C® (x! ,...,x"). When E is a vector bundle on M , we denote by E* and APE, respectively,
its dual and its pth exterior product bundle. The space of its C*-sections is denoted by I'(E).

A vector subbundle of TM is called a plane field on M . A plane field H is called integrable if

[T(H),T(H)] c T(H) holds.

* A section s € I'(r) is called H-flat if T(s(B)) = Hip, holds.
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> If (Ro (21), H) = (R_(Z,),H), then the two equations 2, and Y, are

essentially the same, although they can have quite different appearances.

> Each of the following three objects contains “complete information” about a

system of differential equations &':

. the pair (R_(Y),H),
oe) . . .

. the algebra C7 (R_(2)) endowed with the Lie algebra I'(H) of deriva-

tions,

. the variation bicomplex {Q*"(2),d,9}.

> We can use various concepts and methods of differential geometry in the

study of R__(Z), since it is the projective limit of finite-dimensional mani-

folds.

0.3. Historical background. Historically, the framework of formal geometry of

differential equations is rooted both in the geometric theory and in the formal

theory ® of differential equations. These two are closely interrelated and cannot
be separated. |

The origin of the geometric approach to differential equations is the idea

of regarding the derivatives of unknown functions as independent variables.

Although this is an obvious idea, we note that even the concept of differential

equation cannot be formulated without it.

It was S. Lie who recognized this idea as an effective method. He made

explicit the scheme of geometric approach by introducing the concept of jets,

which he called “Flichenelement #’¢" Ordnung,” regarding the solutions as the

integral manifolds of the natural system of Pfaff equations " on the jet space of
unknown functions.

This approach turned out to be quite prolific in the study of the systems

of partial differential equations of the first order of one unknown function.

Moreover, as was shown by Goursat in [42], it is also effective in the study of

systems of partial differential equationsof the second order of one unknown

3 By starting from this, one may elaborate on the framework of “differential algebraic geometry”,
which is more precise than that of formal geometry. Differential algebraic geometry in Weil’s

style of algebraic geometry is more or less established in [54]. A. M. Vinogradov develops this

framework in a ring-theoretical fashion. The big advantages of this framework seem to lie in

that it can relax the regularity condition on systems of differential equations (see the assumption

(3.5)), which was absolutely necessary in our framework, and also in that it can thereby treat a

wider range of problems of systems of differential equations. For this purpose, however, we must

develop differential algebraic geometry systematically in the modern style of algebraic geometry in

the Grothendieck fashion. The relation between formal geometry and differential algebraic geometry

might be compared to that between manifold theory and algebraic geometry.

® We call a theory of systems of differential equations formal when it aims at describing the
structure of formal power series solutions, which is equivalent to studying the infinite prolongations

of given systems of differential equations. Whereas in the real analytic category the formal theory

gives automatically the substantial theory by virtue of the Cauchy-Kowalevskaya Theorem, in C *°

category the formal theory may be said to be rather weak in many aspects, for example, in such

questions as the existence of solutions.

7 Namely, the differential systems generated by differential forms of degree one.
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function of two variables. However it seems that the method then available was

too primitive to be used in the study of general systems of differential equations.

It was E. Cartan who invented a useful method of studying general systems

of differential equations by analyzing deeply systems of Pfaff equations.

First he obtained an existence theorem of local integral manifolds of general

analytic systems of Pfaff equations, which is now called the Cartan-Kahler The-

orem. This result gives an algorithm to obtain general integral manifolds by

applying succesively the Cauchy-Kovalevskaja Theorem, and the space of gen-

eral integral manifolds is described by the integers which can be easily calculated

by linear algebra theory. Furthermore, he gave a precise general definition of

characteristic systems in order to describe singular solutions, that is, those which

cannot be described by this theorem.

When a system of Pfaff equations &’ comes from a system & of differential

equations, only the maximal integral submanifolds on which the independent

variables remain functionally independent correspond to the solutions of & .

E. Cartan recognized the involutiveness as the condition which guarantees that

all the maximal integral submanifolds of # given by the Cartan-Kéihler The-

orem are in fact the solutions of & and gave a practical condition for the
involutiveness. Moreover, he discovered the prolongation procedure, which is

an algorithm to reduce a given noninvolutive system of Pfaff equations to an

involutive one. The rationalization of this algorithm was rigorously carried out

by M. Kuranishi [55].

Using this machinery E. Cartan obtained a geometric theory of involutive

systems of partial differential equations of one unknown function of two in-

dependent variables [45]: He constructed a Cartan connection as a complete

system of “invariants” of these systems. 8

E. Cartan thus obtained practical methods and useful results on the formal

sides of systems of differential equations in the differential-geometric frame-

work. His method reduces various general problems about systems of differ-

ential equations to rather simple questions in linear algebra and brought about

remarkable success in theoretical questions (e.g., the classification of infinite Lie

group) and differential-geometric problems (e.g., local equivalence problems of

differential-geometric structures).

It should, however, be stressed here that in many kinds of problems the Car-

tan method turns out rather indirect. In fact, in the analysis of concrete equa-

tions (e.g., Einstein’s equation), the transcriptioninto systems of Pfaff equations

is not always illuminating and gains little in the study of their involutiveness and

construction of their prolongations. (Cf. [12] for a translation of the Cartan

method to the jet bundle formalism.) |

8 Differential-geometric studies of differential equations have been aiming at such complete
geometrization of differential equations, which is rarely feasible for general systems of differential

equations. It thus seems not very productive to pursue geometrization itself in the differential-

geometric study of differential equations.
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Along with these remarkable contributions of E. Cartan, the formal study of

systems of differential equations has been done more directly chiefly by Tresse,

Riquier, and Janet. They focussed their study on the direct description of the

coefficients of the formal power series of the solutions of systems of differen-

tial equations and succeeded in establishing a concept and a result which are

essentially the same as the involutiveness and the Cartan-Kéhler Theorem, re-

spectively (cf. [13]).

Their method depends heavily on coordinate systems, which fact, it should

be remarked, 1s not a drawback as is usually conceived. In fact, their machiner-

ies are powerful and direct in the analysis of concrete systems of differential

equations and seem to help us see essential points of various general concepts.

In the 1960s, the formal theory of systems of differential equations based on

the concept of jets evolved and became mature through researches such as the

generalization of the deformation theory of complex structures and the justifi-

cation of the Cartan classification of simple infinite Lie groups. Although it was

the linear systems of differential equations that were studied intensively, most

of the important results such as the Cartan-Kahler Theorem, criteria of involu-

tiveness, and prolongation theorems were generalized to nonlinear systems of

differential equations (cf. [10, 53]).

Incidentally, linear systems of differential equations can be studied in the

analytic category by a powerful method called algebraic analysis initiated and

developed by Sato, Kawai, and Kashiwara based on algebraic geometry [58].

This method is applied with remarkable success to various kind of problems.

Before ending this historical survey of the formal geometric framework of

the systems of differential equations, we make the following points:

> What this framework aims at and can do is not to geometrize systems of

differential equations but to give a geometric viewpoint to study them.

> This framework differs from the existent geometric theory of systems of dif-.

ferential equations principally in the acceptance of the infinite jet space as

its fundamental ingredient. The merit of the introduction of infinite jets

may at first appear only superficial. It, however, simplifies drastically the

complications in the treatment of systems of Pfaff equations which are not

completely integrable, and thereby makes it possible to introduce concisely

various geometric concepts of systems of differential equations.

> The formal theory of systems of differential equations is not necessary for

the development and comprehension of this framework. However, the formal

theory is useful in studying concrete systems of differential equations in this

framework: For example, it enables us to describe the space R_ (2) of

formal solutions of a given system < .

0.4. Main results. The following are the main results in the formal geometric

theory of systems of differential equations:

> a method of obtaining the conservation laws and Lie-Backlund transforma-

tions (Theorems 3.5 and 3.6),
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> a generalization of the Noether Theorem,

> the formal calculus of variations (§4.3),

> a necessary and sufficient condition for the existence of a global variational

problem for a system of differential equations which is locally the Euler-

Lagrange equation of a variation problem.

These are corollaries of partial computation of the Vinogradov spectral sequence
E(2) (Theorems 3.1 and 3.6). We remark that the formal calculus of varia-

tions plays an important role in the study of completely integrable Hamiltonian

systems of infinite degree of freedom (cf. §4.4).

We emphasize here again that the point of the formal geometric framework

ties not in the machineries it offers but in the clear picture it draws of the world

of systems of differential equations. For example, as stated before, this picture

enables us to regard the totality of systems of differential equations as a category.

Moreover, this framework suggests various approaches to problems on sys-

tems of differential equations: If an argument effective in one concrete system

of differential equations is of the formal geometric nature, then it can be po-

tentially applied to every system of differential equations. Such an example is

the Bott theorem on the vanishing of the Pontrjagin classes in foliation theory,

which gives topological obstructions to the deformability of a tangent plane

field (i.e., a homotopic solution) to a foliation (i.e., a real solution). In the

formal geometric framework, this can be rephrased as the existence of nonzero

elements in E."(2) = @,.,E.. (2), where Z denotes the system of dif-
ferential equations which express the integrability condition of tangent plane

fields. Once thus stated, the Bott theorem suggests a general method of obtain-

ing topological obstructions to the deformability of homotopy solutions to real

solutions for general systems of differential equations. This method, however,

is not yet carried out in other systems of differential equations because of the

difficulty of calculating E*"* (cf. §3.5 and 4.6.1).

Needless to say, there are fundamental and important questions on systems

of differential equations which do not fall into the formal geometric frame-

work, among which are, for example, the existence and regularity of solutions,

boundary value problems, analysis of singularities of solutions, and the “Galois

theory” of systems of differential equations.

It is not yet certain that the formal geometric framework will produce many

substantial results, although we can fully expect that it does suggest a good di-

rection in various kinds of studies of concrete systems of differential equations.

0.5. Outline. In this article, we try chiefly to clarify the basic construction of

the formal geometric framework.

In §1, we apply this to systems of ordinary differential equations and explain

in detail how the usual geometric concepts can be understood in our formal

geometric concepts.
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In §2, we reformulate the result of §1 using the concept of infinite prolonga-

tion of systems of differential equations, which we hope provides a psychologi-

cal introduction to §3. Furthermore, §2 extends the usual differential-geometric

terminology to such infinite-dimensional manifolds as jet spaces.

In §3, we explain the main concepts and results of the formal geometric

theory of systems of differential equations.

In §4, we comment on various themes which are important but which are not

taken up in this article.

0.6. References. Finally, we give general remarks on references.

This article is based on the paper [1]. The pair (R__(¥), H) and the spectral

sequence F(Z) are treated in [2] ? from the viewpoints of algebraic geometry
and category theory. The results on the “soliton” equations which fall into the

formal geometric framework is expounded in detail in [3] from the standpoint

of differential algebra that emphasizes the pair CTM°(R__(Z)) and I'(H).

Fundamentals of formal geometry are given in [4,7,8]. In [8], generalizations

of usual differential-geometric concepts to infinite-dimensional manifolds such

as R_ (2) are explained in detail.

Cartan’s book [9] is a standard classical text for his geometric approach to

systems of differential equations. Janet’s book [13] takes a direct approach

to general systems of differential equations covering not only the basic points

of formal aspects of systems of differential equations but also useful methods

to treat concrete systems of differential equations. The modern formal the-

ory of systems of differential equations is summarized in [10]. [11], written

in Japanese, treats both the modern formal theory of systems of differential

equations employing the formalism of differential forms but also contains an

exposition of many important classical methods of quadrature.

Finally, the articles related to ours are reviewed in Mathematical Reviews

mostly under the classifications 35A30, 58F035, and 58F07.

0.7. Summary of Introduction.

> This article explains a geometric framework for the study of general systems

of differential equations by applying the idea of “formal geometry” intro-

duced by I. M. Gelfand.

> The theoretical construction of this framework is quite simple.

> This framework gives a wide viewpoint in the study of systems of differential

equations. For example,

. Various geometric concepts hitherto known about systems of differential

equations can be arranged in this framework in such a way that various

interrelationships among them can be readily recognized.

. The totality of systems of differential equations can be considered naturally

as a category.

’ See also [68].
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> One of the points of this framework is the adoption of the infinite jet space

as the basic element.

> Together with the formal theory of systems of differential equations, this

framework provides a useful method for studying problems about concrete

systems of differential equations. -

> Every concrete study of systems of differential equations necessitates consid-

erations belonging to this framework , which precede all other considerations.

> There exist important problems about systems of differential equations which

cannot be handled within this framework.

> This framework will play an important role in the study of differential cor-

respondence.

1. FORMAL GEOMETRY OF THE SOLUTION SPACE OF SYSTEMS

OF ORDINARY DIFFERENTIAL EQUATIONS

In this section, we review various well-known geometric concepts in the study
of the systems of ordinary differential equations of the first order:

d u' | 1 | m .
2, : — = ilu, ou ), for 1<i<m,

where the f;’s are C*. functions. : |

In so doing we want to clarify the geometric background of several concepts,

later introduced in §3, for general systems of differential equations and to show

that formal geometry is very effective in placing various concepts in a relatively

simple perspective and making their mutyal relationships clearly visible.

1.1. The phase space R__ (Z|). Intuitively, it 1s natural to regard the equation

2, as a vector field:

0 0 0

on the phase space P = P(Y,): = R” which depends generallyon the time

parameter x. However, when the f’s-actually depend on x, it is more con-

venient from the differential geometric point of view to regard the system Z|

as the differential system (i.e., the system on Pfaff equations):

i
(1.1) du — f(x,u)dx=0 (1<i<m)

on the extended phase space: 10

The geometric description of &, will be even clearer if we consider the con-

nection on: the bundle )

n:R_=PxB—B

'% The subscript oo indicates that it is more natural to regard this space as the infinite prolon-
gation of Z,. from.the general point-of view comprising systems of partial differential equations
(cf. §2.4). a.
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induced by the differential system (1.1): Let ¥ be the subbundle of the tangent
bundle TR__ of R__ formed by the vectors tangent to the fibers of nn and let

H be the subbundle of TR__ defined by (1.1). Then

(1.2) TR _~V oH,

i.e., the subbundle H defines a connection on the bundle z in the most prim-

itive sense. The vector field

0 0
dyo = Ix + d,

is a frame of the subbundle H (cf. Figure 1). |

A solution of Z| can be identified with a H-flat section of the bundle =.

In fact, the condition that

six = (x,5/(%),...,5,(x))

is H-flat is equivalent to

9 HS, dx & s(x) 3

1.e.,

0 as; 0

ds;
EN — = filx,5(x), ,S, (x), for 1<i<m,

which means u' = s;(x) (1 <i < m) is a solution of Z, .

The space of H-flat sections will be denoted by 0/(Z,). We may consider

the situation as 3

a fiber of n = the solution space of Z,

since a solution of &, is uniquely determined by its value at a point b of B.

Since we cannot, however, choose b canonically, we adopt the pair (R__, H) as
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5 replacement of the solution space of &Z, . In the case of ordinary differential

equations, this pair (R__,H) is simply the original equation &, itself, but for

a general differential equation Z, the pair (R_ ,H) sits in an intermediate

place between the original differential equation & and the solution space since

the fiber of R__ 1s roughly the space of all formal solutions of & .

1.2. Formal geometry of the phase space. First we explain how the above con-

nection H refines usual differential geometric concepts, where the basic features

emerge from the framework of the formal geometry.

1.2.a. First integrals. By endowing the algebra CTM(R_) of C*-functions

on the phase space of &, with the derivation induced by the vector field d_ €

['(H), we obtain a differential algebra 4 = A(Z|), which contains complete

information on Z,.

An element I of A4 satisfying d I = 0 is called a first integral of &,. The

set of first integrals of &, forms an algebra. When I € 4 is a first integral, the

map

Fol(2D,)>s— Is]: =s TC” (B)

is constant. In particular, the first integral I induces a real-valued function

s — I[s] on the solution space of &Z, . Solving &, locally is the same as finding

functionally independent m first integrals. By the local existence theorem for

systems of ordinary differential equations, we have locally

(1.3) { first integrals } = C* (the fiber of x).

Note that the equation d I = 0 is a linear first-order partial differential equation

for I.

1.2.b. Differential forms. Consider now the de Rham complex {Q"(R_),d}

on R_. The decomposition (1.2) of the tangent bundle splits Q°(R_) as

follows:

p I,JQ'(R)=P Q,

I+j=p

where Q' = Q'~ (Z,): = T(A'V* NH *). Since the plane fields defined by

the subbundles VV and H are integrable, the exterior differentiation on Q'”

decomposes into the (1,0)- and (0,1)-components:

d=46+(-1)a.

Since 6% = 8% =0 and 66 = J, we obtain a double complex

{(Q""(9)),6,0 }

which will be called the variation bicomplex of &, . The word “variation” indi-

cates that the operator J describes how the differential forms on the solution

space vary when the solutions are deformed (cf. §3.5).
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Using the coordinate system {x cu! yee UT} of R_, , we can describe this

doublé complex explicitly as follows: As a frame of ¥~ we take du’: = du’ -

fGe,u)dx (I <i<m) and dx asa frame of H" . Then

QQ =A Nou, ... ,6u"]®g N [dx],

where | | |
FIT Ci al ¢ i 1 : 7
oo ANTE, =A RE ®.. ORE).

The differentials 6 and 9 are characterized by the following formulas:

i 5(6u') =d(dx) =08(dx)=0,

| ou’) => isu pax,
(1.4) Uu

of =d f dx,

: 8f .

for fed.

1.2.c. Spectral sequence E(Z|). The subbundle H induces the following fil-

tration on the de Rham complex:
See . :, Tost K - yy .

14 DP * D ,*FP=FQ: =o"

) p'>p

Since dF” ¢ F”, we obtain a spectral sequence’ E(Z,) = {E*(2,), d}
which converges to the de Rham cohomology H (R__,R).

1 We recall here briefly the definition and elementary properties of spectral sequences: Let

Q =rFQ*>Flo* >...)

be a filtered complex. For 0 << oo, put

pa. _¢ POP+a p+q p++]ZP = {we FPO" dwe FFI},

BY: = {doe FP" we FFF},

where we put

F'Q*':=qQ" (i>0), F”:=0,

and define LE i 3 \l
pa. Pd Pp pq :| oo EV? =Z2) FT nz? + BPA

The original differential 4 then induces .

d Xd HN gotra-rtl

r’ r r

and we can show easily

oo EP Ker (d|EP) /Im(d EPH,

EP qd ~~ FPHPT(QY) | FP Pra Qf)

where

LFPHT(QY): =Im(HT(FP(Q") —» HQ"). | .
We can thereby approximate the total cohomology HTM(QTM) successively. It should be noted that

the raison d’étre of the spectral sequences lies not only in its usefulness in computation of the total

cohomology but also in producing series of invariants of the filtered complex: (Q*', F).
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Remark. The spectral sequence induced by the other filtration FQ" =

®D,'>p Q** is the usual one of the fibering = and does not depend on &,. O 12

Consider now the significance of elements of this spectral sequence with re-

gard to 9, . afai fy
First of all, by (1.4), we have “

EX(@,) = { first integrals of 9, } .

Furthermore, by definition, |

) 0 0
E92) ={weQ"|0w=0},

each elementof which is called an absolute integral invariant of 9, : Let Xx, €EB
and D, be a p-dimensional submanifold of the fiber rn! (x5) with a smooth
boundary. Move D, along the solution curves to a submanifold D, in the fiber

over x, € B. Let N and E be the submanifolds of R_ swept by D, and

6D, respectively, when they move from n(x) to 7 (x,) (cf. Figure 2).
By the Stokes formula, we have |

! [o-[o=[do-[o.
D, D, N E

1,0 Co. Co _
Butdw = dw € QQ’ and TN > H|y imply iydw =0 (iy:N —R,).
Similarly, we have i.dw = 0. Hence :

Dy D,

ie., w is an absolute integral invariant. Hence we obtdin the following intér-
pretation:

E?°(2,) = { absolute integral invariants of degree p of Z,} .

—
—— << : oo out :

—
p, ——1p L

x, x, .. Do

~ FIGURE 2 oo

12 This mark indicates the end of the remarks and theorems. | EERE
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“Similarly,

E; ~! Y@2) = { relative integral invariants of degree p of Z, } .

In fact, let w € EH be represented by w, + w, (w, € Qt! , 0, € QF)
such that dw, = dw,. Then under the additional condition 6D, = &, we have

D, D,

which depends only on the class w. Such differential forms as w, are called

relative integral invariants of 9, .

What is the significance of the elements of E2?(2,)? An element of E0
gives a necessary condition for a section s of © to be deformed to a flat

section, i.e., a solution. In fact, suppose w € ED) 1s represented by @

F'H "(R_ ,R). Suppose further that B= S§ and s*® #£ 0. Then there exists
no solution in the homotopy class of s. In fact, if s is homotopic to an s, €

Fol(2D,), then Sp = 5 @ # 0; but on the other hand, since & is represented

by an element of Q' 0 = I'(H “) , we have s7@® = 0, a contradiction.

The space E 22) c ©'° can be described more concretely as follows: Let

w=wdu +...+0, ou" eQ".

By definition

dw =) dow, +) ow ou Ndx .
i=1 im ou |

Hence w belongs to E, Vif and only if

(1.5) dw, +) 0—~=0 (1<i<m).
m1 ou

1.2.d. Vector fields. Finally, we consider the vector fields on R__.

What is the condition under which the graphs of the solutions are preserved

by the local one-parameter transformation group generated by an element X €

X(R_,)? Since the graph of a solution of &, is an integral curve of the vector

field d, , that condition can be written as

[d. ,X|edd =T(H).

Moreover, the graph of each solution is invariant with respect to the one-

parameter transformation group generated. by each element of I'(H), since it

1s tangent to the graphs of the solutions. Hence, it is appropriate to consider

X € X(R X,I'(H)|cI'(H2): = IX EXRL)|[X, TUN] C T(D)

I'(H)

as the space of the infinitesimal transformations of the solution space. Since

I'(H) is an ideal of its normalizer in X(R_)) = I(T), Z(¥)) inherits a Lie
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algebra structure from X(R_). An element of (Z|) is called a symmetry 13
of Z and the Lie algebra .Z°(9)) is called the Lie algebra of the symmetries

of D - Note that this algebra is determined solely by H independently of the

choice of its complement V in T.

By using the coordinates, the elements of (2) are described as follows:

By (1.2), an element of 2(&|) is represented by an element X = ¢,0/0 u' +
..+& 8/0u" of T'(V). Since

the condition [X,d_] €'(H) is equivalentto [X,d ]=0, ie,

"8,
(1.6) dg -Y &—Lt=0 (1<i<m).

= ou

This equation is called the characteristic equation of the symmetries of <, .

Note the similarity of (1.6) with the variational equation of &, at s €

Fol(Z,) (ie., the linearization of Z| at s):

Ov. - Of.
(1.7) 37 =2.Y; a

iol Ou li =sk(x)

If (¢,) is a solution of (1.6), then, for all s € S0l(Z)),

v=(v,), (v1 =&| jeg)

is a solution of (1.7). Thus, it is reasonable to call (1.6) the universal lineariza-

tion equation of &, (cf. [2]). Note also that (1.6) is the adjoint equation of

(1.5).

The Lie algebra £°(Z,) acts naturally on the spectral sequence E(Z): Let

X eT(V) represent an element of Z(2,). Since [X,d_] = 0, the action of

the Lie derivation L, on Q*" preserves the bidegree, commutes with § and

8 , and hence induces an action on E(Z)). In particular, the symmetries of Z,

act on the spaces of the first integrals and the invariant integrals of &Z, .

1.3. Examples.

1.3.a. Trivial equations. Consider the case where f,=---=f =0 in 9:

du'
9, — = 1<i< :2 dx 0 ( ASUS m)

Since H(Z,) is a connection of the product bundle

R_=PxB—B,

13 In this article, we call infinitesimal transformations, that is, vector fields, simply transforma-
tions or symmetries.
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we have d, = 0/0x. Hence, we have Co

E{*(2,)=Q°(P)® H(B,R), |
(1.8) E}%(9,)= H*(P,R)® H*(B,R),

etc. As B=R and P =R", we obtain
1 JA .

El" =E;" =(0) (vp),

D,0 R, (p = 0) ’
EV = | a.

0), (@>0).

Remark. Locally, &, can be transformed to &, by a change of local coor-

dinates, although the construction of such a new system of local coordinates

amounts to the same thing as solving <, locally. Hence, the “local parts” of
E(Z,) and Z(Z,) have simple structures as described by (1.8). However, it

1s generally rather difficult to use this local information to obtain global results

concerning E(Z,) and £(Z,); this is one of the hard points related to these

invariants of &, . The situation is-similar to that of the de Rham cohomology,

where what is locally trivial gives rise to nontrivial cohomology due to a global

topological property of the space. O

1.3.b. Linear equations. Consider now

dv’ j Coy

First we note that there is a one-to-one correspondence between a solution s =

(s'(x)) of Z, and an element of #(Z;) of the form &

0 0

| (6)Zp +4 Ey (0) 5m

defined by ¢;(x) = s' (x) (1 <i'< my). This allows us to regard ol(Z,) as
a subset of .Z(Z;). Denote by .%. (Z,) the subset of Z(Z;) formed by the

elements of the form : | 5 :

X,=>_ bj —=

Then Z, (2) ®F0l(Z,) is a subalgebra of .Z(Z,) and F0l(Z,)is its ideal.

Moreover, we obviously have

|X; ,s] =-b(s),

where b(s)': = > b's’ . It is easy to see that the condition X, € Z(Z;) 1s

given by

db
| 7 = lab],

where a = (a;).

'% This means the sheafification of E (Z,) and Z(2,).
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1.3.c. Autonomous systems. Now suppose that. f;’s are independent of x , i.e.,

d u' 1 m .
g,: ox = Siw un) (1<i<m)

and reconsider the notions introduced in §1.2. For such a system, it is more

convenient to regard the vector field

| | 0. 0 9

on the phase space p = R]' as the basic object. The trivial lifting of X to
R__ = Px B commutes with 9/0x , whence we can extract, from those spaces

introduced in §1.2 , the elements which are d/0x-invariant, i.e., do not depend
on x. We shall denote those subspaces by putting bars over the symbols of the

total spaces. For éxample, Co ’ a

— oI 0
A: = <1 — = = P{rea| of o} C7 (P),

QO = {we QL, 0=0}=Q"(P)® [dx].

The differentials 6 and 8 on Q ~ are given by

ow=dy,w, dw=L,wNdx (wE€ QF(P)),

where d, denotes the exterior differentiation on P. Hence, the spectral se-
quence E generated from {Q a, ,0} endowed with the induced filtration
from Q** is given by

—=0,0
E"=2{feC”P)|Xf=0},

EY’ = {weQ(P)|L,0=0},

77! {lo+nrdx|we QQ (P),neQ(P),L,o=dn}

2 {d{+L,{Adx |e QF (P)}

etc. On the other hand, the symmetries are described as

Z(D)={{ex(P)|[X,£]=0}..

Obviously, X € .& (Z,). Note that, whereas .¥’(Z,) = X(P), it can happen

that £'(Z,) = R.X. Thus, we might say that .2°(Z,) reflects more accurately

the specific features of the equation Z, . |

1.3.d. Ordinary differential equations of higher order. Consider

,: u"TM = foc,u,u, uy,

where »!V: = d'u/dx’' and f is a smooth function of x,u, ... um, When

m > 1, this equation has new aspects not present in the case m = 1.
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First we rewrite J; in the form of Z, :

i .

du =u (0<i<m-2),
/ dx

Zs

du" 0 1 m—1
— =flx,u ,u,...,u" 7).

Then according to §§1.1 and 1.2, we can construct R_ (Zs) = {ZZ (Y;),

H(2,)}, AZ), (Q"(2;),8,0}, EZ), and Z(Z;).
The system Z; and hence Z; may be considered as a &;, endowed with a

new structure. By exploiting the special form of 4:

0 I .0 m—1 0 0
G=gr tuo + U st ToT

we can express E ¥ and Z concisely as follows. The characteristic equations
(1.5) and (1.6) are, respectively,

af
d.w, + Om-15,0 = 0,

0d+ 0, +0, 50 <0 1<i<m-1)

and

dS; =i =0 0<i<m-2),
m—1

af
4Cm-1 2 Sig =0.

These are equivalent respectively to

w=, _, 0<i<m-2),

+

tw, =0,

and

E +d, =0 0<i<m-2),

l <o =0,

where

m—i—1
m—i—1 m—i—j-1 Of :

j=1

m~—1

L=0Dy): =d] => i

i=0

m-—1

=D): =(-d)" => (-d) o ri
i=0
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Hence, if we put, for ge A,

= ; 1 1,0
w,: = > 2g ou +gou" eQ

i=0

m—1 5
1

X,:=)_ dg TV),
i=0 Uu

then we have the following theorem.

Theorem 1.1.

| 1,0 ~

(1.9) E (9D) ={w,|gec AZ), (Dg =0},

(1.10) L(Y) = {X,| 8 €4(), {(D;) g =0}.

We call g the generating function of X, and of w g-

Among the elements of .Z(Z) are those classically called point transforma-

tions and contact transformations, which will be taken up again in §2.3. We

note that equations (1.9) and (1.10) imply the Noether Theorem for the Euler-

Lagrange equation of a variational problem (cf. §2.5).

1.4. Remarks on methods of quadrature. The notions introduced in §1.2 are

deeply related to the classical theory of quadrature which tries to find the algo-

rithms to solve explicitly differential equations. Here we explain, using .2°(<Z,)

and E(Y,), some of the geometric methods of quadrature found by S. Lie, E.

Cartan, etc.

Finding the elements of .2°(&|) amounts to the same thing as solving the

linear system (1.6) of partial differential equations of the first order, whose diffi-

culty is almost the same as that in finding the first integrals of &, . However, for

concrete Z, , some elements of .2°(Z,) can often be found easily, for example,

from obvious symmetries of J, . These symmetries enable us to transform J,

to a system of ordinary differential equations with fewer unknown functions.

This is the gist of Lie’s method (cf. [18, 21]).

For example, suppose an X, € .Z(¥,) is given. Furthermore, suppose that

by solving the system of ordinary differential equations corresponding to JX,

we have obtained a mapping A:R__ — R_ whose fibers are exactly the orbits

of the vector field X,. Then there exists a vector field d € X(R_) satisfying

ld. =d (X = Ax) ,

and hence &, is reduced to the system of ordinary differential equations on

R_ given by d . Lie tried to enumerate systematically those systems of ordinary

differential equations to which the above method of quadrature is applicable.

He started from X, and then tried to find 2, having X, as its symmetry, i.e.

X, €eZ(9).

E. Cartan attacked the problem of solving <Z, , i.e., of determining E; (2)

through the study of E | 2) , the space of integral invariants. He found a
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remarkable method: When the differential system (1.1) has a class of privileged

frames (of I'(VTM) ) with an asymmetry (or, in modern terminology, defines a G-

structure), then one can exploit this asymmetry to produce elements of E | (@)
(as the components of the curvature of the G-structure), which in turn makes

the asymmetry greater (or reduce the group G), and then one can repeat the

process. This method explained systematically many of the geometric methods

of quadrature known at that time. This method of quadrature is basically the

same as the method of solution of the local equivalence problem of G-structures

invented by E. Cartan.

1.5. Remarks. Note that it is only the flat bundle H that is necessary for the

construction of the spectral sequence E(R_) and the Lie algebra of symmetries

Z(R_.) as well as for the definition of the action of .Z(R_) on E(R_ ). These

invariants can thus be defined generally for a pair (M, H) of a smooth manifold

M and an integral plane field, i.e., a foliation H . | | |

Let Sol denote the category whose objects are foliated manifolds FH =

(M , H) and whose morphisms ¢: (M»H) — (M,,H,) are smooth mappings

¢:M, — M, satisfying ¢ H, C H,. Note that we do not fix the rank of the

vector bundles HA. Then it is easy to see that the correspondence % — E(%)

is‘a contravariant functor from Fo! to the category of spectral sequences.

The main theme in the remainder of this paper is to generalize the theory

in this section to the category Fol> which is an extension of Fol by admit-

ting certain kinds of infinite-dimensional manifolds as the underlying foliated

manifolds.

2. FORMAL GEOMETRY OF FUNCTION SPACES

In this section, we take up the space of dll infinite jets of functions of one

variable. The main themes are twofold: We first clarify the differential analy-

sis on such infinite-dimensional spaces and then explain how the phase space

R_(Z;) of the system of ordinary differential equations J; of higher rank

can be identified with an infinite prolongation of Z,. We hopethis section

will enable the readers to envisage how the differential geometric concepts for

the ordinary differential equations developed in §1 will be generalized for the

systems-of partial differential equations in §3. |

2.1. The infinite jet space of functions of one variable. A function @(x) of one

variable x is in one-to-one correspondence with a solution of the system of an

infinite number of ordinary differential equations:

L

,: CR (i=0,1,...)

by u' =d'p/dx" (i=0,1,2,...). When the construction of §1.1 is applied
formally to &, we first obtain a fibering

J N:=P_xB5B (B:=R_, P_:=R)
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and the system Z is regarded as the flat connection TJ _N = V & H', where

H is the subbundle of TJ _N spanned by

0 —~ +1 O

5.0. Differential calculus on J_N. Let us explain that most of the funda-
mental terminology in the finite-dimensional manifold theory makes sense even

when it is applied to infinite-dimensional spaces like J_N and R” . (For more

details see [8]). 
5

For the sake of brevity, we consider

. _ p> gs 2
M,:=R, ={(z ,z",...)}.

If we put M,: = R’ = {(z' sees LZ) , we obtain a projective system of usual
C* manifolds: | | |

{= MMM _ —}
by the natural projections. As a topological space, M__ is the limit of this

projective system. Thus, we are forced to define

oo

(2.1) C®(M): =ind im C*(M,) = | J €°(, ... , 29).
| et

Similarly, we put |
Q°(M_): =ind lim Q°(M,). |

In other words, a form on M__ is by definition a finite sum of the terms with

the form 5

fdz'"A---NdzZ” (fe CT(M)).

As for vector fields, we need some care. Define a vector field as a derivation
of the algebra CTM°(M_). It is easy to see then that this can be rewritten as an

infinite sum |

Cem. 0 oo

X=) ¢-5 (& € CT(M,)),
i=1

where X acts on CTM (M_) by

X = FTf 2.¢ oz
which is actually a finite sum because of f € CTM (M,) (3k < oo) . Thus, we

define oo | |

i=1

This can be expressed similarly to (2.1) by

X(M_) = projlim (inglim Der(CTM(M,),CTM (M, )) ,
>
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where, for algebras 4A and B, we denote by Der(A,B) the space of all the

derivations from A to B.

An element of X(M_) is said to be integrable if an integral curve passes

through every point of M__. Every vector field on a finite-dimensional manifold

is integrable in this sense, but on M__ nonintegrable vector fields exist. In fact,

> 2z'8/8z,,, is not integrable. It is easy to see that X is integrable if and only

if

X.CP(M)cC”(M,) forallk>1.

Now we consider vector bundles on M__. For a vector bundle of finite rank,

we define its smoothness and smooth cross sections in the obvious way. There

are two types of vector bundles of infinite rank: the projective limit type and

the inductive limit type. Referring to [8] for general definitions, we explain here

typical bundles: the tangent bundle TM__ and the cotangent bundle T" M_ .

Let n,:M__ — M, denote the natural projection and put E,: = Ty IM.

Then we have the projective system

& ={—E, —E —}

and the inductive system

2 * ={<E_, — E, —---}

of vector bundles of finite rank on M_. TM __ and T°M__ are defined as

the limits of & and & , respectively. The fibers of TM__ and T"Mare

isomorphic, respectively, to the direct product and the direct sum of the count-

able number of R’s. The spaces of C* sections I'(TM_) and I(T" M_) are

defined, respectively, as the limit of the projective system

{> T(E)» T(E) =}

and the inductive system

{+E )T(E)«}.

It turns out that X(M_)=T(TM_) and Q'(M_)=T(T"M_).
As for the spaces of CTM maps, we define for example

CP[R°,R.’) = indlim (pr lim C*°(R x) :
| k >k

In other words, a CTM map ¢:R,° — R’° is given by

w'=p(z), i=1,2,...,

where ¢.(z) e CRY). |

We note that, although we used the well ordering of N = {1,2,...} in

the definition of vector bundles and their cross sections, only the Fréchet filter

{X c N|N\JXis finite} of N suffices for that purpose: for example,

co Ny 4. 00 sau AX
CR) = lim C (R) .

2.3. Formal geometry on (J_N,H). Now we can generalize §1.2to (J_N, H)

word for word.
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2.3.a. First of all, the differential algebra

(4: =C®0x, uuu, )5d,)

contains the differential algebra of differential polynomials

(Riu, u' ul Tod) ,

which plays a fundamental role in the theory of differential algebras (cf. [56]).

2.3.b, Put | Ci
ou':=du' —u dx, fori=0,1,2,....

Then 0 1

ND )= AN [ou ,0u ,...]1® N[dx]

and 8 and 0 are characterized by

5(6u') = 8(dx) = d(dx) = 0,

8(6u') = du"! Adx,

of =d fdx,

Of . i

for fEA.

2.3.c. It is easy to calculate the spectral sequence E(Z) (cf. §3.6). The E,-

terms are given by

EPO (0), forp>0,

: R, forp=0,

o1., A
Ey =o— (bylfdx]=[f]),

X

E/'=d4 (by[foundx]e f]).

Let us calculate the differential d, : E 0! — E ! ar

d(fdx)=6fNdx

= > of ou Adx
i=0 ou

Sf hm k Of a
= =—0uNdx+) 0¢—-) (-d) ——ou ,ou 2 2 ou!

where 5 5

k
==) (-d) —¢.
ou k>0 x ou

Hence,

d, [fdx]= 52 ounax] :
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By the Poincaré Lemma, we know ;-

FPA (0), . for (p,q) # (0,0),

° R,. for,(p.q)= (0,0). ee

Hence, we obtain

2 R, for (p,q) =(0,0).

This implies the exactness of the following sequence:

0Rod 2, A 2, 4 4 EI?

In particular, we obtain

Theorem 2.1. For f€ A,

of
(2.2) 5; = 0 fed. 4,

2.3 Im L:=1]

where p ;

Of i +. i 0
€y = 255% ? ¢y 3 = >. (-d,) Lay 3 ES

are endomorphisms of A. |

2.3.d. How is Z(2,) described? If X = Y°¢,8/0u’ € T(V) satisfies [X ,d,|
€I'(H), then [X,d_]=0. Hence,

[X,d,] = > Ei d.¢;) Ni 0,
"j=0- Co ou

1.e., | |

¢&=d ¢&, (Vi>0).

Therefore, we obtain a natural bijection

X, — Ee CT (IN),

where 5

. glX=) dg we

We call { the generating function of X,. The Lie algebra structure of L(y)

is given by ol

[XeXp I= Xiemy»
where {{,n}: = Xn — X,¢. In particular, 4 = C* (JN) turns out to be 2

Lie algebra by the operation (&,n) —{&,n}.
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An element X of Z(Z) is said to be integrable if it is represented by an

integrable X, € X(J_N). For example, [X,] is integrable since

_ — +1 0 _ 0

= > 2 - | 55)
It is known classically that we can identify integrable elements of .2°(Z,) with

the infinitesimal contact transformations. In fact, let

5} s, 5,
X=f— — +h

er: TE re
be a contact vector field on the contact manifold

(JN = R; 0, , 0=du’ —u' dx).

By definition, X preserves o, i.e., L y+ = 0 (mod w), which is equivalent to

ow o 1 OW 8 = 0

u ou’ 0x oul) ou’ Fou

for some We C®(x,u’,u'), where d_:=08/0u+ u'd/ou’.

Lemma. A unique X € X(J_N) exists which satisfies

(rz), X=X, [X,d ]1=0 (modd),

where mw .J _N — J N is the natural projection.

Proof. Put X =X, + Cd, (n,{€ A). Then

= 0 ! o, 2 , 0
X=Coz twang + l+dn r+ :

Hence, we must solve

ow
¢ =J = "775/ ou

ow
Wi+n=g=W-u—,

ou

Word n=h=d Ww.

From this we obtain # = W and { = —9W/0u' , and hence X = Xy, —

aw [ou d, is the unique element satisfying the condition. O

The above X is called the extension of X. We call x; ,Xy, and [X]

the contact transformations generated by W , and W is called their generating

function. Note that [X] = [X,,] is obviously integrable. Conversely, all the

integral elements of #(Z,) are obtained in this way."

We summarize the above arguments in the following-theorem.
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Theorem 2.2. An element [X.] of L(Y) is integrable if and only if { €

C®(x,u’,u'). In this case,

og

is the unique integrable element belonging to the class represented by X: and is

the extension of the contact transformation x;

We remark that when & = g — u' f (f,g€C”(x, u’)) ’ x; 1s an extension
of 3 5

0 2
X =/355 T8850 € X(R; 0) .

In such cases, X 0 , xX; y X¢ and [X¢] are called point transformations.

2.4. The infinite prolongation of the ordinary differential equation <Z,. The

phase space (R__,H) of the ordinary differential equation Z, of higher ranks

can also be described as its infinite prolongation. This description is more

suitable for the systems of partial differential equations.

For 9., define

F:=uy" — fee, uu, ... mh c C* (JN)

The ordinary differential equations

i
Ds ; d_F|a_m — 0

(i=1,2,...) are called the prolongations of &. The solutions of Z; also

satisfy y (Vi). For example, Z, 1 is the ordinary differential equation given

by |
—1 h

(met) Of (m—1) KR (i+) 0.f (m=1)y _
u AGI IRTEN ) 2 Pow iCIL REEL )=0.

Now let I__ be the ideal of CTM°(J_N) generated by

{d.F|i=0,1,...}

and denote its zero set by R_. Since every u' (i > m) can be expressed

on R. by x, u’ , u' eens um! , the set R is a finite-dimensional manifold.
Moreover, the natural projection

J N=R xR —R_(Z)=PxR, (P=Rpp 0 my)

is a diffeomorphism on R__. Since d_I__ C I_, the vector field d_ is tangent

to R , whence |

H =H|, CTR, .

Furthermore, the above diffeomorphism maps H' to H (2). We thereby ob-
tain an isomorphism

! ~o/
(RH) = (R,(F5), H(T)) |

Thus, the phase space R__(Z,) turns out to be the infinite prolongation of Z.
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2.5. Noether Theorem. By (1.9), (1.10) and (2.3), we have

Theorem 2.3. Suppose Zs is the Euler-Lagrange equation of a functional with

Jocal density, i.e. it is written as

oL
357 0

with L € C7 (JN). Then the correspondence X¢ <> Wy gives an isomorphism:

~ 1,0
L(Y) =E;" (DS) .

This was proved by Gelfand and Dikii by using the Hamiltonian formalism.

3. FORMAL GEOMETRY OF THE SOLUTION SPACE

OF SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

3.1. Infinite jet bundles. Let x, : J, N — B be the kth jet bundle of n (cf.

[51]) and = :J N: = projimJ, N — B the infinite jet bundle of n. The

jet extension map I'(N) — I'(J,N) (1 < k < co) will be denoted by j,. Asin

§2.1, the projection n__ has a flat connection H Cc TJ _N with

TI N=VoH.

Here V is the subbundle of TJ _N consisting of all the vectors tangent to the

fibers of 7__, and the fiber of H at { = j_s(x) (s € I'(N),x € B) 1s defined

to be the image of d (js): TB — I,J N, which does not depend on the

choice of s. The connection H defines a lifting map

X(B)> X— X eT(H) Cc X(J_N),

which is characterized by

(3.1) Xpoj s=X(poj_s), forpeC (J_N),seT(N).

This implies

[I(H) ,I(H)] CI(H),

which means H is flat.

The following can be shown easily:

(3.2) X.C*(J N)cC®(J, N) form>0,XeX%x(B),

(3.3) I'(N) = {s eT(J_N)|s is flat with respect to H},

where we consider C*°(J,_N) as included in C*(J_N).

3.2. Definition of systems of differential equations. Let m2 be a natural number.

A subset & of c*(J, N ) is called a system of differential equations of rank

<m on I'(N). > An se I'(N) satisfying gp oj,s =0(Vp € &) is called a
solution of & . The set of all the solutions of & will be denoted by F0/(Z).

15 From the practical point of view, it is better to define a system of differential equations as a
pair of an open subset U of JN and a subset & of C °°(U) . The solution then is defined to be
a section s € I'(N) which satisfies j_s(B) CU and go j s=0(Vp €Z). It is straightforward

to extend the results of this section to systems of differential equations in this broader sense.
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For example, if we put

/ 0 1 —1 ) ;Do={u"-fx, u,u,....u"" )},

then u = g(x) is a solution of Z; if and only if ¢ is a solution of Z, when

considered as a section of R: Y= R, :
4

3.3. . Prolongations of systems of differential equations. For & > 1, the system

of differential equations of rank <m +p ,

D,:=GU{X,..Xp|1<t<p,X,€X(B), pT},

a subset of CTM(J pV), 1s called the pth prolongation of <7. The union

DD: = Upo 9, is called the infinite prolongation of & . The zero set of D_

is denoted by R_(Z)(c J_N) and is called the spaceof formal solutions of

Z . By (3.1), we have, for s € I'(N),

(3.4) se Fl(D) <= j s(B)CR_(D).

Hence, if n_|, is not surjective, then & has no solution. In this case, we

call & incompatible.

From now on, we assume that & is regular 16 , 1.e., the following condition
1s satisfied: a a

(3.5) R_(Z) is a manifold and the mapping ©__|, has maximal rank.

Remark. You may ask whether such objects as R, (2) are effective from the
practical point of view since they require in their definition an infinite number

of operations. We can then answer at three different levels:

i) R_ (2) is useful in giving a geometric insight into various concepts on

systems of differential equations even if it cannot be computed.

(ii) For concrete systems such as evolutionary systems, the space R__(Z) can

be easily described explicitly. |

(iii) Actually, the Cartan-Kuranishi Prolongation Theorem gives an algorithm

for determining R_(Z) for any system of differential equations 2. More

precisely, for every & , by carrying out a mechanical procedure for a determined

number of times, we can construct another system of differential equations 2’

with R_(2') = R_ (9) which is either incompatible or involutive (cf. [10] for

example). We thereby obtain a finite description of R__ (2), since there are no

hidden compatibility conditions for involutive systems of differential equations.
a

By definition, the defining ideal of R_(Z), i.e., the ideal I_ generated by

Z__ satisfies

Co XI cl, forXel(H),

1 This assumption is not essential for the definition of the Vinogradov spectral. sequence and
the: Lie algebra of symmetries. These can be defined by addpting an algebraic formalism such as

that developed in [16]. Such formalism, however, seems to obscure the point of our framework,

which is very simple in essence.
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whence H is tangent to R_(Z), ie,

This subbundle defines a flat connection of R_(<) — B. By (3.3) and (3.4),

we have

Fol(D) = {s eT'(R_(D))|s is flat with respect to H(Z)} .

Thus, the relation between <2 and the pair

RA (D): ={R_(Z)— B,H2)}

is the same as that in the case of systems of ordinary differential equations.

3.4. Formal geometry of %Z__ (2). From now on, we proceed in the same way

as in §1.2.

3.4.a. Filtered differential algebras. The algebra

AD): = C7(R(D))

has a natural structure of X(B)-algebra.- In fact, there exists a Lie algebra

homomorphism from X(B) to the Lie algebra of derivations of A(Z) defined

by oo

Xf=Xf (XeX(B),fc€AY)).

In contrast to ‘the case of the systems of ordinary differential equations, the

algebra A(2) is multiplicatively infinitely generated in general. However, when

the action of X(B) is taken into consideration, it is usually finitely generated.

In addition, the algebra 4(Z') has another structure. If we put

A(D): = (CT (IN) +1 )/I C AD),

A4,(Z) is a smooth function algebra:of a finite-dimensional manifold and sat-

isfies the condition:

X(B).4,(Z) C4, (TD).

In the case of the systems of ordinary differential equations, this hltration

{4,(Z)} turns out to be “trivial.” |

The pair of X(B)-algebra structure of A(Z) and this filtration contains all

the information about the system & . For example, various kinds of character-

istics can be defined algebraically by using this filtration (cf. §4.6.c).

3.4b. Variation bicomplex and the spectral sequence. The variation bicomplex

{Q"*(2),6,0} and the spectral sequence E(Z) = {E?*(Z),d } are defined

in the same way as in §1.2.b. This spectral sequence was introduced by Vino-

gradov [16], where it is called the %~spectral sequence, Hereafter, we call E(Z)

the Vinogradov spectral sequence of the equation Z ,
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3.4.c. Symmetries. We put

XeX(R_(N|[X I'(H

I'(H)

and call its elements generalized symmetries or Lie-Bdcklund transformation of

the equation &'. A generalized symmetry is called a Lie transformation if it

is represented by an integrable vector field, and we denote by £(Z) the Lie

subalgebra of (2) of all the Lie transformations of &. We remark that a

nonintegrable element of .#(Z) can often be integrable when restricted to a

large subset of #0!/(Z).

The Lie algebra .¥(<) acts naturally on the spectral sequence E(Y).

3.4.d. Remark. When the equation & is a system of algebraic or analytic

equations, then the above construction can be carried out in the algebraic or

analytic category, respectively. If D is invariant under an action of a group

G , then we can consider only the G-invariant elements of E(Z) and £ (9).

Through these amplifications, the framework of the formal geometry encom-

passes the work of Gelfand and Fuks [5] on the cohomology of the Lie algebra

of formal vector fields and Gilkey’s result [6] on the combinatorial characteri-

zation of characteristic classes. It seems that originally the idea of the formal

geometry was introduced by taking these two results into consideration (cf. [4]).

3.5. Interpretations of the Vinogradov spectral sequence.. Let & be a system

of differential equations on the sections of a bundle n:N — B and consider

a smooth family S$: X — S0l(Z) of its solutions. Define a map S:X x B —

R (2) by

S(x, 0) = (joS(x))(b) (xe X,beB),

which induces a double complex homomorphism

{(Q(2),6,0} = {Q(X x B),dy,dg},

where Q'* (XxB): =T (A T*X x AN TB). Thus, we obtain a spectral sequence
homomorphism:

SEND) EV(X xB) (r>0).

Here {E”*?(X x B),d.} denotes the spectral sequence obtained from the com-

plex Q'(X x B) with the filtration F’Q*(X xB): =Y. QF
We obtain interpretations of various elements of E(Z) from the following

well-known isomorphisms:

{E;"(X x B),d;} ={Q"(X)® H'(B,R),d, ® 1} ,
EZ; (XxB)=H (X,R)® H'(B,R).

For example, an element @ of E) induces a mapping

w:%0l(2) — H'(B,R)
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by @(s): =; (w) € EY ({s} x B) = H'(B,R). We call @(s) the w-character-

istic classes of the solution s. Furthermore, if @ € E) (2), then the mapping
@ is constant on the “arcwise connected component” of 0/(Z). When the

equation ZZ is an evolutionary equation, the elements of E; onl (n = dim B)
correspond to the equivalence classes of the conservation laws of & .

Just as in §1.2.c, the elements of general E’ can be considered as integral

invariants. For example, let w € E*? and suppose @ € FQ’ represents w.
If S:X — F0l(Z) is a smooth family of solutions with dimX = p+r—1, then

wg: =S @ belongs to FPQ P(X x B) and satisfies dwg € F*TM". Hence, if

Y C X x B is a compact submanifold of dimension p+g¢, then f, w¢ depends

only on the classes

[Ye H(X,R)® H(B,R)

and w = [0].

Furthermore, similarly to the discussion at the end of §1.2.c, the elements of

D ES@)
p+q<n,p2>1

give necessary conditions for a homotopy solution (that is, an element of

I'(R_(Z))) to be deformed to a genuine solution. This may be considered

as a formal generalization of the Bott Vanishing Theorem in the foliation the-

ory.

Remark. When a system of differential equations & expresses the integrability

condition of the plane fields of codimension ¢g on a manifold, we can construct

a linear map
i Cort Ji

(cf. [61]), where w, is the topological Lie algebra of all the formal vector

fields of g variables, 0, the subalgebra of linear vector fields which generate

orthogonal transformations, s/ Ww, the jth symmetric product of the dual space

w; , considered as a W, _-module. From this mapping, we obtain various notions

and results in the foliation theory such as the characteristic classes of foliations

and their deformations and the Bott Vanishing Theorem. 0O

3.6. Trivial equations. When & = {0}, then R_(Z) = J_N, and it 1s not

difficult to calculate E(Z) and .£(<Z). We state here only the results and

refer to [1] for the proof.

3.6.a. Computation of the spectral sequence E(ZY).

Theorem 3.1. Let n: =dimB. Then

(1) When r > 1,

Pq ~ .
E 7 =(0) ifp>0andq#n,

0.9 ~~ yrd .
ET "=H (N,R) ifg<n.
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(11) When r > 2,

EP" = H'TM'(N,R)

for all nonnegative p. |

Suppose in addition N = R' x Rl — B =R, and put 4: = C7 (JN).

We choose as a system of coordinates on JN

(x, W|1<i<n,1<j<m,aeN"},

where u = (u', ... uTM) and, for a = (a, ...,,) € N", the symbol u de-

notes the function on JN corresponding to the partial derivative 0 lady? /0x%.

Theorem 3.2. (i) When r > 1,

E>’ ~R,

EP?=(0) ifq<nand (p,q) # (0,0).

(ii) When r > 2, E7*? vanishes whenever (p,q) # (0,0).

(it) BE)" =A/dA+...+d A.
(iv) The correspondence

| (fis oes fy) [30 fio Adx' A+ Ad]

gives an isomorphism A" = E".
(v) E{""=A4®B, forp>2,

Here d.: = 8/0x") e I(H), ou’: = du’ — Sudx’, the symbol (j)

denoting the element of N" with 1 on the jth component and 0 on the other

ones. Furthermore, the module B, is defined as follows. Let V denote the

R-vector space R" and SV the symmetric algebra on V . Considered as a

commutative Lie algebra, V acts on W,: = N°(R" ® SV) naturally and B,

denotes the quotient module W, [V.W.

By these restlts, we can easily generalize Theorem 2.1 as follows. For F =
(F,, o ,F ) € A” , define linear maps £, and £,:4" — 4" as L(g) =

(;),Lr(8;) = (h;), where »

» OF, 4 , . [OF \

Corollary 3.3. (1) For L€ A,

OL _o LedA+ +d A.
ou L

(ii) For Fe ATM,
)

Felms <= Ly =Ly
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3.6.b. Description of the symmetry algebra. For & = (£,,... ,¢ )e 4" put

u. O h

Xoo= YY lim c X(J_N).
1<i<m aeN" Uy

Then just as in §2, we can prove the following theorem easily.

Theorem 3.4. (i) The correspondence ¢ — X, gives an isomorphism: A" =

L(Y).

(i) When m > 2, a necessary and sufficient condition for X¢ 10 be integrable

is that there exist g,,f, € CT (N) (1 <i<m,1 <r <n) such that

i

Furthermore, if X¢ IS actually integrable, then it is the extension of the vector

field Y°, £,0/0x,+3,80/0u’ on N.

(iii) Wher m = 1, a necessary and sufficient condition for X¢ 10 be integrable

is that & belongsto C* (J, N). Moreover, X¢ IS then the extension of the contact

vector field

ct, o& 0 o&\ oO ~, 0

Xpi==), Ou, Ox, + (¢ Suge) ou DIC
(u; = uy, d;: =8/8x;+u,0/0u) on JN.

3.7. A method of computing .Z (2). Let N=R] xR’ — R’ be the product

bundle and & a system of differential equations of rank < k on I'(¥) , i.e.,

PD Cc C*(J,N). For F € Z, define a linear mapping £,:4" — 4 by

OF
le(8): = > 99 d.8;

It can easily be verifed that, for £ € ATM, the element X, € X(JN) is tangent

to R_ if and only if £.¢ = 0.(VF € Z) and the following holds.

Theorem 3.5.

2D) 2 {Xx _m)é € 4" 4xE=0 (VF €9)}

= {Ec AD)" [17 E=0 (YF eD)}, -

where eZ? AD)" — A(D) is induced from a. A" = A.

Remark. Besides solving the equation 7 ¢=0(VF € &), one can determine
the space .Z)(Z) of all the Lie transformations by Cartan’s method for the

equivalence problem (cf. [44]), which also enables us to find the structure of

the Lie algebra. When .£(¥Z) is infinite-dimensional, only the latter method

1s possible. It is conceivable that a similar method exists for the problem of

determining Z(Z). O
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3.8. A method of computing E Sa) . Suppose further that & is deter-
mined. This means that after an appropriate change of the coordinate of

B=R],itisgivenas & = {F,,... ,F,} with F, = Ui (1) — K; and that

OK.

holds. Define 0 &: =(g)€ AD)" for E=(¢,,... ,¢ )€ AD)" where

OF,
. a J8; — 2 (=) (5 :) .

We then have the following theorem.

Theorem 3.6.

(1)

E," (9D) = Ker 2 .

(ii) If n > 2, then

E’(2)=R,

E{ (2) = (0) (p,q) #(0,0),g<n-2).

(11) If n > 2, then

0,n—1 I,n—1
E,"(2)=E," (2) = (0).

Remark. If & is not only a détermined system but also the Euler-Lagrange

equation of a variational problem, then (ii) of Corollary 3.3 and Theorems 3.5

and 3.6 imply

(3.6) EHD) 2 29D).

Since d| LE)" HD) — E " “Y@) is injective when n > 2 and has the kernel
R when n = 1, the above isomorphism (3.6) gives the extension of the Noether

Theorem to the Lie-Béklund transformations (cf. [1] for more details). O

3.9. The Yang-Mills equation. As a concrete example of the system of differ-

ential equations , we take up the Yang-Mills equation &,,, on the Minkowski

space

M=R*, — (@x) + dx") + @x") + dx).

Let g be a Lie algebra and w =) B, dx’ € QO! (M)®g a gauge field on M,
that 1s, a g-valued differential 1-form on’ M . The Yang-Mills equation Z,,,

is the following system of differential equations of rank 2 for w:

3

Dyas SOF" +[B,,F*)=0 (0<p<3),
v=0
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where for 0 < u,v <3,

F, =0B,-0,B +[B,,B],

wo, _ pu’ vvFo = > 8g 8 FE, R
u 2

and (g"") is the diagonal matrix with diagonal components —1,1,1,1.

Put for 1 <k<3

E :=F k a

C1 ijHy: =~ >. gy FY,
1<i,j<3

where, foramap o:{1,2,3} — {1,2,3}, we denote

sgno if o is bijective,

“oc = Ca(oe(d)" = 0, otherwise.

We can then take as a coordinate system on R__(<,,,) the following variables:

x" (0< <3),
o 3

BS, (I eN[0,3]),

3
By ,.E| ,,E; ;,H ,,H, , (JeNTL,3)),

2

BY ES HY (K eN'[1,2]),
1

B/, (neN'[1,1])

(1 < 0 < dimg). Here B° denotes the oth component of B and B] PY

(K =(p,q) € N°[1 ,2]) denotes the function on R_(Z,,,) corresponding to

the partial derivative 8°79B) /0x?0x]. As an algebra of coefficients 4 C

CTM(R,,(Dy,)), take the algebra of polynomials of B. .,E. ., and H,, with

coefficients in CTM(M). We have then the following theorem.

Theorem 3.7. (1) For r > 1,

0 ~p

EP =(0) (0<q<2,(p,q)#(0,0)),

ETE [Y=(Y,,Y,,Y,,Y,) € A ®g| Y satisfies (3.7) and (3.8)}

{(VoZ.,V,Z,V,Z,V,Z)|Z c A®g} a

where V,: =d, +ad(B;) (0<1<3), and

3. 3

(3.7) Y(Vi¥,= VV, Y) =2 YY,El,
i=1 i=1
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A
(3.8) Y, &£4(V,V,Y,-V,V,Y)

0<4,u<3

=2([Yy,E l= D>. &,lY,, H] (1<i<3).
1<jk<3

(iii) L( Dy) 2{Y €A*® g|Y satisfies (3.7) and (3.8)}. 7

By (i1) and (111) of this theorem, we obtain a surjection

1,3

L(Dyyr) — E, (Dy) ’

which, however, is not injective. This comes from the fact that, although <Z,,iy

is the Euler-Lagrange equation of a variational problem, it is not a determined

system. The kernel of this surjection is

{> 7°90 ZecA® gyA p)

dB]

an element of which may be called a generalized infinitesimal gauge. trans-

formation, because it is an ordinary infinitesimal gauge transformation when

Z € C(M) ® g. In particular, the conservation laws corresponding to genet-

alized infinitesimal gauge transformations by the Noether Theorem are trivial.

We remark that if Y satisfies (3.7) and (3.8) and its components belong

to C° (x" ,B] JE] HY), i.e., it is a Lie symmetry, then it is nothing but an
infinitesimal conformal transformation (cf. [52]) of AM . Whereas this is proved

in [55] by using a computer, it is rather easily verified by solving equations (3.7)

and (3.8).

We remark, finally, that in the action of £(Z,,,,) on E; (2D, 4) the gen-

eralized infinitesimal gauge transformations operate trivially,

4. REMARKS

We comment briefly on some of the important topics that are not treated in

this paper.

4.1. Structure of R__(Z). For an arbitrary system of partial differential equa-

tions &, we first defined ZZ (2) = {R_(¥), H(Z)} by the infinite prolon-

gation procedure. From this pair, we introduced the Vinogradov spectral se-

quence E(Y) and the Lie algebra of symmetries .2(<), as the “invariants” of

<7 , which correspond to various geometric concepts about < including those

classically known. In spite of the simplicity of their definition, the analysis of

these invariants is rather difficult. The first problem we encounter is describing

Z.. (2) when a concrete < is given. We consider %Z__(Z) to be adequately

described when a system of coordinates is constructed by which we can describe

the action of X(B) concisely.

When & is a linear system, the study of the structure of Z#_ (Z) amounts

to the same thing as analyzing the representation of the Lie algebra .£°(<) on
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the linear space which is the fiber of the vector bunde R_ (2) — B. The latter

is equivalent to investigating the structure of finitely generated modules over

the algebra of differential operators on B, which is by now very deeply studied

py the so-called algebraic analysis initiated by M. Sato.

Even when < is nonlinear, we may say that the structure of Z%Z_ (9) is

known as far as a formal geometric study is concerned. We should, however,

underline that even if we have complete knowledge on the structure of Z_ (2),

there exists a different kind of difficulty in studying the invariants E(Z) and

ZZ).
In some rare cases, the structure of %Z__(Z) may be well understood by a

completely different method, a typical example of which is given by the result

of M. Sato and his collaborators on the series of the Kadomtsev-Petviashvili

equations (cf. [57]). They discovered an extension & (cf. §4.2) of it such that
the fiber of %Z__(Z) — B is an infinite-dimensional “Grassmann manifold” and
that the flat connection H corresponds to a concrete “linear” flow on it.

4.2. Bicklund transformation. There exist many transformations on the solu-

tion space of a system differential equations which cannot be understood by

the concept of the Lie-Bécklund transformation: the classical Backlund trans-
formation cannot be deformed to the identity transformation and infinitesimal
transformations are known which are not Lie-Biacklund transformations. How

can we handle these in the framework of formal geometry? |
Consider the category Fol” whose objects are such pairs as Z_ (9) =

(R,H) (cf. §1.5) '" A Bicklund transformation between two systems of
differential equations 2, and <Z, can be defined as a correspondence in this

category, that is, a diagram | :

with #, and x, surjective.

When %Z__ — FZ__(D) is an extension of Z , thats, a surjective morphism in

the category Fol” , then its fiber corresponds to the pseudopotential in the sense

of Whalquist-Estabrook [41] and an element of “.%’(%__)” may be considered as

an infinitesimal transformation of & whose “generating function” is a nonlocal

functional of the solutions.

It is a significant but laborious problem to obtain extensions of a given < and

to construct Backlund transformations from it to other systems of differential

equations. A method of constructing the “universal” extension was given by

Whalquist and Estabrook in [41]. Essentially, it consists in solving the equation

dw—4i[w,w]=0

whose unknown objects are the Lie algebra g and the g-valued (0,1)-form w €

Qf (2) ® g. Unfortunately, it seems not easy to solve this equation except for
special kinds of equations.

'7 See §5.2.
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4.3. Formal calculus of variation. The results of §3.6 enable us to formalize

the “differential analysis” on the infinite-dimensional space I'(N), a concept

first introduced by Gelfand and Dikii in [29]. The formalization is roughly

described by the following translation:

‘C(I (N)) oo E)"= Ald A+---+dA,

‘exterior differentiation’ + — d= £,

‘X(T'(N)) cee — ZL =4"

We can also define naturally the pairing between vector fields and 1-forms and

also Lie differentiation of 1-forms by vector fields. We can thereby give clear

meaning to many concepts about manifolds of finite dimension when applied

to section spaces which are of infinite dimension.

4.4. Hamiltonian formalism. The Hamiltonian formalism 1s indispensable for

understanding the relationship between symmetries and conserved quantities.

Although it has been so far based on nondegenerate closed 2-forms, that is,

symplectic forms, it has been recently recognized that it is more natural and

more general to take contravariant 2-forms as the starting point of the formal-

ism as follows. Let M be a CTM-manifold and H € T'(A° T) , which defines a
map

Hod: CPM) 4% o 2 x(a).

For f,ge€ CTM”(M), put

{f.8ty:=(Hdf).5.

When the Scouten bracket [H,H] € (A T) vanishes, the bracket { , },
defines a Lie algebra structrue on C”°(M) and Hd is a Lie algebra homomor-

phism. The vector field Hdf € X(M) is called the evolution equation defined by

the Hamiltonian f. We can thereby simplify and generalize the Hamiltonian

formalism.

When we use the formal calculus of variation (cf. §4.3), the above formalism

can be applied to the space of infinite dimensions. In this situation the most

important problem is to construct an operator H € A®, Hom(4, 4) satisfying

[H , H]=0, which is called the Hamiltonian operator. Gelfand and Dorfman

construct many examples of Hamiltonian operators in [33]. Interestingly, it

turned out that Hamiltonian operators of a special class are simply the solutions

of the classical Yang-Baxter equation (cf. [34]).

4.5. Completely integrable systems. The récent explosive progress in the re-

search of evolutionary nonlinear systems of differential equations was triggered

by the discovery of “complete integrability” of various concrete equations such

as the Korteweg-de Vries equation, the Toda lattice, the Sine Gordon equation,
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etc. In the contextof formal geometry, complete integrability presents itself as

the existence of an infinite number of independent conserved quantities (i.e.,

dim E D 1 = xo ), and as the existence of an infinite number of mutually com-
mutative Lie-Bicklund transformations (in particular, dim.%#(Z) = oo) or of

4 one-parameter family of commutative Bicklund transformations. Thus, the’

formal geometric invariants E) nl (2), etc. offer testsby which we can
check whether a given system & is completely integrable or not.

In the context of Hamiltonian formalism, complete integrability appears in

another geometric setting, which was discovered independently by many re-

searchers and the basic elements of which are called hereditary symmetry, bi-
hamilton structure, Nijenhuis operator, etc. The main feature can be summa-

rized in the case of finite degrees of freedom as follows.

Let N be a C*-manifold and suppose the tensors H € I (A*T) and N €
I(T ® T") satisfy the following condition. When N:%(M) — %(M) and

N:Q! (M) — Qf (M) denote the C” (M)-linear maps induced by N, then

(4.1) NH=HN, [H,H]=[N,H]=[N,N]=0.

Here the (3,0) tensor [N,N] € (A T* ® T) is the Nijenhuis product and the
(2,1) tensor [NH] €e I(T" ® A’ T) is a differential concommitant of H and
N which is defined under condition (4.1). We have then K: = NH € (A? T)
and (K, H) gives a Hamiltonian pair, that is, every linear combination tK+sH

(t,s € R) is a Hamiltonian operator. N

Suppose further a function f € C*(M) satisfies d Ndf = 0. Then under the

condition H "(M ,R) = 0, we have a sequence of functions f, € C*(M) (i=
1,2,...) and the following commutative diagram:

fo=1 fi by)

Js ICR
N N N

df, —— df, —— df; ——

A N Xx; N x N
Furthermore, we have the commutativity,

where Xp: = Hdf.

This mechanism gives, in the context of the formal calculus of variations,

the diagram found, for example, by Lax, Magri, Gelfand and Dorfman, etc.

However, it is very difficult to find a (1,1) tensor N € Homg(A4,4) which

satisfies [N,N] = 0. The mere check of the vanishing of the Schouten bracket

of a concrete N requires enormous amounts of computation.
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4.6. Problems. Although the formal geometric studies of systems of differen-

tial equations have a long history, substantial progress has started only recently.

We thus have many important problems ranging from concrete questions .to

theoretically foundational investigations, among which the following should be

mentioned.

4.6.a. First we consider the theory of the category Fol” . Establish a theory of

correspondences and extensions (cf. §4.2) in the category of the pairs (R_, H).

For this purpose, we must first analyze the formal geometric aspects of the

well-known interrelationship between concrete systems of differential equations

such as Backlund transformations, “Ansatz,” Twistor, and various methods of

quadrature. :

4.6.b. Find an effective method to the formal geometric study of the pair
(R_, , H). For example, is it possible to extend to (R_, H) the Cartan method

of moving frames?

4.6.c. Analyze the theory of characteristic systems and methods of quadrature in

the formal geometric framework. Study various kinds of characteristics starting

from the filtered differential algebra (4,H,F) (F being the filtration of the

algebra A introduced in §3.4.a).

4.6.d. Find a method of computing F(Z) and ZX (9). "8 For the determined
system, Theorems 3.5 and 3.6 reduced the computation to the solutionof a

linear differential equations. For the over-determined system there exists no

systematic method of their computation.

4.6.e. Compute E(Z) and .Z(Z) of concrete systems of differential equa-

tions, such as the Yang-Mills equation and the system [N,N] = 0 for (1,1)

tensor fields N.

4.6.f. Compute the cohomology spaces

* C. * .o* *

HW, ,L ;R) and H (W,.0,:8 w,)

(cf. §3.5). Here LE is the Lie algebra of all the formal holomorphic vector

fields on C" = R*" considered as a Lie subalgebra of W,, .

5 ADDENDUM

5.1. A method of calculating E,-terms and .% (2). We explain here briefly a

method of computing E|-terms and .2°(<Z) when & is an involutive system

of differential equations. Details will be published elsewhere.

First we extend to %Z,_ = (R__,H) along H the usual differential-geometric

constructions.

18 Added in translation. For involutive systems of differential equations, there is a general
homological procedure to compute E|-termsand £(Z), which includes as a special case Theorems

3.4 and 3.5. See §5.1. .

19 Added in translation.
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Let m:E — R__ be a vector bundle on R_. An H-connection on E is a
subbundle K of TE such that the differential dn satisfies

dr|g:T,E— H,, forecE.

An H-connection is called flat if it satisfies [I'(K),I'(K)] c I'(K).

If & is a vector bundle with a flat connection XK, we can construct a semi-

exact sequence of C*(R__)-modules just as in the finite-dimensional situation:

H H

(5.1) r&)s oe) L Qe) —

where we put & : = JIE and Q°/(Z): = I'(&® NH"). We denote the ith

cohomology of this complex by H'(R__,& ). Note that

ZL(@)=H(R_,V), E =HR_V".

On the other hand, for a vector bundle E of finite rank over R__, we can

construct H-jet bundles J! FE for k =1,2,... ,00, which are characterized by
the following properties. When H is a flat connection.on a fibering R__ — M

and E is a lifting of a vector bundle E on M, then for every flat section s
of R_ — M, the induced bundle s° J! E is isomorphic to the usual jet bundle
JE.

The infinite H-jet bundle JE has a natural flat H-connection and it is

easily verified that if & = JE , then the following complex is exact:

H H : H

0-TE)3TE)L "EYL Eg)—---.

For the dual bundle J ETM | it is the following sequence which is exact:

where n is the rank of H and i 1s the adjoint of i characterized by

(2s, w) = (s, Joo @) (mod an",

for s e T(E) and we Q""(&TM). -
Based on the H-jet bundles, we can define the notion of H-differential op-

erators. For example, when E and F are vector bundles of finite rank over

R_, a linear H-differential operator from I'(E) to I'(F) is a linear operator

given as the composition of the H-jet extension map I'(E) — T(J? E) and the

linear map T(J! E) — I'(F) induced from a vector bundle map J E—F,

Now suppose R C J, N is an involutive system of differential equations on

sections of fibering N — M, which can be nonlinear, and R__ is its infinite

prolongation. Then the lifting E, of TR is an involutive system of H-linear

differential equations on the sections of the lifting E, of TN and we can

construct its Janet resolution by linear H-differential operators:

0 — I(E,) — T(E,) 2 T(E,) =,
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0 0 0

E E E
0 — oY —— o"e&)H) — Q"'E&H —

ls 2 [2

E E E

ls IE E
0 Ql -— Q&T) -— QE?) —

D} DY D¥
0 Q°"(E}) Lt QQ" (Ey) —Z ...

0 0

DIAGRAM 1

where the E;’s are vector bundles on R__ of finite rank. This complex induces

an exact sequence of H-flat vector bundles: |

(5.2) 0—V JE —~J E,— JE —-,

and by dualizing

0—V — JIE — JE} — JIE}— |

where all the vector bundle homomorphisms preserve the H ’s.

By constructing the resolution (5.1) of each bundle of this sequence, we ob-

tain the double complex of Diagram 1, where & .: = J 7 E.. Since all the
vertical complexes except the utmost left one and all the horizontal complexes

except the bottom one are exact, the obvious diagram chasing gives the following

isomorphism. |
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Theorem 5.1. For 0 <j <n,

+

2 KerD, ;

1 Srp cH
ImD,_;,

when the equation is determined and j = n — 1, we obtain by virture of

)

E,"!' = KerD;,

which is simply Theorem 3.4. Furthermore, Theorem 3.7 can be proved by this

theorem.

A similar double complex constructed from (5.2) proves the following theo-

rem.

Theorem 5.2. For i =0,1,2,...,

: Ker D,
H'R_,V)= —(Roos V) Im D,

where Dy =0. O

For i = 0, this generalizes Theorem 3.5. We note that the space H ! (R,V)
might be considered as the space of infinitesimal deformations of R__.

5.2. Classes of morphisms in F0/TM . Let %Z__ = (RH) (i=1,2) be two
objects in Fol” (cf. §4.2). A C*-map ¢:R_, — R_, is called a morphism

of the category FolTM if it satisfies dg(H,) C H,.

Morphisms ¢ for which dg| H is of constant rank can be roughly classi-

fied by the types of two linear maps: dp: = agly and d” o : TR, /H, —
TR ,/H, induced by dg, respectively called the. horizontal differential and

the vertical differential.

Note that since the complementary direction to H “parametrizes” the space

of solutions, that is, maximal leaves of the foliated manifold (R_,H), the

vertical differential is injective, bijective, and surjective, respectively, when the

map between leaf spaces induced by ¢ is approximately injective, bijective, and

surjective. This factor is already present in usual differential geometry. What

refines the situation in formal geometry is the type of horizontal differential.

Note also that a general morphism can be decomposed into two morphisms;

one has the sutjective or bijective horizontal and vertical differentials and the

other has the injective or bijective horizontal and veritcal differentials. Thus,

case (A) in Table 1 can be considered as a composite of the others.

In the most interesting cases, the horizontal differentials are bijective or sur-

jective and are tabulated in Table 1.
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TABLE 1

oo do": bijection- do": surjection

dp”:in | solutions | 4)
do’ : bij | isomorphism Cauchy characteristic

extension,

d 0’ 'Surj reduction, Monge characteristic
differential elimination

Note further that the significance of each case varies according to which

SZ ’s are parametric. Here an object of Fol” is called parametric when it is

isomorphic to (JN, H) for some fibering N — M .

We explain briefly how to understand Table 1. To make the situation more

concrete, we assume that the objects #__. (i = 1,2) have spaces of indepen-

dent variables. Namely, they are fiberings over finite-dimensional manifolds,

T: R_; — M;

and the differentials dn; are isomorphic when restricted to the fibers of H,.

We assume further that ¢ preserves the spaces of the independent variables,

i.e., the following diagram commutes: |
A ,

R,,—— R_,

“| |

M, —— M,
f

for some smooth map - f. :

First suppose d 0" is an- isomorphism. If 4d 0” is injective, the image
9(R,,) satisfies the following condition. When an integral submanifold of

R_, intersects with this image, then it is completely contained in it. Such a

subset is usually called an intermediate integral and in the extreme case becomes

a solution of R_,. .

If do” 1s surjective, then every solution s of R_, gives an intermedi:

ate integral 0's of R_," One can thus decompose the solution of R_, into

simpler equations R_, and ¢ 's , whence the “reduction” in the table. The ex-
planation of “extension” is given in §4.1. “Differential elimination” is explained

as follows. When R_, 1s parametric and “R__, is an intermediate integral of

R ool , one is askedto give the defining equation of the image PR)

Suppose now d of! is strictly surjective. If do” is an isomorphism, a solu-
tion 5; of R_’ and a solution 5s, of R_, are in one-to-one’ correspondence

by 5, = ¢(s,) and that s, can be obtained from s, simiply by solving systems
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of ordinary differential equations: Thus, the problem of solving a system of

partial differential equations is reduced to solving one with fewer independent

variables and ordinary differential equations. Such a situation arises exactly

when the equation R__. has the nontrivial Cauchy characteristics.

If d 0’ is strictly surjective, then a solution s, of R_, gives an intermediate

integral © (s,). It should be noted that when given R__, ,'it is very rare that it
admits a morphism of this type to a parametric R_;,. The Monge characteris-

tics of systems of partial differential equations of second order of one unknown

function give rise to such morphisms and the main point of Darboux’s method

of integrating such systems is to integrate two independent Monge characteris-

tics, which can be rephrased in our terminology generally as follows. Let R__

be the object of Fol” corresponding to the system considered. Then there are

two morphisms ¢:R_ — R__. (i = 1,2) with parametric R_.’s which have

rank one, and the product morphism

9, xpi R= RXR,
has finite-dimensional fibers. Thus, given two arbitrary functions of one vari-

able, general solutions of R__ can be obtained by solving systems of ordinary

differential equations.

The case of injective horizontal differentials seems not so interesting but

can be dealt with in the Cauchy-Kovalevskaya Theorem. The injectivity of

the horizontal differential means roughly that f is an immersion and every

solution of Z#__ , a function on M,, can be “extended” to a solution of %Z_ ,,

a function on M, .
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