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I shall consider compact smooth surfaces Σ with boundary, with a smooth
almost complex structure (smooth on to the boundary.) Ignoring the com-
plex structure for the moment, such a surface can always be embedded as a
codimension 0 submanifold of a non-compact surface Σ+ without boundary,
so that ∂Σ is a smoothly embedded curve in Σ+. To see this, choose a smooth
Riemannian metric on Σ, identify each boundary circle with the standard S1

by parametrizing it proportionally to arc-length, and then identify a neigh-
bourhood of each boundary circle with a half-open annulus {z ∈ C : 1− ε <
|z| ≤ 1} by using the geodesics perpendicular to the boundary. Of course,
Σ+ is not functorially associated to Σ, but we can extend the almost complex
structure smoothly to Σ+.

Proposition 0.1 The almost-complex structure on Σ+ is integrable, i.e. Σ+

possesses a smooth holomorphic atlas.

I shall omit the proof of this.

Proposition 0.2 An open Riemann surface which is topologically an open
annulus is isomorphic to a standard annulus {z ∈ C : r < |z| < R} for some
0 ≤ r < R ≤ ∞.

This is proved by applying the Riemann mapping theorem to the simply
connected covering of the annulus. By applying it, in turn, to a neighbour-
hood of a a boundary circle C of Σ we obtain the following convenient fact.

Proposition 0.3 A neighbourhood of a boundary circle C in Σ+ can be iden-
tified with a neighbourhood of a simple closed curve S in C.

In fact the following argument shows that we can take S to be the stan-
dard S1 ⊂ C (though with a non-standard smooth parametrization).
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Proposition 0.4 If ϕ is a holomorphic isomorphism from the interior U of
a smooth simple closed curve S in C to the standard open disc, then we can
extend ϕ to a smooth isomorphism of the closures.

To see this, assume, without loss of generality, that 0 ∈ U . Then choose
a harmonic function f : U → R whose boundary value on S is z 7→ log |z|.
Then solve the Cauchy-Riemann equations to find g : U → R so that h =
f + ig is holomorphic in U . Then z 7→ ϕ(z) = ze−h is the desired map from
U to the standard disc. We need to show that the derivative of ϕ does not
vanish on the boundary circle. By continuity the derivative is C-linear, and it
is easy to see that it cannot vanish to finite order, but to show that it cannot
vanish to infinite order at a boundary point z of U I have had to resort to
the following lemma, which should be applied to ψ = χ◦ϕ◦ρ, where ρ maps
the standard unit disc into U taking 1 to z, and χ maps the standard disc
to the upper half-plane taking ϕ(z) to 0.

Lemma 0.5 Let ψ : D → C be a smooth map, where D is the closed disc
{z ∈ C : |z| ≤ 1}. Suppose that ψ maps the interior of D into the upper
half-plane, and that ψ(1) = 0. Then ψ′(1) 6= 0.

Proof. Let =ψ(eiθ) = a(θ). We can write

a(θ) =
∞∑

k=−∞

ake
iθ.

Then

ψ(z) = <ψ(0) + i{a0 + 2
∑
k>0

akz
k}.

For 0 < r < 1 we have

ψ′(r) = 2i
∑
k>0

kakr
k−1

=
1

rπ

∫
a(θ)gr(θ) dθ,

where
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gr(θ) =
∑
k>0

krke−ikθ

=
re−iθ

(1− re−iθ)2
.

Now gr(θ) → −1
4
csc2 θ

2
as r ↑ 1. Because a(θ) = O(θ2) near θ = 0 we can

take the limit under the integral, and find

ψ′(1) = − 1

4π

∫
a(θ) csc2 θ

2
dθ.

As a(θ) ≥ 0, this shows that ψ′(1) 6= 0.

After these preliminaries we can turn to the question of sewing surfaces
together. Suppose we have Riemann surfaces Σ1,Σ2, and an orientation-
reversing diffeomorphism ϕ : C1 → C2, where Ci is a boundary circle of Σi.
We form the topological space Σ = Σ1 ∪ϕ Σ2, and define a subsheaf OΣ of
the sheaf of continuous complex-valued functions on Σ by f ∈ OΣ(U) if each
f |Σi is smooth, and f is holomorphic in the interior of each Σi. I shall call
sections of OΣ pseudoholomorphic functions.

Proposition 0.6 The ringed space (Σ,OΣ) is a Riemann surface in which
C = ∂Σ1 = ∂Σ2 is a smooth submanifold.

Proof. As the question is purely local, we can assume, in the light of the
preceding discussion, that Σ1 and Σ2 are the interior discs bounded by the
unit circle S1 ∈ C, and that ϕ is an orientation-preserving diffeomorphism
of S1.

Let V = C∞(S1; C), let U be the closed subspace of V spanned by zk

for k ≥ 1, and let W be the closed subspace spanned by zk for k ≤ 1. The
subspace U belongs to the smooth restricted Grassmannian of V in the sense
of [PS], and so does ϕ∗(U).

Lemma 0.7 The intersection ϕ∗(U) ∩W is 1-dimensional.

Granting the lemma, we have a pseudoholomorphic map f : Σ → S2,
unique up to multiplication by a scalar on S2. As f is holomorphic on each
hemisphere Σi, the piecewise-smooth 2-form f ∗ω, where ω is the standard
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round area-form on S2, is everywhere non-negative, and its integral is 4πd,
where d is the degree of f . Thus d ≥ 1, and f is surjective. In fact d = 1,
as f−1(∞) = ∞ ∈ Σ2, and f must be regular at ∞. This means that f is
injective on the interiors of Σ1 and Σ2, and that the images of the interiors are
disjoint. On the other hand Proposition 0.4 implies that f |S is an immersion,
and if it were not injective then the complement of f(S) could not consist
of two open discs. So f is bijective. Finally, f−1 is holomorphic, as it is
continuous, and is holomorphic on the complement of f(S).

Proof of Lemma 0.7.

It is enough to prove that the kernel of pϕ : U → V/W is 1-dimensional,
where pϕ is the composite of ϕ∗ : U → V with the projection V → V/W . But
pϕ is Fredholm, and depends continuously on ϕ. By deforming ϕ continuously
to the identity we see that pϕ has index 1, and so its kernel is non-zero. But
elements of the kernel correspond — as in the proof of Proposition 0.6 — to
pseudoholomorphic maps Σ → S2, and if the kernel had dimension greater
than 1 we could find a non-constant map with no pole, contradicting the
positivity of the degree.
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