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SEVERAL REMARKS ON 

THE COMBINATORIAL HODGE STAR 

MASAHARU TANABE 

ABSTRACT. In 2007, Scott O. Wilson defined the combinatorial 

Hodge star operator % on cochains of a triangulated manifold. 

This operator depends on the choice of a cochain inner product, 

but he showed that for a certain inner product it converges to 

the smooth Hodge star operator as the mesh of the triangulation 

tends to zero. He also stated that %2 # +Id in general and raised 

a question if %2 approaches +Id. In this paper, we solve this 

problem affirmatively. We also give a remark about the definition 

of holomorphic l-cochains given by Wilson using %. 

1. INTRODUCTION 

For cochains equipped with an inner product, Scott O. Wilson defined 

the combinatorial Hodge star operator ¥% in [7]. The definition is formally 

analogous to that of the smooth Hodge star operator on differential forms 

of a Riemannian manifold. By using a certain cochain inner product which 

he named the Whitney inner product, he showed that the combinatorial 

Hodge star operator, defined on the simplicial cochains of a triangulated 

Riemannian manifold, converges to the smooth Hodge star operator as 

the mesh of the triangulation tends to zero. A precise statement for this 

is Theorem 2.12 and in more detailed form Theorem 2.13. These theorems 

are given by using a map from cochains into differential forms, defined by 

Hassler Whitney [6]. Jozef Dodziuk [2] and Dodziuk and V. K. Patodi [3] 
stated the approximation properties of this map. These are Theorem 2.6 

and Theorem 2.7. 
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Definition 2.5. Let K be a triangulation of a Riemannian manifold M. 

The mesh nn = n(K) of a triangulation is 

n = supr(p,q), 
where r means the geodesic distance in M and the supremum is taken 

over all the pair of vertices p,q of a 1-silnplex in K. 

Theorem 2.6. Let M be a Riemannian manifold with triangulation K 

of mesh 1. There exist a positive constant C and a positive integer m, 

independent of K, such that 

jw = WRw|| <C-|[(Id + A)" wl - 7 

for all C*>° differential forms w on M. 

For the comparison of the Hodge decomposition of a smooth form w 

and the combinatorial Hodge decomposition of Rw, we have the following. 

Theorem 2.7. Let w € AJ(M) and Rw € C’(K) have Hodge decomposi- 
tions 

w = dw) + wo + dws, 

Rw = da, + a9 + d*as. 

Then 

ldwy — Wéay|| < C- [[(Id + A)" w|| - 
lwa = Wael <C-[[(Id + A)"w]| +n, 

|d*ws — Wé*as|| < C-|(Id + A)" w|| - n. 

where C and m are independent of w and K. 

For details, see [2], [3], and [7]. 

Whitney [6] also defined a product operation on C(K). 

Definition 2.8. We define U: C7(K) ® C*(K) —» C7**(K) by 

cUT=R(WaoAWT). 

We see easily that 6(cUT) = §oUT+(—1)/0UéT and oUT = (—1)7*7U0. 

Wilson defined the combinatorial Hodge star operator in [7] and showed 
that, for the Whitney inner product, this operator converges to the smooth 

Hodge star operator as the mesh of the triangulation tends to zero. For 

the rest of this section, all of the statements are attributed to Wilson (]7], 

8])- 

Definition 2.9. Let K be a triangulation of a closed oriented manifold 

M of dimension n with simplicial cochains C = p, C’. Let (, ) be an
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inner product on C such that C* is orthogonal to C7 for i # j. For o € Cc’ 
we define «wo € C™*77 by 

(ko, 7) = (0c UT)[M], 

where [M| denotes the fundamental class of M. We call % the combina- 
torial Hodge star operator. 

Several properties of the combinatorial star operator are given below. 

Lemma 2.10. The following hold: 

(1) 6 =(—1)*16*%, i.e.. % is a chain map. 
(2) Foro € CV and € C7, (ko, 7) = (=1)I("=3) (0, %T), i.e, Kk 

is (graded) skew-adjoint. | 
(3) % induces isomorphisms HC? (K) — HC" ?(K) on harmonic 

cochains. 

From now on, we work under the assumption that the inner product 

on C is the Whitney inner product unless otherwise mentioned. Let 7 

denote the orthogonal projection of L2A7 onto the image of C?(K) under 
the Whitney map W. 

Lemma 2.11. Wx =7+W. 

This lemma is the key in showing the following theorem which states 

that % converges to x as the mesh 7 tends to O. 

Theorem 2.12. Let M be a Riemannian manifold with triangulation K 

of mesh n. There exist a positive constant C and a positive integer m, 

independent of K, such that 

| * w—WxRw|| <C-||(Id+ A)"w|| -n 

for all C*° differential forms w on M. 

This approximation respects thc Hodge decompositions of A(M) and 

C(K). 

Theorem 2.13. Let M be a Riemannian manifold with triangulation K 

of mesh 1. Let w € AJ(M) and Rw € C?(K) have Hodge decompositions 

w = dwy + we + d* ws, 

Rw = da; + az + 6% as. 

There exist a positive constant C and a positive integer m, independent 

of w and K, such that 

| x dwy — Wikéda,|| < C- (||(Id + A)" w|| + [|(Id + A)" dw, ||) - 7. 
| x we — Wikaz|| < C-([|(Id + A)" wl] + ||(Id + A) ws ]|) - 7, 

| x d*ws — Wké™as|| < C- (J|(Id + A)" wl} + ||(Id + A)™d*ws]|) - 0.
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We remark that we can take a common integer m in Theorem 2.6, 

Theorem 2.7, Theorem 2.12, and Theorem 2.13. 

Wilson defined holomorphic 1-cochains on Riemann surfaces by using 

the combinatorial Hodge star. Holomorphic 1-cochains have several prop- 

erties analogous to holomorphic 1-forms. For details, see [8]. 

3. APPROXIMATION THEOREMS 

Recall that the smooth Hodge star x on j-forms satisfies 

x2 = (—1)7(n=9)14, 

where 7 is the dimension of the manifold. Thus, by the next theorem, we 

see that %? converges to +Id as the mesh 7 of the triangulation tends to 

0. 

Theorem 3.1. Let M be a Riemannian manifold with triangulation K 

of mesh n. There exist a positive constant C and a positive integer m, 

independent of K, such that 

| ¥* w— W?Rw|| <C-||(Id + A)™w| - n 

for all C°° differential forms w on M. 

Proof. Using the triangle inequality and Lemma 2.11, we calculate 

| ** w — We? Rwl|| 
< |I1%* w= x*WRw|| + || ** WRw — W%2Ruw|| 

< ||w—WRw| + || ** WRw — xW % Rw|| + || * Wk Rw — W¥*Ruw| 

= ||w—-WRw| + ||* WRw — Wx Rw| + || * Wk Rw — mx We Ruwl|. 

The first term is bounded by 

lw —WRw|| <C-|(Id + A)"w]| -n, 

using the estimate in Theorem 2.6. For the second term, we have 

| *WRw — Wx Rw|| < |[[*WRw—*w| + ||*w— Wx Ruw| 

= |WRw—w| + | *w— Wx Ruw|, 

and these are bounded by 

IWRw — w| + || *w — Wk Ruw|| 

< C-l(ld+A)"w]-n+C-||(Id + A)" w]| - 7,



SEVERAL REMARKS ON THE COMBINATORIAL HODGE STAR 39 

using the estimate in Theorem 2.6 and the estimate in Theorem 2.12. For 
the last term, we estimate 

| * Wk Rw — mx We Rw|| 

< || *WxRw—-WR** uw 

< | *WkRw—+*w|| + || ** w—- WR? w|| 

= |WkRw -»w|| + lw ~ WRuw| 
< C-(Id+A)"w||-n+C- [Id + A) wll - 7. 0 

The approximation also respects the Hodge decompositions of A(M) 
and C(K). 

Theorem 3.2. Let M be a Riemannian manifold with triangulation K 

of mesh. Let w € AI(M) and Rw € C?(K) have Hodge decompositions 

w = dw) + wg + d* ws, 

Rw = da; + ag + d*as. 

There exist a positive constant C and a positive integer m, independent 

of w and K, such that 

|? dun — Wk2daa|| < C- (||(Id + A)"w|| + [|(Id + A)" dwn |) - n, 

| #2 wp = WikZas]| < C- (|(Id + A)"w]| + [1d + A) wn) - 7. 
| %2 d*ws — W?6*as|| < C- (||(Id + A)"w|| + |(Id + A)" d*ws]|) - . 

Proof. For the first statement, we calculate 

I ye dwn — W26a, I 

< N12? dw; — $2Wéay || + || ¥> Wéa, — Wk 26a, 
< |ldwy — Wéay| + || x Wéay — xW da, || 

+|| x Wkda; — Wxk26a4|| 
= |ldw; — Wéa|| + || * Wa, — Wkida,|| 

+l * W¥ da, — mx Wxkdaq |. 

The first term is bounded by using the first estimate in Theorem 2.7. For 

the second term, we have 

| * Wéa, — Wikda,|| < || x Way — xdwi|| + || x dw — Wikéa, |,
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and these are bounded by using the first estimate in Theorem 2.7 and the 

first estitnate in Theorem 2.13. For the last term, we estimate 

| «Wada, — mxWkdar| < [|x Wahdar — WR" dw | 

< |x Waka; — «> dw || + || ¥* dw — WR dw, || 

= |[Wekda, — *dwi| + ||dwir — WR dw, |]. 

These two terms are bounded by using the first estimate in Theorem 2.13 

and the estimate in Theorem 2.6. 

The same computations as above lead us to the last two inequalities 

by using the latter two inequalities in Theorem 2.7 and Theorem 2.13 and 

Theorem 2.6 applied to we and d*ws3, respectively. [1 

Lieven Smits [5] showed that, on surfaces, ||W§* Rw — d*w|| converges 
to 0 for all C* differential 1-form w under a certain restriction on the 

triangulations. Recently, Smits’s result was extended to arbitrary dimen- 

sions, showing that the above convergence is valid for arbitrary dimension 

under a certain mesh condition and showing that this mesh condition is 

necessary [1]. 
Wilson [7] observed that ||WJRw — dw|| converges to 0, and he also 

observed that, in short, 

+5" % = 1) — +d" x = xd. 

He also raised a question if either of d% or %4* provide a good approxi- 

mation to dx or xd*, respectively. This question seems to be still open. 

4. ON THE DEFINITION OF HOLOMORPHIC COCHAINS 

In this section, we fix M to be a topological surface. Wilson |8| defined 
holomorphic cochains for surfaces using the combinatorial star operator. 

Then he introduced combinatorial period matrices which are the period 

matrices of holomorphic cochains and gave some (Riemann) bi-linear re- 
lations that the periods satisfy, and he proved that for a triangulated 

Riemannian 2-manifold (or a Riemann surface) and a particularly nice 

choice of inner product, the combinatorial period matrix converges to the 

(conformal) Riemann period matrix as the mesh of the triangulation tends 

to zero. 

To define holomorphic 1-cochains, we need to extend some of our defi- 

nitions to the case of complex valued cochains. Let (, ) be any hermitian 
inner product on the complex valued simplicial 1-cochains of a triangula- 

tion K for a topological surface AM. We define the associated combinato- 

rial star operator % by 

(ko, 7) = (ec UT)[M],
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where the bar denotes complex conjugation and U is as in §2, extended 

over C linearly. Just as with real coefficients, the Hodge decomposition 

with complex coefficients holds 

CHK) =46C(K)®d H' (K) ® §*C*(K), 

where H! is the space of complex valued harmonic 1-cochains. 
By Lemma 2.10, % induces an isomorphism of H' and is skew-adjoint. 

Since % induces an isomorphism of H!, this map admits a unique polar 

decomposition w = HU where H is positive definite hermitian and U 1s 

unitary. Since % is skew-adjoint, so is U, and thercfore the eigenvalues 

of U are +i. 

Wilson defined holomorphic 1-cochains as follows. 

Definition 4.1 (8, Definition 6.1]). Let X and (, ) be as above. Let 
% denote the map on complex valued harmonic cochains, as in Lemma 

2.10. with polar decomposition % = HU. The subspace of holomorphic 

1-cochains H'°(K) is defined to be 

H'Y(K) = {we HY(K)|Uw = —iw}. 

The subspace of anti-holomorphic 1-cochains H°!(K) is defined to be 

HOY K) = {we HY (K)|Uw = iw}. 

Subsequently, he remarked the following. 

Remark 4.2 (|8, Remark 6.2]). An equivalent definition is to let H1?(K) 
be the span of the eigenvectors for non-positive imaginary eigenvalues 

of % and let H%!(K) be the span of the eigenvectors for non-negative 
imaginary eigenvalues of ¥. 

Then he stated the following lemma. 

Lemma 4.3 ([8, Lemma 6.3]). Let K be a triangulation of a surface M 
of genus g. A hermitian inner product on the simplictal 1-cochains of K 

gives an orthogonal direct sum decomposition 

HY(K)=H""(K)® HH" (K). 
Each summand on the right has complex dimension g and complex con- 

jugation maps H'C(K) to HY (K) and vice versa. 

As Wilson indicated, the decomposition follows from the property of 
skew-adjoint operators; that is, eigenspaces of distinct eigenvalues are 

orthogonal. However, complex conjugation does not map H'%(K) to 
HO (K) in general. 

For example, let K be a triangulation of a torus M and let q and b be 

R-valued harmonic 1-cochains which satisfy 

(aU b)[M] = 1.
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Then a and b form a basis for H'(K). We put 

i 1 
o1=V2a+ —b, o,=—=b. 

Let {, ) be a hermitian inner product for which oy, 02 is an orthonormal 
basis of H'(K). Then the matrix representation of % with respect to the 

basis 01,02 18 
2t —1 
1 0 

the eigenvalues are (1++v/2)i and (1—+/2)i, and the corresponding eigen- 
5\5 

vectors are constant multiples of ( (1+ va) ) and ( (1 va) ) re- 

spectively. Remark 4.2 defines 

HK) = fe (1 ~ Va) ) CE c| 

and 

HONK) = {e( (a + V2) ) CE cf. 

We see that complex conjugation does not map H1'9(K) to HY1(K). 
The main result of [8] is that the combinatorial period matrix converges 

to the (conformal) Riemann period matrix as the mesh of the triangulation 

tends to zero. To show this, Wilson used Riemann’s bi-linear relations 

below (see |8, Theorem 6.5]). Let {a;, :-,a,4,b1,---,by} be a canonical 
homology basis for M. (Here “canonical” means that the intersection of 

any two basis elements is non-zero only for a; and b;, in which case it 

equals one.) 

Definition 4.4. For h € H'(K), the A-periods and B-periods of h are 
the following complex numbers: 

Aj =h(a;) and B;=h(b;) forl1<j<g. 

Theorem 4.5 (Riemann’s bi-linear relations). If o, 0’ € H°(K) have 
A-periods Aj, A’ and B-periods Bj, B;, respectively, then 

g 
> (A;B} — B;A}) =0. 
j=1 

In the proof of Riemann’s bi-lincar relations, Wilson used the statement 

that complex conjugation maps H!:%(K) to H*!(K). Thus, to hold Wil- 
son’s results, the operator ¥ must be R-valued on R-cochains. Then, if 7 

is a C-cochain, it is straightforward to check that ¥7 = iA7 (A € R) im- 
plies 7 = —iAT, which means that complex conjugation maps HIO(K) 

to HY (K).
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By the definition of the combinatorial star operator 

(ko, 7) = (c UT)[M]; 

% is R-valued on R-cochains if and only if the hermitian inner product is 

R-valued on R-cochains. Thus, we need one additional assumption, that 

a hermitian inner product on the cochains to be R-valued on R-cochains. 

This assumption is natural and, of course, the Whitney inner product 

satisfies it. 
Consequently, we offer the following definition. 

Definition 4.6. Let (, ) be a hermitian inner product on the complex 
valued simplicial 1-cochains which is R-valued on R-cochains. We define 

HIO(K) to be the span of the eigenvectors for non-positive imaginary 

eigenvalues of % and H%!(K) to be the span of the eigenvectors for non- 

negative imaginary eigenvalues of ¥. 

Then complex conjugation maps H!1'%(K) to H!(K), and all of the 
statements of Wilson's paper [8] hold. 
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