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1 Introduction

I have described elsewhere (cf. [S2] – [S5]) an attempt to axiomatize
quantum field theory in a form suggested by path-integrals Wick-rotated to
Riemannian space-time manifolds. In this approach, roughly speaking, a
d-dimensional theory is defined as a rule which

(i) associates a complex topological vector space HY to each compact
oriented Riemannian manifold Y of dimension d−1, functorially with respect
to diffeomorphisms Y → Y ′; and

(ii) associates a trace-class operator UX : HY0 → HY1 to each oriented
Riemannian cobordism X from Y0 to Y1.

These data are constrained to satisfy two axioms:

(a) “concatenation”, i.e.

UX′◦X = UX′ ◦ UX

when X ′ ◦ X is the cobordism from Y0 to Y2 obtained by concatenating X
from Y0 to Y1 with X ′ from Y1 to Y2; and

(b) “tensoring”, i.e. we are given associative natural isomorphisms

HY ⊗HY ′
∼=→ HY tY ′

UX ⊗ UX′ = UXtX′
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when we have disjoint unions Y t Y ′ or X t X ′ of (d − 1)-manifolds or
cobordisms.

From the start it was clear that the structure just described is not quite
rigid enough to encode what is usually meant in physics by a quantum field
theory: what seemed to be lacking was some prescription of how the depen-
dence of the state-space HY on Y is local with respect to Y . The aim of the
present work is to propose a suitable prescription, and to justify it in the
case of a free massive boson theory in an arbitrary gravitational background,
and also for a class of two-dimensional conformal field theories including the
WZW models. I shall say a little more about what one can hope to do with
the new proposal, and where it comes from, at the end of this introduction.

The words “roughly speaking” before the definition above refer1 to the
fact that HY should really be associated, not to a compact (d− 1)-manifold
Y , but rather to a germ of a Riemannian d-manifold along Y , i.e.

HY = HY,U ,

where U is an open Riemannian d-manifold containing Y , but HY,U = HY,U ′

if Y ⊂ U ⊂ U ′. Without this modification the definition of a field theory
does not really make sense, for there is no canonical smooth structure on a
concatenation of cobordisms.

In practice HY,U will depend only on Y and a certain number of nor-
mal derivatives of the metric of U along Y . In the examples I know,

[
d−1
2

]
normal derivatives are needed. Thus no normal information is needed for
2-dimensional theories2, but for 4-dimensional theories we need not only the
metric (or “first fundamental form”) of Y but also its “second fundamen-
tal form” in U , i.e. the usual Cauchy data of general relativity. The fact
that we seem to need more than one normal derivative in dimensions greater
than four may perhaps be related to the difficulty of constructing interesting
theories in these dimensions.

1One also needs to say something about the class of topological vector spaces and
the notion of tensor product to be considered; but, as I have explained elsewhere (e.g.
[S4],[S5]), these questions turn out to present no problems. Briefly, HY is really a pair
ȞY , ĤY of topological vector spaces with an injective map ȞY → ĤY with dense image,
just like, for example, the smooth functions and distributions on a manifold. If Ȳ is Y
with reversed orientation, we have (ȞY )∗ ∼= ĤȲ and (ĤY )∗ ∼= ȞȲ .

2This is assuming that Y is smooth. If Y is allowed to have corners we shall see in §4
that the space HY,U is sensitive to the angle at the corners.
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The dependence of HY on the germ of the metric of U is important in
connection with unitarity. The theories we shall consider are unitary. This
is usually taken to mean that we have a canonical isomorphism

H̄Y → HȲ

from the complex-conjugate vector space ofHY to the vector space for Y with
reversed orientation. (As HȲ is automatically dual to HY for any theory,
this gives us a hermitian inner product on HY .) But we must remember that
reversing the orientation of Y really means interchanging the “in” and “out”
sides of the collar U of Y , and so we do not expect H̄Y

∼= HȲ unless there
is an orientation-reversing reflection of U , with Y as its fixed points, which
preserves whatever normal data along Y is required to define HY . Thus HY

will not necessarily be a Hilbert space even in a unitary theory.

In fact it is natural to enlarge somewhat the class of allowed manifold-
germs (Y, U). Although U must be a Riemannian manifold, we do not need
Y to be a smooth submanifold: we can permit it to be any subset of U
of the form Y = f−1(0), where f : U → R is a proper smooth map for
which 0 is either a regular value (in which case Y is a submanifold) or else an
isolated critical value. Thus Y might have the singularites of the level-set of a
Morse function at a critical level, or it might be the boundary of a curvilinear
d-simplex smoothly embedded in Rd.

What does it mean to say that the vector space HY depends locally on Y ?
If Y is the union of two pieces Y1 and Y2 which are (d− 1)-dimensional man-
ifolds with boundary which intersect in their common boundary Z, then a
too naive idea of “second quantization” might lead one to hope for naturally-
defined vector spaces HY1 and HY2 such that HY

∼= HY1 ⊗ HY2 . (For the
Hilbert space L2(Y ) of L2 functions on Y we have L2(Y ) = L2(Y1)⊕ L2(Y2),
so the completed symmetric algebra S(L2(Y )) obeys

S(L2(Y )) ∼= S(L2(Y1))⊗ S(L2(Y2)).)

But that is not what happens even for field theories of non-interacting par-
ticles.

It is more reasonable to expect that if we enlarge Y1 and Y2 slightly, to
manifolds Y +

1 and Y +
2 , say, which overlap in a tubular neighbourhood of

Z, then we can reconstruct HY from vector spaces HY +
1

and HY +
2

together
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with some gluing data which involves only the neighbourhood of Z. We
shall prove that this happens in some basic examples. Roughly, we shall
assign an algebra AZ to Z, and shall find that HY +

1
and HY +

2
are right- and

left-AZ-modules and that

HY
∼= HY +

1
⊗AZ

HY +
2
.

But this is still not quite right. We shall need to adapt to our purposes a
more subtle notion of tensor product introduced by Connes ([C] Chap.5) for
modules over von Neumann algebras.

The general framework into which these results fit is what I have called
a 3-tier quantum field theory. Such a theory has three layers of data:

(o) to each compact oriented Riemannian (d−2)-manifold Z is associated
a linear category CZ ;

(i) to each (d− 1)-dimensional Riemannian cobordism Y from Z0 to Z1

is associated an additive functor HY : CZ0 → CZ1 ;

(ii) to each d-dimensional Riemannian cobordism X from Y to Y ′, where
Y and Y ′ are cobordisms from Z0 to Z1, is associated a transformation of
functors UX : HY → HY ′ .

As with the earlier definition, the data are required to satisfy two axioms
of concatenation and tensoring. Schematically, at least, one way to give the
data is to associate an algebra AZ to each (d− 2)-manifold, and to take CZ

to be the category of left-AZ-modules; then to a cobordism Y is associated
an AZ1-AZ0-bimodule HY , which defines a functor CZ0 → CZ1 by

E 7→ HY ⊗AZ0
E ;

and to a cobordism between cobordisms is associated a homomorphism of
bimodules. Theories in the earlier 2-tier sense fit into the 3-tier definition by
restricting to closed (d− 1)-manifolds, which can be regarded as cobordisms
from the empty (d−2)-manifold ∅ to itself. The tensoring axiom implies that
C∅ is the category of vector spaces, and since any additive functor C∅ → C∅
is given by tensoring with a vector space, we can identify HY with a vector
space when Y is closed.
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The 3-tier definition as just presented is too vague for any but heuris-
tic purposes. How does one tensor linear categories? The only fairly well-
understood example of the structure is 3-dimensional Chern-Simons theory
for a compact group G (at some chosen level k). This is essentially a topo-
logical field theory, and the category CZ associated to a closed 1-manifold
Z is the category of positive-energy projective unitary representations (of
level k) of the group of smooth maps from Z to G, which is a product of loop
groups. This category is of the same size as the category of finite dimensional
representations of a finite group, and so no infinite dimensional analysis is
needed to handle it: there is no difficulty in interpreting the category CZ1tZ2

as CZ1⊗CZ2 . The point of this paper is to treat more traditional field theories
which are sensitive to the metric of space-time.

Just as the vector space HY of a 2-tier theory is actually associated to a
germ (Y, U) of a d-manifold along Y , so the category CZ which a 3-tier theory
associates to a (d− 2)-manifold depends on a germ (Z,U) of a Riemannian
d-manifold along Z. In the version I shall describe, it depends in addition
on a germ of a (d − 1)-manifold along Z contained in U — i.e. we have a
category CZ,V,U , where V is a closed (d − 1)-dimensional submanifold of U
which contains Z. It will be a category of ∗-representations of an algebra
AZ,V,U which for the moment we can think of as a von Neumann algebra.

A very interesting thing happens when we rotate the (d − 1)-manifold
V around Z inside U . If V and V ′ are two transversal choices then there
is a natural functor CZ,V,U → CZ,V ′,U , induced by a densely defined homo-
morphism of algebras from AZ,V,U to AZ,V ′,U , or, better, by a bimodule for
these algebras. In the case when the normal structure of Z in U is trivial,
i.e. U = Z ×R2, and we consider the natural choices Vθ = Z ×Lθ, where Lθ

is the line in R2 making an angle θ with the x-axis, then we get a family of
algebras Aθ which are all canonically isomorphic, and the morphisms from
Aθ to Aθ′ are precisely the Tomita-Takesaki flow3 which plays a central role
in Connes’s theory of von Neumann algebras.

There are several kinds of applications one can hope to make of these
locality results. My own main motivation has been to find a strengthening of

3The Tomita-Takesaki flow on a von Neumann algebra A is usually described as a
1-parameter group of ∗-automorphisms {αt : A → A}t∈R. But on a dense suspace of
A we can continue αt analytically to purely imaginary values t = iθ. These unbounded
automorphisms are what arise here.
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the definition of a quantum field theory which will enable one to prove that —
as all physicists assume as a matter of course — any infinitesimal deformation
of the theory is given by a “field” in the theory. I am fairly confident that
the present structure achieves this, at least for two-dimensional theories.

Another potential application is to the geometrical understanding of ellip-
tic cohomology: here my approach is very close to that of Stolz and Teichner
(cf. [ST],[S2]), and I have profited greatly from discussions of the subject
with them.

A third kind of application is to the Verlinde theory of the fusion of
representations of loop groups — i.e. to 3-dimensional Chern-Simons theory
and its relations to the WZW model. The work of Wasserman [W] on this
subject was what started me thinking along the present lines, and I am
indebted to him for many helpful explanations, and in particular for bringing
the paper [LRT] to my attention.

I hope to say more about all three applications elsewhere.

The plan of this paper is as follows.

Section 2 describes the state space for free bosons, and explains the nature
of the problem to be solved.

Section 3 defines Connes’s tensor product in a form adapted to our needs.
In fact we shall not need to mention von Neumann algebras at all, though
the ideas all come from the study of them.

Section 4 illustrates the use of the tensor product for “fusing” representa-
tions of loop groups, and the geometric significance of the Tomita-Takesaki
flow. We begin with loop groups because the method is particularly simple
and clear when applied to them. This section is essentially a reworking and
extension of some of the results of Wasserman [W].

Section 5 treats the case of free massive bosons, which is our main focus
of interest.

Section 6 collects some results about representations of infinite dimen-
sional Heisenberg groups which have been used earlier. These are all in
principle well-known.
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2 The space HY for free massive bosons

The state-space of the theory of free massive bosons can be described very
explicitly in a way that makes the question of its locality easy to understand.
A classical boson field on a space-time X is a smooth map φ : X → R. Its
classical action is

S(φ) =
1

2

∫
X

(dφ ∗ dφ+m2φ ∗ φ),

where m is the mass, and ∗ is the Hodge star-operator of the metric of X.
The classical solutions — the critical points of S — are the fields that satisfy
(∆X + m2)φ = 0, where ∆X is the Laplace operator of X (taken to be a
positive operator in the Riemannian case). The Hilbert space HY , for a
spatial (d−1)-manifold Y , is the quantization of the symplectic vector space

ΣY = Ω0(Y )⊕ Ωd−1(Y ),

which is the space of Cauchy-data for a classical solution in a neighbourhood
of Y . (The Cauchy data consists of φ|Y and its normal derivative ∂φ/∂n =
(∗dφ)|Y .) The symplectic form is the obvious hyperbolic one coming from
the duality between Ω0(Y ) and Ωd−1(Y ). Formally, therefore, we expect the
Hilbert space HY to consist of the L2-functions on Ω0(Y ). Furthermore, if
Y is the boundary of a Riemannian manifold X, there should be a function
ΨX in HY whose value on f ∈ Ω0(Y ) is the path-integral

ΨX(f) =

∫
ΦX,f

exp{−S(φ)}Dφ,

where the integral is over the space ΦX,f of all φ : X → R such that φ|Y = f .
Calculating formally, we find that, up to multiplication by a constant, ΨX is
given by

ΨX(f) = exp{−1

2
〈f, AXf〉},

where AX : Ω0(Y ) → Ωd−1(Y ) is the positive self-adjoint operator which
associates to f the normal derivative along Y of the unique solution φ of the
Dirichlet problem (∆X +m2)φ = 0 on X with boundary value f .

For any real topological vector space V we can construct a candidate
L2

q(V ) for the Hilbert space L2(V ) whenever we have a positive-definite
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quadratic form q : V → R. It is obtained by completing the vector space
FV of functions on V of the form v 7→ p(v)e−

1
2
q(v), where p : V → R is a

polynomial function which is a sum of terms of the form

v 7→ q(ξ1, v) . . . q(ξk, v)

with ξ1, . . . , ξk ∈ V . (Here q denotes the symmetric bilinear form such that
q(v, v) = q(v).)

There is a positive inner product on FV defined using the standard for-
mulae of Gaussian integration, normalized so that the “vacuum” function
Ψq = e−

1
2
q(v) has norm 1. The Hilbert space completion of FV is L2

q(V ). (The
elements of the completion, however, cannot be interpreted as functions on
V .)

The Heisenberg group generated by affine translations in V and multipli-
cations by functions of the form v 7→ eiq(ξ,v) acts on L2

q(V ) by an irreducible
unitary representation (cf. [S1]). The vector Ψq is a smooth vector for this
representation, i.e. the map Heis(V ⊕ V ) → L2

q(V ) given by g 7→ gΨq is
smooth, and even extends to a holomorphic map from the complexification
Heis(VC ⊕ VC) to L2

q(V ). Because Ψq is a smooth vector we can act on
it with arbitrary monomials in the elements of the complexified Lie alge-
bra of Heis(V ⊕ V ). A crucial fact for us will be that, as a representation
of Heis(VC ⊕ VC), the Hilbert space L2

q(V ) is characterized up to canonical
isomorphism by the existence of the smooth cyclic vector Ψq which is anni-
hilated by the action of the elements v ⊕ iv of the complexified Lie algebra
for all v ∈ V .

The important question for us is how L2
q(V ) depends on q. This is an-

swered by a classical theorem [G].

Theorem 2.1 There is a canonical isomorphism L2
q(V ) → L2

q′(V ), compat-
ible with the action of the Heisenberg group, precisely when q−1 ◦ q′, regarded
as a linear map V → V , differs from the identity by a trace-class operator.
The isomorphism is not quite an isometry: it multiplies all inner products by
det(q−1 ◦ q′).

For a compact oriented (d−1)-manifold Y we shall define the state-space
HY of bosonic field theory essentially as L2

q(V ) with V = Ω0(Y ). We must
choose a quadratic form q. If Y is contained in a closed manifold X which
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it divides into two pieces X1 and X2, then a particular choice qX is provided
by the operator4

AX =
1

2
(AX1 + AX2),

where AXi
: Ω0(Y ) → Ωd−1(Y ) are the positive isomorphisms described

above. The resulting space L2
qX

, which is an irreducible representation of
the Heisenberg group GY = Heis(ΣY ) of the symplectic vector space ΣY , is
spanned by elements

α1 . . . , αkΨX ,

where αi ∈ Ωd−1(Y ), and ΨX is the Gaussian function defined by qX . The
inner product

〈α1 . . . αkΨX , αk+1 . . . αmΨX 〉
is a sum of products of terms 〈αi, BXαj〉, where BX = A−1

X is a pseudo-
differential operator of order −1 on Y . This means that

〈αi, BXαj〉 =

∫
Y×Y

αi(x)kX(x, y)αj(y) dx dy,

where kX(x, y) is an integral kernel on Y × Y which is a smooth function
outside the diagonal, but is singular on the diagonal. The germ of kX along
the diagonal is determined up to the addition of smooth functions by the
complete symbol of the pseudo-differential operator AX1 + AX2 , which in
turn can be calculated locally from the Riemannian metric of Y and its
transverse normal derivatives in X of all orders — the formulae are given in
[H]. This has two consequences.

(i) Up to rescaling its inner product, the Hilbert space L2
qX

(Ω0(Y )) de-
pends only on the germ of X along Y .

(ii) We do not need to assume that Y is a boundary: any Y sits inside
its own collar neighbourhood X, and divides it into two parts X1 and X2.
We can still define isomorphisms AXi

: Ω0(Y ) → Ωd−1(Y ) by φ 7→ (∗dfi)|Y ,
where fi is the solution of (∆X + m2)fi = 0 on Xi with boundary values φ
on Y and 0 at the outside end of Xi.

An important point arises here. Unless A−1
X1
◦AX2−1 is of trace class, the

functions ΨX1 and ΨX2 on Ω0(Y ) do not lie in the Hilbert space HY : instead

4The operator AX1 + AX2 is sometimes called the “Neumann jump operator”.
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they lie in distinct spaces of functions FXi
generated by the Gaussian func-

tions defined by AXi
. These spaces should be completed to a pair of nuclear

topological vector spaces which are in duality; but they are not isomorphic
to each other, and not Hilbert spaces. For the purposes of this paper we shall
not need to pursue this point. It will be enough to confine ourselves to the
case when there is a nice reflection across Y , and HY is the Hilbert space we
have just defined.

To construct bosonic field theory we still need to normalize the inner
product of HY . The positive operators AXi

are of the kind5 which have
ζ-function determinants detζ(AXi

), and these have the property

detζ(A
′) = det(A−1A′) detζ(A),

when A−1A′ is of the form 1 + (trace-class) and so has a “naive” determinant.
We can therefore renormalize the inner product in L2

qX
(Ω0(Y )) so that

‖ΨXi
‖2 = detζ(AXi

)−1/2,

and then HY is well-defined just by the choice of the germ of X along Y . I
shall refer to [S5] for the proof that in this way we do indeed get a quantum
field theory in the sense of my definition.

We can now see clearly to what extent HY is local in Y . We constructed
HY by completing the symmetric algebra S(Ωd−1(Y )) using an inner product
derived from the bilinear form defined by BX on Ωd−1(Y ). Suppose now that
Y = Y1 ∪ Y2, as envisaged in the introduction. If we could decompose the
completion of Ωd−1(Y ) as the sum of two orthogonal pieces associated to Y1

and Y2 — in the way that we can write L2(Y ) = L2(Y1)⊕ L2(Y2) — then we
could factorize HY as a tensor product, just as

S(L2(Y )) ∼= S(L2(Y1))⊗ S(L2(Y2)).

But the operator BX is not a differential operator, and so its distributional
kernel kX cannot be supported exactly on the diagonal in Y × Y . We can,
however, change it by an operator with a smooth kernel without changing
HY , to an operator whose kernel vanishes outside an ε-neighbourhood of the
diagonal, for arbitrarily small ε. For the resulting inner product on Ωd−1(Y )
the completion nearly — but not quite — decomposes as the sum of the

5See [S5] for a fuller discussion of this.
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completions of Ωd−1
0 (Y1) and Ωd−1

0 (Y2), where Ωd−1
0 (Yi) denotes the elements

whose support stays a distance ≥ ε/2 from the boundary of Yi.
Let us restate this in the traditional language of “field operators”. We

write the action of α ∈ Ωd−1(Y ) on HY as∫
α(y)φy dy,

where y 7→ φy is an “operator-valued distribution” on Y , and, similarly, we
write the action of f ∈ Ω0(Y ) as∫

f(y)
.

φy dy,

where y 7→
.

φy is an operator-valued distributional (d−1)-form on Y . Then if
kB is the distributional kernel of an operator B : Ωd−1(Y ) → Ω0(Y ) suitably
close to A−1

X there is a corresponding Gaussian element ΨB ∈ HB such that

〈ΨB , φyφy′ ΨB〉 = kB(y, y′).

The “vectors” φy1φy2 . . . φyk
ΨB — which actually make sense only when

“smeared” in y1, . . . , yk — then span HY , and by choosing kB with support
in an ε-neighbourhood of the diagonal we can assume that φy1φy2 . . . φyk

ΨB

is orthogonal to φy′
1
φy′

2
. . . φy′

m
ΨB if the distance from yi to y′j is greater than

ε for all i, j. We should beware, however, that

〈ΨB ,
.

φy

.

φy′ ΨB〉 = k̃B(y, y′),

where k̃B is the kernel of B−1, and we cannot assume that kB and k̃B are
simultaneously localized in a neighbourhood of the diagonal. That would
contradict the following version of the Reeh-Schlieder theorem. To state it,
recall that HY has a canonical dense subspace ȞY which consists of the
images of all operators UX1 : HY1 → HY , where X1 is a half-collar of Y ,
regarded as a cobordism from Y1 to Y . The vector ΨB chosen above will
belong to HY .

Proposition 2.2 If U is an open subset of Y , and Ψ ∈ Ȟ, then the
Hilbert space HY is spanned by the orbit of Ψ under the subgroup GU of the
Heisenberg group GY consisting of elements with support in U .
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Equivalently, HY is spanned by the “vectors”

ψy1ψy2 . . . ψyk
Ψ

with y1, . . . , yk ∈ U , where each ψyi
is either φyi

or φ̇yi
.

Proof The essential point (see [S3], [S5]) is that the vector-valued dis-
tribution y 7→ φyΨ is the boundary-value of an actual smooth function
x 7→ φxΨ = Φ(x) which is defined in the interior of the cobordism X1 and
satisfies the classical field equation (∆X +m2)Φ = 0. Suppose that there is
some non-zero η ∈ HY such that

〈η , ψy1ψy2 . . . ψyk
Ψ〉 = 0

for all y1, . . . , yk ∈ U . Thinking of the left-hand side as a distributional
“function” of yk, first when ψyk

= φyk
and then when ψyk

= φ̇yk
, the pre-

vious remark shows that for yk in a small neighbourhood of any point of
U − {y1, . . . , yk−1} the two distributions are the boundary-value and the
boundary-normal-derivative of a solution of the classical field equation which
is smooth in the interior of X1. Because the classical equation is elliptic, a
solution vanishes in all of X1 if its Cauchy data vanish in any open sub-
set of the boundary. It follows that the inner-product above vanishes for all
yk ∈ Y −{y1, . . . , yk−1}. Applying the same argument to the other yi, we find
that the inner-product vanishes for all sets of distinct points y1, . . . , yk ∈ Y ,
which is a contradiction. ♠

In the next section we shall describe the theory of Connes which will
enable us in §5 to refine the preceding discussion to prove a precise locality
theorem.

3 The Connes tensor product

In understanding the Connes tensor product the following example seems
to me very helpful.

Let E be a smooth complex vector bundle equipped with a hermitian
inner product on a compact manifold M . We can form a Hilbert space
L2(E) by completing the space of smooth 1/2-density sections of E — i.e. of
smooth sections of E ⊗ ω1/2, where ω is the volume line bundle on M — in
its natural inner product. This Hilbert space is a module over the algebra
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A = C∞(M) of smooth functions on M . Now let F be another such vector
bundle on M . We should like a notion of tensor product of A-modules which
produces L2(E ⊗ F ) from the A-modules L2(E) and L2(F ).

There are two different reasons why there is no natural bilinear map
L2(E)×L2(F ) → L2(E ⊗F ). First, the product of two L2 functions belongs
to L1 rather than to L2. But, more fundamentally, the product of two 1/2-
densities is a density and not a 1/2-density. Now the line bundle ω1/2 can
be encoded as the A-module H = L2(M). Furthermore, it is clear6 that the
space of A-module homomorphisms from H to L2(E) is the space L∞(E),
and similarly for L2(F ). There is a natural linear map

L∞(E)⊗A H⊗A L∞(F ) → L2(E ⊗ F ),

given by pointwise multiplication, where the tensor product on the left is the
usual algebraic tensor product. The right-hand side can now be obtained by
completing the left-hand side with respect to the inner product defined by

〈e1 ⊗ λ1 ⊗ f1, e2 ⊗ λ2 ⊗ f2〉 = 〈λ1, 〈e1, e2〉〈f1, f2〉λ2〉,

where on the right 〈e1, e2〉 and 〈f1, f2〉 denote the pointwise inner products,
which, being L∞ functions on M , act as operators on H. (To see that the
right-hand side is indeed the completion of the left, it is enough to observe
that the map preserves the inner product, and that its image is dense.)

The important thing to bear in mind is that whereas for the usual tensor
product of modules we have

(sections of E) ⊗ (sections of F ) = (sections of E ⊗ F ),
for the Connes tensor product we have

(sections of E) ⊗Connes (sections of F ) = (sections of E⊗F ⊗ω−1/2).

We can now give a general definition. We shall consider ∗-algebras A, i.e.
ones with a complex-antilinear involution a 7→ a∗ such that (ab)∗ = b∗a∗. The
left- and right-A-modules we shall consider will always be Hilbert spaces on
which A acts by a ∗-homomorphism into the algebra of bounded operators.

Now suppose that AL and AR are ∗-algebras, and that we are given an
AL-AR-bimodule H — i.e. H is a left AL-module and a right AR-module,

6because the operators on H which commute with all multiplications by smooth func-
tions are the multiplications by L∞ functions, and (as E and F are summands of trivial
bundles) the A-modules L2(E) and L2(F ) are summands in finite sums of copies of H.
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and the left- and right-actions commute. Thus AR is contained in EndAL
(H),

the algebra of bounded endomorphisms of H which commute with AL. We
shall assume that this inclusion is dense for the topology of pointwise conver-
gence, which, by von Neumann’s double-commutant theorem, is equivalent
to assuming that the algebras EndAL

(H) and EndAR
(H) are each other’s

commutants in the algebra End(H).
We can now define the purely algebraic tensor product

(right AR-modules) × (left AL-modules) −→ (vector spaces)
by

( E , F ) 7→ HomAR
(H; E)⊗AL

H⊗AR
HomAL

(H;F).

(Notice here that the left action of AL on H makes HomAR
(H; E) into a right

AL-module, and similarly for HomAL
(H;F).) This algebraic tensor product

can be completed as a Hilbert space by giving it the inner product

〈e1 ⊗ λ1 ⊗ f1, e2 ⊗ λ2 ⊗ f2〉 = 〈λ1, (e∗1e2)λ2(f
∗
1 f2)〉,

where e∗1e2 ∈ EndAR
(H) and f ∗1 f2 ∈ EndAL

(H) are thought of as lying in
completions of AL and AR respectively which act on the left and right of the
bimodule H. It seems reasonable to denote this completed tensor product
by

E ⊗H F .

It may perhaps be unhelpful to write the operators e∗1e2 and f ∗1 f2 on opposite

sides of λ2 in the formula for the inner product, as they are, after all, just
endomorphisms of H. But the crucial thing is that they must commute for
the formula for the inner product to be well-defined and positive. In other
words, though we need no properties of the algebras AL and AR, the one
“von-Neumann-like” feature we need is this commuting of EndAL

(H) and
EndAR

(H).

In the applications — and automatically in Connes’s theory — the gluing
bimodule H will contain vectors Ω such that a 7→ aΩ and a 7→ Ωa are dense
embeddings AL → H and AR → H , and a 7→ ã , where aΩ = Ωã, is a
densely defined “unbounded” homomorphism of algebras from AL to AR.

In Connes’s work, the algebras are always assumed to be von Neumann
algebras, and then the bimodule H is canonically determined by the algebra.

14



But, conversely, giving H defines a specific way of completing the algebra to
get a von Neumann algebra, and I have found it clearer to leave the algebras
uncompleted. Indeed, although I have expressed the preceding discussion in
the language of algebras, in our applications no algebras will actually enter.
Instead we shall be concerned with unitary representations of groups, say GL

and GR. We need a Hilbert space H with a unitary action of GL on the left,
and a commuting unitary action of GR on the right. (I shall call this structure
a “bi-representation”.) The crucial point is that EndGL

(H) and EndGR
(H)

commute. We can then use H to define a tensor product E ⊗H F for Hilbert
spaces E and F with right- and left-actions of GL and GR respectively.

Example

Let GL = GR = G be any group, and let {Pα} be any family of irreducible
unitary representations of G. The bi-representation H =

⊕
Pα ⊗ P∗

α of G
has the property that EndGL

(H) and EndGR
(H) commute, and so we can use

it as a gluing bimodule to form the Connes tensor product E ⊗H F of any
right- and left- unitary representations E and F of G.

Let Fα = HomGL
(Pα;F). This has an inner-product defined by

f ∗1 f2 = 〈f1, f2 〉 1Pα ,

and for any choice of a unit vector ξ ∈ Pα it can be identified with a sub-
Hilbert-space of F by f 7→ f(ξ). (In fact, the canonical embedding⊕

Pα ⊗Fα → F

is an isometry.) We define Eα = HomGR
(P∗

α; E) similarly. Then

Proposition 3.1 We have a canonical isomorphism of Hilbert spaces

E ⊗H F ∼=
⊕

Eα ⊗Fα.

Proof We can embed Pα ⊗Fα in F̌ = HomGL
(H;F) by ξ ⊗ f 7→ fξ, where

fξ(
∑

ξβ ⊗ ηη) = 〈ηα, ξ〉 ξα.

Similarly Eα ⊗ P∗
α ↪→ Ě = HomGR

(H; E).
To prove 3.1 we have only to check that the composition

Eα ⊗ P∗
α ⊗H⊗Pα ⊗Fα → Ě ⊗H⊗ F̌ → E ⊗H F

is an isometry, which is straightforward. ♠
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4 Loop groups and Tomita-Takesaki theory

We must begin by recalling the main facts about representations of loop
groups.

Let us fix a compact Lie groupG, and for any compact oriented 1-manifold
S let GS denote the group of piecewise-smooth maps S → G . This is of
a finite product of copies of the usual loop group LG, except that we have
chosen to work with piecewise-smooth loops rather than smooth ones, which
makes no difference to the theory. A choice of a “level” k — which, properly
speaking, is an element of the cohomology group H4(BG; Z) — defines a
central extension of GS by the circle-group T. We are interested in projective
unitary representations of GS of the chosen level k, i.e. representations of
the central extension in which the circle T acts by scalar multiplication.
Among these we restrict ourselves to the class of so-called “positive energy”
representations. The basic results about representations of this class are

(i) any representation is a sum of irreducible representations, and, up
to isomorphism, there are only finitely many different irreducible represen-
tations;

(ii) there is a canonical projective unitary action of the group Diff(S)
of orientation-preserving diffeomorphisms of S on each representation, inter-
twining in the natural way with the action of GS;

(iii) there is a canonical dense subspace in each representation on which
the action of GS extends to a holomorphic action of the complexified group
GC

S ;

(iv) if S is the boundary of a connected Riemann surface Σ then the
group GC

Σ of holomorphic maps from Σ to GC is a subgroup of GC
S , and the

central extension of GC
S is canonically split over GC

Σ, which can therefore be
regarded as a subgroup of the central extension;

(v) if S is a circle then among the irreducible representations of GS there
is precisely one, called the basic representation, which contains a ray fixed
by GC

D, where D is a disc with conformal structure whose boundary is S.

This is all described and proved in [PS], among other places.
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A good example of the use of the Connes tensor product in the repre-
sentation theory of loop groups is explained in the thesis of H. Postuma [P].
If Σ is a connected Riemann surface with boundary which is a cobordism
from a 1-manifold S0 to a 1-manifold S1, and we consider the group GC

Σ of
holomorphic maps Σ → GC as a subgroup of GC

S0
×GC

S1
, then it is the graph

of a densely-defined homomorphism αΣ from GC
S0

to GC
S1

. Using αΣ we can
associate to a unitary representation F of GS1 a highly non-unitary action of
a dense subgroup of GC

S0
on a dense subspace of F . The surprising thing is

that this action automatically comes from a canonical unitary representation
of GS0 , which one can call α∗ΣF . The reason is that there is a canonical
bi-representation HΣ of (GS0 , GS1) associated to Σ which allows us to define

α∗ΣF = HΣ ⊗HS1
F ,

where HS1 is an appropriate (GS1 , GS1) bi-representation.
In fact the isomorphism-class of the bi-representation HΣ, and hence the

equivalence-class of the functor

α∗Σ : {unitary representations of GS1} → {unitary representations of GS0}

is independent of the complex structure of Σ.
One important example of this functor is when Σ is an annulus. Then

the functor is equivalent to the identity, i.e. for any representation H and
any annulus Σ there is a contraction operator UΣ : H → H such that

αΣ(γ) ◦ UΣ = UΣ ◦ γ

for every γ ∈ GC
S0

. This is an extension of the property (ii) above of positive
energy energy representations: it is explained in [S3] how the semigroup of
annuli Σ, with a chosen diffeomorphism between their incoming and outgoing
boundary circles, can be regarded as part of the (non-existent) complexifi-
cation of the group of diffeomorphisms of the circle, a diffeomorphism being
regarded as corresponding to an annulus which has shrunk to a circle. We
shall need below to know that UΣ is defined even in the degenerate case when
Σ is the region of the complex plane bounded by two simple closed curves,
one contained in the closed disc bounded by the other, but coinciding with
it for part of its length.

The second important example is when Σ is a pair of pants, with two
incoming boundary circles and one outgoing. Then α∗Σ is an operation called
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fusion which combines two representations of a loop group to produce a
representation of the same level.

We shall give a simple proof of these facts for abelian G in section 6, but
they are not directly relevant to the theme of this paper.

Our interest here is in the group GI of smooth maps I → G, where I is
an oriented 1-manifold with boundary, and the maps are required to map the
boundary points to the identity element of G. One fact about groups of this
type is that if we decompose a circle S into intervals I1, . . . , Ik which meet
only at their end-points, and think of GI1 × . . . × GIk

as a subgroup of GS,
then a positive energy irreducible representation of GS remains irreducible
when restricted to GI1 × . . . × GIk

. This is because the product group is
dense in GS for the coarsest topology for which the representation of GS is
continuous: a proof can be found in [W], but the result follows easily from
the particular case when G = T, for which the proof is given in section 5
below.

The same density argument proves that distinct irreducible representa-
tions of GS remain non-isomorphic when restricted to the product.

The situation is completely different when we restrict an irreducible rep-
resentation H of GS to a subgroup GI , where I is a proper subinterval of S.
As a representation of GI the representation H is of type III, i.e. it contains
no irreducible subrepresentation at all, and any non-zero subrepresentation
is isomorphic to H itself. Although this is a fundamental part of the picture,
we shall not, strictly speaking, make use of it in what follows.

In the following discussion it will be convenient to denote the concate-
nation of two oriented intervals I, I ′ by I ◦ I ′. (For this to make sense, we
assume that all our intervals are equipped with germs of parametrizations
at their ends.) I shall also write I◦ for the circle obtained by attaching the
ends of I to each other.

Let H denote the bi-representation of GI ×GI′ which is the restriction of
the basic representation of the loop group GI◦I′◦. Wasserman[W] has proved
— and in any case we shall give a simple proof for abelian G below — that
EndGI

(H) and EndGI′ (H) commute, so that we can use H for constructing
Connes tensor products.

Suppose now that we have an interval IL ◦ I ◦ IR partitioned into three
subintervals. Let R denote the category of projective unitary representations
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of GIL
×GI×GIR

which are the restrictions of positive energy representations
of GS, where S is the circle IL ◦ I ◦ IR◦. We shall think of the objects of R as
bi-representations of GIL

× GIR
with an additional action of GI . If we first

ignore the GI-action, and regard the objects simply as bi-representations,
then there is a tensoring operation (E ,F) 7→ E ⊗HF , with H as in the previ-
ous paragraph. The bi-representation E ⊗HF has an additional intertwining
action of the group GI◦I , which can be identified with GI by choosing a
diffeomorphism between I and I ◦ I. We have

Proposition 4.1 When composed with a diffeomorphism I → I ◦ I the
Connes tensor product defines a functor

R×R → R.

Proof A representation E of a loop group GS is of positive energy if and
only if it is generated by the subspace E0 of fixed vectors of the subgroup
GC

D,z consisting of holomorphic maps D → GC which take the value 1 at a
point z in the interior of the disc D. The space E0 is a representation of the
finite dimensional group G. As already mentioned, the action of Diff(S) on E
extends to an action of the semigroup of annuli Σ by operators UΣ. We need
to know the following strengthening of this fact, which applies when D is a
disc bounded by S and z is a point in the interior of the annulus Σ obtained
from D by removing the interior of a smaller disc D0.

Lemma 4.2 In the situation just described, if HS0 is the basic representation
of the loop group GS0, where S0 is the boundary of D0, there is a continuous
bilinear map

UΣ,z : E0 ×HS0 → E

which intertwines with the action of the group GC
Σ, which acts on E0 by eval-

uation at z, and on HS0 and E by restriction to S0 and S.
Furthermore, the same holds in the degenerate case when the circles S0

and S1 have an interval in common, providing z is in the interior of the
region between them.

This lemma is due, essentially, to Tsuchiya and Kanie [TK], and is well
known in conformal field theory; a proof will be given in [S5], but we shall
not include it here, as it is not our main concern in this paper.
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Granting the lemma, the proof of 4.1 is very simple: we have only to show
that the representation E ⊗HF of GI◦I is generated by vectors fixed by GC

D,z,
where D is a disc with boundary S = IL ◦ I ◦ I ◦ IR◦, and z is a point in the
interior of D. Let s0 ∈ S be the point at which the two copies of I are joined
together, and let s∞ ∈ S be the point of intersection of IR and IL. Let I ′L
be a smooth curve inside S from s∞ to s0 which fits together with I ◦ IR to
form a smooth simple closed curve SL in D, and let I ′R be a similar curve
from s0 to s∞ forming a smooth curve SR = IL ◦ I ◦ I ′R◦. Finally, let S0 be
the smooth closed curve I ′L ◦ I ′R◦. We can choose points zL, zR in the regions
between S0 and SL and between S0 and SR respectively. We can assume that
E is a representation of GSL

in which E0 is the subspace fixed by GDL,zL
, and

matatis mutandis for F . The lemma tells us that for any ξ ∈ E0 there is a
continuous linear map eξ : HS0 → E which takes the vacuum vector Ω ∈ HS0

to ξ. Similarly for any η ∈ F0 we have fη : HS0 → F taking Ω to η. As a
representation of GI◦I the space E ⊗HS0

F is plainly spanned by the vectors

eξ ⊗ Ω ⊗ fη.

To go further we need a slight extension of the usual loop-group theory.
Positive energy representations of LG are characterized by the fact that they
are generated by “lowest-weight vectors”, i.e. vectors which are left fixed7 by
the subgroup GC

D,0 of LGC consisting of boundary-values of maps γ : D → GC

which are holomorphic in the interior of the disc D = {z ∈ C : |z| ≤ 1} and
satisfy8 γ(0) = 1. If S is any smooth simple closed curve in C then positive
energy representations of GS have the same property when D is replaced by
the region DS bounded by the curve S in C, for there is a smooth bijection
D → DS, holomorphic in the interior of D, which maps the standard circle
diffeomorphically to S. But if the simple closed curve S is only piecewise
smooth then the bijection f : D → DS given by the Riemann mapping
theorem will not map S1 smoothly to S — think of the map z 7→ (z − 1)a,
with 0 < a < 2, which maps the circle to a curve which is smooth except for
one corner where the tangent vector changes direction by the angle (a− 1)π.
There is a generalization of the notion of “positive energy” associated to the
curve S, obtained by modifying the definition of a lowest-weight vector to

7This makes sense, because the central extension of LGC is canonically split over GC
D,

which can therefore be regarded as a subgroup of the extension.
8Among the level k irreducuble representations there is precisely one, called the basic

representation, which contains a ray fixed by the larger group GC
D of boundary-values of

holomorphic maps γ with no condition on γ(0).
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mean one fixed by the group GC
DS ,z of boundary-values of maps holomorphic

in the interior of DS (and vanishing at a chosen point z in the interior).
The resulting class of representations of GS is different from the class of
positive energy representations defined by the structure of S as an abstract
piecewise-smooth manifold: it “sees” the corners in S.

To show that the corners actually are detected, it is as usual enough to
consider the case G = T at level 1, when the basic irreducible representation
of LT can be realized on the fermionic Fock space constructed from the
Hilbert space K of L2 half-densities on the circle by choosing a polarization
K = K+ ⊕ K− in the sense described in [PS]. Introducing corners in the
circle amounts to reparametrizing it by a homeomorphism φ which is smooth
except at the corners, where the derivative tends to infinity. This changes
the orthogonal projection Π : K → K+ to TφΠT

−1
φ , where Tφ is the unitary

action of φ on K. The change in Π is described by the formula (6.8.3) of [PS]
— given there, of course, for a smooth reparametrization. For a corner with
angle α, the reparametrization looks locally like x 7→ x1−α/π, and we find
from the formula that the projection changes by an integral operator defined
by a kernel function whose values on the diagonal behave like 1/|x| near the
corners. This operator is therefore not of trace-class, which means that the
new representation is inequivalent to the old one.

For a pair of oriented intervals I and I ′, and a choice of angle α in the
range −π < α < π, let us now consider the unitary representation9 Hα of
GI × GI′ obtained in the following way. We choose a positively-oriented
simple closed curve Sα in C which is smooth except at one point s0 at which
the direction of tangent vector makes a jump to the right through the angle
α. Then we identify I and I ′ smoothly with the intervals of Sα from s∞ to s0

and s0 to s∞ respectively, where s∞ is an arbitrary point of Sα with s0 6= s∞.
This identifies GI × GI′ with a subgroup of GSα , and we take Hα to be the
restriction of the basic representation of GSα at the level we are interested in.
We have made some choices here, but the discussion above tells us that Hα is
well-defined up to isomorphism. It contains a vector Ωα which is left fixed by
the group of pairs (γ, γ′) in GC

I ×GC
I′ which fit together to form the boundary

values of a holomorphic map from Dα to GC, where Dα is the region of the

9We must be careful not to think of Hα as the state space associated to Sα by a
2-dimensional field theory. The state space for Sα would not be a Hilbert space: its
dual would be the space associated to S−α. The inner product in Hα is connected with
path-integrals on the singular Riemann surface got by doubling Dα.
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complex plane bounded by the curve Sα. If we write the actions of GI and
GI′ on Hα as left- and right-actions to keep them separate — this may or
may not be a good idea — then we shall have the commutation property

γΩα = Ωα(γ′)−1

for such pairs (γ, γ′). A theorem of Reeh-Schlieder type — with exactly the
same proof as that given in the preceding section — shows that the vector
Ωα generates Hα under the action of either GI or GI′ .

When α = 0 we shall writeH forHα. In this case we know that EndGI
(H)

and EndGI′ (H) commute: this is proved by Wasserman [W], and in any case
we shall give a simple proof for abelian G below. We can therefore use H to
define a Connes tensor product.

Proposition 4.1 For any angles α, β > 0 with α+ β < π we have

Hα ⊗H Hβ
∼= Hα+β.

Proof
Let us assume, for the sake of clarity, that α and β are positive, and

that α + β < π. Let us assume that the regions Dα and Dβ are contained
in D = D0, with the points s0, s∞ of the three curves coinciding, and the
right-hand side I ′ of Sα coinciding with the right-hand side I ′ of S, and the
left-hand side I of Sβ coinciding with the left-hand side I of S. Thus we
have a picture with four distinct arcs joining s0 to s∞, which we can call
I, Iα, I

′
β, I

′. The two inside arcs Iα and I ′β fit together to bound a region
which we can take to be Dα+β. By restricting elements of the group G of
holomorphic maps D → GC to any of the arcs we obtain a dense subgroup
of any of GI , GIα , . . ..

The first step is to see that there is an isometry eα : H → Hα of Hilbert
spaces which commutes with the action of GI′ and takes Ω to Ωα. This is
true because the orbits of these cyclic vectors span the respective Hilbert
spaces, and so it is enough to check that

〈Ω , γΩ 〉 = 〈Ωα , γΩα 〉

for all γ ∈ GI′ . When G is the circle group T, or a torus, this is a simple
calculation using the theory of Heisenberg groups, and I shall postpone it
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to §6. By the standard devissage techniques of loop group theory (cf. [PS]
Chap. 10) it then follows for the basic representation of Un, and then for
any G for any level that can be pulled back from Un by a homomorphism
G → Un. I shall not pursue the discussion here. Using the commutation
relation for the cyclic vectors given above, we find that

γeα = eαγ

where γ denotes on the left and right the element of GC
Iα

or GC
I obtained by

restricting an element γ of the group G of holomorphic maps from the disc.
Of course there is a similar homomorphism eβ : H → Hβ intertwining

with GI .
Using these elements in the definition of the Connes tensor product , we

see that Hα ⊗H Hβ is spanned by the elements

γeα ⊗ Ω⊗ eβγ
′,

where γ ∈ GC
Iα

and γ′ ∈ GC
I′
β

are each the restrictions of (different) elements

of G . Thus it is a cyclic representation of GIα × GI′
β

with the cyclic vector

eα⊗Ω⊗ eβ. Furthermore, the cyclic vector is fixed by the pairs (γ, γ′) where
both γ and γ′ are restrictions of the same element of G. Because of the
density of GI ×GI′ in GSα+β

already discussed, this is enough to characterize
the left-hand side of 4.1 as the representation Hα+β.

5 The gluing theorem for free massive bosons

We shall begin by associating a symplectic vector space ΣY to each
compact oriented Riemannian (d − 1)-manifold Y with boundary. We shall
assume that Y is a submanifold of a Riemannian d-manifold X with bound-
ary, and that the boundary of Y is contained in the boundary of X, which
Y meets transversally. As we shall also assume that the neighbourhood of
Y in X admits a “sufficiently isometric” reflection across Y , we may as well
assume that Y meets the boundary of X at right angles. We allow the bound-
ary of X to have corners away from Y . We shall assume that Y divides X
into two pieces X1 and X2.

Let Ω0
0(Y ) and Ωd−1

0 (Y ) denote the smooth functions and forms on Y
which vanish on ∂Y . These spaces are in duality, and we can define the
symplectic vector space ΣY = Ω0

0(Y )⊕ Ωd−1
0 (Y ).
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For each f ∈ Ω0
0(Y ) we can solve the Dirichlet problem for the operator

∆X +m2 first in X1 and then in X2, taking as boundary value the function f
extended by zero to the remainder of ∂X1 or ∂X2. Assigning to f the normal
derivatives of the solution gives us positive operators

AXi
: Ω0

0(Y ) → Ωd−1
0 (Y ),

just as in §2, and we can use the Neumann jump operator

AX =
1

2
(AX1 + AX2)

as we did there to define the Hilbert space HY = L2(Ω0
0(Y )). It depends

only on the germ of X along Y , and is an irreducible representation of the
Heisenberg group formed from ΣY . It contains a vector ΨB for each B :
Ωd−1

0 (Y ) → Ω0(Y ) sufficiently close to A−1
X .

Now suppose that Y is divided into two submanifolds Y1 and Y2 by a
codimension 1 submanifold Z contained in the interior of Y . Let GY1 and
GY2 denote the subgroups of Heis(ΣY ) formed by elements with supports in
the interiors of Y1 and Y2 respectively. As the symplectic structure of ΣY is
completely local , it is clear that every element of GY1 commutes with every
element of GY2 . We shall need two basic lemmas about this situation.

Lemma 5.1 The Hilbert space HY is irreducible as a representation of
GY1 × GY2 .

Lemma 5.2 The algebras EndGY1
(HY ) and EndGY2

(HY ) commute.

The proofs of these will be postponed to section 6.

The next step is to introduce a tubular neighbourhood U of Z in Y . I
shall assume it is a compact smooth manifold with boundary, and is precisely
the ε-neighbourhood of Z in Y . Let us write U1 = U ∩ Y1 and U2 = Y ∩ Y2;
and let GU1 and GU2 be the subgroups of Heis(ΣY ) consisting of elements with
supports in U1 and U2. We can apply Lemma 5.2 with Y replaced by U to
see that HU is a representation of GU1 × GU2 — a “bimodule” — which we
can use to form the Connes tensor product of a representation of GU1 and
a representation of GU2 . The representations we want to use are HY +

1
and

HY +
2

, where Y +
1 = Y1 ∪ U2 and Y +

2 = Y2 ∪ U1.
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Proposition 5.3 There is a canonical isomorphism

HY +
1
⊗HU

HY +
2
→ HY .

Proof

6 Heisenberg groups

Let V be a real locally convex topological vector space with a continuous
nondegenerate skew bilinear form S : V × V → R.

The Heisenberg group Heis(V ) is the central extension of the additive
group V by the circle T with cocycle e−iS, i.e. Heis(V ) contains elements Uv

for v ∈ V such that
Uv1Uv2 = e−iS(v1,v2)Uv1+v2 .

Let H be a unitary representation of Heis(V ) on which T acts by mul-
tiplication. We write Uv = exp iAv, where Av is an unbounded self-adjoint
operator in H.

Definition 6.1 A vector ξ ∈ H is Gaussian (of type q) if

〈ξ, Uvξ〉 = e−
1
2
q(v),

where q : v → R is a positive quadratic form.

It will appear presently that a Gaussian vector ξ is necessarily smooth.
Assuming that, we can define a real bilinear form F : V × V → C by

F (v1, v2) = 〈Av1ξ, Av2ξ〉.

We have
F (v1, v2) = B(v1, v2) + iS(v1, v2),

where B : V × V → R is the positive bilinear symmetric form corresponding
to q, and S is the skew form of V .

Lemma 6.2
|S(v1, v2)| ≤ q(v1)

1
2 q(v2)

1
2 ,
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with equality if and only if (Av1 + iλAv2)ξ = 0 for some λ ∈ R.

We shall now show that for any quadratic form q satisfying the condition
of 6.2 there is a unitary representation H of Heis(V ) containing a Gaussian
vector ξ of type q.

The simplest case is when the symplectic vector V has a compatible
positive structure σ, i.e. a symplectic map σ : V → V such that

(i) σ2 = −1, and
(ii) q(v) = B(v, v) = S(σ(v), v) > 0 for all non-zero v ∈ V .

It is very well-known (cf. [S1]) that if V is regarded as a complex vector space
by means of σ, and is completed to a Hilbert space W using the sesquilinear
form B+iS, that the group Heis(V ) has an irreducible unitary representation
on the symmetric Fock space S(W ), and the vacuum vector 1 ∈ S0(W ) is
Gaussian of type q.

The case of a general quadratic form q satisfying 6.2 reduces to this simple
case in view of

Lemma 6.3 Given (V, S, q) satisfying 6.2, there is a canonical embedding
(V, S, q) ↪→ (V1, S1, q1), where the symplectic and quadratic forms S1 and q1
extend S and q, and V1 has a compatible complex structure σ : V1 → V1 such
that q1(v) = S1(σ(v), v).

Proof First consider the complexification VC = V ⊕V with the real bilinear
forms S1 and B1 defined by the matrices

S1 =

(
S −B
B S

)
B1 =

(
B S
−S B

)
,

where B is the real bilinear form corresponding to q. The condition 6.2 is
equivalent to the (semi-definite) positivity of B1. The desired symplectic
space V1 is defined as VC/K, where K = V ⊥

C is the radical of the form B1.
(Notice that σ(K) ⊂ K.) ♠

The irreducible representation of Heis(V1) defined by σ restricts to a rep-
resentation of Heis(V ) in which the vacuum vector is cyclic and Gaussian
of type q. If V1 6= V , however, the representation of Heis(V ) is far from
irreducible: in our application it will be of type III.
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