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I shall consider compact smooth surfaces > with boundary, with a smooth
almost complex structure (smooth on to the boundary.) Ignoring the com-
plex structure for the moment, such a surface can always be embedded as a
codimension 0 submanifold of a non-compact surface X+ without boundary,
so that 9% is a smoothly embedded curve in ¥*. To see this, choose a smooth
Riemannian metric on X, identify each boundary circle with the standard S*
by parametrizing it proportionally to arc-length, and then identify a neigh-
bourhood of each boundary circle with a half-open annulus {z € C:1—¢€ <
|z| < 1} by using the geodesics perpendicular to the boundary. Of course,
Y7 is not functorially associated to X, but we can extend the almost complex
structure smoothly to X+.

Proposition 0.1 The almost-complex structure on X7 is integrable, i.e. 3T
possesses a smooth holomorphic atlas.

I shall omit the proof of this.

Proposition 0.2 An open Riemann surface which is topologically an open
annulus is isomorphic to a standard annulus {z € C:r < |z| < R} for some
0<r<R<o0.

This is proved by applying the Riemann mapping theorem to the simply
connected covering of the annulus. By applying it, in turn, to a neighbour-
hood of a a boundary circle C' of 3 we obtain the following convenient fact.

Proposition 0.3 A neighbourhood of a boundary circle C in 3 can be iden-
tified with a neighbourhood of a simple closed curve S in C.

In fact the following argument shows that we can take S to be the stan-
dard S' C C (though with a non-standard smooth parametrization).
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Proposition 0.4 If ¢ is a holomorphic isomorphism from the interior U of
a smooth simple closed curve S in C to the standard open disc, then we can
extend o to a smooth isomorphism of the closures.

To see this, assume, without loss of generality, that 0 € U. Then choose
a harmonic function f : U — R whose boundary value on S is z — log |z].
Then solve the Cauchy-Riemann equations to find g : U — R so that h =
f +ig is holomorphic in U. Then z — ¢(z) = ze™" is the desired map from
U to the standard disc. We need to show that the derivative of ¢ does not
vanish on the boundary circle. By continuity the derivative is C-linear, and it
is easy to see that it cannot vanish to finite order, but to show that it cannot
vanish to infinite order at a boundary point z of U I have had to resort to
the following lemma, which should be applied to ¢ = xy o pop, where p maps
the standard unit disc into U taking 1 to z, and y maps the standard disc
to the upper half-plane taking ¢(z) to 0.

Lemma 0.5 Let ¢ : D — C be a smooth map, where D is the closed disc
{z € C: |z| < 1}. Suppose that 1 maps the interior of D into the upper
half-plane, and that (1) = 0. Then 9'(1) # 0.

Proof. Let Sy (e?) = a(f). We can write

Then

where



g-(0) = Zk:rke_”“9
k>0

re—if

(1 —re-if)2’

Now g,(0) — —1csc? 2 as r 1 1. Because a(f) = O(6%) near § = 0 we can

take the limit under the integral, and find

P'(1) = ! a(f) csc? g de.

dr

As a(f) > 0, this shows that ¢'(1) # 0.

After these preliminaries we can turn to the question of sewing surfaces
together. Suppose we have Riemann surfaces »;,%,, and an orientation-
reversing diffeomorphism ¢ : C7 — Cs, where C; is a boundary circle of ;.
We form the topological space ¥ = Yy U, Yo, and define a subsheaf Os; of
the sheaf of continuous complex-valued functions on ¥ by f € Og(U) if each
f|%; is smooth, and f is holomorphic in the interior of each ;. I shall call
sections of Oy, pseudoholomorphic functions.

Proposition 0.6 The ringed space (X, Ox) is a Riemann surface in which
C = 0% = 0% is a smooth submanifold.

Proof. As the question is purely local, we can assume, in the light of the
preceding discussion, that 3; and ¥, are the interior discs bounded by the
unit circle S' € C, and that ¢ is an orientation-preserving diffeomorphism
of St.

Let V = C*°(S%;C), let U be the closed subspace of V spanned by z*
for k > 1, and let W be the closed subspace spanned by z* for k£ < 1. The
subspace U belongs to the smooth restricted Grassmannian of V' in the sense
of [PS], and so does ¢*(U).

Lemma 0.7 The intersection ©*(U) N W is 1-dimensionall.

Granting the lemma, we have a pseudoholomorphic map f : ¥ — 52,
unique up to multiplication by a scalar on S2. As f is holomorphic on each
hemisphere ¥;, the piecewise-smooth 2-form f*w, where w is the standard
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round area-form on S?, is everywhere non-negative, and its integral is 4md,
where d is the degree of f. Thus d > 1, and f is surjective. In fact d = 1,
as f71(o0) = 0o € Xy, and f must be regular at oco. This means that f is
injective on the interiors of 3; and Y5, and that the images of the interiors are
disjoint. On the other hand Proposition 0.4 implies that f|S is an immersion,
and if it were not injective then the complement of f(S) could not consist
of two open discs. So f is bijective. Finally, f~! is holomorphic, as it is
continuous, and is holomorphic on the complement of f(.5).

Proof of Lemma 0.7.

It is enough to prove that the kernel of p, : U — V/W is 1-dimensional,
where p,, is the composite of ¢* : U — V with the projection V' — V/W. But
Py is Fredholm, and depends continuously on . By deforming ¢ continuously
to the identity we see that p, has index 1, and so its kernel is non-zero. But
elements of the kernel correspond — as in the proof of Proposition 0.6 — to
pseudoholomorphic maps ¥ — S2, and if the kernel had dimension greater
than 1 we could find a non-constant map with no pole, contradicting the
positivity of the degree.



