BULLETIN DE L'ACADÉMIE POLONAISE DES SCIENCES série des sciences math., astr. et phys – Vol. XXIV, No. 10, 1976

> MATHEMATICS (ALGEBRÀIC TOPOLOGY)

On the Equivariant Chern Homomorphism

by

J. SŁOMIŃSKA

Presented by K. BORSUK on January 14, 1976

Summary. A split coefficient system for the equivariant Bredon cohomology is defined. Its properties are used to show that $K_G(X) \otimes Q$ is isomorphic to the Bredon cohomology of X with appropriate coefficients, provided G is a finite group and X is a compact G-CW complex. As a corollary we obtain that $K_G \otimes Q$ can be expressed in terms of the ordinary K-theory.

1. Split coefficient system. Let G be a finite group and \mathfrak{D}_G the category of canonical G-orbits, i.e. G-sets of the form G/H, where H is a subgroup of G, and G-morphisms. Two orbits G/H and G/H' are identified in \mathfrak{D}_G iff H and H' are conjugate in G. The category of contravariant functors from \mathfrak{D}_G to the category Ab of abelian groups is denoted by \mathfrak{C}_G . Objects of \mathfrak{C}_G are called G-coefficient systems. If H is a subgroup of G then there exists a functor $(\cdot)_H : \mathfrak{C}_G \to \mathfrak{C}_H$ such that for any G-coefficient system M

$$M_H(H/H') = M'(G/H')$$

whenever H/H' is an object of \mathfrak{O}_H .

Let $\overline{\mathfrak{D}}_G$ be the full subcategory of \mathfrak{D}_G , consisting of all orbits different from G/G. If M is as above then for any canonical orbit $^G/H$ we will denote $\lim M_H$ by $\overline{M}(G/H)$ and the structural morphisms of this limit $\overline{\mathfrak{D}}_H$

$$\overline{M}(G/H) \rightarrow M_H(H/H') = M(G/H')$$

by p(H/H'). $\overline{M}(G/H)$ possess a natural structure of a WH = NH/H-module. If $n \in NH$ then the composition

$$M(G/H) \xrightarrow{nH} M(G/H) \xrightarrow{p(H/H')} M(G/H') = (M^{G}/n^{-1} H' n)$$

is equal to $p(H/n^{-1} H' n)$. Let

 $m(G/H): M(G/H) \rightarrow \overline{M}(G/H)$

be a WH-module morphism such that p(H/H') m(G/H) is the morphism $M_H(^H/H \rightarrow M_H(H/H'))$ induced by the map $H/H' \rightarrow H/H$, whenever H/H' is a canonical H-orbit. Ker m(G/H) is denoted by M(G/H).

1.1. DEFINITION. A G-coefficient system M is called split iff for any canonical orbit G/H there exists a WH-module morphism $t(G/H): \overline{M}(G/H) \to M(G/H)$ satisfying

$$m(G/H) t(G/H) = \mathrm{id}.$$

1.2. Examples. Let R_G be a coefficient system defined for objects as $R_G(G/H) = R(H) \otimes Q$, where R(H) is a unitary representation ring, and for G-maps $G/H \rightarrow \rightarrow G/H'$ as the composition of a restriction homomorphism and conjugation by elements of G. This follows from the proof of the Artin theorem (see Serre [4]) that R_G is a split coefficient system. Furthermore, one can check that if M is an arbitrary Mackey functor (see Dress [2]) over $Z\left[\frac{1}{|G|}\right]$ then M is a split coefficient, system.

1.3. LEMMA. If M is a split G-coefficient system then

$$\operatorname{Hom}_{\mathfrak{D}_{G}}(N, M) = \prod_{G/H \in \mathfrak{D}_{G}} \operatorname{Hom}_{WH}(N(G/H), \underline{M}(G/H))$$

whenever N is an object of \mathbb{C}_{G} .

Proof. Let $\{\{e\}\}=\mathcal{D}_1\subset\mathcal{D}_2\subset...\subset\mathcal{D}_n=\mathcal{D}_G$ be a certain filtration of \mathcal{D}_G , such that any \mathcal{D}_k is a full subcategory of \mathcal{D}_G with k objects and if $^G/H$ is in $\dot{\mathcal{D}}_k$ and there exists a morphism in \mathcal{D}_G from G/\dot{H}' to G/H then $^G/\dot{H}'$ is in \mathcal{D}_k , too. Let $\mathcal{D}_k\setminus\mathcal{D}_{k-1}=\{G/H_k\}$. For any G-map $f: G/H_l \to G/H_k$ one can find a subgroup H_l of H_k conjugate to H_l in G and an element w of WH such that the morphism $\mathcal{M}(f)$ is equal to the composition $\mathcal{M}(w) p(H_k/H_l)$. This yields a group isomorphism:

$$\operatorname{Hom}_{\mathfrak{O}_{k}}(N, M) = \operatorname{Hom}_{\mathfrak{O}_{k-1}}(N, M) \oplus \operatorname{Hom}_{WH_{k}}(N(G/H_{k}), \operatorname{ker} m(G/H_{k})),$$

where $\operatorname{Hom}_{\mathcal{D}_k}(N, M)$ denotes the group of all natural transformations from $N|_{\mathcal{D}_k}$ to $M|_{\mathcal{D}_k}$.

The statement of the lemma follows from the above formula by induction.

2. Bredon cohomology with the coefficient system R_G and the $K_G \otimes Q$ -theory. If X is a G-CW complex then the equivariant Bredon cohomology of X with a coefficient system M will be denoted by $H^*(X, M)$ (see [1]).

2.1. PROPOSITION. There exists a natural transformation of equivariant cohomology theories

$$ch_G: K_G \to \bigoplus_{k=0}^{\infty} H^{2k}(, R_G),$$

such that for any compact G-CW complex X

$$(ch_G^{\otimes} \text{ id})(X): K_G(X) \otimes Q \rightarrow H^{ev}(X, R_G)$$

is an isomorphism.

Proof. For any G-orbit $G/H \underset{G}{R}_{G}(G/H)$ is a divisible group and hence a WH-injective one. Because R_{G} is a split coefficient system then from 1.3. it follows that \mathcal{R}_G is an injective object of \mathfrak{C}_G . Let $h_n(X)$ denote the object of \mathfrak{C}_G determined by $h_n(X)(G/H) = H_n(X^H)$. The injectivity of \mathcal{R}_G yields formulas (see [1], p. I-22).

$$H^{n}(X, R_{G}) = \operatorname{Hom}_{\mathfrak{D}_{G}}(h_{n}(X), RG) \subset \prod_{G \mid H \in \mathfrak{D}_{G}} \operatorname{Hom}(H_{n}(X^{H}), R(H) \otimes Q) = \prod_{G \mid H \in \mathfrak{D}_{G}} H^{n}(X^{H}, Q) \otimes R(H).$$

We define L_1 and L_2 as the maps

$$\prod_{G/H \in \mathcal{D}_{G}} H^{n}(X^{H}, Q) \otimes R(H) \rightarrow \prod_{f : G/H_{1} \rightarrow GH_{2} \atop \text{in } \mathcal{D}_{G}} H^{n}(X^{H_{2}}, Q) \otimes R(H_{1})$$

satisfying the conditions

$$S_f L_1 = (H^n(f) \otimes \operatorname{id}) S_{G/H_1}, \quad S_f L_2 = (\operatorname{id} \otimes R(f)) S_{G/H_2},$$

where S_f and $S_{G/H}$ are structural morphisms of products.

It is easy to check that $\operatorname{Hom}_{\mathcal{D}_G}(h_n(X), R_G)$ is isomorphic to ker $(L_1 - L_2)$. Let $q_H(X)$ be the restriction

$$K_G(X) \rightarrow K_H(X) \rightarrow K_H(X^H)$$

and let

$$q(X) = \prod_{G/H \in \mathcal{D}_G} q'_H(X) \colon K_G(X) \to \prod_{G/H \in \mathcal{D}_G} K_H(X^H) = \prod_{G/H \in \mathcal{D}_G} K(X^H) \otimes R(H).$$

If we let ch denote the ordinary Chern homomorphism then we can consider the composition

$$ch_{G}(X) = \prod_{G/H \in \mathfrak{O}_{G}} (ch(X^{H}) \otimes \mathrm{id}) q(X) \colon K_{G} X \to \prod_{G/H \in \mathfrak{O}_{G}} H^{ev}(X^{H}, Q) \otimes R(H).$$

The inclusion im $\widetilde{ch}_G X \subset \ker (L_1 - L_2)$ follows from the commutativity of the diagrams

and

$$K_{G}(X) \xrightarrow{q_{H}} K_{H}(X^{H}) = K(X^{H}) \otimes R(H)$$

$$\downarrow^{q_{H}} K_{H}(X^{H}) \xrightarrow{K_{H}(W)} K_{H}(X^{H}) \qquad \text{id} \otimes R(W)$$

$$\downarrow^{K}(X^{H}) \otimes R(H) \xrightarrow{K(W) \otimes \text{id}} K(X^{H}) \otimes R(H)$$

1

J. Słomińska

whenever $H \subset H_1$ are subgroups of G and w is an element of WH. This yields that we have well-defined the equivariant Chern homomorphism ch_G . One can easily verify that for any orbit G/H

 $ch_G(G/H) \otimes id: K_G(^G/H) \otimes Q \rightarrow H^{ev}(G/H, R_G)$

is an isomorphism. Using the spectral sequence of the Atiyah—Hirzebruch type (see Matumoto [3]) we obtain the statement of the proposition.

Now, let \mathfrak{D}_G^s be the full subcategory of \mathfrak{D}_G consisting of all orbits G/H, such that H is a cyclic group.

2.2. COROLLARY. If X is a compact G-CW complex then $K_G(X) \otimes Q$ is isomorphic to the direct sum

$$\bigoplus_{G/H \in \mathfrak{O}_{G}^{c}} K(X^{H}) \bigotimes_{Z(WH)} \underline{R}_{G}(G/H).$$

Furthermore, if G is an abelian group then $K_G(X) \otimes Q$ is isomorphic to

$$\bigoplus_{G/H \in \mathfrak{O}_{G}^{c}} \bigoplus_{\varphi(|H|)} K(X^{H}/G) \otimes Q,$$

where φ denotes the Euler function.

Proof. If P is a G-module then $H_G^*(X, P)$ denotes the cohomology of the cochain complex Hom_G $(C_*(X), P)$. From Lemma 1.3 it follows that

$$H^{n}(X, M) = \bigoplus_{G/H \in \mathfrak{O}_{G}} H^{n}_{WH}(X^{H}, \underline{M}(G/H)),$$

whenever M is a split coefficient system (see formulas 9.3 and 9.4, p. I-21 in [1]). If H is a noncyclic subgroup of G then $\underline{R}_G(G/H)$ is a trivial group. From proposition XII.2.5, in [5] it follows that

$$H^n_{WH}\left(X^H, \underline{R}_G\left(G/H\right)\right)$$

is isomorphic to

$$H^n(X^H, Q) \bigotimes_{Q(WH)} \underline{R}_G(G/H)$$

since $R_G(G/H)$ is a Q(WH) projective module and

$$\operatorname{Hom}_{Z(WH)}\left(Z(WH/F), \quad R_G(G/H)\right) = \underline{R}_G(G/H)^F = \\ Z \bigotimes_{Z(F)} \underline{R}_G(G/H) = Z(WH/F) \bigotimes_{Z(WH)} \underline{R}_G(G/H)$$

whenever F is a subgroup of WH. Now it is sufficient to use Proposition 2.1.

INSTITUTE OF MATHEMATICS, NICHOLAS COPERNICUS UNIVERSITY, CHOPINA 12-18, 87-100 TORUŃ

(INSTYTUT MATEMATYKI, UNIWERSYTET M. KOPERNIKA, TORUŃ)

REFERENCES

[1] G. E. Bredon, Equivariant cohomology theories, Springer Verlag, 1967.

[2] A. W. M. Dress, Contribution to the theory of induced representations, Lecture Notes in Mathematic, 343, Springer Verlag, 1973.

[3] T. Matumoto, Equivariant cohomology theories on G-CW complexes, Osaka Journal of Mathematics, 10 (1973), 51-68.

[4] J. P. Serre, Représentations linéares des groupes finis, Collection Méthodes, Hermann, paris 1967.

[5] H. Cartan, S. Eilenberg, Homological algebra, Princeton, 1956.

Я. Сломиньски, Об эквивариантности отображений Чженя

Содержание. В представленной работе определено расщепление системы коэффициентов для эквивариантных гомологий Бредона. Пользуясь их свойствами доказывается, что для конечной группы $G K_G(X) \otimes Q$ изоморфно когомологиям Бредона, с соответствующей системой коэффициентов, компактного G-CW коплекса X. Из этого следует, что $K_G \otimes Q$ можно выразить через обыкновенную $K \otimes Q$ -теорию.