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Preface 

In the written version of this talk. I have omitted the materi- 

al illustrating the notions of non-Abelian cohomology with examples 

drawn from the theory of operator algebras as well as that describing 

the applications of local cohomology to quantum field theory. A recent 

account of this latter topic can be found in [1]. 

1. Local Cohomology. 

Local Cohomology is a novel form of cohomology which is inti- 

mately related to a number of interesting structural problems in 

quantum field theory. My aim is not to explain the physical back- 

ground to local cohomology [1] but rather to discuss the more mathe- 

matical aspects. 

Let me begin by recalling the standard notions of singular 

cohomology. If X is a topological space then an n-simplex of X is a 

continuous map of the standard n-simplex AD = te, et, Me rT, 

et 2 o, b gt = 1} into X. Let L, (X) denote the set of n-simplexes 

of X. There are face maps CE Ly (X) > Ln-1 (X), i=0,1,2,...,n 

defined by 

(3,0) (£2,¢), e271) = c(t, th, tt okt, LL, (1.1) 

An n-cochain of X with values in an Abelian group A is a mapping 

f: L, (X) + A. The set of n-cochains forms an Abelian group under 

addition denoted by c”(x,n). Using the face operators and the group 

structure of A, One defines boundary operators Ad: c™ (x,n)»c™ 1 (x,a) 

by n+1 . 

(Af) (c) = [ (=D) £(3 0). (1.2) 
i=o 

One checks that a2 = o and this gives rise to a cochain complex 

cCx,n) $clix,n $c?ix,a 9..... (1.3) 

— 322 —



The n-cocycles 2" (X,A) and the n-coboundaries are the subgroups 

of c™(x,A) defined by z™(X,A) = kerd, B" (X,A) = ind. Conventionally 

one sets B® (X,A) = 0. The cohomology groups H" (X,A) are the quotient 

groups 7% (x,a) /B® (X,A) . 

In fact, I am interested in the case that X is Minkowski space 

rSHT, where s is the number of space dimensions. This has a trivial 

cohomology; let me remind you why. One picks a fixed origin x and 

if ¢ is an n-simplex, one lets h(c) denote the n+l1-simplex which is 

a cone with vertex Xx and base c. 

hie) (£2,¢), "1 = 9% + (1-t% crt! ot? ot), £0 4 

= Xr £° = 1. (1-4 

Here we have written 1 = (1-t°)”'. We have 

3h(e) =c, a;h(c) =h(3; jc), 1i>o0 (1.5) 

except that if c € zg (X) then 3,h(c) = Xg- A mapping h with this 

property is called a contracting homotopy. Once we have a contracting 

homotopy we proceed as follows: if z € z™(x,a), n > 1, define 

Y € c™ 1 (x,a) by. y(b) = z(h(b)), b € £ _,(X). Then if c € I (X), 

o = (dz) (h(c)) = z(c) - bi z (hy, c) = z(c) = dy(c). 
i=o 

Hence HT (X,A) =o for n > 1. 

From now on, we restrict ourselves to Minkowski space and omit 

the symbol X = rst; however, the cohomology will not be trivial 

because the coefficient objects have a local structure and the de- 

finition of cochain is modified by a locality condition. This could 

be taken to refer to sheaf cohomology however the coefficient objects 

are not sheaves of Abelian groups but rather nets of Abelian groups 

over (C, the set of compact subsets of Minkowski space ordered under 

inclusion. The term net is taken to mean a strict inductive system 
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so that if F,/F, € C and F, c F, then A(F,) is a subgroup of A(F,) . 

To date, the nets which have arisen in the study of local 

cohomology are those which reflect the causal structure of Minkowski 

space. This causal structure is defined in terms of the quadratic 

form (x,x) = x2 - 1 x2. x and y are said to be timelike, lightlike 

and spacelike according as (x-y) 2 > 0, (x-y) 2 = o, (x-y) 2 < o. Let 

Vv, = {x : X > o and (x,x) 2 o}. If x - y € v, and x # y then 

= (x-V_) n (y+V,) is said to be the double cone with vertices 

X and y. Let K denote the set of double cones ordered under inclusion 

and Ko the subset of double cones centred on the origin, i. e. with 

y = —-X. 

A local n-cochain with values in a net A is a function 

f: In > VU A(F) such that there exists an 0 € Ko with 
rec 

f(c) € A(Q+c), CE I. (1.6) 

Here (0 + c¢ denotes {x+y: x € (0, y € c(a™) 1}. Since (0 + 3;¢ © 0 + c 

if £ is local so is df. Thus the local cochains give rise to a 

subcomplex of (1.3) denoted by 

2m $c; a Sciam 9... (1.7) 

and there are the obvious definitions of local cocycles, local 

coboundaries and local cohomology groups HY (3). 

A typical example of a net which reflects the causal structure 

on Minkowski space is the net Wl constructed from the real c”-solutions 

of the wave equation by defining W(F) to consist of those solutions 

which vanish on F', the spacelike complement of F, F'= {x: (x-y) 2<0,y € F}. 

I present here a preview in tabular form of some results involving 

coefficients which are real C -solutions of invariant partial 

differential equations with analogous support conditions. 
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Wl wl] Ll M 

#  Jolelolo|o 
oo ifolm oof 0 

Here W denotes the solutions £ of the wave equation such that 

JE(o,x) d@%x = 0; L denotes the vector wave equation with Lorentz 

condition og = Oo, 2,8" = 0; K is the Klein-Gordon equation 

(a+m?) = 0 and M Maxwell's equations a LAguvl = 0, J = 0. 

The results for H{ and H) are trivial although the dimensionality 

restriction s > 1 is essential. If s = 1, one finds for example that 

H) (W) can be identified with the set of all real C -solutions of the 

wave equation. By contrast, the results for H? are not trivial and 

hinge on the fact that the sheaf of Cauchy data for the wave equation 

on a spacelike hyperplane is a soft sheaf. These results have some 

indirect physical interest; HY (L) may be regarded as parametrized 

by an electric charge and HY (M) by an electric and magnetic charge. 

This simple setting is just a testing ground for local coho- 

mology. It shows that it can lead to interesting results and some 

of the techniques developed do help in the more complicated setting 

of quantum field theory. Nevertheless, the mathematical nature of 

this local cohomology is still something of a mystery. Like Cech 

cohomology it is defined as the inductive limit of cohomology with 

values in a system of coefficients. Unlike this cohomology it depends 

on the uniform structure of Minkowski space and not just on its topo- 

logical structure and the coefficients are nets rather than sheaves. 
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2. Non-Abelian Cohomology. 

Unfortunately, the local cohomology of direct interest in alge- 

braic field theory involves nets of non-Abelian coefficients. Non- 

Abelian cohomology has been largely developed with a view to appli- 

cations to sheaf theory and its ramifications [2,3,4]. This sophisti- 

cation is at present irrelevant to the local cohomology of net 

systems. Instead what is needed is to understand the purely algebraic 

problems involved in formulating and manipulating the cocycle identi- 

ties, an aspect which seems to have been largely neglected in the 

efforts to achieve a "geometric" interpretation of non-Abelian coho- 

mology. 

Suppose one tries to take a non-Abelian group G as coefficients 

for simplicial cohomology. A o-cocycle is a function w: Ls + G with 

w (3 _b) = w(3 4b), b € Dp (2.1) 

The composition law in the group is not needed here but it can be 

used to give the set of o—-cocycles a group structure under pointwise 

multiplication. A 1-cocycle is a function x: op + G with 

x (3c) x(9,C) = x(3,4c), Cc € I, (2.2) 

This identity makes use of the composition law in the group and, in 

revenge, the set of 1-cocycles is no longer, in general, a group 

under pointwise multiplication. (2.2) has an obvious interpretation 

in terms of the composition of paths in the basic 2-simplex A%. 

This suggests that the natural coefficient object for the 1-cohomo- 

logy is a category C. If Cy and C, denote respectively the set 

of objects and arrows of C then a 1-cocycle with values in C is a 

pair of functions w: Zs > Co and x: Z, > C, with 
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x (b) 3 w(3,b) +> w(3_b), b € L, (2.3) 

x (3c) x (3,c) = x(3,c), Cc € Zs 

In what follows, a composition law on a set will always be 

understood to be associative and to have left and right units so 

that the set with this composition law becomes a category. 

To express the 2-cocycle identity in non-Abelian cohomology, 

we need a further composition law. The natural coefficient object 

here is a 2-category (see for example [5]). This is a set C with 

two composition laws x,0 such that 

a) every x-unit is a o-unit 

b) the x-composition of o-units, when defined, is again a o-unit, 

c) (ao b) x (a' o b') = (axa') o (b x b') whenever the left hand 

side is defined. 

If two composition laws x,0 on the same set satisfy a), b) 

and c) we write x «€ o.There are three sets associated with a 2-~cate- 

gory: cS the set of x-units or objects, C, the set of o-units or 

1-arrows and Cc, the set of all elements or 2-arrows. 

To economize on brackets in what follows, we adopt the con- 

vention that if x <4 0, a x-composition is to be evaluated before 

a o-composition, so that a o b x ¢ means a o (bxc) and not (aob) x c. 

A composition law x is said to be Abelian if a x b = b x a 

whenever either side is defined and the following lemma provides 

some insight into why a 2-category is a natural generalization of 

a set with an Abelian composition law 

Lemma x <4 x if and only if x is Abelian. 

A special case of this Lemma is familiar as one of the steps 

in showing that the higher homotopy groups are commutative. 

A 2-cocycle with values in a 2-category C is a triple of 

functions w: Ly Cor X: Iq > Cy y: I, > Cc, 
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with 

x(b) x w(3 Db) = w (3 Db) x x(b), b € Ly 

y(c) o x(3,c) = x (3c) Xx x(3,¢) o y(c), c € I, (2.4) 

y (3d) x x (3,354) 0 y (3,4) = x(3 9,4) x y (35d) 0 y(5,d), d € Ly 

It is instructive to look at these identities in terms of piecing 

together 2-simplexes to form a 3-simplex. 

In general, the coefficient object for n-cohomology is an 

n-category (see [6; p. 552]). This is a set C with an ordered set 

of n composition laws, say, Qr with p = 0,1,2,...,n-1 such that 

8 - g whenever p < gq. The set of g-units will be denoted by Co 

It is not easy to write down a formula for an n-cocycle, although 

I believe that such formulae can, in principle, be constructed 

recursively. Here is the description of a 3-cocycle with values 

in a 3-category C where the composition laws are denoted by x,0 

and «+. We need w: Zs > Cor xX: Iq > Cqv y: I, > C, and 

Zz: Ly » Cs = C with 

X x w, = WwW, x X 

Y o xq =X, X Xs oY 

Z + Xgq XxX Y30Y¥Yy TY, xXy30VY, cz (2.5) 

Zo * X234 © Y23 ° ¥o12 X You * ¥234 © %3 * ¥oq2 X24 0 ¥92 7 

~ Yo1 * ¥o34 X ¥234 © 23 7 ¥o12 * ¥o14 * Y34 © Zy¢ 

Here, for brevity, we have written for example X41 in place of 

x(9,9,d), d € zy and Z, for z(3.e), e € Lye Thus the first two 

equations of (2.5) coincide with those of (2.4). 

Of course in non-Abelian cohomology too, it is the cohomology 

classes rather than the cocycles which are important. As far as the 

o-cohomology goes, the two concepts coincide. The way to look at 
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1-cocycles is to consider them as the objects of a category 

z'(z,0). If (w,x) and (w',x') are 1-cocycles as in (2.3) above 

then an arrow in z' (z,,C) from (w',x') to (w,x) is given by a 

mapping r: Zs > Cs such that 

r(a) x w'(a) = w(a) x r(a), a € ¢ 

© (2.¢ 
x (b) x r(9,b) = xr (3b) x x'"(b), bE Ly . 

The composition law in z' (z,,0) is defined pointwise 

(rxr') (a) = r(a) x r'(a) (2.7 

Cohomologous 1-cocycles correspond to isomorphic objects in 

1 : 
z (z,,C). A 1-cocycle (w,x) is said to be trivial if x(b) is 

a unit for each b € Z and to be trivializable or a 1-coboundary 

if it is cohomologous to a trivial 1-cocycle. 

The set of 2-cocycles with values in a 2-category C should like- 

wise be considered as the objects of a 2-category 2% (x, 0). 

Thus if (w,x,y) and (w',x',y') are 2-cocycles as in (2.4), a 

1-arrow (r,s) from (w',x',y') to (w,x,y) in 7% (1,0) is given by 

mappings r: I, > C, and s: zr; > C, with 

r x w' =wxr 

. So X xr, =r x x' o 8s (2.8 

ryq X y' o S, = 8, X X5 © X, X Sy 0Y xX Xy, 

where we have again adopted the concise notation of (2.5). 

The composition of 1-arrows is defined by 

(r,s) x (£,8) = (r x £, r_ x § os x I) (2.9 

If (r',s') is another 1-arrow from (w',x'y') to (w,x,y) then a 

2-arrow from (r',s') to (r,s) in 2% (z,,0) is given by a mapping 
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J Zs > C, with 

j oxr' =x oo Jj 
(2.10) 

sox x3J,=73,xx"os' 

whilst composition of 2-arrows is defined pointwise 

(J o 3") (a) = j(a) o 3'(a); (3x9) (a) = j(a) x J(a), a € I. (2.11) 

Two 2-cocycles are cohomologous if they are joined by an 

invertible 1-arrow. The role of 2-arrows can be illustrated by 

reference to Abelian cohomology. If y and y' are cohomologous 

2-cocycles with values in an Abelian group A, there is a 1-cochain 

s such that y - y' = ds. If s and s' are two such 1-cochains 

d(s-s') = 0 and one may ask if s - s' is even a 1-coboundary, i. e. 

if s = s' = dj for some o-cohain j. In the non-Abelian theory, 

j appears as a 2-arrow mapping from the 1-arrow s' to the 1-arrow s. 

In general, it seems that one should regard the n-cocycles 

with values in an n-category C as the objects of an n-category 

2" (2,.C), although I have only verified this for n < 3. One 

point which should be made here is that there are 2% different 

conventions for the n-cocycle identity. One can, however, pass 

from one convention to another by dualizing with respect to some 

subset of the composition laws. 

To see now non-Abelian cohomology works in practice, I 

recommend looking at the theory of (non-Abelian) group extensions 

of a group K by a group G from this point of view. Here r, is a 

simplicial set constructed from the group G rather than from a 

topological space whereas the coefficient objects are constructed 

from K. Thus the coefficient object for the obstruction is a 

3-category 7 defined on the set Z x InK x AutK, where Z is the 
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centre of K, AutK the group of automorphisms of K and InK the 

subgroup of inner automorphisms. The composition laws x,0, * 

are defined by 

(z,0,a) x (2',0',a") = (z2a(z"), saa'a” aa’), 

(z,0,a) o (2z',0',a') is defined if o'a' = a and equals (zz',oc 

(z,0,a0) + (2',0',0"') is defined if 0 = ¢', a = a' and equals 

(zz',0,a). 

The above discussion refers to the basic algebraic structure 

of non-Abelian cohomology. In practice, there can be variations on 

‘this basic structure. In applications to local cohomology, for 

example, C may have more algebraic structure, in particular more 

composition laws, than the minimum needed to define the cohomology. 

This is then reflected in additional structure on 2% (z,,C). Further- 

more, one may want to impose further restrictions on the nature of 

cocycles and require, for example, that x(b) in (2.3) is invertible 

for each b € Las or, as in applications to local cohomology, that 

it is unitary. Nevertheless, these are minor details and, in its 

applications to algebraic field theory, local cohomology may be 

described mathematically by saying that the locality condition of 

section 1 is combined with the non-Abelian cohomology of section 2 

in an operator-algebraic context. 
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