
Fusion of representations of loop groups

Graeme Segal

§1. Notations and conventions

Let G be the complexification of a compact Lie group.

If S is a compact 1-manifold then Gg denotes the group of smooth maps

S— dG.

If 3 1s a Riemann surface with boundary then G5 denotes the group of holo-

morphic maps 3 — G.

We choose a “level” k € H*(BG;Z). This defines for each oriented 1-manifold

S a central extension Gg of Gs by CX. There are natural maps °

Gs, X Gs, — Gs, 1s, .

Reversing the orientation of 5 reverses the central extension, and in particular

there is a diagonal inclusion Gs C Ggpg,where S denotes S with reversed

orientation.

There is a basic reciprocity theorem: for each Riemann surface ¥ the ex-

tension (Gs of Gx induced by the restriction Gs <— Gas is canonically split,

i.e. Gg = Gg x CX,
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§2. Alms and results

In my Swansea talk [S] I explained how, given G and k, one can associate to

a Riemann surface 3 with boundary a representation E(X) of Gx with three

basic properties:

(PO) if ¥ is closed then E(X) is a finite dimensional vector space;

(Pl) E(¥; 0 %;) = E(¥1) ® E(Y¥s), where ® denotes a suitably completed

tensor product; and

(P2) if ¥ is formed from ¥ by sewing together two components S and S’ of

0%. by an orientation-reversing diffeomorphism then

E(X) = E(%)% (= Gs-invariant part of E(X)),

where G's is regarded as a subgroup of Gris as above.

Properties (P1) and (P2) imply

(P3) if ¥ is formed by sewing ¥, and 3; together along S then -

E(Z) = {E(Z:) ® E(X2)}°

Furthermore if 8% = Sy I1 S$; then E(X) defines a functor

E(X) : {representations of G's,} — {representations of Gg,}

by

E— {E(X)® E}%o,

In fact the construction is more general. If ¢ is a finite set of marked points

in the interior of %, and each z € o is labelled with a finite dimensional

representation V; of GG then the construction gives a representation E(%; a, V)

of Gaz. The Borel-Weil theorem for loop groups is the assertion that any

positive energy representation of LG = Gs is of the form Ey = E(D; {0}, V),

where D is the standard disc with centre 0 and boundary S71.

From now on we shall usually omit (o,V) from the notation, as it plays no

role in the discussion.

The properties (P0) — (P2) follow directly from the definition of F(X) given

in [5], which will be recalled presently. My purpose in this note is to explain

how the definition can be altered slightly so that the following two desirable

properties hold in addition.

(P4) E(X) is independent of the complex structure of 2, and depends only on

the smooth surface together with a rigging, as defined below.
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(P5) E(X) is a positive energy representation of Gs.

As was explained in [S], property (P4) follows from (P5), essentially because

positive energy representations of loop groups admit an intertwining action of

Dif f(s").

Various corollaries can now be read off, including the usual version of Verlinde’s

“fusion rules”. For in the category Cs of positive energy representations of Gg

there are only finitely many irreducible objects, and every object is a direct

sum of irreducibles. If S consists of a single circle the irreducibles are the

Fy already mentioned, where V runs through a finite set ® of irreducible

representations of G. If S has n components I shall still denote the irreducibles

by Ey, where V = (W,...,V,) € 8" = &5, and Ey = Ey, ® ... ® Ey. Then

if S is part or all of 0% - say 0X = SII 5’ - we can write

BZ) = By.Br © By(2)

as representations of Gs x Gs. By Schur’s lemma {Ey ® Ew}% = Cor 0

according as W = V* or not, and so (P2) and (P3) can be reformulated as

(P2’) EX) = ®vessEvy+(3)

(P6) Finally, if S = 9%, property (P3') shows that Ey (X) can be identified

with E(X;0,V), where X is the closed surface got by sewing a disc on to each

boundary circle of Xi, and ¢ is the set of centres of the discs.
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§3. Rigged surfaces

A rigging of a smooth surface is rather analogous to a choice of a spin structure

on it. Up to isomorphism each surface can be rigged in only one way, but the

group of automorphisms of a rigged surface is a central extension by Z of the

group of diffeomorphisms of the surface. The definition of rigging I shall give

is not the shortest possible, but it is the one which seems to fit in best with

the concept of a rigged 1-manifold.

For each oriented 1-manifold S we have the restricted Grassmannian Gr(S)

consisting of all closed subspaces W of C'°°(.S) which are not too far away

from the subspace spanned by {e"?} for n > 0, where § : S — R/27Z is

a parametrization of 'S. (In fact Gr(S) does not depend on the choice of

parametrization.) For Wy and W; in Gr(S) there is a canonical determinant

Definition A rigging of S is.a holomorphic line bundle L on Gr(S) with a

holomorphic isomorphism -

over Gr(S) x Gr(S5).

Example A point Wy of Gr(S) defines a rigging of § by Ly = Det(W, : W).

Hence a parametrization of S defines a rigging, and so does a Riemann surface

Y; such that 9% = §, for the boundary values of holomorphic functions on X

are a subspace Hol(¥) of C°(0%) which belongs to Gr(d%).

Definition For an oriented smooth surface ¥ let C(¥) denote the space of

complex structures on ¥ modulo diffeomorphisms of ¥ which are isotopic to

the identity and equal to the identity on OX.

The space C(X) is contractible.

There is a holomorphic map C(¥) — Gr(9X) defined by X. — Hol(X,).

Definition If 0% is rigged by L then Det(X) = Det (X) is the pull-back of L

to C(X). A rigging of ¥ relative to L is a choice of a universal covering space

of the complement of the zero-section in Det(X).

The important thing about riggings is that they can be sewn together. A

rigging L of S defines a rigging of L of S, and

over C(X1) x C(Xg) if L is a rigging of S. Thus coverings of Detr(%;) and

Detz(3;) define a covering of Det(2; Ug Xs).
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84. Representations of loop groups

A representation E of the loop group LG has positive energy if it admits a

positive intertwining action of the group T of rigid rotations of S*. In that case

FE is sandwiched between canonical “minimal” and “maximal” representations

EEE,

each map being injective with dense image.

Among the representations sandwiched between E and E there is a unique

unitary representation EF of L(G. ompact)- Usually one does not want to

distinguish between representations lying between EF and E. Nevertheless,

there are two inconvenient features of the picture:

(i) the definition of £ and E depends on the parametrization of the circle, and
Diff(S1) does not act on them; while

(ii) although EF is independent of the parametrization of 5? it is not acted

on by the complex group LG, but only by LGpt.

I shall now sketch a way of avoiding these difficulties.

The (projective) action of Diff(S) on EH extends to a holomorphic action

of a semigroup A whose elements are “annuli”, i.e. Riemann surfaces diffeo-

morphic to S* x [0,1] with parametrized boundary circles. Each annulus A

acts on EH# by a trace-class operator. If £7 is decomposed as @ E,,, where

rotation by 8 acts as e*? on E,, then the annulus

Ay={z€C:|q<2] £1},

with its ends parametrized by {e*’} and {qe’}, acts on E, as ¢".

Our strategy is to replace E and E by the spaces

E = UJ A fH

A

and

E'"= {tc E: At € EF® for all A}.

(Here A runs through 4.) These spaces have natural topologies which make

them mutually antidual. If we write ¢ = X¢, with §, € F,, then

(Ee FB <= R"|.] is bounded for some R>1, and

(Ee E'" <> RTM||{]| is bounded forall R > 1.
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(The norm here is that of E#,)

Because EH" does not depend on the parametrization of S! the same is true

of E' and E”. It is not hard to see that £G also acts on them. For our purposes

it 1s best to formulate this assertion in another way, as follows.

The objects we are interested in are representations of the semi-direct product

Diff(S*) x LG, but just as we passed from the group Diff (5?) to the semigroup

A so we can pass from Diff(S1)xLG to a semigroup B. An element of B

is an annulus A € A together with a holomorphic G-bundle B on A which

is’ trivialized over JA. (Two pairs (A, B), (A, B’) are identified if they are

isomorphic by a map which respects the boundary trivialization.) There is

a forgetful homomorphism B — A, and A can also be regarded as a sub-

semigroup of B by equipping each annulus with the trivial G-bundle.

The objects that we want can now be described very simply: they are projec-

tive representations of the semigroup B by trace-class operators.

Let us be a little more explicit about the projectiveness. The universal central

extension of Diff(5') has centre R @ Z, and it is best to keep the two factors

separate. The Z factoris mi (Dif f(S') = m1 (A). We deal with it by replacing A

and B by the obvious Z-fold coverings, which we shall do from now on without

changing the notation. (The new A is the same as the space Cg14jo1) of §2.

above.) The chosen level k defines not only a central extension £G but also

an extension B of B by CX which acts on all positive energy representations of

level k. (The central C* acts in the obvious way.)
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85. The old definition.

For a Riemann surface ¥ with non-empty boundary the space F(%;0,V) was

defined as the space of holomorphic maps f : Gaz — V = Qzecqs Ve Which are

equivariant with respect to Gx in the sense that

f(hg) = hf(g)

where h € Gy, = Gx x CX acts on V via the restriction to the points z € o (and

C* acts naturally on V). Ishall now denote this space F(Z; o, V) to distinguish

it from the modification to be introduced presently. Thus F(X; 0,V) is the

representation of Gx holomorphically induced from the representation V of

Gs.

[t is better to state the definition in terms of the moduli space M(X) of

holomorphic G-bundles on ¥ which are trivialized on dX. Because all holo-

morphic bundles on ¥ are trivial M(%) is simply the homogeneous space

Gsz/Gs = Gos /Gx. The data (co, V) define a holomorphic vector bundle L, y
‘on M(X) with fibre V, and F(X; 0,V) is the space of holomorphic sections of

L,v. Property (P2) is now just the fact that M(3) = M(2)/Gs.

If OY is empty one can define F(X) as F(X)%?, where Yq is obtained from

2 by deleting the interior of a small disc D (disjoint from o). This does not

depend on the choice of D, for if ¥; is obtained by deleting another, disjoint,

disc DD’ from 2, and 201 = 200 N 21, then F(5,)¢r = F(Xo1)%pup! = F(3,)¢p

by property (P3).

The description of F(X) in terms of the moduli space M(X) is valid even

when 0X = 0), but in that case M(X) is normally defined by considering only

semistable bundles on 2. We shall return to this point in an appendix, as it

is irrelevant for our purposes.

From the definition we are using it is clear that F(X) is finite dimensional

when X is closed, for we can write F(X) = F(D)%, and there is a compact

algebraic variety (a union of Bruhat cells) in M(D) = Gs/Gp which maps

surjectively on to Gg,\Gs/Gp.

We now come to the crucial point, why F(X) is a positive-enery representation

of Gos. Let us begin with the case when ¥ is the standard annulus A,. By

adding caps with trivial bundles a point of M(A) defines a bundle on the

‘Riemann sphere, and so a point of M(A) can be described as a bundle on 5?

with given trivializations of its restrictions to |z| < |¢| and |z| > 1. Generically

the bundle on S$? is trivial, so a dense open subset M®(A) is isomorphic to

(Gp x Gp)/G, compatibly with the actions of Gp x Gp C Gas. The line

bundle L is trivial over M?(A), so the space F(A) is a subspace of the space

of holomorphic functions on Gp xX Gp. There is an obvious action of the

rotation group T X T of the two boundary circles of A on the holomorphic

functions, and it has positive energy, and intertwines correctly with the action

of the subgroup Gp x Gp of G4. Unfortunately this is not enough to ensure

that F(A) is a positive energy representation. In the next section we shall see
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that all the same the argument is effectively correct. Meanwhile let us assume

that F(A) has positive energy.

If F(A) has positive energy then so does F'(¥) for any Riemann surface XJ. For

by property (P3) we can write F(X) = {F(3;)® F(A)}“s where ¥ = 3; Ug A.

(I assume for simplicity that 0% consists of a single circle.) But the positiveness

of F(A) allows us to apply the decomposition theory of [PS], which shows that

F(A), as a representation of Goa = G's X Gx, can be densely embedded in a

finite sum of representations Fy ® Ey. Then

F(Z) = ©{F(%1)® Ev}® ® Ew

= O{F(Z1) ® F(D;0,V)}% ® Ew

= @Fv(%1) ® Ew,

which is of positive energy because Fy (3) is finite dimensional.
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§6. The positive energy property for ['(A) and the Peter-Weyl theorem

for a loop group

This is the crucial part of the whole discussion.

Let A be the annulus {z : a < |z| £ 1} in the Riemann sphere ¥. Write

0A=5,115, and ¥ = D, Us, AUgs Do,. We can think of the loop group Gs

as a dense subspace of M(A) = (Gs, Xx Gs)/G4 by the map g — (1,¢), and

so F(A) is a dense subspace of the space of holomorphic sections of the level

k line bundle on Gs. We are going to prove that

F(A) =D, Ev. ® Ev (1)

as representations of Gs. x Gs. This is a version of the Peter-Weyl theorem.

It is useful to think of an element of M(A) as a bundle on the sphere ¥

trivialized over D, and D.,. By forgetting each part of the trivialization in

turn we get a map }

M(A) » M(D) x M(D),

where D = D, UA and D = AU Do. This map is not quite injective, but

we can make it so by introducing the slightly larger spaces. M,(D), M,(D) of

bundles equipped with a trivialization of the fibres at the centres of the discs.

Then the map )

is injective. (Its image is the dense open subset where the two bundles on
are isomorphic.)

The right-hand side of (2) will be denoted by M(Ay), as it is the moduli

space of bundles on an “infinitely long annulus” As, which is interpreted

as the singular surface got by attaching D to D at their centres. The map

(2) is not equivariant with respect to G4. Nevertheless the striking fact is

that the spaces F(A) and F(A) of holomorphic sections of the standard line

bundles on M(A) and MA.) are isomorphic as representations of G4. The

representation F'(Aq) obviously has positive energy and satisfies (1). On the

other hand, if we know that F'(A) has positive energy then it is isomorphic to

F(A) by property (P6).

Let us restate what we want in representation-theoretic terms. We start with

the “regular representations” I'(Gpa) of all holomorphic sections of the line

bundle on G4, which is a representation of Gg4 x G4. The space F' (A) is 1ts

(7 g-invariant part, where G4 is embedded in the right-hand copy of G54. We

want to deform Ga to Ga, = {(90,90) € Gp X Gp : go(0) = goo(o0)}, and

see that the representation of Gy4 does not change.

There 1s an exactly analogous phenomenon in a familiar finite dimensional

situation. Let us try to understand the Peter-Weyl decomposition

HollG) = VeV
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of the space of holomorphic functions on GG = §L;(C) from the point of view of

the Borel-Weil theorem. We think of Hol(G) as Hol((G x G)/G), where G is

embedded diagonally. Then let G) C G XG be the graph of the automorphism

(28) — (1% 8). As the subgroups Gj are conjugate in G xX (G the spaces

Hol((G x G)/G») are clearly the same as representations of G x G. But as

A — oo the group GG) tends to the subgroup B of B_ x By C G x (G consisting

of all pairs

a b ( a 0 )

\0 a1) \cal//

Now (G x G)/B is a C*-bundle over (G/B) x (G/B_), and the Borel-Weil
theorem tells us that Hol((G x G)/B) is @V ® V.

We now come to the proof. It is enough to show that F(A) has positive energy

as a representation of GG.

There is a fibration _ LL

Ny =» M(A) =» M,(D),

where NV, = {g € Gp, : g(0) = 1}. As M.(D) = Gg/N, where N = {g €
Gp : g(0) = 1}, this means that -

F(A) = Holy(Gs; Hol(N,)).

We think of NV as acting on Gg on the left, and then Gg acts on itself on the
right.
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§7. The new definition

To obtain the desired spaces F(X) we must modify F(X) in two ways. First,

we must pass to a dense subspace, just as we had to reduce the “maximal”

representation E of a loop group to E” in order to make Dif f(S') act. Then

we must tensor the space with a suitable fractional power of the determinant

line of ¥ in order to eliminate the dependence on the complex structure of 2.

It is to have canonical fractional powers of the determinant line bundle over

C(X) that one requires the surface ¥ to be rigged.

For each smooth surface ¥ we introduce the moduli space B() of pairs (¥., B),

where X. 1s a complex structure on ¥ and B is a holomorphic G-bundle on 3.

trivialized over 0%. Two such pairs are identified if they are isomorphic by a

map which is the identity over 0% and is isotopic to the identity. There is a

forgetful map B(X) — C(X), and its fibre at X, is M(X,).

For any 1-manifold S the space B(S x [0, 1]) is a semigroup. It will be denoted

by Bs. If § = St it is the semigroup B of §4. For any surface X the semigroup

Bss acts on B(Z). The rigging of ¥ gives us a natural holomorphic CX-bundle

B(X) on which the canonical extension Byy acts.

To define the representation E(X) of Bg let us choose an embedding of the

standard disc D in X, writing ¥ = Yo Us D. Then 0X9 = 0X II S, and

it is convenient to think of B(Xo) as having a left-action of B = Bg and a

right-action of Bgy. We define

E(X) = Hols(B(Zo); H),

where H is the basic representation of B (i.e. the Hilbert space in the represen-

tation Ec), and Hol; denotes the space of holomorphic maps f : B(Xo) — H

such that f(PQ) = Pf(Q) for P € B and Q € B(E,). The semigroup Boss

acts on E(X) by (Pf)(Q) = f(QP). The groups Gsx and Dif f(0X) also act

(projectively) on F(X), as they act on B(Zo).

Let us first observe that, after tensoring with a line, E(%) injects into the

previously defined space F(X), compatibly with the action of Gz. For a

given complex structure on ¥ the moduli space M(Xy) is a subspace of B(%y),

and the relevant line bundles on these spaces differ by a power of Det(X).

Moreover H C Hols _(Gs;C), so there is a restriction map

Holg(B(%o);H) — Holg,(M(o);Holg,, (Gs; C))

= Holg (M(Zo); C)

The map is injective - i.e. a B-equivariant map on B(X,) is determined by

its restriction to M(Xp) - because one can get from one complex structure
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on Xo to any other by successively adding on and taking off annuli along the

boundary circle 5.

The new functor FE has the properties (P2) and (P3) for the same reasons as

were given for F'. Thus

B(%1 Us X2) 2 {B(%1) x B(X,)}/B

in the sense that a B-invariant holomorphic function on B(%;) x B(X;) is the

same as a holomorphic function on B(X; Ug X2). The fact that E(X) does not

depend on the choice of the disc D is also as before.

Let us calculate the space E(D), where D is a disc. It is Holz(B;H). If

B had an identity element this would be simply H, but as it does not we

conclude that an element of E(D) is a family {£4} of elements of H indexed

by annuli A € A and such that A1{4, = {4,4,. This is the same as an element

¢ of Ec = F(D) such that A € H for all annuli A, i.e. E(D) = £7 in the

notation of §4.
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