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LOCALITY OF HOLOMORPHIC BUNDLES,
AND LOCALITY IN QUANTUM FIELD THEORY

Graeme Segal

Dedicated to Nigel Hitchin, on his 60th birthday

Nigel Hitchin has been a close colleague of mine for most of my mathematical life,
and I have profited enormously from my contact with him. His wonderful skill
in asking the right questions and in obtaining deep results without sacrificing
concreteness or simplicity has both inspired me and filled me with envy. Having
seen, however, how many others at this meeting are better qualified than I am
to talk about Nigel’s work, I decided it would be best to keep to my own terrain,
and talk about locality in quantum field theory. All the same, many of the ideas
involved are well exemplified in the study of bundles on Riemann surfaces which
Nigel is famous for, and I shall begin there, especially as the question of locality
relates to an aspect of his work that has not been talked about so far at this
meeting, namely, its role in so-called ‘geometric Langlands theory’.

We can approach the subject by contrasting two opposite ways of looking
at holomorphic vector bundles E on a compact Riemann surface Σ. At one
extreme, if we remove any finite set σ of points from Σ then E is trivial on the
remaining surface Σ− σ, so we can think of all the ‘twisting’ of the bundle as
being concentrated into tiny neighbourhoods of the points of σ. At the other
extreme, we can try to spread the twist as evenly as possible over all of Σ.

The classical case of line bundles is very simple – perhaps misleadingly so.
On the one hand, any line bundle L can be constructed from a divisor z =
n1z1 + · · ·+ nkzk – an element of the free abelian group on the set of points
of Σ – by attaching the trivial bundle L0 on Σ− {z1, . . . , zk} to trivial bundles
Li in the neighbourhood of each zi by means of the clutching function ζni

i ,
where ζi is a local parameter at zi. (The resulting bundle L(z) depends up to
canonical isomorphism only on the divisor z.) On the other hand, for any choice
of Riemannian metric on Σ, any line bundle can be given a unique unitary
connection with constant curvature, so that it looks exactly the same in the
neighbourhood of any point of Σ. The isomorphism classes of holomorphic line
bundles on Σ naturally form a commutative complex Lie group Pic(Σ), and the
correspondence between the two ways of looking at a bundle amounts to the
classical theorem that Pic(Σ) is – in the holomorphic category – the free abelian
group on Σ, traditionally called its ‘Albanese variety’, that is, that the map



Noncommutative geometry 165

Σ → Pic(Σ) given by z �→ L(z) is universal1 among holomorphic maps from Σ
to a commutative group.

We encounter two main obstacles when we try to formulate an analogue of
this attractive picture for higher dimensional bundles. The first is that the
isomorphism classes of n-dimensional holomorphic bundles on a Riemann surface
Σ do not form a nice space; and the second is that the bundles trivialized in the
complement of a given point do not form an abelian group. For brevity I shall
refer to these as the problems of ‘noncommutative geometry’ and of ‘algebraic
structures up to homotopy’, respectively, and shall say a little about each in
turn.

9.1 Noncommutative geometry

If Σ is the Riemann sphere then every n-dimensional holomorphic bundle E
on Σ is a sum of line bundles, of degrees k1 ≥ k2 ≥ · · · ≥ kn say, and E is
determined up to isomorphism by the n-tuple of degrees. Equivalently, E can be
obtained by attaching trivial bundles on Σ− {∞} and Σ− {0} by a holomorphic
attaching function which is a homomorphism λ : C× → GLn(C), unique up to
conjugation in GLn(C). Now the conjugacy classes of homomorphisms from C×

to a complex reductive group G – and hence the isomorphism classes of G-bundles
on the sphere – are in one-to-one correspondence with the finite-dimensional
holomorphic irreducible representations of the Langlands dual group LG. (If G
is GLn(C) then LG = G.) This is the starting point of geometric Langlands
theory, but it is not my subject here. Let us notice, however, that whereas
the isomorphism classes of representations form a countable discrete set the
behaviour of the bundles is quite different. When a holomorphic bundle E(t) on
the sphere depends holomorphically on a parameter t ∈ T we find that – if T is
connected – the isomorphism class of E(t) is constant on a dense open subset of
the parameter space T , but ‘jumps’ when t belongs to certain submanifolds: the
space T is stratified by the isomorphism class of E(t). Thus the countable set BΣ

of isomorphism classes of bundles consists of a sequence of connected components

1 This may seem strange. The set-theoretical free abelian group FΣ generated by the points
of Σ fits into an exact sequence

K×
Σ → FΣ → PicΣ → 1,

where KΣ is the field of rational functions on Σ. The group FΣ is the disjoint union of

a sequence of finite-dimensional algebraic varieties F
(n)
Σ , where F

(n)
Σ consists of all Σnkxk

such that Σ|nk| = n. Furthermore, FΣ has a natural topology in which the closure of F
(n)
Σ is

compact, and is the union of the F
(m)
Σ for m ≤ n. But we cannot say that FΣ is any kind of

algebraic variety: in fact it is easy to see that if U is a neighbourhood of the identity element

of FΣ then any continuous f : U → C for which f |U ∩ F
(n)
Σ is holomorphic for each n has to

be constant along the orbits of K×
Σ .
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indexed by the first Chern class of E, but each connected component, though
infinite, is the closure of a single point.

To make better sense of unpromising ‘spaces’ such as BΣ a number of different
approaches are commonly used. In algebraic geometry the main candidates are

1. To regard BΣ as a stack, that is, to work with the category – actually a
groupoid – of bundles and their isomorphisms rather than just with the set
π0(BΣ) of isomorphism classes of objects

2. the approach of geometric invariant theory, which picks out a class of
‘stable’ bundles whose isomorphism classes do form a nice space, in fact
an algebraic variety

Here I am going to talk about the first approach, which is more obviously
related to quantum field theory, especially in the treatment of the Langlands
theory by Kapustin and Witten (2007). Nigel Hitchin’s own main tool, however,
was geometric invariant theory.

Stepping back a little from algebraic geometry, one can say that the category
of bundles on a space resembles the category of representations of a group. For
example, the Hitchin moduli space associated to a surface Σ and a compact group
G is – among other things – the space of conjugacy classes of homomorphisms
from the fundamental group π1(Σ) to the complexified group GC. The ‘space’
of irreducible unitary representations of a group Γ is an archetypal example
in Connes’s theory of noncommutative geometry (Connes 1994). He observes
that the set of irreducible representations is the set Spec(AΓ) of irreducible
∗-representations of a C∗-algebra AΓ associated to Γ. If A is a commutative
algebra its irreducible representations are the algebra-homomorphisms A → C,
which form a topological space Spec(A) on which A is an algebra of continuous
complex-valued functions. Connes’s idea is to think of the geometry of the set of
irreducible representations of the group Γ as defined by the noncommutative
algebra AΓ rather than by the – often too small – commutative algebra of
continuous functions on Spec(AΓ), which in fact is the centre of AΓ.

To relate this picture to the stacks or groupoids of algebraic geometry we
think of a groupoid as halfway between a group and a space. More precisely,
a groupoid B consists of two sets together with some maps between them: a
set B0 of objects, and a set B1 of morphisms which is the disjoint union of
the sets B(x, y) of morphisms from x to y, where x and y run through all the
objects in B0. We are concerned here, however, with topological groupoids, for
which the sets B0 and B1 have topologies and the structural maps between them
are continuous. At one extreme, if B0 is a point then we have a topological
group; at the other, if B0 = B1, we have no morphisms except identities, and
the groupoid is simply a space. As Connes has emphasized, a groupoid B has a
groupoid-algebra AB, which interpolates between the group-algebra of a group
and the commutative algebra of functions on a space. (The algebra AB is devised
so that an AB-module is the same thing as a functor from B to vector spaces.
For a discrete groupoid, AB has a vector space basis ef indexed by the set
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B1 of morphisms, and composition is given by efeg = ef◦g when f and g are
composable, and efeg = 0 otherwise. For the actual groupoids at hand, we must
make a choice of what we mean by the algebra, just as for a Lie group we can
define different group algebras depending on the geometric context in which we
are working.)

The groupoids B we are concerned with all arise from the action of a group
G on a space B0, so that B1 = G× B0, and the set of morphisms from x to y is
{g ∈ G : gx = y}. I shall denote this groupoid by B0//G. The algebra AB in this
case is the twisted group algebra G � A0, where A0 is the commutative algebra
of functions on B0.

The essential features of a groupoid B are the (often not very nice) space
π0(B) of isomorphism classes of its objects, and the groups Aut(x) of automor-
phisms of the objects, which are the obstructions to B’s being a space. These
features depend only on the equivalence class of the groupoid (in the sense of
category theory), and we are interested in groupoids only up to equivalence.
In fact we are content (cf. Segal 1973, 2.8) even with what I shall call ‘weak
equivalences’: functors T : B → B′ which induce bijections π0(B) → π0(B′) and
Aut(x)→ Aut(T (x)) for each object x, and which are ‘covering maps’ (in the
sense that they have local cross-sections) on the space of objects and morphisms.
Thus if G acts freely on B0, making it a locally trivial principal G-bundle on the
space B0/G, then we are not interested in the difference between the groupoid
B0//G and the space B0/G. Similarly, whenever we decompose a closed surface
Σ into two pieces Σ1 and Σ2 intersecting in a curve S we can identify the set
of isomorphism classes of n-dimensional bundles on Σ with the (non-Hausdorff)
double-coset space

GΣ1\GS/GΣ2 ,

where GΣi is the group of holomorphic maps from Σi to G = GLn(C), and GS

is the group of smooth maps S → G, for any bundle can be trivialized on a
non-closed surface. We then have three groupoids:

1. B(1) formed by the action of GΣ1 on the homogeneous space GS/GΣ2

2. B(2) formed by the action of GΣ2 on GΣ1\GS

3. B(12) formed by the action of GΣ1 ×GΣ2 on GS

All three are weakly equivalent, and are weakly equivalent to the groupoids
obtained from any other way of decomposing Σ into pieces. According to the
‘stack’ point of view, any of them can be taken as the ‘space’ of bundles
on Σ.

The relation of equivalence of groupoids translates into Morita equivalence of
algebras. Two algebras are Morita equivalent if their categories of left modules
are equivalent. Recall that if A and B are algebras then an (A,B)-bimodule
F defines an additive functor F∗ : MB →MA, where MA and MB are the
categories of left A and B modules, by F∗(M) = F ⊗B M . In particular, for the
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(A,A)-bimodule A we have A∗ = idMA , and if G is a (B,C)-bimodule we have

F∗ ◦G∗ = (F ⊗B G)∗ : MC →MA.

On the level of discrete groupoids, at least, there is a dictionary

groupoid B �−→ algebra AB
functor T : B → B′ �−→ (AB, AB′)-bimodule FT

natural transformation Φ : T → T ′ �−→ isomorphism Φ∗ : FT → FT ′ .

In the light of the previous discussion we see that a ‘noncommutative space’ is
defined not by an algebra but by a Morita equivalence class of algebras, and so
it is more naturally described by a linear category – the category of left modules
for the algebra. In holomorphic geometry, however, the algebras that arise, even
when they are commutative, are not semisimple, and their module categories
do not have very convenient properties. It is therefore better to go further, and
replace the module categories by the categories of cochain complexes of modules.
That is why the geometric Langlands correspondence is stated in terms of the
linear categories of complexes of coherent sheaves2 – or of D-modules – on the
moduli spaces of bundles.

Yet another version – slightly more general still – of the notion of noncommu-
tative space arises from quantum field theory, and it is perhaps the most natural
one in the geometric Langlands theory. I shall sketch it below. Before leaving the
present discussion, however, it may be worth making another remark.

A generalized space defined by a topological groupoid has a homotopy type,
just like an ordinary space. For – like any topological category (cf. Segal 1968) –
the groupoid B0//G has a ‘realization’ |B0//G| as a space, and equivalent
groupoids have homotopy-equivalent realizations. A generalized space defined
by a noncommutative ring – or, better, by a linear category C – has no such
homotopy type. The best one can do is consider the stable homotopy type (or
spectrum) KC defined by applying the usual K-theory construction to C: this
is (cf. Segal 1977) the ‘space’ whose homotopy groups are the K-groups of the
category.

In the case of the stack BΣ of holomorphic G-bundles on a Riemann surface Σ
the space |BΣ| has the same homotopy type as the realization of the correspond-
ing topological groupoid Bsm

Σ of smooth bundles, which in turn has the homotopy
type of the space Map(Σ; BG) of continuous maps from Σ to the classifying space
of G. (This follows at once from the fact that for a non-closed Riemann surface
Σi the space of holomorphic maps from Σi to G has the homotopy type of the
space of continuous maps.) On the other hand, we know from the beautiful work
of Atiyah and Bott 1982 that the moduli space of holomorphic bundles in the
sense of geometric invariant theory can be identified with the minimum level of
the Yang–Mills functional on the space of smooth bundles.

2 Sheaves rather than modules, because the algebraic varieties are not affine. But that is a
standard technicality.
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9.2 Algebraic structures up to homotopy

Let us consider the space B̂Σ of pairs (E, e) consisting of a holomorphic vector
bundle E on Σ equipped with a meromorphic trivialization e – that is, E is
trivialized, in the complement of a finite subset σ of Σ, by n holomorphic
sections e1, . . . , en which extend to meromorphic sections on Σ. A pair (E, e)
is completely determined by giving σ and, for each z ∈ σ, the local information
consisting of a bundle in a neighbourhood of z trivialized away from z. The items
of local information can be prescribed independently, so B̂Σ can be regarded
as a labelled configuration space. The group GLn(KΣ) acts on B̂Σ by changing
the meromorphic trivialization, and the orbit space is the space of isomorphism
classes of holomorphic bundles. (The isotropy group of any pair (E, e) is just the
group of holomorphic automorphisms of E.) Let us now recall a few aspects of
the theory of labelled configuation spaces.

For an d-dimensional manifold M let Č(M) denote the manifold of all finite
unordered subsets of M , with its natural topology in which it is the disconnected
union

∐
k≥0 Ck(M) of the spaces Ck(M) of subsets with exactly k elements. If P

is an arbitrary auxiliary space, we can also form Č(M ;P ) =
∐

Ck(M ;P ), whose
points are the finite subsets σ of M with each point z ∈ σ ‘labelled’ by a point
pz of P . The space Ck(M ;P ) is fibred over Ck(M) with fibre P k.

The configuration spaces we are interested in, however, have a topology which
allows the points of a configuration σ to move continuously into coincidence
and the labels at the same time to amalgamate – or ‘add’ – in some sense. For
example, the free abelian group FΣ is the configuration space of Σ labelled by
the group Z, with the usual addition when points merge. We can define such
a ‘configuration space with amalgamation’ whenever the labelling space P has
a composition-law which is sufficiently associative and commutative to make it
what is called in homotopy theory an d-fold loop space – in fact the existence of
the amalgamated configuration space C(M ;P ) for all d-manifolds M is a good
way of defining an d-fold loop space.3 To be precise, I shall say, in the style of
Beilinson and Drinfeld, that an amalgamated configuration space is any space
C(M ;P ) to each of whose points is associated a finite subset σ of M called its
support, and which is equipped with a map iz : P k → C(M ;P ), for each sequence
z = {z1, . . . , zk} of distinct points of M , with the properties:

(i) the image of iz consists of configurations with support z, and
(ii) if U is the disjoint union of k small open balls U1, . . . , Uk such that Ui

contains zi, and CU (M ;P ) denotes the part of C(M ;P ) with supports in
U , then iz : P k → CU (M ;P ) is a homotopy equivalence.

3 The conventional way to define the structure of an d-fold loop space on a space P is to
give the amalgamation maps

Ck(Rd; P ) → P

for each k > 0; but these must of course satisfy various compatibilities.
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Although it is not strictly necessary, we may as well assume that CU (M ;P ) is
an open subset of C(M ;P ) when U is an open subset of M , and that it can be
identified with C(U ;P ). That is certainly true in our examples, where C(M ;P )
is simply Č(M ;P ) with a coarser topology.

In fact we need a slight generalization to include bundles of d-fold loop spaces.
We shall allow the label of a point z ∈M to lie not in a fixed space P but rather
in the fibre at z of a bundle P on the manifold M . It is clear how the definition
of C(M ;P ) should be adapted to this case.

When we have a single d-fold loop space P we define its d-fold classifying
space – or dth ‘delooping’ – as the space

BdP = C(U ;P )/CV (U ;P ),

where U is an open ball – say U = {z ∈ Rd : ‖z ‖< 1} – and V is the annular
region {z ∈ U : 1/2 ≤‖z ‖< 1}, and the notation means that the subspace
CV (U ;P ) of C(U ;P ) is collapsed to a single point, which is a natural base
point in BdP .

Similarly, when P is a bundle of d-fold loop spaces on M we can define a
bundle BdP whose fibre at z ∈M is constructed using a neighbourhood U of z
in M .

The main theorem about labelled configuration spaces is the following.

Theorem 9.1 There is a natural map

C(M ;P ) −→ Γcpt(M ;BdP ),

where Γcpt denotes the space of cross-sections which are equal to the base point
outside of a compact subset of M . If the composition law of P makes the set of
components π0(P ) into a group then the map is a homotopy equivalence.

Notice that applying the theorem when M is an open ball tells us that P is
homotopy-equivalent to the d-fold based loop space of BdP .

The equivalences are defined by the scanning map (see McDuff 1975, 1977
and Segal 1979) which associates to an element c ∈ C(M ;P ), the section of
BdP whose value at z ∈ M is the image of c in C(M ;P )/CM−W (M ;P ) =
C(U ;P )/CV (U ;P ), where W ⊂ U are two concentric open balls around z, and
V = U −W . The theorem is very easy to prove, and not at all deep, in the form
I have stated it here: in applications the main difficulty may be to verify the
hypotheses.

In the application to holomorphic vector bundles on a surface, at a point z on
the surface, with neighbourhood U , the labelling space P is the quotient GǓ/GU ,
where GǓ is the group of holomorphic maps U − {z} → GLn(C) which extend
meromorphically over U , and GU is the group of holomorphic maps U → GLn(C).
This can be identified with GLn(C(t))/GLn(C[t]). It is (see Pressley and Segal
1986) the union of a sequence of compact finite-dimensional algebraic varieties,
and it has the homotopy type of the based loop space of GLn(C). To define the
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topology of B̂Σ we first define a topology on the part B̂Σ,U with support in a
disjoint union U of open discs by identifying it with G∂U/GU , where G∂U is the
group of smooth maps ∂U → GLn(C) which are boundary values of meromorphic
maps U → GLn(C), and then we give B̂Σ the finest topology compatible with
these. Having checked the hypotheses of the theorem, it tells us that B̂Σ has the
homotopy type of the space of continuous maps from Σ to B2P � BGLn(C),
that is, the homotopy type of the space of smooth bundles, as we expect from
the stack picture.

Before leaving this topic, let us mention the converse question to the one
answered by the theorem. If we are given a space Q, can we model the mapping
spaces Map(M ;Q) for varying d-manifolds M – at least up to homotopy – by
labelled configuration spaces C(M ;P )? The answer, clearly, is: if and only if the
space Q is d-connected; for the delooping BdP of any d-fold loop space P is d-
connected. If we want to model spaces of maps into less highly connected spaces
Q we would have to allow not just ‘particles’ but also configurations of higher
dimensional submanifolds – presumably, up to dimension m if Q is (d−m)-
connected. (One way to see this is to realize Q as an open manifold with a Morse
function with critical points of indices ≥ d−m, and to make maps M → Q flow
downwards along the gradient flow.)

9.3 Quantum field theory

All the mathematical phenomena I have been discussing play an important
role in quantum field theory. In particular, noncommutative geometry enters
in two somewhat opposite ways, first because the moduli spaces of theories are
noncommutative spaces, and also because field theories can be used to give a
new formulation of noncommutative geometry. It is only the second aspect that
I am going to talk about. But let us begin at the beginning. . . .

In quantum mechanics a system is described at any time by giving an algebra
A of ‘observables’ and a linear map θ : A → C called the ‘state’.4 In quantum
field theory, in space-time of dimension d, this picture is enriched by supposing
that the observables are spread out over a given space-time manifold M . More
precisely, for each x ∈M there is given a sub-vector space Ox of A formed by the
observables which can be measured in the neighbourhood of x. Quantum field
theory assumes that – up to some global topological effects5 to which I shall
return at the end of this talk – the complete information about the system is
contained in the maps

Θk : Ox1 ⊗ · · · ⊗ Oxk
−→ C,

4 It is perhaps more usual to say that A is an algebra of operators in a Hilbert space H,
and that the state is a unit vector ψ in H related to θ by θ(a) = 〈ψ, a ψ〉. But the equivalent
description by (A, θ) seems more satisfactory to me.

5 The essential example is the Bohm–Aharonov phenomenon, when an electromagnetic field
in a non-simply connected region is described by a flat connection which is undetectable in any
simply connected subregion.
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for each finite set {x1, . . . , xk} of distinct points of M , which are got by
multiplying in A and composing with θ. The Θk are traditionally called vacuum
expectation values.

It is not easy to say what properties the vector spaces Ox and the functions
Θk must have for them to constitute a quantum field theory. A first attempt at
an answer can be given by defining a d-dimensional theory as a rule which

1. associates a complex topological vector space HY to each compact-oriented
Riemannian manifold Y of dimension d− 1, functorially with respect to
diffeomorphisms Y → Y ′, and

2. associates a trace-class operator UX : HY0 → HY1 to each oriented
Riemannian cobordism X from Y0 to Y1.

These data are constrained to satisfy two axioms:

(a) Concatenation:

UX′◦X = UX′ ◦ UX

when X ′ ◦X is the cobordism from Y0 to Y2 obtained by concatenating
X from Y0 to Y1 with X ′ from Y1 to Y2.

(b) Tensoring : We are given associative natural isomorphisms

HY ⊗HY ′
∼=→ HY 
Y ′

UX ⊗ UX′ = UX
X′

when we have disjoint unions Y ! Y ′ or X !X ′ of (d− 1)-manifolds or
cobordisms.

Notice that it follows from property (a) thatHY = C if Y is the empty (d− 1)-
manifold.

When we have a theory in this sense we can reconstruct the local observables
and their expectation values. We define the vector space Ox of observables for
each point x in a closed d-manifold M by

Ox = lim
←

H∂D,

where the inverse limit is over the ordered set of all closed balls D in M which
are neighbourhoods of x, ordered by

D′ > D ⇐⇒ D′ ⊂
◦
D,

in which case we have a canonical map U
D−

◦
D′

: H∂D′ → H∂D defined by the
annular cobordism.

If x1, . . . , xk are distinct points of M , and D1, . . . , Dk are disjoint discs with
xi in the interior of Di, let M0 denote the manifold with boundary obtained by



Quantum field theory 173

deleting from M the interiors of the discs Di. We regard M0 as a cobordism from∐
∂Di to the empty manifold, and define

Θk : Ox1 ⊗ · · · ⊗ Oxk
−→ C

as the inverse limit of the maps

UM0 : H∂D1 ⊗ · · · ⊗ H∂Dk
→ C

as the discs Di shrink to points around the points xi.
If the points xi are all contained in the interior of a disc D then the map Θk

clearly factorizes through H∂D. We can interpret this as saying that the local
observables have the structure of an algebra which is associative and commutative
up to homotopy, for if D is a small neighbourhood of a point x ∈ M then we can
regard H∂D as a completion Ôx of Ox (for the maps H∂D′ → H∂D in the system
defining Ox are always injective with dense image), and we have a map

Ox1 ⊗ · · · ⊗ Oxk
→ Ôx

for any family x1, . . . , xk of distinct points sufficiently close to x. This is an exact
linear analogue of the d-fold loop space structures discussed above, and it is what
in traditional quantum field theory is called the operator product expansion.

It is still not clear, however, that we have made our definition of a quantum
field theory sufficiently rigid. One feels that the vector space HY associated
to a (d− 1)-manifold Y should be constructed locally from Y , and perhaps
more axioms are needed to ensure this. A natural second approximation to the
definition is the notion of a three-tier theory, which gives an additional layer
of structure to allow (d− 1)-manifolds to be cut into pieces. In a three-tier
theory

1. to each compact oriented Riemannian (d− 2)-manifold Z there is associated
a linear category CZ ,

2. to each (d− 1)-dimensional Riemannian cobordism Y from Z0 to Z1 there
is associated an additive functor HY : CZ0 → CZ1 , and

3. to each d-dimensional Riemannian cobordism X from Y to Y ′, where Y
and Y ′ are cobordisms from Z0 to Z1, there is associated a transformation
of functors UX : HY → HY ′ .

As with the earlier definition, the data are required to satisfy two axioms of
concatenation and tensoring. A theory in the earlier two-tier sense is obtained
from the three-tier structure by restricting to closed (d− 1)-manifolds, which
can be regarded as cobordisms from the empty (d− 2)-manifold ∅ to itself. The
tensoring axiom implies that C∅ is the category of vector spaces, and since any
additive functor C∅ → C∅ is given by tensoring with a vector space, we can identify
HY with a vector space when Y is closed.

In the form I have just stated, the three-tier definition is too vague to be of
much use. In this talk I shall not try to elaborate it, as my purpose is to make
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just two points. The first is that a three-tier two-dimensional field theory seems
to have a good claim as a candidate definition of a ‘noncommutative manifold’.
For, schematically at least, a natural way to give the data of a three-tier theory
is to associate an algebra AZ to each (d− 2)-manifold, and to take CZ to be the
category of left AZ-modules; then to a cobordism Y is associated an (AZ1 ,AZ0)-
bimodule HY , which defines a functor CZ0 → CZ1 by

M �→ HY ⊗AZ0
M ;

and to a cobordism between cobordisms is associated a homomorphism of
bimodules. When d = 2 this simply means that we have a dual pair of linear
categories – the left and right modules for an algebra – associated to a point
with its two orientations, while the one-dimensional data expresses the cate-
gorical duality, and the two-dimensional data gives us ‘trace’ or ‘integration’
maps. The field theory even leads one naturally from categories of modules to
categories of cochain complexes of modules, if we assume that the field theory is
supersymmetric.

The idea that two-dimensional theories should replace manifolds is, of course,
the central proposal of string theory, which models space-time by a two-
dimensional conformal field theory, with the category of D-branes in space-time
as the category which the field theory associates to a point. It is also what arises
in the Kapustin–Witten treatment of geometric Langlands duality. There, one
begins from the maximally supersymmetric four-dimensional Yang–Mills theory
associated to a compact group G, and observes that, for any compact surface
Σ, a four-dimensional theory gives a two-dimensional theory by dimensional
reduction along Σ – that is, by composing with the functor M �→ Σ×M from i-
manifolds to (i + 2)-manifolds. The two-dimensional theory obtained from Yang–
Mills theory for G by reducing along Σ is supposed to associate to a point
the category of D-modules on the moduli space of holomorphic GC-bundles
on Σ.

My second point is even vaguer. The obvious fear, if one starts to study
three-tier theories, is that one will be impelled to believe that a d-dimensional
theory should really mean a (d + 1)-tier d-dimensional theory, which associates
a two-category to a manifold of dimension d− 3, and even worse things to
lower dimensional manifolds, until one gets to a (d− 1)-category associated to a
point.

This is not completely mad, as it works well in the one famous example afforded
by three-dimensional Chern–Simons theory for a compact group G at a given
‘level’. There, the category associated to a circle S is the category of positive
energy representations of the loop group of maps S → G at the specified level,
and the two-category associated to a point is the same thing, but remembering
its tensor structure coming from the fusion of loop group representations. (We
think of this as a two-category with just one object, whose linear category of
endomorphisms is the category of loop group representations, with fusion as its
composition law.)
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I cannot believe, however, that genuine – non-topological – quantum field
theory will be advanced by higher categories. The algebras-up-to-homotopy
formed by the field operators look much more promising. It is interesting that,
in the context of homotopy theory, a d-fold loop space P does indeed give rise
to a precise analogue of the structure of a (d + 1)-tier field theory, as follows.

1. To a closed d-manifold X we associate the space QX = C(X;P ).
2. To a closed (d− 1)-manifold Y we associate the ‘group’ – that is, one-fold

loop space – GY = C(I × Y ;P ), where I is an open interval.
3. To a closed d-manifold X with boundary we associate the G∂X-space

QX = C(X◦;P ), where X◦ is the interior of X, noticing that if X =
X1 ∪Y X2 then QX � QX1 ×GY

QX2 . And, more generally, to a cobordism
from Y0 to Y1 we can associate a (GY0 × GY1)-space, and hence a functor
from GY0 spaces to GY1 spaces.

4. To a closed (d− 2)-manifold Z we associate the two-fold loop space GZ =
C(I × I × Z;P ), noticing that if Y is a (d− 1)-manifold with boundary
then GY = C(I × Y ◦;P ) is a one-fold loop space on which the two-fold
loop space G∂Y acts by maps of one-fold loop spaces.

And so on – I shall not spell out all the details.

I hope that a linear and analytical version of this picture is the model for
quantum field theory. One point where the analogy may help is in considering
whether one should expect that the d-fold algebra of field operators defined in a
small d-dimensional ball should determine the theory on an arbitrary space-time,
in the way that the d-fold loop space P determines all the spaces C(X;P ). We
saw that a mapping space Map(X;Q) is of the form C(X;P ) only when the target
space Q is d-connected, and I would guess that an analogous distinction applies
to field theories: just as the mapping space cannot be modelled by particles, but
requires m-dimensional ‘objects’, if Q is only (d−m)-connected, so we know
that a field theory in general has non-local observables that can be seen only
in topologically non-trivial regions of space-time. It seems, however, that the
non-local observables are ‘topological’ in the sense that they contribute only a
finite number of degrees of freedom to the infinite-dimensional physical system
that the field theory describes.
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