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ON THE STABLE HOMOTOPY CATEGORY 

1. HISTORY AND MOTIVATION. Many different attempts have been 
made to find a good framework for stable homotopy theory. The best versions 
so far were given in the semisimplicial setting by Kan [11], KAN and G. W. 
WHITEHEAD [12] and in a geometric setting by BOARDMAN [2], [3], [19]. The 
stable homotopy categories they construct are equivalent to each other (TIERNEY 
[17]). It seems that they have all good properties that one can reasonably expect, 
but since in both approaches a lot of technical difficulties appear it is useful 
to look for still other constructions of an equivalent category. I shall describe 
one here which is also geometric but more direct than Boardman’s. It combi- 
nes some of Boardman’s methods with those of [15]. I got the idea from a 
remark in the introduction to [3]. Recently I learnt that a similar approach 
was used by ADAMS in his Chicago lectures in 1971. The notes of these lectu- 
res [1] have just become available. 

Before writing down the definition of my category I shall try to motivate 
it. The first version of stable homotopy theory was the S-theory of SPANIER 
and J. H. C. WHITEHEAD [16]. It may be described as follows: Let FU be 
the category whose objects are pointed spaces and whose morphism sets are 

oF UW (4, B)=colim Tsp’ (Sk 4, SB). 
k— oo 

Here 3 denotes reduced suspension, SJep®( , ) is the set of pointed continuous 
maps and the colimit (= direct limit) is taken over the suspension maps 

Tap? (TX A, > % B) —_— Top? (Zk+1 4, > k+1B) 

f=>Zf 

There is an obvious notion of homotopy in 2 which gives rise to the 
homotopy category Zh. This category reflects nicely what happens in the 
“stable range” of ordinary homotopy theory. It is however not good enough 
to allow all the constructions one would like to have. For several purposes 
(c.g. Postnikov systems and the Adams spectral sequence) one should have
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Eilenberg-Mac Lane objects. If G is an abelian group and n&Z, an Eilenberg- 

Mac Lane object of type (G, n) in PZ is a space B such that for all r&Z 

| | Sp H r=n | 

mr (B)= 0, rn. | | 

Here 7 denotes the stable homotopy group which may be defined by 

my (B)= SL Wh(S*% £98) | 

where g is any natural number such that r+¢>0. Eilenberg-Mac Lane objects 

are very rare in 70h. There are none of type (G, n) if G has a direct 

summand which is finitely generated and not zero ([15] 8.3, 8.4). 

On the other hand if K(G, n) is an ordinary Eilenberg-Mac Lane space 

of type (G, n) we do have 

w, K(G, =| G, r=n 
0, rn, r<2n-2 | 

by the Freudenthal suspension theorem. Thus when n increases we got better 

and better approximations to an Eilenberg-Mac Lane object. If K(G, n) is cho- 

sen to have the homotopy type of a CW-complex then there is a homotopy 

equivalence K(G, n)— QK(G, n+ 1) and hence by adjointness of > and the 

loop space functor {2 a map 

> K(G, n)— K(G, n+ 1). 

The sequence K(G, n) together with these maps forms a substitute for an 

Eilenberg-Mac Lane object in 70h and serves as a model for the notion of 

a spectrum which was first considercd by Lima [13]. 

A spectrum X is a sequence of pointed spaces JX, (nE Z) together with given 

(pointed) maps &,: TX,— X,,,- Spectra are going to be the objects of our 

stable category. The difficulties begin when we want to define the morphisms. 

The most naive definition is that a morphism f from X to another spectrum Y 

is a sequence of (pointed) maps f,:X,— Y, such that 

| £. | 

> X,—X n+l 

> J | | f, n+l 

| Nn 
> Y,— Y ntl 

commutes. But with this definition the category would not deserve the name 

»otable™ It is natural to associate to any pointed space 4 the spectrum JA 

defined by 
"4, n>0 

w= znd, n> 
0 n<0 

(where a space consisting only of the base point is denoted by 0). Then a 

morphism JA— JB in the sense defined above is nothing else but an ordinary 

(pointed) map 4— B. It should better be a stable” map, i.e. an element of 

$2 (4, B). This can be achieved by allowing that f, is defined only for n>n, 

where n, may depend on f. Equivalently this means that a map of spectra
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X— Y needs only to be defined on a subspectrum X’ of X where X,=X, 
for n large enough. 

This is not yet the right notion, because one would not get a satisfactory 
desuspension theorem (6.1, 6.2 below). For this theorem it is important that 
the domain of definition X' of f may still be smaller than stated above. A con- 
dition which one could use for this purpose is that for any » there is an r 
such that X7., contains the image of ¥"X, under the map 

>r-1g, Sr, &, r— bri STK, Ape, To Sey 
But then there are other objections. The wedge of spectra should be a coproduct 
in the stable homotopy category. This would not be true for 

Vv JS, 
r=0 

because (using the definition of maps of spectra just proposed) J would induce 

an embedding of “Jp into the homotopy category of spectra and V\ S” is 
r=0 

not a coproduct in 2h ([15] 7.6). 
A good condition for the domain of definition X’ of f seems to be: 

1.1 For any n and any compact (pointed) subset KC X, there exists a 
natural number r such that §,,. ,(Z'K) CX,yr. 

One runs however into difficulties if the spaces involved are arbitrary. 
Hence I restrict myself to CW-complexes and give now the systematic construc- 
tion of the stable homotopy category”. 

2. CONSTRUCTION. From now on we take all spaces, maps, subspaces 
etc. to be pointed without repeating it always explicitly. A CW-complex shall 
have a given cell decomposition and a O-cell as base point. The product 4 x B 
of two CW-complexes A, B is taken with the standard decomposition into pro- 
duct cells and with the CW-topology (compactly generated topology). The smash 
product A AB is obtained from 4 x B as usual by identifying the two axes to 
the base point and keeping all other cells. S$” denotes the n-sphere decomposed 
into the base point and one n-cell. The reduced suspension is defined by 
> A=S'ANA. 

A spectrum X will now always be a sequence of CW-complexes X, togeth- 
er with CW-embeddings £,: > X,— X,,, (n&Z). This means that £, maps 
> X,, isomorphically onto a subcomplex of X,,,. We call X, the terms and &, 
the structure maps of X. 

By .#» we denote the (preliminary) category of such spectra and ’‘naive” 
maps of spectra. Thus a map f: X— Y in %p is a sequence of (pointed con- 
tinuous) maps f,:X,— Y, such that 

En 
2 X, nT X n+1 

> / n | Lf n+1 

DALE a 
commutes (§,, 7, structure maps, n< Z).
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A spectrum X’ is called a subspectrum of X if X, is a subcomplex of X, 
for every n and the sequence of inclusions i,:X,CX, is a map i in Fp. X’ 

~ is called dense in X and i is called a dense inclusion if condition 1.1 is satisfied 
which we reformulate in the following equivalent form: 

2.1 For any ncZ and any finite subcomplex K of X, there exists a natural 
number r such that X,., contains the image of 3." K under 

Ze, Z'E, En srm 
Cntr: SX, erly, ’ SALAS GN 

The stable category . which we propose is obtained from _¥p by in- 
verting all dense inclusions and making .% universal with respect to this pro- 
perty. More precisely: We look for a category .% together with a functor 
P:.%p— 5 such that: 

2.2 (a) Pi is an isomorphism in ¥ for any dense inclusion i in Fp. 
(b) If P':.Pp—.F is any functor satisfying (a) then there is one and only one 
functor F such that 

P 
pu 

JP, | 
P’ FE 

commutes. 

In the terminology of GABRIEL-ZISMAN [5] p. 6.7 &° is the category of 
fractions of .%#p for the class of dense inclusions. P is necessarily bijective on 
objects. Hence we may assume that .%° has the same objects as Sp and P is 
the identity on objects. That .% exists is clear from general considerations [5]. 
But here the description of .%° is particularly simple because the class of dense 
inclusions in ,%p admits a calculus of right fractions in the sense of [5] p. 12. 
The following properties are sufficient for this: 

2.3 (a) All identities of .¥p are dense inclusions. 

(b) Any composition of dense inclusions is a dense inclusion. 

(c) For each diagram X Ei Y L Y' in Fp, where j is a dense inclusion, there exists 
a commutative square 

f 
X—=Y 

] . 

t I tJ 
X' —>Y 

such that i is a dense inclusion. | 

(d) Dense inclusions are monomorphisms in Fp. 

Proof. (a), (b) and (d) are obvious. In (c) one may define X, as the 

union of all subcomplexes L of X, such that f,L C im (J: Ya Y,). 

Using [5] p. 12—14 it follows that a morphism X—Y in .% may be 

| fo. : 
represented by a diagram XOX’ > Y in ,#p where X’' is dense in X, and
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| g Co. : 
that another such diagram X DX’ — Y represents the same morphism mm % if 
and only if there exists a dense subspectrum X' of both X’ and X'' such 
that f and g coincide on X'”’. In other words #(X, Y) is the colimit of 
Fp (X', Y) where X’ runs through the dense subspectra of X. 

3. COLIMITS. We shall construct coproducts and certain pushouts in 
our category. 

The wedge 
X=VX* 

CA 

of an arbitrary family of spectra X* is formed by taking the wedge of the 
corresponding terms and structure maps. 

3.1 Proposition. The wedge of spectra with the canonical inclusions is a 
coproduct in Fp and in SF. 

The proof is trivial for .#p. For ,% it relies on the fact that a subspec- 
trum X’ of X is dense if and only if X' NX? is dense in X* for all A. 

The existence of pushouts is subject to analogous restrictions as in the 
category of CW-complexes. A map f: X—Y in %p is called skeletal if f,: X,,— Y, 
is skeletal for each » ie. f, maps each skeleton of X, into the corresponding 
skeleton of Y,. fis called an embedding if f, is a CW-embedding for each n. 
A map X—Y in % is called skeletal or an embedding resp. if it can be re- 

| Jo. | | 
presented by a diagram XD X’'—Y in %p where X’ is dense in X and f has 
the corresponding properties. | | 

As an auxiliary notion we call an embedding f in %p closed if | 

i | : 

> X,—X, 1 

SHE, a 
>Y,—7Y, 

is a pullback for each n. Roughly speaking this means that if the suspension 
of a cell e of Y, lies in (the image of) X then e itself lies in X,. 

if 
3.2 Proposition. Let Z«~—X—Y be a diagram in Fp or SF, where i is 

an embedding and f is skeletal. In the case ,% the diagram has a colimit (push- 
out). In the case Fp the diagram has a colimit provided that i is also closed. 
The canonical functor Fp— 5° preserves these colimits. 

Proof. Consider first the case Fp and assume that § is closed. Then the 
colimit may be constructed term by term in the obvious way. In the case ,% 
one has to look at suitable dense subspectra of the given ones. The hypothesis 
closed” 1s not needed in this case because any embedding X— Z in %p can 
be factored into a closed embedding X— Z’ and a dense inclusion Z'C Z. 

Another kind of colimits will be considered in section 8. |
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4. SMALL SMASH PRODUCTS. Let X be a spectrum and 4 a CW- 
complex. We define the “small smash product” X AA to be the spectrum with 
terms X, A A and structure maps 

. g, Nid 
SX, NAD=S'ANX,NA—X,. ANA 

Obviously we get a functor 

A 
oF P X UO ~ 5 P 

where 20° denotes the category of (pointed) CW-complexes and continuous 
maps. It induces a functor 

A 
oF XU — F. 

This follows from easy general consideration about categories of fractions and 
from | | 

: 4.1, Lemma. If i: X'— X is a dense inclusion in Fp then so is i Nid: 

X'NA—> XNA (up to a canonical isomorphism between X' N\A and its image 

in X N\A). N 

Proof. If K is a finite subcomplex of X, AA there exists a finite sub 
complex L of X, such that KCL AA. By hypothesis there is an r such tha 
sr is mapped into X,,, by the structure maps, hence "KCS"ALAA is 
mapped into Xi. , AAd=(X"ANA4),,,. 

4.2 Proposition. Let A be a fixed CW-complex. The endofunctors X +> X \ 4 

of Fp and FP preserve coproducts and the pushouts considered in 3.2. 

Proof. Since a coproduct is just a wedge (3.1) the first assertion is trivial. 

For the second one looks at the explicit construction of the pushouts in 3.2. 

We shall also use smash product 4 AX where the CW-complex 4 is the 

left factor. Everything is exactly the same as for X' A A except that the structure 

maps are given by | 

(4.3) SIAANY, TNE gp stax, BN gp x 

where «© interchanges the factors. A AX is canonically jsomorphic to XA A by 

the map which interchanges the factors in each term. 

In section 7 “large” smash products will be considered where both factors 

are spectra. 

5. HOMOTOPY. Let I be the unit interval considered as an unpointed 
CW-complex with one l-cell and two O-cells. I+ is obtained by adding an 

isolated basepoint. Let z be the nonbase-point of S° and define (pointed) maps 

| Jo: SOT, v=0,1 | 

gq I[+—S°
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by j.,(2)=v, ¢ (I)={z}. This gives rise to cylinder functors X+>I+ AX in Fp 
and .% and to natural transformations 

x= ax NE Lox 

gr A XT NE gon xox 
Together they form homotopy systems in %p and ,% resp. in the sence of 
Kamps [7], [8], [9]. 

5.1. Proposition. The homotopy systems just defined satisfy all extension 

conditions DNE (n, v, k) (cf. [7](2.6), [81(3.3) or [9] (3.2). 

Proof. One constructs the extensions in I*AI*A ... ANI*=(I")* where 
they are trivial and forms then the smash product with a spectrum. 

Hence for ,*p and .% we get as corollaries all the results which KAMps 
proved for categories with homotopy system satisfying the extension conditions. 
In particular we have homotopy notions which are equivalence relations and 
give rise to the homotopy (quotient) categories pp and Fp. 

5.2 Proposition. The categories Fp and .%° have double mapping cylinders 
for all skeletal maps. 

fr. 
Proof. Let Y<« X — Y’ be skeletal maps. Then by 3.2 the pushout 

< Jo» J1> 
XV yJo i A X 

INI y 
YNY'—————Zy, 5 

exists (because <j, j,>is a closed embedding). Z, s, is the double mapping 
cylinder. 

By specializing we get: _ 

(a) the mapping cylinder Z,=Zy, uy), 

(b) the mapping cone Cp=Z, ,, where 0:X—0 denotes the unique map into 
the zero spectrum, 

(c) the suspension SX=C,=2Z 
It is obvious from the definitions that X is canonically isomorphic to SAX. 

3.3 Proposition. The cylinder functor in Fp and & preserves all colimits 
considered so far, namely 

coproducts, 
pushouts as in 3.2, 
(double) mapping cylinders and mapping cones of skeletal maps, 
Suspensions. 

This is a corollary of 4.2 and the proof of 5.2. 

The results of 5.1 and 5.3 suffice to carry out the standard construction 
of a cofibre sequence 

f 
X—Y->C,>TX—>3Y—>-
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for all skeletal maps ([7] section 7, [10] section 5). The restriction to skeletal 
maps is not essential bacause we have. 

5.4 Proposition. (a) If the spectrum X is bounded below (i.e there exists nyc Z 
such that X,=0 for n<n,) then any f& Pp (X, Y) is homotopic to a skeletal 
map. 

(b) Any map in 5° is homotopic to a skeletal map. 

Proof. (a) Using the relative skeletal (cellular) approximation theorem for CW- 
-complexes we deform f, into a skeletal map by induction over » making the 
deformation compatible with the structure maps. 

(b) follows from (a) because any map in .%° may be represented by a 

f 
diagram X DX’ -—Y in %p where X’ is dense in X and X’ is bounded below. 

6. DESUSPENSION. To justify the name “stable” for our category we 
have to show that the suspension functor is invertible up to equivalence. To 
see this we introduce a new kind of suspension, the translation suspension, and 
compare it to the other one which, for distinction, shall be called geometric 
suspension. 

The translation suspension ¥, is simply defined by shifting the indices 
one step. Thus the spectrum 3 ,X has the terms (X,X),=X,, , and the struc- 

ture maps (Z:8n=E8ns1 

6.1 Theorem. The geometric suspension > and the translation suspension 3, 
are naturally equivalent as endofunctors of Fp. 

6.2 Corollary. The geometric suspension Y :.Fh— Fb is invertible up to 
natural equivalence. 

Proof. ¥, is obviously invertible. 

6.3 Corollary. ,%} is an additive category with arbitrary coproducts. 

Proof. Up to equivalence every object of #4 is of the form YX and 
every morphism of the form I f (6.2). From the usual cogroup structure on S* 
one gets a cogroup structure on > X=S'AX and hence a group structure on 
the morphism sets of ,%’4 which is compatible with composition. The coproduct 
in ,% (3.1) is also a coproduct in 5, because the cylinder functor preserves 
coproducts (5.3). 

We may turn 4 into a graded category 5 by defining 

7b, (X, Y)=.%h (25X, Y). 

For any skeletal map f we consider the cofibre sequence | 

f 
X—Y—>C— 2% X 

and compose the last map with the natural equivalence »X—3,X of 6.1, 

obtaining a “triangle” 
X—->Y->C —X 

in which the last map has degree —1.



208 PUPPE, DIETER 

6.4 Theorem. “ph, together with the class of triangles isomorphic to some 
triangle of the form just described is a triangulated category. 

The name triangulated” 1s taken from VERDIER [18] (compare also HEL- 
LER [6]). Almost the same concept was called stable’ in [14] and [15]. There 
are minor differences In conventions about signs and there is an additional axi- 
om in [18] not contained in [14] or [15], the octahedral axiom. What we 
mean here is that all the axioms are satisfied including the octahedral axiom. 
We use however the sign conventions of [15]. The proof of the axioms is rath- 
er straightforward from the properties of the cofibre sequence given in [7] 
section 7. One may also take the proof of [15] Satz 3.5 and adapt it to the 
present situation with slight changes. 

Proof of Theorem 6.1. Let 3; X be the spectrum with terms (SZ) X,= 3 X,, 
and structure maps (3;&),= S£&,. Then the maps 

-, En | | 
(ZX), =ZX,~—X, =(Z,X), 

fit together forming an embedding £: 3;X— >, X in .%p The image is a dense 
subspectrum of 3 ,X, hence £ is an isomorphism in ,%. At first sight one could 
think that >:X equals 3X (which would finish the proof), but this is not so. 
The structure maps of 3 X are 

| TAid id NE, 
(28), STASTAX, ——S'ASIANX,——S'AX,,, 

where © interchanges the two factors S! (4.3). They are not even homotopic to 

the structure maps 

id NE, 
(2:8), =, :STASIANX, ——S' AX, 

of +X. To get around this difficulty we consider the reflection ¢ of S? (given 
by c(f)=1—1t if S1=7/{0, 1}) and define $_X to be the spectrum with 
terms (¥ _X),= XX, and structure maps 

| TA id oc A&, 
(Z-8),:STASTANX, —=STAS'AX, —>S' AX, ,,. 

Now we have an isomorphism | | 

k:SX—>S_X in Fp 

given by 

k,=c" Nid: S*NX,—>S' NX, 

and on the other hand (¥ _%), is homotopic to (X:£),. One can show that 
this latter fact implies that 3 _X is isomorphic to ¥;X in 5h. Actually we 
have to prove a little more, namely that there is a natural isomorphism. 

For this we choose a specific (pointed) homotopy 

of: SIAST—>SIASY te] |
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such that p°=(c Aid)t and p!=id. Then 

EA id id AE, 
SIASIAX, CL SAS AX, SL SAX, 

is a homotopy from (3X _%), to (X:8),. Let MX be the spectrum with terms 
(MX), =S'ANX,ANI" and structure maps 

(ME), :S'ANS'ANX, ANIT>S' NX, ATT 

(S15 855 x, 1) > (ANE) (0° (sy, 8), X), 1). 

Define embeddings in 

hy: > X—=>MX, i: X>MX | 

by i, ,(s, X)=(s, x, v), S&S, x&X,, v=0,1. Obviously M may be considered 
as an endofunctor of ,’p and i, as a natural transformation. i, , is a homo- 
topy equivalence for each single n. By Lemma 6.5 below, i, is an isomorphism 
in #ph provided that the spectrum X is bounded below (compare 5.4). This 
last restriction is irrelevant as soon as we pass to 5h, because any spectrum X 
has a dense subspectrum X’ which is bounded below and X’ is isomorphic to X 
in .%. Altogether we have 

SX — s x MY so x2 SX ——> —— —— —- . 
Fp TTT Fp Feb TTF 

Each arrow is a natural equivalence in the category indicated (if we assume X 
to be bounded below) and induces a natural equivalence in %h (without 
restriction). 

6.5. Lemma. Let f:Y—Y be a map in Fp such that f,:X,—~Y, is a 
homotopy equivalence for each n and X, Y are bounded below. Then f is a ho- 
motopy equivalence in Fp, i.e. an isomorphism in pp. 

Proof. We shall show that for any spectrum Z the map 

Je: pb (Z, X)—> Spb (Z, Y) 

induced by f is a surjection. Taking Z=Y this gives a map g&.%p (¥, X) 
such that fg is homotopic to id, In Sp. Since g, is a homotopy inverse of f, 
we may apply everything to g instead of f obtaining A< %p (X, Y) such that 

gh~id,. This shows that g and hence f are isomorphisms in ph. 

To prove f, surjective we assume X,=Y,=Z,=0 for n<0. This is no 
loss of generality and it simplifies the notation a little. Let y& %p (Z, Y) 

Since f, is a homotopy equivalence there is a map x,:Z,—>X, such that 

Voto Xx, Let ©0:Z, NI*—Y, be a homotopy deforming y, into f,x,. Using 

the homotopy extension property for {,: > Z,—~Z,,, we extend 0 to a homoto- 

py ¢°: ZAl*—Y deforming y into some y°< 7p (Z, Y). 

14 TOPOLOGY and ist APPLICATIONS, Budva 1972 (Beograd 1973)
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Next we look at the commutative diagram | 

0 

0 ¥ Eo | | 

wl 1s 
No ¥ 

2 YyT> YY, £ EE 

in which we would like to fill in x,:Z—X,. We consider Z,, X,, ¥, as spa- 
ces under YZ, by the maps %,, £ (Sx,) and vn, (yo) =F, &, (3 x,) resp. Then, 
is a map under YZ, and an ordinary homotopy equivalence. Since {, is a co- 
fibration it follows that f, induces a bijection of homotopy classes Z,—X, rel. 
> Z, into homotopy classes Z —Y, rel ¥Z, ([4](10.5) Satz, p. 165). So we 

find a map x,:Z~—X, and a homotopy ¢i:2Z, AI+—Y, deforming yi into f, x, . 
We extend this to a homotopy ¢':Z AI*—Y deforming )° into some y'& Fp 

(Z, Y) such that © :ZyANI*—=Y, 18 constant with respect to the homotopy 
parameter. 

Continuing in this way we recursively construct 

Xp: Ly>X, 

eS pz ,Y) 
"ES p (ZAI, Y) | 

such that 

Son X= Yn 
o" deforms y"—! into »” | 

or is constant with respect to the | 

homotopy parameter if k<n. 

These maps fit together giving XE Fp (Z, X) and oc Pp (ZA[—-1,0]%, TY) 
deforming y into fx, where oo 

or (z, 1), n—-1<t<n 
Pr (2, 1) = | 

fixe (2), t=o0 

Hence f, [x] = [y]. | 
7. LARGE SMASH PRODUCTS. In section 4 we have defined smash 

products between spectra and CW-complexes. It is important to extend this to 
smash products of two spectra. 

7.1. Theorem. There is a functor, the ’’large smash product, 

A 
Fb x Fb Fb | 

with the following properties: oo |
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(a) It is associative and commutative up to natural equivalence. 
(b) The diagram 

| idx J J xid 

Fb XU b— Fox Fb Uh Fb 
/ 

\ | / 
NN | A yd A 

CN | J 
AN 
N |S 

| Jb 

(which relates small and large smash products) commutes up to natural equivalence. 
This implies easily that JS° is a unit for the large smash product up to natural 
equivalence. 

(c) All the natural equivalences in (a) and (b) can be chosen to be coherent. 

The proof is too long to be included here. For Boardman’s stable category there 
is a proof in [3] Chapt. II § 7. The proof in [19] has a gap in the proof of 
Lemma 9.6 p. 154. A very direct proof of 7.1 for precisely the present situation 
is given by Apawms [1] §4. My own proof is different from Adams’ but follows 
Boardman’s ideas: For the purpose of this proof I pass from ordinary spectra 
to a new kind where the indexing set Z is replaced by the set € of finite di- 
mensional subspaces of a euclidean vector space of countable dimension. The 
structure maps have the form 

S B, A N\ X 4X B> 

where 4, BEE, ACB and Sg 4, 1s the one point compactification of the ortho 
gonal complement of 4 in B. Details will appear elsewhere, 

8. COMPARISON TO BOARDMAN’S CATEGORY. BoARDMAN defines 
first the category .¥ , of finite spectra by stabilizing” the category .¥ of fiI- 
nite CW-complexes (cf. [3], [17], [19]). It is canonically isomorphic to the full 

subcategory ¢ of .% whose objects have the form 3: J4, where n€Z and 4 

is a finite CW-complex. The isomorphism sends 3; J4 into (4,—n) in the nota- 

tion of [3] Chapt. II, 2.1 or [19] p. 81. It takes embeddings In ¢ Into embe- 
dings in .% , (which Boardman calls inclusions). Following Boardman we denote 
the subcategory of embeddings always by putting an J in front of the symbol 

for whole category. 

BOARDMAN obtains his stable category .¥ ,, by applying his w-construc- 

tion to the pair ((% ,, AF ,). Roughly this means that one adjoins to .7 ,, 

colimits of all directed diagrams in J, ¥ ;,. We have 

8.1. Proposition. Let & be Fp or F. Any directed diagram in JG 
has a colimit in JE which is also a colimit in 7. 

The proof is trivial for ¥ =.%p. It is more subtle for =. For lack 

of space we cannot give it here.
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By the basic properties of the w-construction 8.1 implies that there is one 

and only one functor G which makes 

(TF 6 JF 9 CT TF wr LF sw) 

| v G 
(©, FG) CC (L JL) 

commutative and preserves colimits of directed diagrams of embeddings. In [17] 

2.5 TierNEY has given conditions under which G is an equivalence of categories. 

It is easy to verify these conditions in the present situation. 

References 

[1] J. F. Apawms, Stable homotopy and generalised homology, University of Chicago, 
Mathematics Lecture Notes prepared by R. Ming 1971. 

[2] J. M. BOARDMAN, Stable homotopy theory, mineographed notes, University of 
Warwick 1963. 

[3] J. M. BOARDMAN, Stable homotopy theory, mimeographed notes, The John Hopkins 
University 1969/70. 

[4] T. Tom Deck, K. H. Kamps and D. Puprpe, Homotopietheorie, Lecture Notes in 
Mathematics 157, Springer 1970. 

[5] P. GABRIEL and M. ZisMAN, Calculus of fractions and homotopy theory, Ergebnisse 
der Mathematik und ihrer Grenzgebiete 35, Springer 1967. 

[6] A. HELLER. Stable homotopy categories, Bull. Am. Math. Soc. 74, 28-63 (1968), 
[71 XK. H. Kamps, Faserungen und Cofaserungen in Kategorien mit Homotopiesystem, 

Dissertation, Saarbriicken 1968. 

[8] K. H. Kamps, Fibrations and cofibrations in categories with homotopy system. Proc. 
Intern. Symp. Topol. and Appl. Herceg-Novi (Yugoslavia) 1968, 211-218 (1969). 

[9] K. H. Kamps, Kan-Bedingungen und abstrakte Homotopietheorie, Math. Z. 124, 
215-236 (1972). 

[10] K. H. Kamps, On exact sequences in homotopy theory, Proc. Intern. Symp. Topol. 
and Appl. Budva (Yugoslavia) 1972, 144-156 

[11] D. M. KAN, Semisimplicial spectra, Ill. J. Math. 7, 463-478 (1963). 
[12] D. M. KaN and G.W. Whitehead, The reduced join of two spectra, Topology 3, 

Suppl. 2, 239-261 (1965). 
[13] E. L. LMA, Duality and Postnikov invariants, Thesis, University of Chicago 1958. 
[14] D. PuppE, On the formal structure of stable homotopy theory, Colloq. on Algebraic 

Topology Aarhus 1962, 65-71, mineographed. 
[15] D. Purrg, Stabile Homotopietheorie 1, Math. Ann. 169, 243-274 (1967). 
[16] E. H. Spanier and J H.C. WHITEHEAD, A first approximation to homotopy theory, 

Proc. Nat. Acad Sci. U. S. A. 39, 655-660 (1953). 
[17] M. Tierney, Categorical constuctions in stable homotopy theory, Lecture Notes in 

Mathematics 87, Springer 1969. 
[18] J. L. VERDIER, Catégories dérivées, Quelques résultats (Etat 0) IHES Paris 

1966, mimeographed. 

[19] R. VoGT, Boardman’s stable homotopy category, Aarhus Lecture Notes Series No. 
21 (1970). 

(Received 16 10. 1972) Dieter Puppe 

Mathematisches Institut der Universitit 

D 69 Heidelberg, Im Neuenheimer Feld 9


