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Abstract. Let G be a locally compact group with modular func-
We define the LF
, to be

1,10

tion 4 and left regular representation X .
Fourier transform of a function f € LF(G) , 1 <p<2
essentially the operator Hf)A“/q on LZ(G) (where
and show that a generalized Hausdorff-Young theorem holds. To do
this, we first treat in detail the spatial P spaces Lp(wo) ,

1 <p <=, associated with the von Neumann algebra M = X(G)"

on LZ(G) and the canonical weight tp on its commutant. In par-
ticular, we discuss isometric isomorphisms of L2(¢0) onto L2(G)
and of L‘(wo) onto the Fourier algebra A(G) . Also, we giQe

a characterization of positive definite functions belonging to

A(G) among all continuous positive definite functions.



Introduction.

Suppose that G is an abelian locally compact group with dual
group 3 . Then the Hausdorff-Young theorem states that if

f€ 1P , where 1 <p <2, then its Fourier transform

F (£) belongs to thé) , where % + % =1 (cf. [23, p. 117]).
In the case of Fourier series, i.e. when G is the circle group
and 8 the integers, this is a classical result due to F. Haus-
dorff and W. H. Young [24, p. 101). An extension of this theorem
to all unimodular locally compact groups was given by R. A. Kunze
[14]. In this paper we shall treat the case of a general, i.e.
not necessarily unimodular, locally compact group.

In order to describe our results, we first briefly recall those
éf [l4].’Suppose that f is an integrable function on a unimodular
group G . Then we consider the Fourier transform F(f) to be
the operator A(f) of left convolution by f on LZ(G) . |As
pointed out by Kunze [14], this point of view is justified by the
fact that in the abelian case A(f) 1is unitarily equivalent to
the operaﬁor on Lz(e) of multiplication by the (ordinary) Fou-
rier transform % .) The Fourier transformation maps L1(G) into
the space L®(G') , defined as the von Neumann algebra M gene-
rated by' A(L‘(G)) . More generally, one can define X (f) as an
{unbounded) operator on L2(G) even for functions £ not in
L1(G) . It then turns out that X maps each P, 1 <p=<2,
norm-decreasingly into a certain space 19(G"') of closed densely

= 1) . This is the

il

-
defined operators on L7(G) (where % +

Hausdorff-Young theorem. Kunze introduced the spaces L%(G') as spaces



of measurable operators (in the sense of [21]) with respect to

the canonical gage on M {14, p. 533] . An equivalent but simpler

way of introducing the Lq(G') is to consider the trace @ on

M characterized by wo(A(h)‘A(h)) = thzz for certain functions
h , and then take Lq(G') to be Lq(M,wo) as defined by

E. Nelson [15], viewing it as a space of "wo-measurable" operators
[15, Theorem 5]. (In either case, the 14 spaces obtained are
isomorphic to the abstract 149 spaces of J. Dixmier [5] associ-
ated with a trace on a von Neumann algebra.)

In the general (non-unimodular) case, 0g is no longer a
trace, and the lack of adequate spaces L9 into which the LP(G)
were to be mapped for a long time prevented the formulation of
a Hausdorff-Young theorem, except for some special cases ([7, §8],
[20, Proposition 15]). In [10], however, U. Haagerup constructed
abstract LY spaces corresponding to an arbitrary von Neumann
algebra, and combining methods from [10] with the recent
theory of spatial derivatives by A. Connes [2], M. Hilsum has
developed a spatial theory of P spaces [12]. If M is a von
Neumann algebra acting on a Hilbert space H and ¢ is a weight
on its commutant M' , then the elements of Lp(M,H,w) are (in

general unbounded) operators on H satisfying a certain homoge-

neity property with respect to . We shall see that when using
these spaces (in the particular case of M = A(G)" , H = LZ(G) ,
and y = the canonical weight on M') and when defining the ¥

s c D -
Fourier transform of an LF function f to be the operator
- 179 2. . .
Ew £*a %L on L7{G) where a is the medular function of the
group), one gets a nice ¥ Fourier transformation theory and in

particular a Hausderfif{-Young theorem.



The paper is organized as follows. In Section 1 we fix the
notations and describe our set-up. In Section 2, we study the
P spaces of [12] in our particular case; we give a reformulation
of the a~homogeneity property appearing in [2] that does not
involve modular automorphism groups and we characterize Lp(wo)—
operators among all (~%)—homogeneous operators. In Section 3, we
treat the case p = 2 and obtain explicit expressions for the
L2 Fourier transformation 7} =P , called the Plancherel
transformation, as well as for its inverse.

Next, in Section 4, we deal with the case of a general
p € [1,2] ; we define the 1P Fourier transformation ?; ,
and using interpolation (specifically, the three lines theorem)
we prove our version of the Hausdorff-Young theorem.

Finally, in Section 5, we define an LP Fourier cotransfor-
mation Tf; taking Lp(wo) » 1 <p<2, into L9(G) and we
investigate the relations between cotransformation and Fourier
inversion. A detailed study of the p = 1 case gives a new

characterization of A(G)+ functions among all continuous posi-

tive definite functions on G .

1. Preliminaries and notation.

Let G be a locally compact group with left Haar measure dx .
We denote by X(G) the set of continuous functions on G with
compact support and by LP(a) » 1 < p<w® , the ordinary

Lebosgus spaces with respect to  dx - The modular functien A

on G is given by



If(xa'1)dx = Ala) Jf(x)dx

for all f € K(c) and a € G . PFor functions f on G we put

v -1 ~ -1
£ (x) f{x ) P f(x) = £(x ) ,

7

1 2T Y

Frix) = a T E(x ), (JE) (x)

]

for all x € G . More generally, for each p € [1,~»] , we define

3,6 (x) = VP, xec .

Then in particular J1f = f* , sz = Jf , wa = f . Note that
for each p € [1,=] , the operation Jp is a conjugate linear

isometric involution of Lp(G) .

We shall often make use of the following non-unimodular verxsion

of Young's inequalities for convolution:

Lemma 1.1. (Young's convolution inequalities.) Let

Pq:Py/P € [1,»] and ;L + é— = {1 . Assume that

1 1 P P
2+ X -1 .4 . Then for all £, €L ') and £, €L ()
P, P, P 174

the convolution product ff*A 1f2 exists and belongs to
LP(G) , and
1/4q,

Hf1tA fzﬂp < uf1llp L3 | .
This theorem is well-known in the unimodular case as well as in
the special cases (p1,p2,p) = (p1,q1,m) {where it follows from
Holder's inequality!}, (p1,pz,p) = (1,p.p) or (p1.p2,p) = (p,1.p)
[11, {20.14)). The general case has also been noted [13, Remark
2.2). It can be proved by modifying the proof of [1l, (20.18))

or by interpolation from the special cases mentioned above.



For operators T on the Hilbert space LZ(G) we use the nota-
tion D(T) (domain of T) ,’ R(T) (ranée of T) , N(T) {kernel
of T) . If T is preclosed, we denote by [T] the closure of
T . If T is a positive self-adjoint operator and P. the projec-
tion onto N(T)‘L , then by definition ’I‘it , £t € R, 1is the par-
tial isometry coinciding with the unitary (TP)it on N(T)l and
0O on N(T) . By convention,when speaking of operators, "bounded”
always means “"bounded and everywhere defined”.

We denote by A and p the left and right regular represen-

tations of G on Lz(G) ,  i.e. the unitary representations given

by

£x1y)

]

(A (x) ) (y)

Asi (x) f(yx) v

[}

(p(x) ) (y)

for all x,y € G and f € LZ(G) . The corresponding representa-

tions of the algebra L'(G) (as in [4, 13.3]) are given by

1

A(h) £ hxf v

-kv
O(h)f feA h 7

I

for all h e L'(G ana fe 1% .

We denote by M the von Neumann algebra of operaters on LZ(G)
generated by A(G) {or A K<) , or A(L1(G))) . In other
‘words, M is the left von Neumann algebra of X(G) , where
K (G) is considered as a left Hilbert algebra [3, Definition 2.1]
with convolution, involution * , and the ordinary inner product

2
in LT(C) . The commutant M' of M is the von Neumann algebra

generated by p(G), and M' = JMJ .
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A function £ € L2(G) is called left (resp. right) bounded

if left (resp. right) convolution with £ on K (G) extends to

i.e. if there exists a bounded

a bounded operator on LZ(G) ’
operator A(E) ({(resp. A'{f)) such that Vk € K@): 2(&)k = E=k
{resp. A'{§)k = k#%) . The set of left (resp. right) bounded
Lz(G)—functions is denoted Cli (resp. Clr) . Obviously,
K@ < O, , X)) ¢ ®,, and for &€ K (G) we have A'(E) =

D(A_% E) . Note that ¢§E € L2(G) is left bounded if and only if

the operator n+# A'(n)&: (ir - LZ(G) extends to a bOuuded one

rator on LZ(G) ; if this is the case, we have A(g)n = At g
for all n € (lr . {Our definition of left-boundedness therefore
agrees with (1, Définition 2.1)). 1f g€ (I and Tewm,
then T: € (R, and A(TE) = TA(E)

We denote by @ the canonical weight on M [1, D&finition
2.12]. Then the weight by on M' given by wo(y) = wO(JyJ)
for all y € (M')+ is called the canonical weight on M' . The

corresponding modular automorphism groups are given by

@ .
oy O(x) = AitxA it , X €M,
v -
Gt 0(y) - A 1ty01t Ly €M,
for all t € K. Here, A denctes the multiplication operator

2 . C s -
on L7(G) by the function 4 (note that we shall not distinguish
in our notation between the function A and the corresponding
multiplication coperator}. With this definition, 4 is in fact the

modular operator of K (G) (as defined in [3, Lemma 2.2]).



It follows from the defining property of @, [1, Théoreme

2.11] that for all y € M' we have

Hnsz if y = A'(n) for some n € Q_ ,
* = r
o otherwise
We identify the Hilbert space completion H_ of n¢ =
N YG 0

{y € M' 1 yy(y*y) <=} with L2(G) via ne A'(n) .

Now recall that by definition [2, Definition 1], D(LZ(G),wO}

is the set of £ € LZ(G) such that y » yg: nw - LZ(G) extends
to a bounded operator Rwo(ﬂ): Hwo - LZ(G) ’ i?e;, in view of the
identification of HWO with LZ(G),, such that n & A'(n)E:
(nr - LZ(G) extends to a bounded operator on LZ(G) . Thus
Dsz(G),wo) = Ol, , and for all ¢ € D(L®(G),y,) we have
RO(E) = A(E)

If ¢ is a normal semi-finite weight on M , then by defi-

nition [2], é%L is the unique positive self-adjoint operator
0

T satisfying

iTie? if c e p(ThH
Vi € Cn£= PAEIN(E) ) = {
w otherwise
and
¥ = 7Y )
Ol{rm('r )
In particular, we have
dy
dao = A
Yo

(cf. [2, Lemma 10 (b)] together with the proof of [2, Lemma 10 (a)]).



. . AP dy
1f ¢ 1is a functional, then by the definition of aﬁi we
: 0

have Cni c D((é%%\%) and (é?;)’ _ {(é%%}%](ni} .

Finally, we note that the predual space M, of the von Neu-

mann algebra M may be viewed as a space of functions on the

group in the following manner: for each ¢ € M, , define

u: G =» ¢ by
u(x) = @A (x)) , x € G .

Then u is a continuous function on the group determining ¢
completely. The linear space of such functions, normed by

Hull = llell, 1is exactly the Fourier algebra A(G) of G intro-
duced by P. Evmard [6] (this follows from [6, Théoreme (3.10)]).

The identification of A(G) with M, is such that

‘

<@, A(f)> = Jeix)f(x)dx

e

for all ¢ € M, ~ A{G) and all £ € L1(G)
Recall that by [4, 13.4.4] a continuous function ¢ on G

is positive definite if and only if
vi € KiG): Jw(x)(ﬁ*ﬁ‘) (x)dx > 0
i.e., if and only if
vi € KiG): ”w(yx")g(y)?&)dy ax > 0

If ¢ € AG) , then ¢ is positive definite if and only if the
corresponding functional ¢ € M, 1s peositive. We denote by

A(G)* the set of positive definite ¢ € AG)



2. Homogeneous operators on LZ(G) and the spaces L (,.) .
I

Definition. Let a € R. An operator T on L°(G) is called

o-homogeneous if

VX € G: p(x)T < &” 2 (x)Tp(x) .

Rermarks. (1) The O-homogenecus operators are precisely the ope-

rators affiliated with M .

(2) If T is o-homogeneous, then actually ¢(x)T =
2"%(x)Tp(x) for all x € G (to see this, replace x by x7
in the definition).

(3) If T and S are both a-homogeneous, then T+S is
a-homogeneous. If T 1is a-homogeneous and S is B-homogeneous,

then TS is (a+B)-homegeneous. If T 1is densely defined and

a-homogeneous, then T* is also a-homogeneocus. If T 1is positive

self-adjoint and a-homogeneous anid B € R*, then TB is (ap)-
homogeneous (use p(x)TPo(x™ 1) = (2 (x)1T5 ix" B

(4) If T 1is a-homogeneous for some o € R, then the projec-
tion onto N(T)L belongs to M (since NiT! is invariant under

all p(x) , x € G) .

(3) If a preclosed operator T 1is g-homogeneous, then its

cleosure [T] is also a-homogeneous.

-a

(6) For each a € IR, A is a-homovenecus.
Lemma 2.1. Let T be a closed densely defined cperator on L7G)
with polar decempoesition T = UJT) . Lot a € W®W. Then T is

a-homogenecus 1Y and only if U € M and T 1s a-homegeneous.



[
b

Progf. If T is a-homogeneous, then, by Remark (3), IT| = (T*T)§
is also a-homogeneous. Then for all x € G and ¢ € D(IT!) we

Y x)To(x)E = A" (X)UITIp(X)E =

have ¢(X)UITIE = ¢(x)TE
Uo(x)ITIg , i.e. p(x)U < Up(x) on R(ITI) . Since the projec-
tion onto R({T!) = NHTHl belongs to M , we conclude that U
commutes with all ¢c(x) ; thus U € M .

The "if"-part follows directly from Remarks (3) and (1). |

Lemma 2.2. Let T be a closed densely defined operator on LZ(G) B

and let o € ¢ . Suppose that

VX € G: p(x)T © A" % (x)Tp(x) .

Then
vE € KG): A (f)T « Ta' (a%F) .
Proof. Let f € K(G) and £ € D(T) . Then for all n € D(T*)
we have
(o(£)TEln) = Jf TEin)dx

= Jf(x)a (%) (To(x)£1n)dx

= JA (x) £ (x) (p{x)E[T*n)dx

= (o(A‘Of)ilT*n)
This shows that p(a Cf)S € D(T**) = D(T) and Tp(a %f)¢ =
2(f)TE for all £ € D(T) , i.e.

2(6)T < To a7 %)
Hence for all f € Ki{G) we have

-y Y -a -4V
AT = o TOT e ToaT% T = v a%) L 8



Lemma 2.3. Let T be a closed densely defined operator on

L°(G) , a~homogeneous for some a € R. Let § € (ﬂi . Then

for all t € R we have ITI*%E € 0, and

ot < e

Proof. By Lemma 2.1, we have p(x)lTlp(x-1) = A~a(x)|T! for all

x € G , whence p(x)tTlltp(x_1) = A-lat(x}ITlit for all x € G

and all t € IR. Then, applying the preceding lemma to ITllt ,

we obtain for all n € KX(G) that

T ean = Attt = R (e = 1mi it @)t

and thus
DT ety < Tt e 185, < v ity

We conclude that ITIlti is left bounded and that

DoaTitton < . 8

it

Remark. In particular, A" € Cli with BX(A772)0 < Ba())

for all ¢ € Ol£ and t € R.

Our next lemma shows that a-homogeneity as defined here is

equivalent to homogeneity of degree o with respect to Vo as
defined in [2, Definition 17].
Lemna Z.3. Let o € ", ans les T ke a olozed densely defined

]

operator on L% (G) with polar decomposition T = UIT| . Then the
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following conditions are equivalent:

(i} T is a-homogeneous,
L4
it
(i) U €M and ¥y € M ve € R: o (y) (Tt = mty

Proof. By Lemma 2.1, we may assume that T is positive self-adjoi

Denote by P the projection onto N('I‘)‘L . If either (i) or
2
(ii) holds, then P is in ‘M , and thus the subspace P L"{(G)
is invariant under all operators considered. Therefore, we may

suppose that P € M , and the lemma is proved when we have shown

the equivalence of

(1) VX € G: p(X)Tp(x 1P = 24 %(x)T P
and

v .
(2) vVt € R vy € M': °at0(Y’P = pity ity

Now for all x € G we have

v s 4 .
oge (o (X)) = a7H a0 = 41 )

since
i iat

(a7 () a¥%%s) (2)

= a7 22  (x0 att (2x) £ (2zx0)

270 (p (x) £) (2)

for all £ ¢ Lz(G) and all x,z € G . Then, since M' is gene-

rated by the p(x) , the condition (2} is eqguivalent to

it

it p(x)T* P

VX EG vt € R: af®tn0p =T



or (changing t into -t)
Vi € G vt € B: ol)T )P = a7 1t
which.in turn is equivalent to (1). @&

Now, by [2, Theorem 13] a positive self-adjoint operatof on
LZ(G) is (-1)~homogeneous if and only if it has the form é%&
0

for a (necessarily unique) normal semi-finite weight ¢ on M

We define the "integral with respect to 0 of a positive

self-adjoint (-~1)-homogeneous operator T as

JT dyy = 0(1) € [0,=] ,

where T = do . If JT dwo <o, 1i.e. 1if ¢ 1is a functional,

dy
we shall say ghat T 1is integrable. (These definitions agree
with those given in [2, remarks following Corollary 18].)
For each p¢€ [1,=] , we denote by Lp(;o) the set of closed
cdensely defined (—%)—hoﬁogeneous operators T on LZ(G) satisfy-
ing

D
}"Tl‘dd}o < ™

(Note that |TIP is (-1)-homogeneous, so that JITIP dpo is
defined.) We put Lw(wo) =M.

The spaces Lp(mo) introduced here are special cases of the
spatial Lp—spaces of M. Hilsum [12]. We recall their main proper-
ties (note, however, that our notation differs from that of [12]

in that we maintain throughout the distincticon between operators

and their closures) s



if 1,8 € LP(WO) , then T+S 1is densely defined and pre-
closed, and the closure [T+S] belongs to Lp(wo) . With the
obvious scalar multiplication and the sum (T,S) & [T+S] ,
Lp(wo) is a linear space, and even a Banach space with the norm

it-ll, defined by nTuD'= (fiTIP dx,O)Vp if p € [1,=[ and

HTI% = ||TI (operator norm) if p = = . The operation T ~ T*

is an isometry of Lp(wo) onto Lp(wo) . Ve denote Lp(\LO)+

the set of positive self-adjoint operators belonging to Lp(wo) .
By linearity, T+ [T dyg defined on L1(w0)+ extends to a

linear form on the whole of ano) satisfying fT*dwO = JT dwo

1
(wo)

L O 1

P4 Py P

and [T dwol < IITI1 for all T € L

Let p,,p,,p € [1,»] such that

P P
T €L 1(xpo) and S € L z(wo) , then the operator TS is densely
defined and preclosed, its closure [TS] belongs to Lp(wo) .

and

1

In particular, if T € L°(y)) and S € Lq(wo) where o+ =1,

1
q
then [75] € L'(yy) and N[TSTh, < ITH, USI,  (HSlder's inequalit
furthermore, j{TS]dwO = [[sTldy, -

If p€ [1,o] and + — =1, then we identify Lq(wo) wit

the dual space of Lp(wo) by means of the form (T,S) w» j[TS]du-O

T € Lp(wﬂ) , S € Lq(¢0) . In particular, L1(w0) is the pre-
i
dual of M = Lm(wo) . The space L‘(&O) is a Hilbert space with
the inner product (TIS) = [[s*T]ay
2 0
L%y

Remark. Suvpose that G is unimodular. Then the a-~homogeneous

operators for any a are simply the operators affiliated with M
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and the canonical weight @y on M is a trace. We claim that
[T d¢0 = wO(T) for all positive self-adjoint operators T
affiliated with M , where we have written wO(T) for the
value of ¢ = wo(T-) at 1 (with wO(T-) defined as in [17,

de

Section 4]). To see this, recall that aﬁg = A =1, so that
0

using [2, Theorem 9, (2)], we have

. it ,d@.\-it it
it _ . - [(de . _0 _ d
£ oo, - (82" (527 - (2)

Yo ¥0
-4 , = -
for all t € R. Thus T = I and [T dpy = 0(1) = @ (T) .
(When proving T = é%& , we implicitly assumed that T is
0

injective so that ¢ = wO(T~) is faithful. In the general case,
denote by Q € M the projection onto N(T) , note that T+Q
is positive self-adjoint, affiliated with M , and injective,
and verify that

dog ((T+Q)+)  deg (T+)  dwy (Q-)

T+Q = = - + .
dwo d¢0 dwo
dp, (T-) dwg (Q+)
Since the supports of -~—s—— and ———— are 1-Q and Q ,
g v,
dw, (T-)
respectively, we conclude that T = T as desired.) It
0

follows that in this case the spaces Lp(wo) reduce to the ordi-

nary Lp(M,wO) (discussed in the introduction).

Returning to the general case, we now proceed to a more
detailed scudy of the spaces Lp(mo) . For this, we shall need
the following slightly generalized version of [12, 11, Proposition

2]):



. 2
T be a positive self-adjoint operator on L (G)

Lemma 2.5. Let
o-homogeneous for some o € R. Let < € Cl; Then there

exist gn € Ol“ n n D(TB) , n € Iv, such that
. x BE]R

N

+

(1) vn € N: IAE DN < IAENd

(ii) €, * 6 as n - =,
(1ii) TBgn - ng as n - » whenever § and § € R+
B

satisfy £ € D(T")

Proof. For each n € N, define fn: [0,0[ »C by

@ 2 .
%;- J SERIT/VR ¢ if x>0
fn(x) = { -~ .
1 if x. =0
1 (" -t?

Since for all x € [0,»[ we have I[f (x)I < e I_me dat = 1 ,
the operators fn(T) are bounded. For each n € N, put
Enh = £,(T)E

To prove that the En belong to Clz and satisfy (i),
denote by P the projection onto N(T)l and observe that for

all n € 7ﬁ(G) we have

£, (T)PExn = A'(n)fn(T)P;

2 .

1 Jw - lt/l\/ﬁ -
= e AT()T dt

o .

oo 2 . .
- /

- §ﬁ I e t Tlt’vﬁk'(Alat/vﬁn)g gt

1 [© -t? it/VA,.  iot/VA
=V J e T " (Z24 n)dt

oo

where we have used Lermma 2.2. It follows that

s
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.2 .
e (T)PExnl, < o= Je e 1 Vi ae < e

On the other hand,

I (1=p)exnl, < B2 ((1-P)E)I Inlt, < X0 ftnll,

since P € M .
In all, £ (T)E = f (T)PE + (1-P){ belongs to Ol, and
HACE (T)EMI < HA(E) .

Now, to see that En € D(TB) for all B € R+, note that

L 2
£ (x) = j% J_me—t eit/Vn)log x 4,

1 2
*Zg(log x)

i 2
= @ ! e * 2V tog x) dt
VTT -—00

1 2
—ZE(log X)
e
8 (B log x-é%(log x)z)

for all x>0. Then x & X fn(x) =e is
bounded, so that TBfn(T) is a bounded operator, and thus

£ (TE € D(TP)

n

Since fn is bounded and fn(x) -1 as n - o for all

x € [0,o] , we have

fn(T)C - 'as n - o

for all ¢ . From this, we immediately get (ii) and (iii).
Indeed, £ = £, (1€ & , and if £ € D(T?) , then
B, _ .8 . _ B, B
Thg = TPE (M = £ mrPs » 1P L @
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Proposition 2.1. Let T be a closed densely defined (-1)-homogene-

ous operator on LZ(G) . Then the following conditions are equiva-
lent:
(i) T € L1(wo) ’
(ii) there exists a constant C > 0 such that
VE € Ozl N D(T) vn € Oz 1(TEin) i< CIAGEI Xt
(iii) there exists a constant C > 0 such that -
ve e O, n (s mirie? < cn?
(iv) there exists an approximate identity (gi)iEI in
K(G), such that all £, € D(ITI%) and

Lim infl ITI%E ) < o .

If T € L1(¢O) , then 012 < D(iTl%) , and for any approximate
identity (gi)i€I in '](_(G)+ we have
o k 2
HTII1 = liml IT| gil

Furthermore, IITII1 is the smallest C satisfying (ii) and the

smallest C satisfying (iii).

Proof. Let T = UIT| be the polar decomposition of T

First, suppose that T € L1(;O) . Then |T| € L1(lp0)+ ., and
therefore |IT| = é{ for some vositive functional ¢ on M .
¢ !
0
Recall that Ok = D(ITI%) . Thus for ail ¢ € <1C N D(T) and

n € OLQ we have

LTt eer 1 iusn) |

HTsim) | o=
= lo(A(E)A(U*n)) |
< el A I Ul
< BTI AN B,

i.e., (ii) holds.
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Next, suppose that T satisfies (ii). Then for all

g€ Ol nodTh we have

0T Rer? = 1 (TEIUE) |
< CIAE) A UE)

< aan?

Now if & € OLQ n D(ITl%) , there exist (by Lemma 2.5)
5 5 '
£, € Olk N D(ITI) such that ITI*¢ - ITI%¢ and UA(E ) <

NA(E)N . Since
bt n? < a1’ < cnen?

we conclude that HITI%EII2 < CHA(S)HZ . Thus (iii) is proved.
Now suppose that T satisfies (iii). First we show that this

implies Oll c D(ITI*) . Let ¢ € Ol£ . Then by Lemma Q.S there

exist g € Cll n D(ITI%) such that €, » & and HA(En)N <

IA(E)N . Then for all n € D(lTl%) we have

LaTi®e i) 1 < i ITERE ) il
AN I

iA

cHAEN Unl

1A

and

(T in) = (5, 1 1T1") ~ (€1 1T ")

We conclude that

vn € DOUTIH: 151 1T )1 < CHA N Hinl

Thus 3§ Dll'.!‘),i) ae wanted.
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Now, still assuming (iii), let us prove (iv). Let (gi)i61
be any approximate identity in 7((G)+ . Then automatically all

6, € KG) = O, e DUTIH , and Walg)0 < W5yl = 1 so that

mriiza? cane o’ cc

5 x5

whence lim infllITI*{.# < C* < e .
Finally, suppose that T satisfies (iv) for some (gi)ieI
Note that since j(gi*gi*)(x)dx =1, (Ei*gi*)iel is again an
approximate identity in :K(G)+ . Therefére, A(Ei)k(gi)* =
A(Ei*gi*) converges strongly, and hence weakly, to 1 in M .
Since all ux(gi)x(gi)*u < 1 ., this convergence is also g-weak,

and by the g-weak lower semicontinuity of ¢ , this implies

©(1) < lim inf w(A(Ci)X(Ei)*)

= Llim inflliTI ¢ 07
o 2
< C lim inflA(g;)l
_<_C<oo.
Since (1) = [ITIdy, < = , we have T € L'(yy) , i.e. (i) holds

Note that once ¢(1) < « 1is established, ¢ 1is known to be

o-weakly lower continuous and thus
©(1) = lim @A (£ A0 *) = liml (TI%g 512
i RS > 1
- - i o ide ity £ i
for any approximate identity ‘Li)i€l , i.e.
. voo2
HThHy = liml I TH LY

In the course of the proof we observed that HTI1 may be used as



the constant C in (ii), that every constant C satisfying (ii)
also satisfies (iii), and that any C satisfying (iii) is bigger
than limIITl%Eill2 , 1.e. bigger than HTH1 . This proves the

remarks that end Proposition 2.1. @
As an immediate corollary, we have:

Proposition 2.2. Let T be a closed densely defined (-%)-homoge-

neous operator on LZ(G) . Then the following conditions are

equivalent:

1 1€ iy
(ii) there exists a constant C > 0 such that

vg € O, n p(r): NTEN < COACENN

(iii) there exists an approximate identity (gi ie1 in X (@G)

such that all £, € D(T) and

lim infuTgiH < w .

2
If T € L°(yg) ., then Ol, € D(T) , and for any approximate

£
identity (Ei)iEI in ](,(G)+ we have

IITH2 = limHTgiH;

furthermore, HTBz is the smallest constant C satisfying (ii).

We now come to the case of a general € [1,o[ . Suppose that

T € Py, and s € 190, , where + < =1 . Then by [12, II,

3
Proposition 5,1)], we have

(T218n) = <[S¥T), M(E))(n)*s



for all £ € O, np(T) and n € &, nD(s) . (Here, <-,->
denotes the form giving the duality of L1(QO) and M .) CUsing

Holder's inequality, we get
1(TEISn) | < II[S*T]II1 X (E)A(n)*ll < lITIp HSHq AV WAl
fof all such & and n . This kind of inequality in fact charac-

terizes Lp(wo)—operators among all (—%)—homogeneous operators:

1

Proposition 2.3. Let p € [1,~] and define g by o + =1

Q-

Let T be a closed densely defined (—%)—homogeneous operator on

LZ(G) . Then the following conditions are equivalent:

(1) T e Py
(ii) there exists a constant C > 0 such that
vs € 1(yy) vE € O, np(r) vne Ol nD(S):

I(TEISn) | < CHSNq Ixee)t-uxme .
If T € Lp(wo) , then HTIP is the smallest C satisfying (ii).

Proof. 1In view of the remarks preceding this proposition, we just
have to show that if T satisfies (ii) for some constant C ,

then T € LP(y;) and It < C

Therefore suppose that T with polar decomposition T = U|T|

satisfies (ii). Then also

FCETHEISn) | = [ (TE1U*Sn) |
< CI![U*S]IIq A0 Hx )l
< CMSIIq BACEN WA (n) i
for all s., £, and n chosen as in (ii). Thus we may assume

that T is positive self-adjoint.
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Let S € Lq(wo) and n € CflR N D(TIS) . We claim that for

all & € OLZ n D(T%) we have
(1) L(TieiTsn) | < cIslg 1A I

If &£ € Oll n b(T) , this follows directly from the hypothesis.
In case of a general § € Oh'n D(T%) , choose (by Lemma 2.5)
g € Ol nD(M such that T - T9¢ and IA(g)0 < IA(E)N
Then (1) follows by passing to the limit. '

Now since T is (—%)—homogeneous, there exist Ti € Lp(w0)+
satisfying Tip < TP and prdwo = sup fTipdwO . (To see this,

recall that Tp = é%L for some normal semi-finite weight ¢ on
0

de\1/P

M ; put Ti = (aw—> where the ®; are positive normal func-
0

do;  ge

tionals such that mi,f ¢ ; then TN < v by [2, Proposition 8],
0 0

and JTpdwO = ©(1) = sup ¢, (1) = sup ITipdwo L)
Since the function t » t1/p is operator monotone on [0,«[

(by [16, Proposition 1.3.8]), we have T, < T , i.e. D(Ti%) )

E]

p(T*) and

VE € D(TH: 0T el < ITYEN

for each i € I (cf. also the remark following this proof).

For each i , let Bi be the bounded operator characterized by

B.T% = T.%. for all £ € D(T?) and B,f =0 forall &€ R(TH L .
Then IB;ll < 1 . Since BiT$ c 'I’i!5 ,» and since Tg and TiJﬁ
are (—%)—homogeneous, Bi is O-homogeneous, i.e. Bi € M. Put

A; = B;% . Then A, € M . WA <1, and



Using this, the fact that

p-1 _ . P/9 d,., : p=1, p-1
Ti = Ti €L (vo) with HTi "q nTi"p '

and (1), we find that for all ¢ e O n n D(Tis) , we have

BER,

p/2,,2 L] 5 p-1
;P %en (r,ei, T P

i}

% 5 p-1
(T*A g1 T P

IA

p-1
CI[AiTi ]Hq HA(AiC)H Aeet

1A

p-1 2
ClAiH Ty "q HAiH IACE)N

1]

p-1 2
CHTin X et
By means of Lemma 2.5, we conclude that the estimate
p/2,2 p-1 2
IlTi - < CIITiHp A el
holds for all ¢ € Cli n D(Tip/z) . Thus by Proposition 2.1,

P _ p p-1
HTin T Ty < CITll ‘

i.e.
HTin < C
"Since this holds for all i , we have
Py = [0 Py P ..
JT dwo sup qu d“o < CY < ;
thus T € LP(y;) and e, <c . @

Remark. We have used the fact that if a continuous function f
on [0,=[ is operator monotone in the sense that R < S5 implies

Y for all positive bounded operators R and S , then

r
B

IA
n
i
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the same is true for all - possibly unbounded - positive self-ad-

joint R and S . To see this, suppose that R < S . Then for
all ¢ € R, , we have R(1+eR) ' < S(1+¢5)"" by [17, Section 41,
and hence f(R(1+cR)—1) < f(S(1+£S)_1) . Now if & € D(f(S)%) .

we have by spectral theory

(F(ROI+eR)TEIE) < (£(S(1+e5)7 )z 1g)
- Hf(S‘)%EH2 as ¢ - 0
Again by spectral theory, we conclude that ¢ € D(f(R)%) and that
NE(R) 212 = Lim(E(RUI+eR) ™ EIE) < NE(S) e0?

e-0

In all, we have proved that f(R) < £(5) .

Recall from [12, §1, Théoréme 4, 1)1, that if T, and T,

belong to some Lp(wo) ;1 <p <w, and if T2 = T1 , then
T1 = T2 . 'Actually, a stronger result holds:
Lemma 2.6. Let p € [1,®] . Let T, € Lp(vo) and let T, be a

closed densely defined (~%%homogeneous operator on LZ(G) .

Suppose that

Then T1 = T2

Proof. 1) First suppose that T, ¢ T1 . If p ==, the result
is well-known (a closed densely defined operator having a bounded

and everywhere defined extension is equal to that extension). If



p€ [T, , we conclude by Proposition 2:3 that also T2 € Lp(u
and thus by [12, §1, Théoréme 4, f)], Ty =T, - (Alternatively,
this can be proved directly, i.e. without using Proposition 2.3,

py the methods of the proof of [12, §1, Théoreme 4, 1)1.)

aﬁply the first part of the proof to

r,*cT.*. B

2 1

A specific form of this lemma will be crucial to much of the

following:

Proposition 2.4. Let p € [1,0] .

1) Let T and S be closed densely defined (-%)~homogeneou
operators on LZ(G) with X(G) < D(T) and K(G) < b(s

Suppose that
vE € K(G): T = Sg

Then if one of the operators, say T , belongs to

S .

]

Lp(wo) , we may conclude that T

2) If T ¢ Lp(%) and X (G) € D(T) , then T = [TlK(G)]

Proof (of both parts). Suppose that T € Lp(wo) . Then TIIK(G)
being a restriction of a (—%)—homogeneous operator to a right inwv
riant subspace, is itself (—%)—homogeneous. Therefore also

. 1 .
[Tll((G)} is ( p) homogeneous. Since [Tl]C(G)] c T, we conclud
by the above lemma that T = [Tl k(G)] . This proves 2). - As
for 1), note that S 2 S‘J((G) = Tl}((G) , and thus

S > [Tl:K(G)] = T . Again we conclude S =T . §
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Finally, for later reference, we summarize in a lemma some

remarks of Hilsum [12]:

Lemma 2.7. Let g € [2,=[ . Let T € L9(y)) . Then O c D(T) ,

and for all ¢ € Cli we have
el < BT i) n?/9 ygp2/d

Proof. Since lqu/2 € Lq(wo) , we have C)l,£ c D(Ith/z) . Now

let £ € CRQ . Then by spectral theory £ € D(ITI|) and
nirien? < (i3 2g1%)2/9 L g2y 12/4

a9 gy 20-2/9)

fA

i, e n?/9 e '"¥/92 g

3. The Plancherel transformation.

Given any functions f € LZ(G) and £ € LZ(G) , the convolution

product f*Agg exists and belongs to L”(G) . Thus the following

definition makes sense:

Definition. Let f € LZ(G) . The Plancherel transform 93<f) of

f is the operator on LZ(G) given by

Peere = £ea® , £ e p(Pif))

where

]

DOR(E)) = (& € L5(6) 1 £22% € L7(6))
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Theorem 3.1. (Plancherel).

1) Let f € L2(G) . Then P(f) belongs to Lz(wo) , and
Py, = i,

2)  The Plancherel transformation P L2(G) - Lz(wo) is a

unitary transformation of L2(G) onto Lz(wo)

Proof. 1) First note that gD(f) is (-%)-homogeneous: for all

x,y € G and ¢ € D(P(£)) , we have

2% (x) (£x4%E) (yx)

p(x) (PEIE) (y)

1yx)g(z—1yx)dz

2% (x) Jf(z)A*(z‘

L}

A”(x) ff(z)A%(z_1y) (p(x)E) (z_1y)d2

£

2% (x) (Exa0 (0 E) (v)

ice. o) P(£) < a%(x) Pif)p(x)

We next show that go(f) is closed. Suppose that gn - £ in
L2(6) and Pi£rg, »n in L?(G) , where all the £ € D(P(£))
Then f*A%gn - f*A%£ uniformly (by a simple case of Lemma 1.1).

] %5

Since f=xA gn - 5 in LZ(G) , we conclude that n = fxaA

Thus € € D(P(f)) and P(£f)g = n , so that P(f) is closed.
Obviously, X (G) < D( g)(f)) . In all, we have shown that
@Nf) is closed, densely defined, and (-%)-homogeneous, so that we

are now in a position to apply Proposition 2.2.
be an approximate identity in J(_(G)+ . Then

Let (g,)

i'i€erx

. 9
Q\f)gi = £20%°C, =~ £ in L°(G)
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Thus | @(f)&il - Bfl, . By Proposition 2.2 we conclude that

P() € L’ (yy) and that

I @(f)az = £,

2) The map P is linear: if f,, f, € L°(G) , then
[_’P(f1)+ﬂ)(f2)] and p(f1+f2) obviously agree on X(G) , and

therefore by Proposition 2.4, we have
=1 P 0
Pigg+iy) = [ PE+Pe,y]

Now, to prove that P is surjective, let T € Lz(wo) . We
shall show that there exists a function f ¢ LZ(G) such that
T = P(f) . Let (6;)j¢; be an approximate identity in J((G)+
Then for all. n,g € X(G) we have

% 5

z)

(n*A”*TITE;) = (nl(TE;) %

(nIT(Ei*C))

i

(T'nlii*q)
= (T*nlz) = (nlTg)

(where we have used the (-%)-homogeneity of T and the fact that
K(G) < D(T*) since T* € Lz(wc)) . Thus we can define a linear

functional F on the dense subspace K (G)= K(G) of LZ(G) by

F(E) = lim(gITE,)
1

Since

|(§|Tci)l = ucﬂz nTcilz = u;uz lle na(;i)u = HTMZ u;nz

this functional is bounded and therefore is given by some f € LZ(G):
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vi € K@G)*K(G): F(§) = (&1f)

In particular, we have

(1TC) = Finea” %) = (nxa  *TI£)

for all n,r € K (G) . Since

(nea ¥TIE) = (mifaain) = (I P(Ho)

this implies
vi € XK(©): Tg = P(HHc ,

and we conclude by Proposition 2.4 that T = Py . @

Proposition 3.1. 1) For all T € M and all f € LZ(G) , We have

P (rf) = [T P(£)]
2) For all f € L2(G) , we have
Pae) = Py

Proof. 1) Let f € L?(G) and T € M . Then [T P(f)] and

P (Tf) both belong to Lz(wo) , and for all £ € K(G) we have
Pirere = (Te)sac = T(£28%) = [T P(D)IE

since T commutes with right convolution. By Proposition 2.4 we

conclude that P (Tf) = [TP(f))

2) Let f € L2(G) . Then for all £,n € X(G) we have
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(Jf*A%EIrx)

i

(Pwfrein)

(JfIn*a” ¥%)

]

il

<J(n*a‘5i)rf)

g

ExA

fl

(E1f+a™n) = (£1 P(f)n) ,

so that P (If) | g o) € (PO |4 ) = [?(f)lj{(G)]* = P(f)*
(since P (f) = [?(f)‘ J((G)]) . We conclude by Proposition 2.4

that P (f) = P#E)* . @

Proposition 3.2. Let f € LZ(G) . Then P (f) > 0 if and only if
Jf(x)(E*JE)(x)dx >0
for all &£ € X(G)

Proof. For all & € K (G) we have

i

Jf(x)(E*JE)(x)dx = (flf*A-%E) = (f+LIT) (PEYEIT)

since P (f) = [?(f)lx(m] . we have P (f) > 0 if and only if
(P(finin) > 0 for all. n € K(G) , and the result follows. B
By [10, Theorem 1.21, (3)] (or, to be precise, its spatial ana-
logue obtained by the methods of [12, §1] conneéting abstract [10])
and spatial [12] P spaces), L?'(u'o)+ is a selfdual cone in
Lz(v.!vo) . By Proposition 3.2 and the unitarity of %  we conclude

thac

P, = {f € L% (G) | vg € KiG): J(f(x)(t',*Jt',)(x) > 0}



is a selfdual cone in LZ(G) . Denote by P the ordinary self-

dual cone in L2(G) associated with the achieved left Hilbert

algebra 012 n 012* , i.e. let P be the closure in LZ(G) of

the set  {A(E)(JE) 1 E € OLln mz*} (see [8, Section 1]). Since

P is selfdual, we have
p={f€L?@) I VE € a, n R *: (£1X(£) (JE)) > O} .

Thus P c P0 . Since P and Po are both selfdual, this implie

P

that P We have proved

0 -
Corollary. A function £ € LZ(G) belongs to the positive self-

dual cone of L2(G) if and only if

ve € K(G): Jf(x)(E*JE) (x)dx > 0 .

Remark. This result is similar to the characterization of the
cone Pb given in [18, p. 392] and proved in general in [9,
Corollary 8]. The methods of [9] would also apply for our result.

Our proof is based on the fact that . P(f) = [ g)(f” k(G)] .

Note. We have proved that P LZ(G) - LZ(WO) carries the left
regular representation on LZ(G) into left multiplication on
Lz(wo) , takes J into * , and maps the positive selfdual co
of LZ(G) onto Lz(wo)+ . That a unitary transformation

LZ(G) - LZ(WO) having these properties exists (and is unique) a
follows from [8, Theorem 2.3], since both representations of M
are standard (by the spatial analogue of [10, Theorem 1.21, (3))

In our approach, we have given a simple and direct definition of
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We can give an explicit description of the inverse of P :

Proposition 3.3. Let T € Lz(w0

) ,» and let (f&.) be an appro-

*i7i€l
ximate identity in 7<(G)+ .  Then
P 1) = lim g, .
i€l
Proof. Let f = 5’_1(T) .  Then
- - 5
TE; = Pf)g, = £aa'g; o £

in 1% . B

Remark. From Proposition 2.2 we

ximate identity (Ei)iEI , the

this limit is independent of the

already knew that for any appro-

HTgiH tend to a limit and that

choice of Now, using

(€)1

that thwo) = JD(LZ(G)) , Wwe have proved that the same holds for

the Tgi themselves.

As a corollary, we have the

following characterization of the

inner product in Lz(wo) , generalizing the formula for Tl ,

given in Proposition 2.2:

Corollary. Let T,S € Lz(wo) .

Then

(T’S)Lz(wo) = ié?(TEilsii)
for any approximate identity (g;);.; in X,
Proof. Since ? is unitary, we have
(Tis) = TP s L = Limmgisg)) ]
LT (G) i€1 L7(G)

L"(¢03



- 3y -

4. The LP Fourier transformations.

Let p € [1,2] and define q € [2,] by % + % =1 .
Definition. Let £ € LP(G) . The LP Fourier transform of f

is the operator grp(f) on ‘LZ(G) given by
Fooe =9, g en(F e,

where DIF, (£) = (g € 12@6) | £+0V% € L2 .

Note that by Lemma 1.1 the convolution product f*A1/qg exist
and belongs to Lr(G) , where r € [2,»] is given by

% + % - % = 1 , whenever f € LP(G) and £ € L2(G) , SO0 that

the definition of D(:Fp(f)) makes sense.

Remark. For p =1, we write 71 = F ; we have }7(f)5 =
£+ and D(F (f)) = L2(G) , so that F(f) is simply A(f) .

For p = 2 , we have Tz(f) = fp(f) .

Now again let p € [1,2] . Let £ € Lp(G) . Then the opera-
tor 7-p(f) is closed. To see this, suppose that Ei € D(frp(f))
converges in LZ(G) to some { € LZ(G) and Tp(f)&;i converges
in LZ(G) to some n € LZ(G) . Now by Lemma 1.1 we have
?p(f)gi = f*A1/q£i - a9 in LT(G)  (where % + % - % = 1)
Therefore ftA1/q£ =n , Sso that f*A1/q£ € LZ(G) , il.e.
£ € DI ?p(f)) and Tp(f)g = 1 as wanted.

Next we show that ?P(f) is (—%)—homogeneous. For all

£ € DY ?p(f)\ and all x,y € G we have
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2% (x) (£221%) (yx)

]

D(x)('Tp(f)ﬁ)(y)

1

= a%(x) Jf(zm”q(z‘ yx) €z Tyx)az

AT Jf(z)A1/q(2_1Y)A%(X)E(Z-1yx)dz
= 2V x) ff(z)A‘/q<z‘1y)(p(x)e)(z'1Y)dz
= aV9x) (28 % ) €) (v)

= aV9 ) ¢ F 1o (x)E) ()

ptx) F 6 < A1/q(x)'?p(f)p(x)

for all x € G as wanted.

Finally, note that if £ € L?(G) n LS(G) where s € [1,2]
is given by % + % - % =1, then £ € D( ?é(f)) by Lemma 1.1.
In particular, X(G) < D( 7p(f))

In all, we have proved that for all f € LP(G) , ?p(ﬂ
is closed, densely defined, and (-—%)—homogeneous. We shall see,
using the criterion from Proposition 2.3, that actually
?p(f) € Lq((po) . The proof is based on interpolation from the

special cases

I AN RS S T8
and

Pt - Ly

First we restrict our attention te f € X(G)



Lemma 4.1. Let p € [1,2] . Denote by A the closed strip
{o€Cig<Reax<1}. Let f€ K(G and g€ 0, . Then:
(i) for each a € A , the convolution product

sq(£) 1£1P% & a1 7%

1}

it

exists, and ga € LZ(G) ;

(ii) the function

a & a € A
50 1 r

with values in L2(G) is bounded;

(iii) for each 1 € L2(G) , the scalar function

o= (g n) , x €A,
is continuous on A and analytic in the interior of A
- v
Proof. Write g = A 1/pf . Then

va € A: sg(£) 1£1P% = A7%sg(g) 1g1PH)V

Note that g as well as all sg(g)lglpa , @ € A , belong to
K@) .

For each n € X(G) , we define
(1) H (a) = J&(x) (s9(9) 1g1P%a" %) (x)dx , « € A
l.€e.
(2) H (o) = fjg<x)<sg(g)|glp°)(y)A’"“(y“x)n(y°‘x)dy ax

(later we shall recoanize Hn(u) as simply (Lg1m)
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Note that
va € A: leg(g)lglpal*tA1-an!N2
) < HigiP Re Sy patTRe gy
<K <ew
where K is a constant independent of a € A . In particular,

this allows us to apply Fubini's theorem to the double integral
(2) . We find

1 yxinyxa”t (y)dy ax

it

B (@) jjg(x)(sg(g)lgtp“><y“>A

Ha" %m0 (yrax ay

i

[ja(y“x>(sg(g)xglp“)<y'

}}(ag(f)uflp°)(y)A““(y"x)aty"x)n(x)dy ax ;

it also follows that the convolution integral

1

£, (x) = I(sg(f)lflpa)(y)A1—°(y- x)E(y %) dy

exists, so that we can write
Hn(a) = JEU(X)H(X)dx

Now we shall prove that there exists a constant C > 0 inde-

pendent of a such that

(4) ‘ vn € K(G): lJEa(x)n(x)dxl < Cinll,

This will imply that each Eu , @ € A, is in LZ(G) with

g, <€, i.e. (i) and (ii) will be proved.
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Let us prove (4). Without loss of generality, we may assume

that llflp =1 . We want to show then that
(5) vn € K(G): lHn(u)l < (HA(E)H+I£H2)HnH2 .

To do this, we shall apply the Phragmen-Lindeldf principle [24, p

93].
Fix n € :K(G) . By (2), Hn is continuous on A and analy

tic in the interior of A (the integrand in (2) can be majorized
by an integrable function that is independent of «a) . Further-
more, Hn is bounded (use (3) and (1)}. Finally, we shall
estimate Hn on the boundaries of A .

Let t € R. Then & *f¢ e O and mr(a ™o)1 < ur(e)

Now
P (sq(r) 1£PEFLE)) (ymity,
= sg(n) P ImGnE e
so that [, .. € L?(G) with
NEy,iehy < Il Plsgn) 1Py a™itg)
< isg( e P e
= P20,
NG

(where we have used Proposition 2.2, the fact that P is unita

and the hypothesis Ilflp = 1) . Similarly,
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1P(*+it) -it

F (sg(f)If Y(a ~7E)

_ p(1+it)  1-(1+it), _
= sg(f)I£f} *A £ = £1+it ,

so that £, € 12(G) with
p{1+it) -it
HE (i, < 11 F (sg(£) 151 o, naT e,
< sg(e) e P ey,
_ P
= ni£iPug nen,
= nel,

(where we have used that F : r'(g) - Lw(wo) is norm-decreasing).

It follows that
vt € R: lHn(%+it)l = 'J£5+it(X)”(X)dX'

< "€§+it”2 Hnﬂz < hae NnH2
and
(x)n(x)dx|

vt € R: IH (1+it)| = I[E1+it

S e el Unlby < WEN, Hinll, .

Then by the Phragmen-Lindeldf principle, we have established (5)
and thus (i) and (ii).

Finally, (iii) is easy. Indeed, since a w» { is bounded,

a
each a » ({ In) , where n € L2(G) , can be uniformly approxi-
mated by functions a w (Eal;) with ¢ € X(G) , so we just have
to prove (iii) in the case of n € X(G) . This is already done

since \Eu\“\ = H;\G\ B |



- ql -

Lemma 4.2. Let p € [1,2] . Let f € KX (G and s € LP(yg

Then for all £ € 012 and n € ai n D(S) we have

I(TPH)EISnH SIWIPHSHPHA(CHIHX(MH

Note that & € D ’Fp(f)) by Lemma 4.1.

Furthermore

Proof. We may assume that Hf"p = 1 and “S”P =1.
by Lemma 2.5, we need only consider n € Cll no(Isi?)

Let g€ O, and ne (O n D(I1sIP) . For each o in the
closed strip A ={a € ¢ | 5 < Rea <1}, put

E = Sg(f)lflpa*A1—“g as in Lemma 4.1. Note that for all o € A

o
we have (by spectral theory) n € p(UIsIP®) and

2

joled 2 p/2 P 2
Huisi n“2 < hisl n”2 + sl nﬂz P

where S = U|S| 1is the polar decomposition of S . For each

a € A, put

nu = UIS(pan .

Then the function aw Ny with values in LZ(G) is bounded on
A . Furthermore, by [22, 9.15], it is continuous on A and analy
tic in the interior of A .

Now for each a € A , let

H(a) = (;alna)
Then obviously H is bounded on A (by Lemma 4.1 (ii), o » ia
is bounded). Furthermore, " H is continuous on A . To see this,

note that
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va, a5 € A (& Ing) - (anln—ao) = (é;ulna-nao) + (F,G-Caolnao) ;

the continuity follows since a » Ea is bounded and weakly conti-
nuous (Lemma 4.1 (iii)). Finally, we claim that H is analytic in
the interior of A . First note that for each ¢ € LZ(G) the
function a v (Clna) , being equal to o~ (E%TE) , -~ is analytic.
Next, recall that a v Eu is actually analytic as a function with
values is LZ(G) (by Lemma 4.1 (iii) and [19, Theorem 3.31]). Then,
writing
o

- (2 - \ 0
- (a—ao(ga ﬁao"“a} * a-ag !

(£q 1)~ (Eg g ) (£q Ing)~ (6q InG )

G“CIO

we find that H has a derivative at each point %y in the interior

of A .

Now suppose that

(1) vt € R: [H(5+it) | < UX(E)E WX ()l

and

(2) vt € R: JH(1+it) ] < X0 ami .
Then by the Phragmen-Lindeldf principle [24, p. 93] we infer that
va € A: [H(a)l < BACEIN HIA()IE 5
in particular,
I ?p(f)EISn)l < A Ixmi
as desired, since

H(%) = (ftA\ Up'tmsm) = (Tp(f)lsm

.

So we just have to prove (1) and (2).
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Since S € Lp(wo) with ISl = 1 we have

(3) uis1P/? ¢ Lz(wo) with uc15|p/2n2 = 1

and

() uisiP ey with puisiPug =1

Now let t € IR. Then by Lemma 2.3, we have

) 1siTPY e @ with maasi TP <

Using this, Proposition 2.2, the estimate "£%+it”2 < A(e)ll give

in the proof of Lemma 4.1, and (3), we get

luis1P/2 s Pit ),

()] = 1By,

nl,

A

p/2 o ~pit
gy, sl HUISIT 7S]

e 1oisi® 2 s TPy

1A

< Bae) txmi .

i.e., (1) is proved. To prove (2), note that

Sg(f)If|p§1+it)*a1—(1+it)€

Sreit =
= A(sg(f) £/ PUIHEE)) =it o a,
and
e, I < Ih(sg(6) TEr P E 8y a7 ey
< tsg ) £ PR e
<A
since ”Sq(f)lflp(1+it)ﬂ1 = H!f!pu1 = 1 . Using this together

with (5}, Proposition 2.1, and (4), we find



[H(1+it) | = | (§1+itiU|srpx5|'pitnn

A (Eq, ;I HUISIPE, 15151725y

IA

bace)m imxmi

1A

so that (2) is proved. @

In the formulation of the following theorem we include the
case p = 2 . Note however that the proof is based on the results

for this special case (they were used for the preceding lemmas).

+

Q=

Theorem 4.1. (Hausdorff-Young). Let p € 11,2] and %
1) Let f € LP(G) . Then il'p(f) € 19(;,) anc
f .
I Tp( Mg < IEl
2) The mapping

. (P q
?p. LP(6) - 1y

is linear, norm-decreasing, injective, and has dense range.

3) For all h € LT(G) and f € LP(G) , we have

F_(h«t ) F s
p(M*E) = [Am) F o))

4) For all f € LP(G) , we have

i

.
TP(JPf) ?p(f)

Proof. 1) First suppose that f € XI(G) . Then, using Proposition
aremto——

2.3, we conclude from Lemma 4.2 that F (9 ¢ Lq(wo) with



- 45 -

1 ?’p(f)llq < fllp . Thus we have defined a norm-decreasing mappin

. (P L 14
?:pi Ky V(6 ~ L (¥g)

: — o .
Furthermore fplfk(G) is linear: for all f1,f2€ X(G) and

all ¢ € K(G) we have

(f1+f2)*A1/q£ = f1*A1/q£ + fzqug

so that Tp(f1+f2) = [ Tp(f1)+ fp(fZ)]A by Proposition 2.4.
extends by continuity to a norm—decreasing

Now ?pl X (G)

linear mapping

v, P q
3—'p : LPG) - L¥(yy)

We claim that for all £ € LP(G) , we have
f) = F (f
Tp (£) Fp(h)

This will prove 1).

Let f € LP(G) . Then F0) € iy, ana K <
D( Tp' (f)) by Lemma 2.7. On the other hand, by the remarks at tl
beginning of this section, Tp(f) is closed, densely defined,
and (-%)—homogeneous, and K(G) < D( ?'p(f)) . Thus by Lemma 2.:

to conclude that ?'_p' (f) = Tﬁf) we just have to show that
ve € K(G): Tp'(f)s, = 'fp(f)g

Now, take fn ¢ K(G) such that fn - f in LP(G) . Then for

all ¢ € 7\'.((3) , we have
- 1/q
Tp(fn)!; = £ 077

I INYA T Tp(f)g in 1P(e)
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On the other hand, since 70' is continuous,

Foe06 = Forgpe - Frne it

by Lemma 2.7. We conclude that ?E(f)g = ?é%f)g as desired.
Thus 1) is proved.

2) By the proof of 1), we just have to show that ?; is
injective and has ‘dense range. The injectivity is evident: if
F, () =0 for some f € LP(G) , then f+2"9¢ = 0 for all
£ € X(G) , and thus f = 0 . That Tp(Lp(G)) is dense will be
proved later.

3) For all he1'(G) , £ € LP(G) , and £ € X(G) we have

nx(e+a'/9g) = (e a9
(in LP(G)) . Thus by Proposition 2.4,
[X(h) 7;(f)] = ?%(h*f)

4) Let f € K(G) . Then for &,q € K(G) we have

1]

(F 3,080 (pr*A1/q€ln)

[}

(A1/qgsA‘1<pr)“*n)

¥ a9 Py
= (EIf*A1/qn)
= (gl ?;(f)n) ,
so that Tf(pr)ljt(G) (S ?b(f)!J((G))* . By Proposition 2.4,

we c¢opclude that



= f)=
Té«pr) ?;( )

By the continuity of Jp B 7} , and * , this holds for all

£ € LP(q)
Finally, let us show that ?E(LP(G)) is dense in Lq(¢0)

By the duality between Lq(WO) and Lp(wO) , this is eqguivalen
to proving that if T € Lp(WO) satisfies ] J;(f)T]dwO =0 fc
all f e tP(G) , then T =0

Suppose that T € Lp(wo) is such that
Py: | £)T]dy, = 0
VfEL()J(?p()]WO
Let f € Lp(G) . Then for all h € L1(G) we have
J[ T, (hxf)T1dy, = 0

Alternatively stated,since [ ?é(h*f)T] = [[A(h) ?b(f)]T] =

[X(h)[?é(f)T]], we have
vh e L) : [mmt?P(f)Tnd% =0

We conclude that the normal functional on M defined by

[ ?P(f)T] € L1(w0) is 0, so that
F (F)T)] =0
[ p( )T]
Changing f into pr and using 4) this gives
vi € LP@G): | ?é(f)*T] =0

Now let & € D(T) . Then using [12, II, Proposition 5, 1)), we

find that
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vE,n € K : (reifen’/%r)

]

£
(Tgl ;E(L)n)

it

<l Tb(f)*T], t(E)a(-)*> = 0

"Thus TE = 0 . This proves that T = 0 as wanted. §

Proposition 4.1. Let p € [1,2] . Let f € LP(G) . Then

?b(f) > 0 if and only if
ve € Ko : Jf(x)(E*Jpg)(x)dx >0
Proof. We have

(Ffre1e) = J(f*A1/p£)(x)5(§de

Jf(x)(EtA-1/p§)(x)dx

for all & € X (G) .  The result follows by changing £ into E

and recalling that ?%(f) = [ ?;(f)l xi) ) - i

The LP Fourier transformations are well-behaved with respect
to convolution as the following proposition shows. The result

generalizes 3) of the theorem.

i

- 1 1 1 _
Proposition 4.2. Let Pi+Py/P € [1,2] such that E: + 5; 5 1
. R o 1 Py
pefine q, € [2,0] by — + — =1 . Let f, € L (G) and
) 1 P, 1 1
f, €L “(G) . Then

1"(]1

T 6y = UF wp Foan)
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1/q,
Proof. By Lemma 1.1, we have £i*a f2 € LP(G) , and
/4, Py Py
(£4,£5) » ?;(f1tA f,) maps L '(G) x L “(G) continuously
1

into L%(y.) (where + —-=1) . Also [ F (f,) F (£,)] is
0 1 2
Py

P

e [ N

P
continuous as a function of (51,f2) €L 1(G) x L 2(G) with

values in Lq(wo) . ‘Thus we need only prove the statement for

£.£, € Xs) . since
1/9 1/q9 1/9
1 1
(%8 T£,)4a /9 - £, %4 1(f2*A 25
(where 1 + 1 = 1) for all f£.,f,,E € Xc) , the result fol-
P, 9, 1772

lows by Proposition 2.4 as usual. i

We conclude this section by the following characterization of

the image of LP(G) under ?b:

+2=1. Let Te L9

Proposition 4.3. Let p € }1,2] and %

1) If T = ?;(f) for some f € LP(G) . then for any appr¢

ximate identity (gi)iEI in ]((G)+ we have

TE, + £ in P) .

In particular, llmHTgin = lfllp < o |
2) Conversely, suppose that for some approximate identity
. p :
(€);er in X(G), we have TE, € LV(G) for all i €
and

lim ianTiin < o

Then T € 9§(LP(G)) ]
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Proof. The first part is obvious since Tii = va1/q§i - f in
LP(G) and therefore nTgin - uflP . Now suppdse that the
hypothesis of 2) holds for some (gi)iEI . We then proceed as in

the proof of the surjectivity of P (Theorem 3.1). For all

n,¢ € J((G) we have

“V9ge )

(n*a (1 (rg;) s 9)

(nIT(g;*z))

(T‘nlii*;)
- (T*nlzg) = (nlTg)
Thus we can define a linear functional F on K(G)*XK(G) by
F(£) = lim Jg(x)(Tgi)(x)dx
i
Since
le(x)(Tgi)(x)dxl 5~H£lq HTEin
we have
F lim i . .
IF(E) 1 < (lim 1anT£al) HEHq

Now since X(G)* X(G) is dense in L19(G) , F extends to a
bounded functional on Lq(G) and therefore is given by some

T e tP(G):

F(g) = J£<x)?T§)dx .

In partieular,



(n1Tg) = F(n+a”1/97) = J[(nwA'VqE) (x) £ (x)dx
for all n,; € K(G) . Since
f(nm“/qa (0 Fxdx = jmx) (42 /90) rax = (1 F6re)
this implies that
ve € X 1o = T (e,

and we conclude by Proposition 2.4 that T = ?;(f) . @

Remark. For p =1 , part 2) of the above proposition fails.

(For a counter-example, take T = A(x), X € G .)

5. The LP Fourier cotransformations.

+ =1 . For each T € Lp(w

o |-

1
. q
denote by T}JT) the unique function in L3(G) such that

Definition. Let p € [1,2] and

Jh(x) ?P(T) (x)dx = J[ Tp(h)T]dwO

for all h € LP(G) (or just he X(G) , or he K(G=+K(©))
The mapping ‘

F . (P L 14
For Py - e

thus defined will be called the LP Fourier cotransformation.

For p=1, we write ¥F = 3?1



Note that if 1 < p < 2 , then —§1> is simply the transpose
N ?”p: tP(G) - L9(y,) when we identify the dual spaces of
P6) ana 19(yy) with L9G) and Lp(\;o) , respectively.

The mapping F  takes an element T € L1(;O) into the unique
function ¢ € A(G) that defines the same element of M, as T

Joes; in particular,

for all v € (M,)" ~ A@G), .

In view of these remarks, we obviously have

Theorem 5.1.

1) Let p € 11,2] and = 1 . Then

Q|-

?P: L

T o=

(o) ~ L@

is linear, norm-decreasing, injective, and has dense range.

2) The mapping
F: L1(w0) - A(G)

is an isometry of L1(w0) onto A(G)

Remark. With our definition of the cotransformations, 7F7 is

not exactly the inverse of P, they are related by the formula

VI € LY (g Fm o= P e

(since for all h € L°(G) we nave Jreo Ty o) ds =

JUF T = (Fomyim = w7V ) 2
- - L7 (v L7(G)

Yo
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fh(x)P '(T*)(x)dx) . 1t follows that 7»'2: Lz(wo) - L°(G) is
unitary.

The classical Hausdorff-Young theorem [24, p. 101] has a second

part, stating that witﬂ each ¢ € RP(Z) , 1 <p <2, we can asso-
ciate a function f € L9(1) with Hfﬂq < IICIp , such that ¢ is
the sequence of Fourier coefficients of f . Theorem 5.1 is a
generalization of this result. Indeed, le; VT € Lp(wo) and put

g = a1 F,mY . then g1l and dgig = IF (DI <

iTh . , and we shall see that T is close to being the 19 Fou-

rier transform” of g in the sense that T¢ = g*A1/p€ for certai

£ (note that we do not in general define L9 Fourier transforms

q>2) .

Proposition 5.1. Let p € [1,2] and = 1 .  Then for all

T € Lp(wo) , Wwe have

'TP(T*) =J (F_(T))

Proof. For all h € Lp(G) we have

i}

Jn(x)Tp(T*) (x) dx J[ F,(h)T*]dy,

- P
J[T Tp(h)*ldwo = J[T ?p(medeo

- [S“pm (387 P x)h(x 1) ax

"

-1 M"“:T
JfA LV B "fp('r) (x Dh(x)dx . B



5.1 Let h,k € K(G; and put o = h*% . Then

2Na D. .
Y

Al9)al € L (yy) and

f -
J[A(w)aldwo = ple)

roof. Since

AB)A(R)a%

Aw)a

ymath T ¢ Py Puox

in

the closure [A(@)a]l exists and [A(wal c [ P) Px)*] . One

e2asily checks that for all x € G we have [ x)a{wja ¢

A(x)kiw)Ap(x) , 1i.e. that A(g)A is (-1)-homogeneous. Then also

[A(p)a]l is (-1)-homogeneous, and we conclude by Proposition 2.4

that [A(@)al = [ P(h) P(k)*] , so that [A(e)a] € L' (y,) and

f[x(w)a]dwo = (Pmyi Py
L™ (yv,)
0

il

Jh(x)k(x)dx = (hxK) (e) = v(e) . 8@

P p
Suppose that f1 € L 1(G) and f2 € L 2(G) , Wwhere
P3P, € [1,2] . In Proposition 4.2, a formula relating
1/4,
f1*A f2 and | ?; (f1) F (£,)] was given in the case where
1 Py ¢
3 . )
é; + é% > 5 (under this assumption, p € [1,2] satisfying
1 1 1 .
E; + 5: - E==1 exists). The following proposition takes care of

the case where

1A
ot



Proposition 5.2. Let p,.p, € 1,2] and < € [2,»] sucn that

1 1 1 . . .. Py .
— + —--=1. Llet £, €L (G and £, € L "(G) . Then
: . 179
- _ -1/g 1 v
Foul 7§1<f1> };2(f2)]) =4 (Epxa £5)7
where 1 + 1. 1 and ;L'+ 1. 1
P q Py 1

Proof. Both expressions exist, belong to 19(G) , and are continu-
ous as functions of (f1,f2) € Lp1(G) x Lpz(G} . Thus we need

only prove the formula for f1,f2 € ]{(G) . . In this case, for all

h € K(G) and £ € K(G) we have

/4, /4, /4,
A

h*A1/q(f1*A (£,* £) = a9 e e

where 1 + 1. 1 . We conclude by Proposition 2.4 that
2

2
vhoe Ko : [F il F (£ F (5,011 = [2hxa'/95)a)
P p1 1 P
/4,
where we have written f = f1*A f2 . Using this and Lemma 5.1,
we find

vh € K(G): J[ ?;(h)[ fp1(f1) Q;Z(fZ)J]dwo

= J[A(h*A1”qf)A]dwo

(h*A1/qf)(e)

Jh(X)A1 TN e hax

it

We conclude that
FoUF £ Fouron o= a7t 9

as desired. B
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Corollary. Let f£f,g € LZ(G) . Then

£xg =F (L P PE) =}

Proof. Letting Py =P, = 2 and g = « in Proposition 5.2, we

obtain
FAP@PE*D =FUF, @ F,uH1

= (G = £45 . B

Remark. Since A(G) =.3F(L1(¢0))' and since every T € L1(w0)
can be written T = [RS*] where R,S € L2(v0) = P w?©G)) (just
put R = UlT!;i and S* = lTl!5 , where T = U|T| is the polar
decomposition of T) , we have reproved the fact [6, Théoréme,

p. 218] that A(G) = {£43 | £,9 € L?(G)} . It also follows that

~ i
el gy < UEl, ligh, whenever ¢ = fxg , f,g € L°(G) (since
i P& PE*u, <t P@i, 1 PEu, ), and that, given
© € A(G) , there exist f,g € LZ(G) with ¢ = f*§ such that
Holly gy = WEl, ligh, (use that T, = WUITI®, HITI%Hz for

T e (yy))-

Propositon 5.3. Let p € [1,2] and 3,,9~ € [2,] such that
1 1 1z

— o — =

] ay :
- . Let T € L ‘ d S €L " . 't
5, " a b ‘ (VD) an \wo) Then

(TE1Sn) = Jg:p([S'T])\x)(i‘Jpn)kx)dx

for all ¢,n € K(G)



Proof. By Lemma 2.7, the left hand side of the eguation to be

proved is a continuous function of T and S . The same is true

of the right hand side. Therefore it is enough to prove the state-

ment for T and S belonging to the (dense) sets F (X(G);
Pq
and  F_ (K(G)) (where,’as usual, — + — =1, —~+ L - q) |
Py Py , Py 9
Now suppose that T = 'Tg (h) and s = ?; (k) where
“1 2
h,k € K(G) . Then

1/q

1 /4,
(h=a Elkea n

)

L]

(TE1Sn)

Va,  -Va,.

(A £x0 aiat

h*k)

-1/9,-1/9,,, =1/p,. =-1/q4
L T | N

(Exa

ey VA,
h=a k) (x)dx .

J(E*Jpn)(x)(A

Since

TEJ[S*T])

)

Fpll ?;2<Jp2k) ?51(h)])

1/q,

]

A'1/q(Jp k=4 h)VY

2

- =1/q “1+1/p WP
= A 1+1/p a ZE*A 1+1/p A 2E

=1/pPyy

_1/q1_
= A h=a k

we have proved the formula. §

Proposition 5.4. Let p € [1,2] and % + é =1 . Let T¢ Lp\wo
with polar decompositien T = UJT| . Put g = A~1/qif Y
- P
Then
TR iU = J<g~a’/?£)<x)n<x>dx

for all :,n € K.
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i

»0f,  Put 9y =4, = 2p . Then 'T1® e L 1(;() and

Piex € L (wo) , and by Proposition 5.3 we get

(g=a'Pe) miax . B

o

roposition 5.5. Let p € [1,2] and T € L x;o) . Put

y = A §TP(T)V . Let I € K{G) . Then ¢ € D(T) if and only
£ g*A1/pg € LZ(G) , and if this is the case, we have

: /
TE = g*A"p

£

" roof. First suppose that & € D(T) . Then for all n € XI(G)

~ € have
J(TE)(X)n(x)dx = (Tgin)
= (IT132) 1T: 2 U*n)
P
= JkgtA LY ixYn(x)dx .
/ : i S
lence g'A1'pg = T and thus g#a" S5 € LTS

Conversely, if g*A1/p§ € L7(G) , then



LOTE3g (T Su*n) )

"

IJ(9¢A1/p§)(K)n(x)dX|

Hg*£\1/ ity b it 5

LA

‘

for all n € XKI(G) . Wwe conclude that tL15€ € D([ITI U*']<(G)] ) .

5 .= Ygsqe = gl d +
Now [Tl u*| k(G>} = [1T}1*U*] CITI* , so tha

iT1% € p(UITI®) , whence €€ D(T) . B

Theorem 5.2. Let p € [1,2] and T € LP(y,) . Put

- T 2 . R
g =a /9 TP(T)v . Suppose that g € L°(G) . Then T is the

closure of the operator

Ewgaa/Pe e K .

5 /
Proof. When g € L°(G) , we have g*A1’p§ € LZ(G) for all
£ € K{(G) . Thus, by Proposition 5.5, X (G) < D(T) , and
TS = g*A1/pE for all € € X(G) . Since T = {T‘IR(G)] by Propo-

sition 2.4, the theorem is proved. |

As a corollary, we have

Theorem 5.3. (Fourier inversion). Let p €-[1,2] and % + % =1
1 opet Tetfuy) . opPur g =a VS F MY L o1s
g € L'\G) for some 1 € [1,2], then 7}\g)A1;r‘1’q

= [ Fogat Tl
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2)  Let f € LP(G) . 1If for scme = € [1,2] , the closure

-1/g9 . . r .
s=10F (£)a } exists and belongs to L ) . then

{1,
p o

£=8"VS T is)”

Hl-
+
[
i
-

where

)
roof. 1) since g € LY(G) n L3(G) , we also have g € L°(G)
Iroox -

ren by Theorem 5.2 we have

T = g.A1/P£ = g*A1/sA—1+1/r+1/p€ _ Tr(g)A‘l/r--‘u/qg

1/r-1/g .
or all & € K(G) . Thus T| x(G) S Foime . As is
asily seen 3;(g)A1/r-1/q is (-%)—homcgeneous. It iz also clos-
nle, since its adjoint is densely defined (indeed,

K;:r(g)AV""Vq)* * = T* 5o that

T e Ty’ ,
)A1/r—1/q), = T*) . ke conclude that T = [ Jl(g}a1/r‘1/q}

“
E

1/1“1/"-‘:]

since T c [ ?}(Q)A )

2) For all & € X(G) , we have £ € D(S) and by Proposition

1/x. 1/r-1/q9. -1,/ &
fea /T = Fopa TV 25 2 37V T 5V,
P : r
The result follows. §
Putting p = r = 1 in the first part ¢of Theorer >.. and recall-
= Jy .
(g that 37k§7~\ = ¢ for o ¢ A\G)+ we obtain
A
(U
N i . AN B
wrollarv.,  Let ¢ € AW, . I ¢ € L&Y, then
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Finally we shall give some results on positive operators
T € Lp(¢0) valid without any restriction on ?b(T) .

Note that for all £ €‘Lq(G) and E,n € JC(G) we have
jf(x)(é*JPn>gx>ax
= jjf(x)g(y)a“’?(y"x)ﬁ(y'1x>dy dx
= ij(yx)ﬁ(y)a"/p(x)Z(x)dx dy

= fff(yx”)a(y)A‘/q(x)ETi)dx dy .

=1 . Let

Q|-

Proposition 5.6. Let p € [1,2] and

Te Py, o Put £=F (1) . Let

g{g) = Jf(x)(EtJPE)(x)dx
= ij(yx")a1/q(x)g(y)ETE)dy dx
for all ¢ € X(G) . Then q is a closable positive quadratic

form, and the positive self-adjoint operator associated with its

closure is T .
Proof. By (the proof of) Proposition 5.4, we have

(T 1T = Jf(x)(étJDL)(x)dx = q(3)

L
for all ¢ ¢ Ki(G) , and Tg = [T?) ] . Thus g is a clos-
K (G)
able positive guadratic form with closure corresponding to T . B
S¢

Cereollary. Let ¢ € A(G)+ . Then is the positive self-adjoint

jo¥
-

g

Q

operator associated with the closure of the positive quadratic form
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i given by

$Q
"
1

me) (E=£*) (x)dx

i

”@(yx”)a(yn:(x;dy dx

for all & € XK(G)

Remark. This result also follows directly from the definition cf

3 Indeed,
Ay
0
dy 5 2 .
“(———) g% = vomnmn = J&D(x)(:’,*é"‘)(x)dx
dwo
5 5
: ; ; e (Je) . [<_di) } :
sor all £ € XK(G) , and we have <d30) | d¢0 | (G by
Proposition 2.4 (or, alternatively, by an application of [9, Theo-
rem] together with the fact that (fi )5 = <4¥L)%| } ).
d¥p L\davg ai

Actually, the property of defining closable guadratic forms
on K (G) characterizes A(G)+-functions among all positive defi-

nite continuous functions. The precise statement is as follows:

Theorem 5.4. Let ¢ be a positive definite continuous function.

pefine g on X(G) by

it

qg)

1

J@(x,‘ (SxE*) (xX)ax
Jows

Then g is a positive guadratic form on  Ki3) , and g is

closable if and only if ¢ € A(Q



- 63 -

Proof. That q is a quadratic form is obvious, and since ¢ is
positive definite, q is positive.

Now suppose that g 1is closable. Denote by T the positive
self-adjoint operator associated with its closure; then T is

characterized by the properties X(G) c p(T?)

3

.
T *[le(G)], and

vi € K(G): nT&giz = qg(&)

Let us show that T is (-1)-homogeneous. Let x € G . Then

T = 2" Mx)p(x)Tp(x ') is positive self-adjoint and
%)

T 5 A_%(x)p(x)T%p(x_1) . ‘Therefore KI(G) < D(T, and

i

3
N
[

= [Tx%'JC(G)] . Furthermore, for all £ € XI(G) we have

18”200 p () Top (x )£ 2

]

L2
It el

2V i en

1]

2 Mg he

i

A“(x)JJw(yz‘1)(p(x‘1>c)(y)(p<x°'>z>(z)dy az

- jja"(x)w(yz")Ag(x“):(yx”)a*(x“>a(zx”)ay az

i

A"(x)J]w(yxz“)&(y)g(zx:T)dy dz

J[m(yz">5(y>ETE)dz dy

q{§)

We concludé from the characterization of T that Tx =T, so

that
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v € G: 8 o ()Te(x ) =T,

le. T is (-1)-homogeneous.

Now let (Ei)i€I be an approximate identity in ]((G)+ .  Then

L]

1imie 1% = glg))

Jw(x) (Eitc’.i‘) (x)dx

sup{lw(x)l | x € supp(EitEi*)}- TIRP

1A

sup{lw(x)l l X € supp(gitgi*)} .

1A

ince ¢ is continuous and the supports of the Eitsi' tend to

2} , we get

lim inf iT%gilz < v(e) .
i€TI
y Proposition 2.1, this shows that T € L1(wo) .

Put 0y = a?(T) € A(G) . Then
ve € Ke): Jw1(x)(£*€‘)(x)dx = urien? = q(o)
= JW(X)(E*E')(X)dx .
> conclude that ¢ = ¢, and thus ¢ € AG) . §
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