Sewing Riemann surfaces together

Graeme Segal All Souls College, Oxford

I shall consider compact smooth surfaces Σ with boundary, with a smooth almost complex structure (smooth on to the boundary.) Ignoring the complex structure for the moment, such a surface can always be embedded as a codimension 0 submanifold of a non-compact surface Σ^+ without boundary, so that $\partial \Sigma$ is a smoothly embedded curve in Σ^+ . To see this, choose a smooth Riemannian metric on Σ , identify each boundary circle with the standard S^1 by parametrizing it proportionally to arc-length, and then identify a neighbourhood of each boundary circle with a half-open annulus $\{z \in \mathbb{C} : 1 - \epsilon < |z| \leq 1\}$ by using the geodesics perpendicular to the boundary. Of course, Σ^+ is not functorially associated to Σ , but we can extend the almost complex structure smoothly to Σ^+ .

Proposition 0.1 The almost-complex structure on Σ^+ is integrable, i.e. Σ^+ possesses a smooth holomorphic atlas.

I shall omit the proof of this.

Proposition 0.2 An open Riemann surface which is topologically an open annulus is isomorphic to a standard annulus $\{z \in \mathbb{C} : r < |z| < R\}$ for some $0 \le r < R \le \infty$.

This is proved by applying the Riemann mapping theorem to the simply connected covering of the annulus. By applying it, in turn, to a neighbourhood of a boundary circle C of Σ we obtain the following convenient fact.

Proposition 0.3 A neighbourhood of a boundary circle C in Σ^+ can be identified with a neighbourhood of a simple closed curve S in \mathbb{C} .

In fact the following argument shows that we can take S to be the standard $S^1 \subset \mathbb{C}$ (though with a non-standard smooth parametrization). **Proposition 0.4** If φ is a holomorphic isomorphism from the interior U of a smooth simple closed curve S in \mathbb{C} to the standard open disc, then we can extend φ to a smooth isomorphism of the closures.

To see this, assume, without loss of generality, that $0 \in U$. Then choose a harmonic function $f: U \to \mathbb{R}$ whose boundary value on S is $z \mapsto \log |z|$. Then solve the Cauchy-Riemann equations to find $g: U \to \mathbb{R}$ so that h = f + ig is holomorphic in U. Then $z \mapsto \varphi(z) = ze^{-h}$ is the desired map from U to the standard disc. We need to show that the derivative of φ does not vanish on the boundary circle. By continuity the derivative is \mathbb{C} -linear, and it is easy to see that it cannot vanish to finite order, but to show that it cannot vanish to infinite order at a boundary point z of U I have had to resort to the following lemma, which should be applied to $\psi = \chi \circ \varphi \circ \rho$, where ρ maps the standard unit disc into U taking 1 to z, and χ maps the standard disc to the upper half-plane taking $\varphi(z)$ to 0.

Lemma 0.5 Let $\psi : D \to \mathbb{C}$ be a smooth map, where D is the closed disc $\{z \in \mathbb{C} : |z| \leq 1\}$. Suppose that ψ maps the interior of D into the upper half-plane, and that $\psi(1) = 0$. Then $\psi'(1) \neq 0$.

Proof. Let $\Im \psi(e^{i\theta}) = a(\theta)$. We can write

$$a(\theta) = \sum_{k=-\infty}^{\infty} a_k \mathrm{e}^{\mathrm{i}\theta}.$$

Then

$$\psi(z) = \Re \psi(0) + i\{a_0 + 2\sum_{k>0} a_k z^k\}.$$

For 0 < r < 1 we have

$$\psi'(r) = 2i \sum_{k>0} ka_k r^{k-1}$$
$$= \frac{1}{r\pi} \int a(\theta)g_r(\theta) \, d\theta,$$

where

$$g_r(\theta) = \sum_{k>0} kr^k e^{-ik\theta}$$
$$= \frac{r e^{-i\theta}}{(1 - r e^{-i\theta})^2}.$$

Now $g_r(\theta) \to -\frac{1}{4} \csc^2 \frac{\theta}{2}$ as $r \uparrow 1$. Because $a(\theta) = \mathcal{O}(\theta^2)$ near $\theta = 0$ we can take the limit under the integral, and find

$$\psi'(1) = -\frac{1}{4\pi} \int a(\theta) \csc^2 \frac{\theta}{2} d\theta.$$

As $a(\theta) \ge 0$, this shows that $\psi'(1) \ne 0$.

After these preliminaries we can turn to the question of sewing surfaces together. Suppose we have Riemann surfaces Σ_1, Σ_2 , and an orientationreversing diffeomorphism $\varphi : C_1 \to C_2$, where C_i is a boundary circle of Σ_i . We form the topological space $\Sigma = \Sigma_1 \cup_{\varphi} \Sigma_2$, and define a subsheaf \mathcal{O}_{Σ} of the sheaf of continuous complex-valued functions on Σ by $f \in \mathcal{O}_{\Sigma}(U)$ if each $f|\Sigma_i$ is smooth, and f is holomorphic in the interior of each Σ_i . I shall call sections of \mathcal{O}_{Σ} pseudoholomorphic functions.

Proposition 0.6 The ringed space $(\Sigma, \mathcal{O}_{\Sigma})$ is a Riemann surface in which $C = \partial \Sigma_1 = \partial \Sigma_2$ is a smooth submanifold.

Proof. As the question is purely local, we can assume, in the light of the preceding discussion, that Σ_1 and Σ_2 are the interior discs bounded by the unit circle $S^1 \in \mathbb{C}$, and that φ is an orientation-preserving diffeomorphism of S^1 .

Let $V = C^{\infty}(S^1; \mathbb{C})$, let U be the closed subspace of V spanned by z^k for $k \ge 1$, and let W be the closed subspace spanned by z^k for $k \le 1$. The subspace U belongs to the smooth restricted Grassmannian of V in the sense of [PS], and so does $\varphi^*(U)$.

Lemma 0.7 The intersection $\varphi^*(U) \cap W$ is 1-dimensional.

Granting the lemma, we have a pseudoholomorphic map $f : \Sigma \to S^2$, unique up to multiplication by a scalar on S^2 . As f is holomorphic on each hemisphere Σ_i , the piecewise-smooth 2-form $f^*\omega$, where ω is the standard round area-form on S^2 , is everywhere non-negative, and its integral is $4\pi d$, where d is the degree of f. Thus $d \ge 1$, and f is surjective. In fact d = 1, as $f^{-1}(\infty) = \infty \in \Sigma_2$, and f must be regular at ∞ . This means that f is injective on the interiors of Σ_1 and Σ_2 , and that the images of the interiors are disjoint. On the other hand Proposition 0.4 implies that f|S is an immersion, and if it were not injective then the complement of f(S) could not consist of two open discs. So f is bijective. Finally, f^{-1} is holomorphic, as it is continuous, and is holomorphic on the complement of f(S).

Proof of Lemma 0.7.

It is enough to prove that the kernel of $p_{\varphi}: U \to V/W$ is 1-dimensional, where p_{φ} is the composite of $\varphi^*: U \to V$ with the projection $V \to V/W$. But p_{φ} is Fredholm, and depends continuously on φ . By deforming φ continuously to the identity we see that p_{φ} has index 1, and so its kernel is non-zero. But elements of the kernel correspond — as in the proof of Proposition 0.6 — to pseudoholomorphic maps $\Sigma \to S^2$, and if the kernel had dimension greater than 1 we could find a non-constant map with no pole, contradicting the positivity of the degree.