
COHOMOLOGY OF TOPOLOGICAL GROUPS (*) 

GRAEME SEGAL 

The following work was done jointly by G. J. Mitchison and me. 
Its purpose is to define cohomology groups of a topological group G 
with coefficients in a topological abelian group A (on which G acts 

continuously) by a method analogous to defining the cohomology of a 
discrete group as a derived functor. I shall begin by introducing a 
category of topological abelian groups. 

§ 1. Let Topab denote the category of compactly generated and 

locally contractible (*) hausdorff topological abelian groups and continuous 
i p 

homomorphisms. A sequence A’——> A ——> A” in Topab will be called 
a short exact sequence if 

i) i is an imbedding of A’ as a closed subgroup of A; 

ii) p induces a topological isomorphism A JA! —s A”; 

iii) A’ has a local cross-section in A (i.e. the fibration A"—>A-—> A" 

is locally trivial topologically). 

From short exact sequences one can build up longer exact sequences 
in the usual way. 

(*) I risultati contenuti in questo lavoro sono stati esposti nefla conferenza 

tenuta il 26 marzo 1969. 
() I mean an abelian group A in the category of k-spaces [2]. Thus the 

composition A X A — A is supposed to be continuous when the product is under- 
stood in the sense of k-spaces. The condition of local contractibility is inserted 
only to ensure that each object has a contractible resolution ((1.1) below); in fact 

Topab can be embedded in a larger abelian category with enough injectives, and 

the restriction is unnecessary. 
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ProrosiTION 1.1. Any object A of Topab has a contractible reso- 
lution, i.e. there is an exact sequence 

0—->A—>A"— Alo A2— ... 

such that each A’ is contractible as a topological space. 

PROOF. A suitable resolution is, in the notation of the appendix: 

A—>EA— EBA — EBA — ... 

A left-exact additive functor F: Topab — Ab, where Ab is the 
category of abelian groups, will be called derivable if, for each short 

exact sequence A'—>A— A” in Topab for which A" is contractible, 

the sequence 

0— F(A") => F(A)—> F(A")— 0 

is exact. If F is such a functor one can define its derived functors R°F 
for p=0 by RPF(A)=H"(F(A")), where A— A" is a coniractible reso- 

lution of A. This is justified by 

ProrosiTiON 1.2. If F is derivable then R’F(A) does not depend 
on A". 

Proor: Let E'4 be the canonical contractible resolution constructed 

above. Consider the double complex 

Ae A — A! — 

E)—> Ep ——> EY, > vey 

in which both the rows and the columns are exact (because the functors 

E and B are exact, as explained in the appendix), and all the objects 
except those in the first row are contractible. When F is applied to this 
complex the rows and the columns, except for the first in each case, 

remain acyclic because F is derivable, so the cohomology of the first 

row is isomorphic to that of the first column, i.e. R?F(A) defined using 
A—>A"—> Al'— ... is the same as R?F(A) defined using the canonical 
resolution A => E 4. 

Given the exactness of A — Ey, it is clear that we have
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ProrosITION 1.3. If F: Topab —> Ab is derivable,and A"—>A— A" 

is a short exact sequence in Topab, then there is an infinite exact sequence 

0— F(A") — F(A)—> F(A") —> 

—> R'F(A") — R'F(A) — RIF(A")—> R* F(A") — ... 

ExaMprLE 1.4. Let X be a paracompact space. Then the functor 
A> Map (X; A), where Map (X; A) denotes the space of continuous 

maps of X into A, is derivable, and R? Map (X; A)=H"(X, A), the 

cohomology of X with coefficients in the sheaf of germs of continuous 

functions from X into A. 

Proor: If A"—>A—> A" is a short exact sequence in Topab 
with A’ contractible then A==A’ > A” as topological space, for a locally 
trivial principal fibration with a contractible fibre is trivial (*). So 
Map (X; A) — Map (X; A”) is surjective, and the functor is derivable. 

From the short exact sequence A — EA — BA one obtains an exact 

sequence 

Map (X; EA) — Map (X; BA)— R!' Map (X; A)— 0. 

This shows that R! Map (X; A)=[X; BA], the set of homotopy-classes 

of maps from X to BA, for a map X —> BA is null-homotopic if and only 
if it lifts to EA. But BA is a classifying-space for locally trivial principal 
A-bundles on paracompact spaces, so 

[X; BA]=H'(X; A), 

and 

R'Map (X; A)=H (X; A). 

Finally, one sees that R? Map(X; A)==H"(X; A) for all A by 

induction on p. For R" Map (X; A)=R"~!Map (X; BA) if p=2; and 

H?(X; A)=H""!(X; BA) if p=2 because EA is a soft sheaf [3]. 

§ 2. Let G be a compactly generated topological group, and let 

G-Topab be the category of compactly generated locally contractible 

topological abelian groups A on which G acts continuously. A sequence 

(3) See Appendix B.
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A’—>A—> A” in G-Topab will be a short exact sequence if it is one 
in Topab when the G-actions are neglected. 

Call an object of G-Topab soft if it is of the form Map (G; A), 

where A is a contractible group and Map denotes the set of continuous 
maps with the compact-open topology. (Thus a soft group is contractible). 
And call a left-exact additive functor F: Topab — Ab derivable if for 
each short exact sequence A'—>A—> A" with A” soft the sequence 
0— F(A") —> F(A) —> F(A’")—> 0 is exact. As before one defines the 

derived functors RF by RPF(A)=H"(F(A")) were A—> A’ is a soft 

resolution of A. This is justified in virtue of the following two proposi- 
tions, analogous to (1.1) and (1.2). 

ProrosrtioN 2.1. Each object A of G-Topab has a soft resolution. 

Proor: Let E()yA= Map (G; EA). Define a G-embedding A — E)A 

by composing the embedding of A in EA with that of EA in Map (G; EA) 
as the constant functions. Then A —> E()A has a local cross-section, so 

it leads to a short exact sequence A — EgA — BgA in G-Topab. A suit- 
able resolution of A is A — E()A — E(¢)B()A —> E()BigyA — ... 

ProrosITION 2.2. If F: G-Topab — Ab is derivable then RPF(A) 
is independent of the soft resolution of A used to define it. 

Proor: To see that the proof of (1.2) applies in this case it 
suffices to show that the functors Es) and Bs) are exact. In the case 

of E(w), this is true because if A’—> A — A” is a short exact sequence 
in G-Topab then in the induced sequence EA" —> EA — EA” there is a 
global cross-section of the fibration EA — EA” (the group EA being 
contractible), and so there is an induced global cross-section of the 

fibration E(¢yA= Map (G; EA) — E)A” = Map(G; EA"). In the case 

of Bs), a local cross-section of B(eyA —> B(e)A” is given by the composi- 

tion p-s2-81, where s; is a local cross-section of E(gyA” —> B(s)A”, sz is 
a cross-section of EA —>Ew)A”, and p: EA —> Bi)A 1s the 

projection. 

And of course we have 

ProrositioN 2.3. If F: G-Topab— Ab is derivable, and 

A"—>A— A” is a short exact sequence in G-Topab, then there is an 
infinite exact sequence 

0—> F(A") = F(A) F(A”) => R'F(A) — ....
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ExamrLE 2.4. The functor A > I'®4 which associates to an object 
of G-Topab its G-invariant subgroup is derivable. 

Proor: Let A”—> A—> A” be a short exact sequence in G-Topab 

with A’= Map (G; As). We must show that TA — T°A” is surjective. 
Let yeT€A" cA”, and let xe A be such that x+>y. Then, identifying 
A’ with a subgroup of A, g-x—x is an element ©(g) of A” for each ge G. 
It is casily seen that ¢ : G— A’ is a crossed homomorphism G): let its 

adjoint map be ¢: GX G—> Ao. Let € be the element of A’ defined 
by g—>4Y(g™!, 1). Then (g-£E—&E)eA’ is the map 

Y => (yg, 1)—d(y—t, 1). 

But 

U(y~1g, =r! D=d(y~, D+y; Wg, D—-d(y~!, D=U(g, v) 

because ¢ is a crossed homomorphism. That is, g-£—E=g-x—x for all 
ge€@G, and so x—£ is an element of A which maps to y. 

§ 3. The cohomology of a discrete group can be calculated from 
a well-known cochain complex. One can define an analogous complex of 
continuous cochains C'¢(A) in the topological case: one sets Cef'(A)= 

Cpls] 

= Map (GX... X G; A), and defines d : Cs”(A)—> C5*Y(A) by the 
classical formula 

pL1 . 

df(g , vaey grs)= XZ (—=1)fe0 sony Bly wey Sps1). 

A is embedded in C¢’(A)= Map (G; A) as the constant maps. Then 

A—> Cg(A) is a resolution of A in G-Topab, for there are (non-equi- 

variant) contracting homotopies £2: C4"1(A) — C6”(A) defined by 

hf(go , teoy gp) =f(1, 80s «np gp). 

When A is a contractible group the groups Cg¢?(A) are soft, so we 

have 

() Le. 9(g1g,) = olg,) +g; + 9(g,) for all g;, g,eG.
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ProrositioN 3.1. If A is contractible then R’T'6(A) can be cal- 

culated from the complex of continuous cochains. 
In general this will not be true, but there is a spectral sequence 

relating the cohomology of the continuous cochains to the cohomology 

of G. In fact if A— A’ is a soft resolution of A then from the double 
complex T°C'c(A’) we obtain 

ProrosiTioN 3.2. There is a spectral sequence with FE{?= 

=HY(G X ho X G; A) converging to RTCA). 

Proor. For each gq the complex T'°A?— I'°C'¢(A?) is acyclic, so 
the total cohomology of T°C'¢(A") is R'T°(A). On the other hand for any 

p> 

p the complex T°C¢”(A") can be identified with Map (G X . X G; A), 

and we have seen in (1.4) that the cohomology of this is 
Cp 

HYG X ... X Gj A). 

REMARKS. 

i) Notice that EP=C¢"(A), so that the edgehomomorphism 

EP — RTA) is a natural transformation from the cohomology of the 

continuous cochains to the cohomology of G. 

il) If, for example, A is discrete and H, (G) is torsion-free then 

H(G X ... XG; A)= Hom (H(G)Q ... QH(G); A) 

and one has the spectral sequence of Eilenberg-Moore-etc. 

Extn?) (£4; A) pel RTCA). 

To an object A of G-Topab one can associate a sheaf of abelian 
groups oA on the space BG by defining cA(U)= Map® (p~U; A), where 
U is an open set of BG and p: EG — BG is the projection. This gives 
a functor ¢: G-Topab — Sh(BG), where Sh(BG) is the abelian category of 

sheaves on BG. It is easy to see that o takes exact sequences to exact 

sequences, and soft objects to soft sheaves. So from the natural trans- 
formation IA — HBG; oA) one derives natural transformations 

R’T°A — HP(BG; oA) for all p=0. One has a transformation of the 
spectral sequence of (3.2) into that of the double complex 

Ex*=HYBG; o Map (G"'!; AY).
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But 

HBG; o Map (G**; A7))= Map® (EG; Map (G**'; A9))= 

= Map (EG X G*; A9), 

oF =HYEG X G?; A) by (2.4). If A is discrete this spectral sequence 

coincides at the Ej-level with that of (3.2), because EG is contractible; 

and one deduces 

ProrosITION 3.3. If A is discrete then RT9(A)=H*(BG; cA). 

§ 4. To conclude, I shall show that the cohomology groups in 
dimensions 1 and 2 have their usual interpretations. Let Hom (G; A) 

denote the abelian group of crossed homomorphisms from G to A modulo 
principal crossed homomorphisms (i.e. ones of the form g+> g-¢—a for 

some aA). And let Ext (G; A) denote the set of isomorphism-classes 

of extensions A — E —> G which have a local cross-section. Ext (G; A) 

is a contravariant functor in G, because G' — G induces E = E X ¢G’; 

and a covariant functor in A, because A — A’ induces E> (E X A") /A. 

The composition-law 

Ext (G; A) X Ext (G; A) —>Ext(G; A X A) 

given by (Ei, E))—>E; X gE., together with A X A— A, makes 

Ext (G; A) into an abelian group. 

ProrosiTioN 4.1. If A"—>A—> A” is a short exact sequence in 
G-Topab then there is an exact sequence 

0—->TCA" >T%4 ->T%4” —- Hom (G; A) —> Hom (G; A)— 

—> Hom (G; A") => Ext (G; A) — Ext (G; A) — Ext (G; A”). 

Proor. The first d assigns to yeI'®A” the crossed homomorphism 
g+>g-x—x, where x€éA has image y in A”. The second d assigns to 

a crossed homomorphism G +> A” the extension G X aA. To verify 
exactness Is trivial, 

ProrosiTiON 4.3. If A is soft then Hom (G; A)= Ext (G; A)=0. 

Proor. Let A= Map (G; Ao). Given a crossed homomorphism 

f:G— A, let its adjointbe f: G X G—> Ap. Then a trivial calculation
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(done in the proof of (2.4)) shows that f(g)=g-p—o, where ¢(g)= 
=f(g~!, 1). Thus f is principal and Hom (G; A)=0. 

Let A— E— G be an extension. Because A is contractible there 
is a continuous cross-section ¢ : G—> E. Define a«: G X G~> A so that 

P(81, B2)=0(g1, 8)p(g1)p(g), 

and let its adjoint be a: GX GX G—> A, Then if B: G—>A has 
adjoint B: GX G— A, where 

Ble, g)=g-alg’ g, 1), 

a calculation shows that g> 3(g)o(g) is a splitting of the extension E. 
Hence Ext (G; A)=0. 

PROPOSITION 4.3. RT¢(A)=Hom(G; A), and RT°(A)=Ext(G; A). 

Proor. Because of the exact sequence A —> E(g)A — B(s)A4, both 

RTCA) and Hom (G; A) can be identified with the cokernel of 

T'°(E(6)A) => TBA), 

so they are isomorphic. And similarly 

RTC(A)=R'T%B(xA), 

while 

Ext (G; A)= Hom (G; B(nA). 

Appendix (A). 

In [6] I explained how one can associate naturally to a topological 
space A a contractible space EA obtained from the semi-simplicial space 

“naples 

{An}, where An=A X ... X A, by the usual realization process; i.e. EA 
is obtained from the topological sum IIA. >X A" where A" is the stan 

dard m-simplex, by making identifications along the boundaties of the 

simplexes. 

Another way of describing EA is as follows: it is the space of 
step-functions on the unit interval I with values in A, where by step- 

function one means a function constant on each of the half-open intervals
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(t;, fi1] for some partition O=f<ti< .. <tp.=1 of I. But from this 

point of view the topology seems rather obscure. 
If A and B are two spaces then E(A X B)=EA X EB in the category 

of k-spaces, sc that EA is a group in the category if A is one. When 

EA is thought of as a function-space the composition-law is the obvious 
one, and EA admits a continuous monomorphism on to a dense subgroup 
of L'(I : A). The group A is embedded in EA as a closed subgroup (the 
constant functions) which is normal if and only if A is abelian. One 

defines BA=EA/A. The following proposition replaces the vague remark 

on the same subject in [6]. 

ProrosiTioN (A.1). If A is a locally contractible group (not nec- 
essarily abelian) then it has a local cross-stection in EA, so that the 
fibration A —> EA —> BA is locally trivial. (Note: « Locally contractible » 

means that for each neighbourhood U of each point x there is a neigh- 

bourhood V of x contained in U which is contractible in U). 

Proor. BA is the realization of the semi-simplicial space ({B.}, 

where By=A,/A=A > .. X A. Let B"A be the n-skeleton [6] of BA, 

which is obtained by attaching B. X A" to B*~!'A by a certain map 

(B. X AM U (Bd X A") — B*=14, 

where B,* is the degenerate part of B,. Suppose that a cross-section of 
E"-14 — B"'A has been found in a neighbourhood of the base-point 
in BA. When the bundle EA — BA is pulled back to B, X A”* it 
becomes trivial, so the problem of extending the partial section reduces 
to that of extending a map V — A, where V is an open set of (IB, X A") U 
UB, X AP), to a neighbourhood of V in By X A". That can be done 

because (B, X AM U(B,4 X A?) is a neighbourhood deformation retract 

in B, XX A®; which is true in turn because 

Bl={(a;, ..., adehA KX ..X A: a=1 for some i) 

is a neighbourhood deformation retract in B,, if A is locally contractible. 

ProposiTiON (A.2). If A is a locally contractible group then EA 

and BA are locally contractible. 

Proor. EA is locally contractible because any contractible topo- 
logical group is locally contractible. The local contractibility of BA 
follows from that of EA in view of the local cross-section found in (A.1).
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ProrosiTiON (A.3). If A"—>A— A” is a short exact sequence in 
Topab then the induced sequences EA" — EA —> EA” and BA’ —> BA — 

—> BA” are exact. 

Proor. The algebraic exactness of the sequences is trivial. The 
local cross-section of A —> A” induces a local cross-section of EA — EA”, 
because E is a functor on topological spaces. A local cross-section of 
BA — BA” can be obtained from local sections of EA” — BA” and 
EA — EA”. 

Appendix (B). 

I shall prove the following theorem, which is true either in the 
category of topological spaces or in the category of k-spaces. 

THEOREM (B.1). If A” is a contractible closed subgroup of a topo- 
logical group A which has a local cross-section then it has a global 

cross-section, ie. A=A" X (A/A’) as topological space. (Notice that 

A” and A are not assumed abelian), 

The proof depends on the following lemma inspired by [4]. 

ProrosiTiON (B.2). If X is a uniform space, and UcX X X is 

an entourage of the diagonal, then the covering {U.}icx of X is numer- 

able [1], where U.={yex: (x, y)eU}. 

ExampLE, If G is a topological group and V is a neighbourhood 
of the identity in G then the covering {gV}.cc of G is numerable, 

Proor or (B.2). Mather ([4] Thm. 1) has shown that is enough to 

find functions ¢.: X — [0, 1] for each xeX such that Z ¢(y)=1 for 

all yeX and ¢«(y)=0 when y¢U.. Choose an écart f on X such that 
veU, f(x, y)<1, and let 0. : X — [0, 1] be defined by 

0:(y)= sup (1—f(x, y), 0). 

Well-order the points of X and define 

Oy) =0:(y) — sup 8:(y). 

Then ¢. is continuous because the functions {0} are uniformly equi- 
continuous and hence have a continuous supremum. Clearly Xo.=1, 
and ¢:(y)=0 if yeU..
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PRroOF OF (B.1). Because of (B.2) the fibration A"—>A-—>A"=A/A’ 

is trivial over each of the sets of a numerable covering of A”, so by 
a well-known argument of Milnor (cf. [5], 3.6) one can suppose it is 

trivial over the sets {Uren of a locally finite countable covering. Let 

Wi=UsUU U ... UUs. 

Suppose one has found a cross-section wi: Wir—> A, and has a cross- 

section ug + Ur—> A. Then one can define weer: Weer — A by 

Wr =wi(x) for xeWr-—Uy 

=ur(x) for xeUr—Wq 

= w(x) - clup(x) wrx)", 0(x)), for xeW, NU; 

where ¢: A’ > [0, 1]—> A’ is a contraction and 0: X—[0, 1] is a 

function equal to 1 on Wiy—U,. Finally, define the desired cross-section 

wi: A” => A by w(x)=wr(x) for large k: that is permissible because 
wi(x)=wg.1(x) if x¢Ur, and the covering {U:} is locally finite. 

Testo pervenuto il 3 giugno 1969, 

Bozze licenziate il 10 luglio 1970, 
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