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Introduction 

It is well known from the work of Connes [2, 3], Krieger [10, 11], and Haagerup 

[6], that the classifications of ergodic transformations up to orbit equivalence, of 

approximately finite dimensional (AFD) factors up to isomorphism, and of ergodic 

flows up to conjugacy are all equivalent problems. The proof proceeds by con- 

structing maps from transformations to flows (the stable range or Poincaré flow 

construction), from transformations to factors (the group-measure-space construc- 

tion) and from factors to flows (the flow of weights construction) and showing that 

these maps implement the desired equivalence. 

Notwithstanding its beauty, the proof is unsatisfactory in at least two respects. 

Firstly, it is far from clear what the inverse of the various maps above (particularly 

those to flows) are. In fact surjectivity of the stable range map involves construct- 

ing for each flow an action of Z? with the given flow as stable range and using the 

fact that all such actions are singly generated up to orbit equivalence. Secondly, 

each of the maps involved is in fact a covariant functor, transforming orbit equiv- 

alence and automorphisms to self-conjugacies, automorphisms and self conjugacies 

respectively; the proof fails to show whether or not these various homomorphisms 

are split. 

Our purpose in this paper is to remedy this by constructing explicitly for each 

ergodic flow an AFD factor and an ergodic transformation which have the given flow 

as flow of weights and stable range respectively. These constructions are readily 
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seen to be functorial, thus proving in particular that the map mod of [4] from 

automorphisms of AFD factors to automorphisms of the corresponding flows of 

weights is in fact split. Our results are also in the spirit of [7, 8], [14] and [5], 
emphasizing the necessity of adopting a functorial point of view in analyzing non- 

smooth classification problems. 
In the first section, we construct a functorial inverse to the flow of weights 

construction. Section Two contains work based on unpublished results of Robert 

Wong [15] on inverting the stable range map, generalising earlier work of [9] on 

measure preserving flows. Although Wong's results are now quite old, they have 

never been circulated owing to his departure from mathematics and we feel they 

should be made available to the mathematical community. 

1 Inverting the Flow of Weights and Module of an AFD Factor 

First we want to construct an explicit functor from the category of ergodic flows 

to that of AFD factors of type III. We fix a separable abelian von Neumann algebra 

C and a o—weakly dense separable C*—algebra subalgebra B of C. To each ergodic 

one parameter automorphism group 8 of C we associate the C*—algebra A generated 

by {0f(a) : a € B, f € L*(R)} where 6;(a) = [; f(t)6:(a)dt. Then {4,R,0} is a 
separable C* —covariant system. Set X = Sp(A), a compact metrizable space. The 

action 6 of R on A gives rise to a topological transformation group {X,R, F} such 

that 

0:())(z) = f(F'w), zeX,feAteR 
Let 6,(C) be the set of all normal states on C and &%(C) be the set of all faithful 
normal states on C. To each ¢ € &,.(C) there corresponds a Radon measure py, 

on X such that p(f) = [ f(z)duy(z),f € Aand if p € G9 then C is canonically 

identified with L>(X, p,,). To save notations, we will identify the measure pi, with 

© € 6,(C). We want to find a functorial way of constructing an AFD factor R of 

type III whose flow of weights is precisely the given flow {C,R,6}. First observe 

that the C*—algebra A, and therefore X as well, depend on 8, so it is appropriate 

to write them as A(f) and X (6). Let G(8) = R x X (6) be the associated groupoid 
so that {seo =arta=Fa (2) co0) ” 

(s, Fyz)(t,z) = (s+ t,z), s,teR,zeX(9). ) 

Let {Ro1,R,a} be a fixed AFD factor of type IL, equipped with a trace scaling 

one parameter automorphism group {a : t € R}, whose existence is guaranteed by 

the existence of an AFD factor of type III;, and set 

bo(t,z) = eet (2), p € GY 12) 

0s) = Cttlog(s (ta) (6) €G(0). 

We then integrate the above system: 

R= xs) Ro dp(x) =C ® Ro 1; 
© ~ 

Te(a) = Tx 7(a(z))dp(z), a= Ix) a(z)dp(z) € R; (1.3) 

(6¢ (@)(Fea) = 0%, , (ala), t€ R, o € X(6), 
where 7 means a fixed faithful semi-finite trace on Ro 1 which is unique up to 

scalar multiples by positive numbers. It is straightforward to check that the one
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parameter automorphism group 6% of R scales the trace T, and extends the given 

one parameter automorphism group on the center C of R. Finally set 

R(6, 9) = R ge R. (1.4) 

By the structure theorem for factors of type III, [13], R(6,¢) is a factor of type 
IIT with core R except for the case that {C,R,0} = {L*°(R),R, translation} in 
which case R(6,¢) = Ro,1. Thus the flow of weights of R(6,p) is conjugate to 
the given flow {C,R,6}. The construction of R(6,¢) is canonical except for the 

dependence on the state ¢. So we need to look at the dependence of R(6,) on 

p € 8% = 8%(C). Choose another ¥ € &%. With f(z) = (2) (z),z € X(6), we 

have 
Sy(t, 2) = f(Fix)b,(2)f(2)7!, z€X(0); (15) 

Blt) = Ctog(f(Fi2)) © 0 0) © Aros @)s (7) € G(B). 
Therefore with &(y,,) = Jx0) Qlog(f(x)) d(x) € Aut(R), we have 

0) = agp o0f 0a, yn tER, p19 ey 
Typ = Top © Qy,0)5 (1.6) 

8(pp) = (pp) © Byp)s PY, € BL. 

It is easy to check that the canonical extension ay.) of Gy.) gives an isomorphism 
R(0,¢) onto R(6,1) and that the system {oye : ¥,¢ € G9} satisfies the chain 
rule. 

To establish the functoriality of the construction of R(8, ¢}, we need to get rid 

of the dependence on ¢. So set 

RO) =o ={z}e J] :2v =awn(@,), vpe&lo. (17) 
PESY 

We now move on to the question as to how the association of R(f) reacts 

to a conjugation of the flow 6. Let o be an element in Aut(C) and set 76, = 
gofi0o07t, teR. Then we have o(A(0)) = A(°6). The isomorphism o of A(6) 
onto A(?8) gives rise to a homeomorphism § : X (8) — X(°6), so that (¢(f))(z) = 
f(S™z),z € X (96), f € A(6). When we need to indicate the dependence of S on 
0, we write S(o) and observe that S(o1 0 02) = S(01) 0 S(02), 01,02 € Aut(C), 
i.e., S is covariant in o. The flow °F on X(°f) associated with ?8 is then given 
by: °F; = So Fy 087 1,t € R. The modules of G(°6) and G(6) are linked in the 
following way: 

6y(t, 8%) = byes (t,x), (1,2) € G(I) =Rx X(§),9 € &2. (1.8) 

Hence 

00 = (“0 say (£3) € G(O). 
Therefore the automorphism o of C extends to an automorphism 6 = oc ® id € 

Aut(C ® Ro,1) such that 

(0) =G06Y 0571, t eR; 

Typos = Tp 0G, 9h € GY; (1.9) 

5084) 08" = B(pog1 gos-1)s $Y € EL.
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The correspondence o € Aut(C) — & = 0 ® id € Aut(C ® Ro,1) obviously satisfies 
the chain rule: 

01002 =gy,003, 01,02 € Aut(C). (1.10) 

The conjugating map & is then canonically extended to an isomorphism, still de- 

noted by &, of R(8, 00) onto R(°8,) for each 9 € GY. The last equality in (1.9) 

allows us to define an isomorphism & of R(#) onto R(%6) by: 

d({zp}) = {0(xpoo-1)}, {zp} € R(D). (1.11) 

Let Erg(C,R) be the set of ergodic actions 6 of R on a separable abelian von 

Neumann algebra C which are not conjugate to L>°(R) with translation. 

Theorem 1.1 The correspondences 6 € Erg(C,R) — R(6) and o € Aut(C) — 
& define a functor from the category of ergodic flows to that of approximately finite 

dimensional, factors of type III such that the flow of weights of R(6) is conjugate 

to 0. In particular, if § € Erg(C,R) is fized, then the map: 0 € Auty(C) = {a € 

Aut(C) : a0, = 0; 0 a} — & € Aut(R(0)) is an injective homomorphism which is 
the right inverse of the module of R(0). 

Remark 1.2 The von Neumann algebra R(#) in Equation 1.7 is of course 
isomorphic to R(#, ¢) for any ¢ € GY; the construction is given solely to eliminate 

the identifications ay ,) of R(6, p) and R(8,v) as p and ¢ vary. 

It is possible to avoid this construction as follows. Fix ¢ € GY; it then follows 

from the above discussion that for any o € Aut(C), & is an isomorphism of R(6, poo) 
to R(76,¢), so that G © Ayes.) = Q(p,pee—1) © 7 is an isomorphism from R(6,¢) 

onto R(°8, ¢), and satisfles 

(01002) © Apo(51002),0) = F1 © Apoar g) © 02 © Agora p) (1.12) 
for 01 0 02 € Aut(C). Thus, with 6, = G © O(y00,,0), We Obtain a functor 8 € 

Erg(C,R) — R(0,p),0 € Aut(C) — &,,. 

Corollary 1.3 If R is an approximately finite dimensional factor of type III, 

the short exact sequence 

1 — Int(R) — Aut(R) — Aute(C) — 1, (1.13) 

is split, where {C,R, 8} is the flow of weights of R. 

2 Inverting the Stable Range Map 

To set notation, we first recall the construction of the stable range or Poincaré 

fiow of an ergodic action of a discrete group G on a standard measure space (X, us). 

We write p 
pog = log —=2 2.1 plg,z) = log = (z) (2.1) 

and observe that p satisfies the cocycle identity 

p(gh,u) = p(g, hz)p(h,z) ae. in z for gh eG. (2.2) 

The group G acts on (X, i) = (X x R, uu x edt) via the maps 

(x,t) -_— (gz,t — p(g,T)), ge G; (2.3)
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evidently, this action of G commutes with the action of R defined on (X , 1) by 

Ss: (x,t) — (x,t +3), seR, (24) 

and hence defines an action {6; : t¢ € R} of R on the algebra C, of G-invariant 

elements of L>(X, i). This action {C,,6;,R}, or any of its point realizations, is 

called the Poincaré flow of the original action of G on (X, it), or the stable range 

(of the Radon-Nikodym cocycle) - see [12] for an equivalent discussion of terms of 

groupoids. 

If v is another measure on X equivalent to py, and 

dv 
z)=log | —(z 2.5 1) = tog (0) (25) 

then the map W, , on X x R 

Wou(z,t) = (z,t + f(z) (2.6) 

carries fi to U, commutes with the action {S; : t € R} in (2.4), and intertwines 

the action of G on (X, ft) and (X,7). Consequently W, ,, defines an isomorphism 

wy yu : Cy — C, which intertwines the two Poincaré flows. Since wy, ow, = wa 4, 

for any equivalent measures A, v, pu on X, the flows {C,,,0;,R} are all isomorphic in 

a coherent manner. In addition, if H is another countable group acting on (Y,v) 

and A is an orbit equivalence from G on (X, pu) to H on (Y,v),sothat A: X —»Y 

is a Borel isomorphism, carries G orbits to H orbits and px to v (or, more correctly, 

to a measure equivalent to v), then the map A: X — Y defined by 

A(x, t) = (Az, t) (2.7) 

carries G orbits on X to H orbits on Y, [i to 7, and intertwines the R-actions on 

(X, i) and (Y, 7). This then gives rise to an isomorphism a of the flows (C,,0,,R) 
and (C,, 6;, R) which depends covariantly on A. 

In summary, we have 

Theorem 2.1 The construction of the stable range flow is a functor from 

the category of (ergodic) actions of discrete groups on standard measure spaces, 

with orbit equivalence as morphisms, to the category of (ergodic) flows on standard 

measure spaces with measure-class preserving conjugacies as morphisms. 

The case where G = Z is of particular interest. The remainder of this section 

will be devoted to proving 

Theorem 2.2 There is a functor from the category of ergodic flows on standard 

measure spaces with measure class preserving conjugacies as morphisms to ergodic 

tranformations with measure class preserving conjugacies as morphisms which is a 

right inverse to the stable range construction. 

Note that, rather surprizingly, the morphisms between transformations are con- 

jugacies rather than merely orbit equivalences. 

The proof is somewhat analagous to that of Theorem 1.1, but carried out at 

the measure space level. To do so, we first need some auxilliary constructions. 

Let Zs = Z/5Z be the cyclic group of order 5, and let X = ZY = []2, Zs; 
be the cartesian product space. Let ;, B2, B3 and (3; be positive numbers
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such that log 81, log B2, log Bs and log (3; are rationally independent. Let a = 

(ag, 1, 2, 23, tq) be the probability distribution on Zs determined by 

Bi = o—1/ 0, i= 1, 2, 3,4, (2.8) 

and let 
[eo] 

P=]? (2.9) 
i=1 

be the product measure on X. The odometer transformation T is defined as follows. 

For x = {z;} € X, let io(z) be the first index ¢ such that z; # 4. Then we set 

0, 1 <i <ip(x), 

(Tz); = +1, i= io(z), (2.10) 

Ti, i> io(x) . 

In the above definition of (T'z);, 40(z) can be infinite. In this case, z; = 4 for 

every i € N. Except for this isolated case, we have x; = (Tz); for large enough 

i € N. Since the measure P on X is non-atomic, we can exclude the point zg = 

(4,4,...,4,...) and its orbit {T"zo : n € Z} from X. 

Lemma 2.3 There exist Z-valued Borel functions n;(z), i = 1,2,3,4, such 

that 
dPoT © Sr (z) = B®) gale) gra@gna® ae re X. (2.11) 

These functions n;’s do not depend on the choice of B;’s as long as the log 3;’s are 

rationally independent. 

Proof Fix an z € X. Let Ax = (z1,%2,...,%k) X [1541 Zs be the cylinder 

set determined by the first k coordinates of z. We then have 

k k 

P(A) = [J ee; PTA) = [] era), - 
j=1 j=t 

For each j, we have 

1 if > do(z); 
Oy, ee 

pom = B(Tz); if j= io(x); 
x) . . . 

’ B1B2fBaBs if J <io(x). 

Therefore, there exist Z-valued functions n1(z),...,ns(z) such that 

P(TAx) _ TT gmi(a Play) = 11 8; for large k. 

Then we have 

4 4 

pray) = Pa TL 00 = [ T] 8 apia). 
i=1 Ar j=1
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Since these A’s are closed under finite intersections and generate the Borel field 

of X, we conclude that T leaves the measure P quasi-invariant, and that 

dPoT - ni (x) 
“dP (z) = 11 pit 

i=1 

In the above proof, the functions n;(z), 1 <i < 4, do not depend on the choice 

of 3;’s, so that they are intrinsic to the odometer. O 

We now let H be the group of all finite permutations on N, i.e. the group 

of permutations on N which change only a finite number of elements of N. We 

then let H act on X in the canonical way, i.e., if g € H, then (gx); = x41; for 

z = {z;} € X. We observe that H C [T], the full group of T, and H leaves the 
measure P invariant. 

Lemma 2.4 Let x € X. If k is a positive integer such that T*(z) is a finite 
permutation of x, then we have 

k—1 

D> ni(T(x))=0 for i=1,2,3,4. (2.12) 
j=0 

Proof Choose h € H with h(z) = T*(z). For j = 0,1,...,k, T?x differs 
from z in only a finite number of coordinates, so that there exists n € N such that 

(Tz); = x; for every j > n. Set 

ox 

Ao = (21,2, yn) Xx II Zs, 

n+1 

A; =T7(Ao), 37=0,1,....k. 

Then we have 

P(A341) _ TT aT @) ; ————  — G8; 5 i=0,1,....,k—1. 

P(4;) 11 ' 

Since P(Ag) = P(h(Ap)) = P(Ay), we have 

k—1 4 
l= P(A) _ 11 P(Aj41) _ II gi maT (=) 

Since 83;’s are multiplicatively independent we obtain the formula (2.12). O 

Let {, u, F;} be a properly ergodic flow on the standard measure space {Q, pt}. 

Set 
dp oF 

p(t,w) = “ Ww), (tw)eRxQ. (2.13) 

We further introduce notations: 

{ a(z) = ni (z) log B1 + n2(z) log Ba, (2.14) 

b(z) = n(x) log B3 + na(z) log Bs, z€X. 

We now prove a result which is the key step in proving Theorem 2.2.
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Theorem 2.5 Let {T,X,P} and {F;,Q, pu} be as above. Then the flow 

{F;,Q, u} is the Poincaré flow of the following ergodic single transformation S 

on the space {X x 2 x R,P@ pu ® e* ds}: 

S(z,w,r) = (Tz, Foz) (w), 7 + log p(a(z),w) + b(z)) - (2.15) 

Proof LetY = X x 2 xR and dv = dP ® du ® e *ds. To find out the 

Poincaré flow of S, we set 

= dvoS - 
S(y,t) = { Sy,t + log —— (yt) eY xR=Y, (y,1) ( ys + log — w) (y,1) (2.16) 

dir(y,t) =dv®e dt. 

Let A be a cylinder subset of X: 

A= (21,225. ..,%n) x II Zs , 

n41 

such that some z;, 1 <j <n, is less than 4, so that n,(z), 1 <7 < 4, are constant 

on A. Let a = a(x) and b = b(z) for all x € A. Set 

{ Zap(w,r) = (Faw, + logp(a,w) +b), (w,r) € 2 xR, (2.17) 

dip =du®e "dr. ’ 

It then follows that Zg; is the composition of a measure preserving transformation 

and the translation which scales the measure by eb. Thus Z,; scales the measure 

[i by the factor e~®. For any Borel set C C Q = Q x R, we have 

USA % ON) = [ Xstaser(®) ds) = [ Xaxe(570) dirty) 

= [| xaxolF-ae).r + logp-a,w) ~b) dv(a,er) 
XxQ 

= /. xr(a)(z) dP(z) / XZap(c)(W,T) dfi(w,T) 

= P(T(A))i(Za(C)) =e P(A)e™" i(C) 
=e*P(A)i(C) = / e*® du(y). 

AxC 

Since the collection of such A x C is closed under finite intersections and generates 

the o-fleld of Borel sets in Y = X x §2, we conclude that 

d ~ 
BOS (y) = ee, (z,o)=yeY =Xx0. (2.18) 

Hence we have 

S(z,w,r,t) = (S(z,w,7),t + a(x), (z,w,1,t) € Y. (2.19)
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For each h € H, let k(h, x), or simply k(z), be the integer valued function such 

that hz = T*®)z, z € X. For abbreviation, set 

k . 

stk,z) = a(T?x) k>0, 
i=0 

k . 

tk,z) => b(T’z). 
§=0 

If k(z) = k(h,z) > 0, then we have 

85 (2,00,7, 8) = (SK) (2, 0,7), t + s(k(z) — 1,3) 
By Lemma 2.4, we know s(k(x) — 1,2) = 0 and t(k(z) — 1,2) = 0, so that 

SE) (2, w, 7, t) = (8%) (z,w,7),1). 

Furthermore, we have 

SKE (z, Ww, T) = (TF) zw, T+ log p(s(k(z) -1, w)) + t(k(z) -1, z)) = (hz, w, 7) : 

If k(x) = k(h,z) < 0, then we consider h~! applied to h(z) to conclude that 

55) (gw, r,t) = (ha, w, Tt). 

Therefore, the full group [3] of § on Y contains the subgroup H xid on X x OxR = 

Y. Hence any S-invariant measurable subset of Y is of the form X x B for some 

measurable subset B C © x R x R, which is invariant under the transformation: 

(w, r,t) + (Fo(e)(w), 7 + log p(a(z), w) + b(z),t + a(z)) 

for all z € X. 

In X, the following four sets all have nonzero measure: 

{re X:a(x)=logh and b(z)=0} 

{ze X :a(x)=1logBs and b(z)=0} 

{reX:a(x)=0 and b(z)=Ilogpls}; 

{re X:a(x)=0 and b(z)=logfls}. 

Therefore, the above set B must be invariant under the transformations: 

(w, 7,1) => (Faw, + log pla,w) + b,¢ + a) 
for all a € G; and b € Gg, where G; and G3 are the subgroups of R generated by 

log B31, log 82 and log Bs, log Bs respectively. Since these subgroups are both dense 

in R, there exists a measurable subset C' C 2 x R such that 

B={(w,nt) eAxRxR: (wt) eC} 

and C is invariant under the transformations: 

R, : {(w,t) — (Fow,t +a), a€Gy. 

The density of Gy in R implies that C is invariant under the flow 

R,: (w,t) — (Fw,t +s), seR. 

We now define 
W(w,t) = (Fiw,t).
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Then we have 

WRW  (w,t) = (w,t +5). 

Therefore W(C) is invariant under idx translation on @ x R. Hence, with 
W(z,w,r,t) = (z, Fw, rt), we have 

WL2Y)SW=C® LQ, eC&C, 

where we view W as a unitary on L(Y). Tt now follows that the associated flow 
of § is conjugate to F under W. [OO 

To complete the proof of Theorem 2.2, we need to consider the effects of con- 

jugacies of flows. So consider ergodic flows {F;,Q, pu} and {G;,T,v} and suppose 

0: (Qu) — (I'v) is a measure space isomorphism with 8 o Fy = G; 0 8 for all ¢t. 
Let 

(0) =X xQUxR, Pxpxe td) 

and analogously for (T, 7); also let Sr, Sc be the transformations on (Q, 1) and 

(T, 7) as in Equation 2.15, and define 8 :  — I" by 

~ dvof 
B(x, w,r) = (z,0w,r + log “gp (2.20) 

Lemma 2.6 With notation as above, we have 

(a) pr (t, w) 42 (Faw) = pat, Ow) 428 (w) a.e. for each t; 

(b) Sr = Sq; 

(c) 8 depends covariantly on 6. 

Proof 

(a) follows routinely from the Radon-Nikodym Theorem 

(b) We calculate 

80 Sp(z,w,r) = (Tz,0Fyq)(w),r + b(z) + log pr(a(z), w) 

dvod 
log ———(F, + log du ( a(z)(w))), 

while 

Sch(z,w,r) = (T2,Gomyf(w),r + b(z) + log pc (a(x), O(w)) 
dro 

log ——— . +log— (w)) 

The equality of these two expressions follows from a) and the assumption 

that 8 o Fy = Go 8 for all ¢. 

(c) is routine, and left to the reader. O 

Remark 2.7 With Lemma 2.6, the proof of Theorem 2.2 is complete. We 

also note that composing Theorem 2.2 with the group measure space construction, 

which is known to be covariantly functorial for orbit equivalences, yields an alternate 

proof of Corollary 1.2.
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