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In the previous paper [13], the present authors developed the so-called “non- 

commutative theory” of integration for rings of operators from a point of view 

resumed as follows. Every semi-finite ring of operators M with a normal, faithful 

and essential pseudo-trace m is normally *-isomorphic to the left ring L of an 

H-system H such that m corresponds to the canonical pseudo-trace of H [13]. 

We have shown that this *-isomorphism can be uniquely extended to a *-iso- 

- morphic mapping between the sets of measurable operators with respect to M 

and L respectively. Thus the theory of integration for M can be reduced to 

that for L. But in H the set of all square-integrable measurable operators 1S 

given a priori, basing on which our whole theory was built. 

In his investigation on H-applications in a ring of operators, Dixmier has 

shown ((4], Theorem 3) that every normal, faithful and essential pseudo-trace 

defined on a semi-finite ring M has the form m(A) = p(A"), where § is a fixed 

normal, faithful and essential pseudo-i-application defined on M* and ¢ 1s a 

normal, faithful and essential pseudo-measure on the spectre £ of the center MY. 

This leads us to another formulation of the .theory which is divided into two 

parts : the classical theory of pseudo-measure on the spectre £ of M' and the 

extension of H-application to unbounded operators nM. The main purpose of 

this paper is to develop this theory of extension. The pseudo-f-application defined 

on M*, M* > A— A*€ Z, will be extended over the set of all positive, closed, 

densely defined operators T'nM, T—>T"eZ, 

(h) T= Lub. A" 
M+ 3 AT 

If we wish the integral of T to be finite, I" must be finite except on a nowhere 

dense subset of £. Such a T will be measurable in the sense of Segal ([15], [13]) 

and the set of all such T forms the positive part of an invariant linear system S, 

which will play a fundamental réle in our present theory. 

| §1 is devoted to the proof of a theorem concerning the least upper bound 

of an increasing directed set {Is} of positive, closed and densely defined operators
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TsnM. Then Lub. Ts=7T, exists if and only if D={x; {ITs x||} is bounded} 

is dense, and if this is satisfied Dp =D and | Tso — To x]| = 0 for every x€ Dr tb 

(Theorem 1). 

In §2 the properties of extended pseudo-f-application defined by (kh) will be 

discussed. It is a normal, faithful and essential application if so is the original one. E 

It will be proved that the set &* of all positive operators pM such that T' is 

finite except on a nowhere dense subset of & forms the positive part of an in- 

variant linear system & which satisfies the conditions (K); and (<2 introduced 

in [13]. Then the invariant linear system &“(a>0) will conveniently be defined, 

and hold the relations (&%)f = &*, G*.-GP=G**? for every «, 8>0. Besides we 

shall prove that our extended pseudo-f-application defined on ©" can be uniquely 

extended to an “extended H-application” on &. It is noted that the extended 

pseudo-f-application is an application onto the set of all functions €Z, finite 

except on a nowhere dense set. We show that © is an algebra if and only if 

M is of type I. Various special properties concerning the extended f-application 

are proved.- Finally, as an example, the canonical B-application of an H-system 

(= Ambrose space |14]) will be considered. 

As an application of these results, the theory of integration will be developed 

in §3. & contains every “integrable operator’ with respect to a normal, faithful 

and essential pseudo-trace. We shall define, as usual, the space IL; of all integra- 

ble operators and the space Ly of all square-integrable operators. The monotone | 

convergence theorems for them will be proved, and by using these results we 

show that IL, and Ly are complete. . Finally the Radon-Nikodym theorem in the 

sense of Segal | 15] will be proved anew. 

§ 1. Preliminaries 

Throughout this paper the following conventions will be used. Let § be a 

Hilbert space of arbitrary dimension. Unless otherwise stated, operator will 

always mean a linear closed operator on § with dense domain. The domain of 

an operator T' will be denoted by Dr. A ring of operators M on § will mean 

an algebra of bounded everywhere defined operators which is self-adjoint (i. e. 

closed under adjunction), closed in the weak (operator) topology and contains 

the identity operator I. MM, and Mj; denote the set of all unitary operators 

and the set of all projections in M respectively. MM" and M' stand for the 

positive part of M and the center of M respectively. P*'is the orthocomplement 

of a projection P. If A is a bounded operator, ||A4| will denote the operator
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norm of A. The strong sum, strong difference and strong product of two meas- 

urable operators S and T' are denoted as S+T, S—7 and S-T respectively ((13], 

© DEFINITION 1. (cf. [8]). Let S and T be positive operators. We write ST 

if Dob CDs, and [Stal] < [Tha] for every x€Drh oo 

We note that this condition is equivalent to that Dr (Ds and 1S%x | < 

TEx] for every x€ Dr. | vy a 

In our previous paper [13], we have defined the order between two self- 

adjoint measurable operators S and T as follows : ST if and only if the strong 

difference T'—S is: positive. ‘But in case of positive measurable operators it can 

be easily seen that these two. notions .are identical. Moreover, in this case 

S<T if and only if (Sx, > {Ty 2 holds on a dense set D contained in 

Ds Dr. For, let Ss’ and T -be the respective restriction of S and T on D, 

then (77 —8)** exists and agrees on D with T —S, and hence (T’ _ §y*=T=S§ 

([13], Lemma 1.2). Thus 7 —S is the closure of T’ — 8S’. From this we can 

easily see T—S=>0. 

Before stating Theorem 1, we cite the following two propositions which will 

be used repeatedly in the proof. | 

1. (Lemma of E. Heinz [8]). Let S and T be operators such that S>>c¢ and 

T>c¢ for some positive constant C. Then T<S and T7'>>87" are equivalent. 

| 9. (Theorem of I. Kaplansky [9]). Let h(z) be a continuous bounded real- 

valued function of the real variable t. Then the mapping A—>h(4) is strongly 

continuous on the set of all bounded self-adjoint operators. | 

| THEOREM 1. Let {Ts} be an increasing direcied sei of posite operators nM. Then 

the following conditions (1), (2), (3), (4) and (5) are equivalent : | 

(1) There exisis a positive operator T such that Ts<<T Jor every &; 

(2) Lub. Ts = To exists in the sense of the ordering of the positive operators on 9; 

(3) D={x; [| Ts? |} is bounded} is dense in O; 

(4) There exisis a posiiive operator T' such that Ts <T' for every 0; 

(5) Lu.b. T.4 = S, exists in the sense of the ordering of the positive operators on D. 

Moreover, if any one. of these conditions is satisfied, then T A = Son M and ws is characterized 

as the operator Sy such thai Ds, =D and Ts x — Sy xl —0 for every x€D. 

PROOF. First we shall prove the equivalence of (1)-(5). 

Ad (1)> (2): By the lemma of E. Heinz cited above, we have (I+ Ts 

>(1 + T)™* for every 8, and {(/ + T,)"'} is a decreasing directed set of bounded
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positive operators. Hence by a theorem of Dixmier [4], g.Lb. (I+T5) = 4 exists, 

with 4€M and (/+7T3)"" converges strongly to 4. Since A>T+T)%, itis 

easy to see that A”! has a dense domain and T,= A™'—InM is the desired least 0 

upper bound. This proves (1)—>(2). Sg. 
Ad (2)—>(3): D is dense, since DD Dyb and Dr} is dense. This proved! 

2). Co oh 
Ad (3)— (4): Construct the filter of sections J on the directed set {8} of 

indices, and inflate it to an ultrafilter §. For every 'x€% and y€ 5, we have : 

<Tstx, y>| <I Tix [ly] <cllyll for some positive constant c depending on x. 

Therefore by the Riesz representation theorem for bounded linear functionals, we 

can write lim<T six, y>=<{Sx, ¥>, where S is a linear, positive operator whose! 

closedness is not assured for the present. As the domain =D of S is dense 

and hence S is symmetric, it has Freudenthal’s self-adjoint extension S ([16], 5 x 

35). § is the restriction of $* on P= DexND’, where D’ is the completion of . 

" D by the norm [|x||; =<{(I+8)x, x>* and is considered as a linear subset of § in 

an obvious way. For any x€D = Dj, we select a sequence {x,} from D such 

that ||x,—x[/;—0. Then [x,—x| <|[%,—x|i—0(n—> 0), and from the inequality 

ln = in {17 = CT 8) (a = ds i — 20> 22 CS (tr — 0), 0 — 2) 
CTE (x — Hay 20 — wp = || T5 (30 — 2), ay 

we see that x€ Dt and 18%] >> | 757 |. Thus D3 (Dr and 182] > || Tt x | 

for every x€ Dz. Hence by the remark after Definition 1, it follows that S> 14 

for every 8. This proves (3)— (4) with 7° =S. Later we will show that S=35 

Ad (4)— (5): We need only to apply (1)—(2), already proved, to the 

increasing directed set {T%). 

Ad (5)— (1): Since Lub. (I+T)=1+S5,, we have g.lb. (I+ T5%)  =(I+S,)™" 

by a further application of the lemma of E. Heinz. Hence (I+ 75%)! converges 

strongly to (/+S)”'. By the theorem of I. Kaplansky, applied to the continuous 

bounded function RO) = arr (I+ Ts) = h((I+Ts*)") converges strongly to 

R(I+8Sp)™") =T+S5)™". Hence g.lb. I+Ts) = (UT+S,)"". Thus lub. (I+ Ts)= 

I+5,* by the lemma of E. Heinz, and hence lu.b. T5=S,2. This proves (5)—(1). 

And the equivalence of (1)— (5) is thus established. | 

Next we show the last statements. To? = S,nM 1s seen from the proof of 

(1)> (2) and that of (5)— (1). To obtain the characterization of Typ? we proceed 

as follows. First, using the notations in the proof of (3)— (4), we will prove
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~ 8=T,. We have already seen that S>>Ts* for every 8. Hence 5>S, = Ty". 

The proof of ST? goes as follows. Let x be any element of Dr}. Since 

Dr CD by the proof of (2)— (3), it follows that x€D=Ds Dz. Hence 

5 [18k]? = (Sx, 2) = (Sw, x) = lim (Ts? x = lim | Ts* x)” < || To" xl" 

~ Thus Dr 3 Dt and 182 x]| < || To for every x€ Dt. This shows us that 

S< Tot by the remark after Definition 1. Therefore S=T,%. Since Dy CD, it 

results that Dz = Dr 3D =Ds. This and the fact that S is a extension of S 

imply S=3S. In particular, Ds, = Dri = Vs=Dy=I. Since lim (Ty? x, yy = 

(Sx, yp =<So%, ¥) for every ultrafilter 'F containing the filter of sections Fo, we 

see that, along the given directed set {8}. lim (Ts x, y>={Sox, yy for every 
Gd 5 | 

%€D and y€H. Let x € D. Then | 

fim | Tst os — Toba|® = Tim (| Total® — (Tabor, Tot wy — (Tomy Tory + Tota)? 
0 | ) 

CIT]? = {Dot Tota — Tota, Told + [| Total” = 0. 

That is, lim || Ts x — Toa] — 0 for every x€D. Conversely, if S, has the property 

5 oo 

that Ds, =D and |Ts¥% — Six] — 0 for every x<D, then lim (Tso, yp =<S12, y> 

for every x€D and y€ 9. Hence S,=S8=38=To" This proves the last state- 

ment. The theorem is thus completely proved. 

From this theorem it follows easily that every increasing directed set {Ts} 

of self-adjoint measurable operators with a measurable upper bound T#M has 

the measurable Lub. Ts = TonM in the sense of the ordering of the measurable 

operators. Similar statement holds for-a decreasing directed set {Ts}. 

COROLLARY. Let {Ts} be an increasing directed sel of measurable operators nM wiih 

the measurable operator To as ils least upper bound in the sense of the ordering of the measurable 

operators. Let T be an arbitrary measurable operator nM. Then lu.b. T* Ts T=T"ToT 
ba) , 

in the sense of ithe ordering of the measurable operalors. Similar statement holds for a decreasing 

directed set {Ts}. 

PROOF. With no loss of generalities, we may restrict ourselves to the case 

T,>>0, so that the ordering in question may be identified with that in the sense 

of the positive operators. By the remark after Definition I, {T*.T5-T} is an 

increasing directed set of positive measurable operators with a measurable upper 

bound T*+T,+7. Hence lu.b. T*.Ts-T=3S8, exists with measurable So. The
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proof of So=T%T,+T goes as follows. If x€ Dwr, then Si ’ 

I(T* Ts» T)u||* = <T* « Ty» Tw, xp =< Te Tx, Ts Tx) = || Ts T||". a. 
Since Dpxryr is (strongly) dense, we may easily see that I(T*- Ts Dx? = 

ITs Tl” for every x€ Dphr = Drrpnt. As Dp CDyd and DVsb CBDigerymt 

for every 8, we have [[(T*-TsT)ix||®> =| Ts: Tx)” for every x€ Dr trN Ds and 

8. Thus by Theorem 1, [|So*x||® = || To¥Tx| for every x € Dp trN Ds 3. In par: EE 

ticular <{Sox, x) =<TToTx, x) for every x€ Ds Drer,r, and hence {Sox, yp = 

{T*T,Tx, y> for every x, y€ Ds, N Drs. As Ds, Drsr,r is dense in §, we E 

have Sox =T*T,Tx for every x€ Ds, \ Darr. Thus So=T*-To-T [18]. ~~ 

REMARK 1. Let {Ts} be an increasing directed set of positive operators, and p 

be an arbitrary real number such that 0 <pX1l. Then the following conditions 

(1) and (2) are equivalent: Ce o 

(I) Lub. T;=T, exists in the sense of the ordering of the positive operators 
4) 

on 9; | 

(2) Lub. Ts? =35, exists in the sense of the ordering of the positive operators 
5 

on 9. 

Moreover, in this case So = To?. The proof is sketched as follows. Ad (1)— (2): 

Since 0 <p<1, we have Ts? Ty" for every & [8]. Hence Theorem 1 assures 

the existence of So. Ad (2)—(1): In this case the proof is quite similar to that 

of (5)—> (1) for Theorem 1. Let A,(t) be the continuous function defined as 

follows : | E 

hp ( i for 0<{¢<C1 lL) = 31" " 1 
p() tP 4 (1 —1)P or 0st<1, 

= 0 for ¢t <0, 

= 1 for ¢ > 1. 

Then %,(z) will serve for %&(¢) in the proof (5)— (1) cited above, and details are 
omitted. 

REMARK 2. Let {75} be an increasing directed set of positive operators, 

and p be an arbitrary real number such that 0 <p<{l. Let D={x; {||T:" ||} 

is bounded} is dense in §. Then Lu.b. Ts =T, exists in the sense of the ordering 
5 

of the positive operators on §. It is proved in much the same way as in the 

proof of (3)— (4) for Theorem 1. Take the ultrafilter & in that proof, and con- 

struct the operator § with © =8s such that lim <{Ts’x, yp =<{Sx, y> for every 
| SF
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a %€D and y€ 9. Then S has Freudenthal’s self-adjoint extension S. It is easy 

to see that S>>T,f for every oO so that Lu.b. Ts? = Sp exists by Theorem 1. Hence 

Lub. Ts = T, exists by: Remark 1... = oo 

 . REMARK 3. As for a decreasing directed set of positive operators nM, we 

mention the following fact. Let {Ts} be such a directed set. Then gL.b. Ts=1To 

always exists in the sense of the ordering of the positive operators on O. TonM 

and gL. Typ = To? for every real number p such that 0 <p<{l. Let © be the 

set-theoretic union of all Dr. Then tim (Ts¥*x, y> exists for every x€D and 

y€ 9. Hence this limit defines a linear, symmetric, positive and not necessarily 

closed operator S with dense domain Ds=1D: lim {Ts*x, yp» =<Sx, y> for every 

x€D and y€P. Let S be Freudenthal’s self-adjoint extension of S. Then §=T,} 

and Tit x— Tolx weakly for every x€D. 

§ 2 Extended pseudo-f-application 

Iet M be a ring of operators on 9, and £, a hyperstonian space [3], be 

the spectre of the center M'. In the canonical fashion M* will be identified with 

the ring C(£) of all continuous, finite- and complex-valued functions on LQ. 

Following Dixmier [4] we denote by 7 the set of all continuous, non-negative, 

fnite- or infinite-valued functions on £2. Z admits the operations: sum and product 

of two elements, and multiplication by non-negative constants. More precisely, 

if f, g€Z and a>0, then f+g and af are defined in the ordinary manner. fg 1s 

defined as follows. Under the convention 0:(+o0)=0, the function o— f(w)g(®) 

is defined everywhere on £. As is easily verified it is lower semi-continuous. 

Hence there is a uniquely determined function A€ Z such that hw) = f(o)g(o) 

except on a nowhere dense set. We will define fg by Ah. In particular, if f=0, 

then 0-g=0. 

An application § of M* into Z, M'>4— A'c Z, will be called pseudo-§- 

application [4] if the following conditions are satisfied : 

|. If AeM* and A, EM”, then (A+ 4)'= AY + AY 

9 Tf AcM* and \ is a constant >0, then (A A) =A"; 

3. If AeM* and U&€My, then (UAU*'= A"; 

4 If Ae M'™ and BEM*, then (4B) = AB". 

A pseudo-f-application bh is called normal, provided that for every increasing 

directed set {4s} CM" with the least upper bound AeM*, A'= lub. 4s" holds.



280  T. OGASAWARA and K. YOSHINAGA o 

bis called faithful, if A"=0 implies 4=0, and is called essential, if for every 7 

AEM", A==0, an A'%0, 0<A <A, exists such that 4"€C(2). A ring of 

operators M will be called semi-finite [7] provided that every non-zero projection = 

€M contains a non-zero finite projection € M. It is known that a ring of opera- 

tors M is semi-finite if and only if M has a normal, faithful and essential pseudo- 

B-application [4]. ETE CE 
In the sequel we always assume, unless otherwise stated, that M is a semi- Sa 

finite ring of operators and § is a fixed, normal, faithful and essential pseudo-§- | 

application. | oo 

DEFINITION 2. Let I be a positive operator nM. We define Co 

(h) T"= Lub. A ae 
MAT od 

where Lu.b. is taken in Z. Eg 

Clearly, for every T€M?*, T" defined by (§) is the same as the original Tf 

and hence (§) is an extension of the pseudo-§-application § on M* to the set of all 

positive operators nM. Put 

&*={T; T is a positive operator, and T"(w) is finite except on a nowhere 

dense subset of £2}, ol 

8 =6"NM, | | - 

and FER ok | 

mt = {A; Ae M" and A' €C(Q)}. BE 

It is known, by Dixmier [4], that 8" and m* are, respectively, positive parts of 

ideals § and m. As f is essential we have m'=m=8 =3=M, where Mm" and & 

are restricted ideals associated with m and 8, respectively, and “—" is the closure 

in the strong topology. | : | 

LEMMA 1. T"= Lub. A" 
m**a34<s7 

PROOF. Put g= lL u.b. A'€Z. Clearly g<T*". Now for any Ae M*, 4<T, 
mr a4<T 

we have AeM* =" =uw'", and A= Lu.b. B, where Fu={B; m"">B< A}. As 
Be J, | 

J. 1s an increasing directed set we get A"=1.u.b. B" by the normality of §. Thus 
Be Fy, 

- T"<g. The proof is complete. | 

The set of all continuous, finite except on nowhere dense sets, and complex- 

valued functions defined on £ will be denoted by Z'. If f€Z and g€Z then 

f(w) 4+ g(w) is defined and finite on a dense open set C2. Hence there is a
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or unique function 2€Z such that f(w)+ g(0) =h(w) except on a nowhere dense 

set ([12], p.57). We define f+g by A. Similarly fg and af, where a is a 

constant, are defined. With these operations Z has a structure of an algebra 

over the complex number field. In an obvious manner we can regard Z' as the 

i set of all (measurable) operators nM". It is to be noted that for any f, g€ZNZ', 

| fg defined on 7’ coincides with that defined on Z. The same will hold for f+g 

and «af (¢>0). As Dixmier [4] observed we have the following 

| LEMMA 2. The application § defined on 8%, 8” 54> A'€Z, can be uniquely extended 

on 8 82A—>A€Z, so as to have the following properties : 

(1) IfA€8 and A1€8, and «, o are complex numbers, then (d+ ca A) = 

aA" + a Ai; EEE , 

(2) Ir Aes and Be M, then (AB) = (BA); 

(3) If AES, then A>0; 
(4) If AEM and BES, then (AB) = AB". 

PROOF. The proof goes in a similar manner as that of Lemma 4.7 of Dix- 

mier [4], and the details are omitted. 

REMARK 4. From this lemma we can show that (4A4%)" = (4" A)" for every 

AEM. The proof is sketched as follows. First we infer that if A4*€8" then 

A*A€8* and (44%) = (4%A4)". In the general case, put O={w ; (44%) (0) < + =}, 

oO =Jo; (AA) (0) < + co}, and denote the corresponding central projections by 

P and P’ respectively. It follows at once that PAA*€8 and 

P(4* A) = (PA* A)! = (PA*) (PA) = (PA) (PA¥)! = (PA4")" 

Hence P<P’. By symmetry P'<P and so we have P=P or O=0". Hence 

(AA*)" = (4% 4)". Note that this remark holds as well for every not necessarily 

normal, faithful and essential pseudo-§-application. 

We can now prove the normality of the extended pseudo-§-application in the 

most general form. 

THEOREM 2. If an increasing directed set {Ts} of positive operators nM has the least 

upper bound To in the sense of the ordering of the posiiwe operalors, then 

Ty" = Lub. Ts". 
d 

~ PROOF. Let Z>g= Lub. Ts". Then it follows from the definition of T" 

that g<(T". The opposite inequality is proved as follows. Let To= |" \dE, 

be the spectral resolution. By Theorem 1, || Ts Ey x] A | To? Ey x) for every Ex. 

In particular (TSE) (THE) <(To EN) * (To Ey) = Ton, and hence (TSE) *(Ts*E)EM™.
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Since UTs  E* (Ts? Ey) x, x)= 175% Ey x) MIT Exx|” = (To Ev, x» for every x€ 9, 

we see that (T3YE)* (Ts Ey) 1 ToEx. By normality of J in M*, we have (Ts2E\)* 

(TsYE))A(ToE,). But by Remark 4, we have (T5E)*(THEV) = ((T5*Ey) (Ty E)™*)". 

And (Ts E)* wl] < || Ts¥ || for every x€ Dry}, since (Ts EN) x = E\Ts*x for every 

x € Drt. Hence (Ts*E)) (Ts*E\)*<Ts and consequently (Ts2E)* (Ts* EV) << Ts io 

Thus we see that (ToE)' <lLu.b. Ts" = g. Let M">CT. Then Er 5 

g> (To E)' => (BA CE)! = (Br Ch) (Bx CH*)' = (BACH (BA CH)" = (CEL CP) 

for every A. But C=l.u.b. CYE,C!. Hence C'=lu.b. (CE CY <g. This shows 
A A 

T"<g. Thus T"=g=1Llub. Ts" The proof is complete. oo 

REMARK 5. This proof shows us that Theorem 2 holds as well for every 

normal, but not necessarily faithful and essential, pseudo-§-application. | 

LEMMA 3. If T€&" and T= \ raz, is the spectral resolution, then E\™ is a finite 

projection for every N> 0, and hence T is a measurable operaior. 

PROOF. For every A> 0, NE," <{T. Hence (E\")'(w) is finite except on a 

nowhere dense subset of £, and therefore E,™ is finite. Hence 7 is measurable 

(cf. [13] Lemma 1.1). 

REMARK 6. From Dixmier’s construction of f-application [4] a projection 

PEM is finite if and only if PE€8*. Therefore & =m, (=the ideal generated 

by all finite projections in M [13]). | 

The set of all measurable operators #M forms a *-algebra with respect to 

the strong sum S+ 7 and strong product S+7, the scalar multiplication (except 

that 0+7=0) and adjunction S* [15]. Relations between these operations and 

our extended pseudo-B-application are given in the next 

LEMMA 4. If T and T) are positive measurable operaiors nM, then 

(1) T+T)=T"+T"; 

(2) OWT) =\T" for every non-negaiwe consani \ ; 

(8) (UTUM'"=T" for every UE My; | 

(4) (A-T)'=AT" for every AEM. 

PROOF. Ad (1): Let ATT, and Aew™, then A=C-TC*4+C-T.C* 

for some Ce€M with [[C| <1 ([13], [5]. Since 

CTH ACTH =C-TC*<C-TC*+C-T\C*= AM", 

we have C-TY*eM. And (TC* (C-T%) <T follows from [|C|| <1. Hence 

T'> (TC) (CTH) = (C- TH (THC) = (C- TCH)". |
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Similarly T1'>>(C+T.C*)". Therefore we have 

| | A= (C-TCH' + (C-ThCH' ZT" + Tv 

This shows (T+ T) <T'+ Ti. Evidently (T+ T)'>T'+ Ty, and we have 

(TT) =T' + Ty. | 

(2) is clear. 

Ad (3): It is sufficient to remember that, A<UTU* and U AULT are 

equivalent for every A€M™. | | 

Ad (4): Put A*=BeM'™. Then for any Cem, CT, we have BCB< 

B-TB, so that AC'=(BCB)'<(B-TB)'=(4-T)" This shows that AT" <(4-T)" 

On the other hand if m™* 3C,<B-TB=A-T, then Ci=(DB)-TBD*=(D A)-TD* 

— 4.D-TD* for some DEM with ||[D|| <1. If P, is the central projection corres- 

ponding to the open-closed set {w; Aw) >1/n}, then C,P,=(T*BD*P,)*(T*BD*P,) 

€m’ and hence 

(CP) = (TXBD*P)* (T1BD*P,)' = (T*BD*P.) (I*BD* P)*) 

—(4-P,-TH-D*D- TH". 

"But P,-D-TD*eM*. Therefore P,- T:.D*D - T>cM*. So we see that 

(CP) = AP, TH+ D*D + TH A(T TH = AT". 

And as C,P,=(4P,)-D-TD* 1 A-D- TD* = C,, it follows from the normality of 

the mapping 4 that l.u.b. PY =c. This leads to the inequality Cr <<AT'. 

Hence (AT) << AT", completing the proof. 

LEMMA 5. ©" has the following properies : 

(1) If TES" and UEMy, then UTU*€&* and (UTU*) =T"% 

(2) If TES" and S is an opeator, 0<S<T, then SES"; 

(3) If T€©* and Th€ OS", then T+T,€&* and THT) =T"+ Tk 

PROOF. It is evident from the previous lemma. 

A linear set & of measurable operators nM is called an invariant linear system 

of M if T€YQ implies UT, TUESY for every [Je M,. We have shown [13] that 

a set ¥* of positive measurable operators nM 1s the positive part of an invariant 

linear system if and only if ¥* satisfies the following conditions : 

1. If 7€Q* and UE My, then UTU*€*; 

9 If Te * and S is a measurable operator such that 00ST, then Se; 

3. If S€Q* and T€L*, then S+Te¥™ | 

Hence Lemma 5 shows that &* is the positive part of an invariant linear
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system ©. More precisely, oo | 

THEOREM 3. There is a unique invariant linear system © whose positive part is S*. 

And the application § defined on ©F, ©" 3T—T "© Z, can be uniquely extended on ©, 

S3T->T"'eZ', so as to have the Jollowing properties : 

(1) If TES and T.€S, and «, ot are complex numbers, then (aT + ou TT) = 

aT! +o, Ty; | 

| (2) IFfTeS and AEM, then (A-T)" = (T A"; 

(3) If Te®™*, then T">0; | 

(4) If AEM" and TES, then (AT) = AT"; 

(5) (TH'"=TH for every TES ; 

(6) If SS*c& for an operator S, then S*SE€ SS and (SS™)* = (S*S)". 

PROOF. As pointed out in [13] (p. 320), existence and uniqueness of © can 

be proved in much the same way as Dixmier ([4], Lemma 4.7). Thus details 

are omitted. Every T€& can be expressed as a linear combination of elements 

in ©*. Hence § can be uniquely extended on © so as to satisfy (1). (3), (4) 

and (5) are evident from the way of extension. (2) is proved as in a usual 

fashion : first by 4€ My, next by self-adjoint A€M and lastly by general A&M. 

(6) is proved as follows: Let S=U|S| be the polar decomposition of S. Then - 

SS*=US*SU*. Hence | 

| (§S*)! = (US*SU*)" = (U*US*S)" = (S*S)". 

The proof is complete. & 

REMARK 7. From the property (6) of this theorem, we can show, more 

generally, that (S§*)"= (S*S)' for every operator S. The proof goes in much 

the same way as in Remark 4. | 

In our previous paper [13] we defined the powers ¥* (a > 0) of an invariant 

linear system ¥ as the invariant linear system generated by all 7% with T'€X". 

But, in general, it was an open question whether or not the set {I*; T'€&"} 

coincides with X**". Fence we were forced to give the sufficient conditions, (Kh 

and (€),. To state this, we need the following notation [5], [13]. Let S and 

T be positite operators nM, and S= | ram, T= \"nar, be their spectral re- 

solutions respectively. Put G,=E\NF,, then {G,} defines an operator |; na6, 

which will be denoted by SVT. 

(LL) If r=" aR ew and if 0<5=|"naE, is an operator such that
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EX <F,* for every positive A, then Ser. 

(&); If SEQ and TEL", then SVT EX". 

THEOREM 4. © satisfies (Ka and (L)s. Hence 

(1) er ={T"; TES}; | 

(2) (B*)F=E* &* -&F = S**B for every ot, B> 0; 

(3) If © is an algebra for some a> 0, ihen so are all the other SP. 

co 

PROOF. Let T= \ ANd Fe ST, 0<§=|"1aE, and assume E,"<F,~ for 

every A>0. Put S,=(1/2") (Eon + Esjgn + +++ + Ejanje) and T,=(1/2") (Fiign + F320 

4 vor + Finan). Then Sp <Su+1; T <T,1, Lub.S,=S, and lL.u.b. T.=T. Then 

by normality (Theorem 2) it follows that Lub. S, =S" and Lub. 7. =T% while 

from the assumption EE," <F\™ we obtain that (E,N)'<<(F)Y for every A 2>0. 

Hence Sf <T.! so that S*<{T%. This proves that S€ &*. Thus & satisfies (€)1- 

Next we turn to the proof of (£). Let S, Te &* and s=|"rdaE, r=|"xdF, 

be their spectral resolutions. | 

co oo a oo L L . 

SvT —_— \: Ad Gy = \: Gy dN — \: (Ey \JF}\ Yd. 

Now for any projections P, Q in M we have (PUQ)' <P" + Q' because (PQ) 

— Pp! + (PUQ—P)! <P" + Q" since PUQ—P<XQ [10]. Hence Gt << E'+FOR 

From this inequality we have (SVT) <8" +T* so that SVTE S*. That is, © 

satisfies (€)s. The rest of the statements were proved previously [13]. 

For the later use we put &°=M. 

Next we show that the mapping T—71" of &” into ZNZ' is onto. 

THEOREM 5. For each function f c Z, finiie except on a nowhere dense set, there exists 

an operator T €S* such that T" = f. 

PROOF. From the proof of the existence theorem of the pseudo-§-application 

given by Dixmier ([4] Theorem 1), we may assume that E'(w)=1 for a finite 

~ projection E with [ as its central envelope. Under this assumption we may con- 

struct an operator I of the theorem as follows. For every A>>0, {o; f(w) <\} 

is an open-closed set 0, modulo a nowhere dense subset of &. The central pro- 

jections corresponding to O, are denoted by P.. Put E,=FEP, + E* for A_>0 

and E, = 0 for <0. Then {E.} is a spectral resolution of the identity, and 

defines an operator r= "Nd. We show that 7’ is a desired operator. To 

this end we put 
|
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| T,= (1/2 (Eifion + E5ign + ++ + Eranjan) = (1/2) E(Pij2n + Pian +--+ + Pronjan). 

Then lLu.b.7,=7. Hence from the normality of § (Theorem 2) we have lLu.b.T,! 

=7T" On the other hand, oo 

Taf = (1/2") E*(Ptjzn + Pyjan+ +++ + Pranjan) = (1/27) (Pijan + P2jan + + + Pon j2n). 

It is not difficult to see that T,"1f as n foo. Thus 7" =f, completing the 

proof. 

The invariant linear system © is not in general an algebra. It is the case 

if and only if M is of type I ({10], [11], [2]). To the proof we need the following 

lemma. | 

LEMMA 6. Let M be a ring of type I, and let {P,} be a decreasing sequence of finite 

projections in M such that P,) 0. If we denote the central envelope of P, by Qn, then Q, 0. 

PROOF. First we remark that, in a ring of type I, the B-application can be 

normalized as follows: P*(w)>>1 and P*(w)> 0 are equivalent for each projection 

P in the ring. This follows from Dixmier’s construction of H-application (cf. [4] 

Theorem | and [1], [2]). Now we turn to the proof of the lemma. If the 

contrary holds, we may assume that Q,=1 for n=1,2,3,.... As the support 

of P,' becomes £, we have P,(w)>1 everywhere on £. While P, are finite 

and P,| 0, so that by the normality of § we obtain P,”| 0, a contradiction. 

The proof is complete. 

THEOREM 6. The Following statements for a semi-finite ring M are equivalent : 

(I) M is of type I; 

(2) &*CC, that is, © is an algebra. 

PROOF. Ad (1)—> (2): Let T'= \AdE, be any operator in &*. Put T;= 

\ 1B and r=, dE Then 7°<7, so that T'*€&. Denote the central 

envelope of E," by Q.. Then by the preceding lemma, Q,| 0. But Q,~ <{E,. 

Hence Q," 7: is a bounded operator. Thus Q,"7T.>=(Q\*T,) -T,€ S&S", that is 

Q\" (7) (w) < + co except on a nowhere dense set. By letting A— oo, we have 

(T*)" (w) << + oo except on a nowhere dense set, that is 7,°€S*. Thus T%= 

T\? + T>€ G&*. This proves (1)—(2). 

Ad (2)— (1): It is sufficient to show a contradiction under the assumption 

that M 1s of type II. Then there is a finite projection P with central envelope 

I[2]. Let IM be the range of P. My, the reduction of M on IN, is finite and of . 

type II. There is a partition {IM,} of IM such that Ply (0) = (1/2") P'(»). Let
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T= 312% Po. Then T becomes a positive operator nM by Theorm 1. TH w)< + oo 

by the construction of 7. On the other hand 72 => 9" Py, and (TH) w)= + oo 

identically, that is, T°ES, a contradiction as desired. | 

Next we prove B | oo 

THEOREM 7. The following statements Jor a semi-finite ring M are equivalent : 

(1) M is finite; - 

(2) &*D>6E. 

~~ PROOF. Ad (1)>(2): As M is finite, we normalize the H-application so that 

I'(0)=1 identically. Let T be any operator in &*. Then (TH <(T"* by a 

usual calculation [1]. This shows us that T € G2. 

Ad (2)— (1): If the contrary holds, we may assume. that M is properly 

infinite. Then there exists an orthogonal sequence {P,} of finite projections such 

that P,~P,, and P)(o)=1 (myn=1,2,3,-.-) [2]. Put T=33(1/n%) P,. Then 

T is a positive operator M by Theorem 1, and 7i=>3(1/0) P. Normality 

of I shows us that T' (0) =311/n2<+co0 and (T%)'(w)=>)1/n= +oo. That is 

Tc and 7'€¢S. This proves that SDS? or &2DHES, a contradiction. 

Combining the last two theorems we obtain the following 

THEOREM 8. The following statements for a semi-finite ring M are equivalent : 

(1) MM is finite and of type I; 

(2) © =8&~ 

PROOF. Clear. 

Here we will mention some special properties concerning the extended g- 

application. Some of them will interest us directly in their own nature, and 

others will reveal their meaning more clearly when applied to the theory of 

integration in the next §. 

LEMMA 7. If AEM* and T€ SF, then (A-T) = (TA) = (A TAY = 

(T%- A-T%">0. 

PROOF. The first two equalities are clear from Theorem 3. It remains 

only to prove that (S;+Sy)"=(S:+S1)" for every S,€@* and S,€8% With no 

loss of generalities, we may assume that $;>0 and S; >0. Then the equality : 

(Si 4iSs) + (Si —i82)' = (Si +S) (Si +i8)™)! 

= (Si +iS2)* (Si +i Sa)" = ((S1 = iS) = (Su +52)", 

shows us that (S; +S)" = (S;+S1)", as desired. 

THEOREM 9. If T€&*, then the mapping A—(A-T)" of M into Z' is normal.
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PROOF. Let {4s} be an increasing directed set of operators €M" with the 

least upper bound 4€M". Then 

(ds T)' = (TF dy TH A (TH ATH = (4-T)}, 

by Lemma 7 and Corollary of Theorem 1, completing the proof. 

COROLLARY. If TES, then the mapping P— (P-T)" of Mp into Z' is completely 

additive. 

PROOF. Since T' can be expressed as a linear combination of operators € &7, 

the statement is clear from the preceding theorem. 

LEMMA 8. Let « and (3 be nom negative real numbers such that a+ B=1. If 

Sc and T € SP, then the following statements hold : 

(1) If $0 and T>>0, then (S+T)' =(S*+T-SH">0; 

(2) S-T)'=(T-S5). 

PROOF. In case that « =0 or 8 =0, the statements are already proved in 

Lemma 7 and Theorem 3; (Note that &°=M). Hence we may assume that 

a>0 and B>0. 

Ad (1): Let r=\"\dE, be the spectral resolution. Then, as P,=E,E;, 

is a projection in &F, it is also a projection in &" for every v>0. Since S:T€& 

and lub. P,=FE; we have lim (P,-S-T)=(S-T)" by Corollary of Theorem 9, 

and lLub.St-TP,.S*=S8%.T.8 by Corollary of Theorems 1. On the other 

hand, as TP, €e M*N\&" for every v > 0 and hence S- (TP): eS, it follows that 

(Po+ ST) = (STP) = (S+ (TP) (TP))* = (T'P)*+S+ (T'P)*) | 

= (S'-(TP)H* (S(T PY) = (SH (TP) (ST (TP) = ($3 TP, S*)', 

by Lemma 7. Thus (P,-S-T) = (8. TP, Sh)! A (SET SY), (n— oo), whence (S-7')* 

= (S*-7 +S)". This proves (1). 

Ad (2): Since S and 7" are linear combinations of positive elements of © 

and © respectively, it suffices to assume that S”>0 and 72>0. Then (1) yields 

the equality (2), completing the proof. 

LEMMA 9. Le « and [3 be non-negative real numbers such thai «+ [3=1. Let 

{Ss} and {T's} be increasing directed seis of posilive operators in S° and S° respectively. If 

Lub. Ss =S€&% and lub. Ts =T CP exis, then Lub. (S;- Ts)" = (S-T). 
& 0 0 

PROOF. Let g= lub. (Ss+7s)". Since (S575) < (Ss Ts) <(S5-+T5)" <(S-T)* 

for § <8" (Lemma 7), it follows that g<{(S-7)" and g_>(S;-75s)" for every & 

and 6. Thus | |
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g = lub. (Ss + Ts)" = Lub. (Ss? + Tor + So1) = (Sp? + T+ SsH)t = (Sp + T)' 

for every 6. It is not difficult to see that g>(S:T)". This completes the proof. 

Concerning the invariant linear system © and ©? we obtain the following 

properties summed up In oo N 

© TuEOREM 10. In & and @Y, the following statements hold | 

(1) If TES, then lub. (4-7)! =|T|", and in particular (4-7) | <4] T]* 
LA|=1, AEM | 

Sor every A€M ; | | 

(2) If S, TES, thn |S+T|"<|SI"+|TI*; | 

(8) If S, TS? such that S+T*=0, then (|S+T]2 = (ISH) + (|T[»*; 

(4) If TES, then T>0 if and only if (AT) >0 for every AEM"; 

(5) If AEM, then AZ>0 if and only if (A-T)Yi>0 for every TES"; 

(6) If Se St then S>0 if and only if (S-T)'>0 for every TE Si; 

(7) If S, TES? such that |S|<|T|, then (|SIH<(|S]- TH <(T[**; 

(8) If S and T are self-adjoint elements of SY such that (8)! <(T?', then (S- $k 

<(T%)*; 
(9) If TES? and UEMy, then (|T]2'= (|UTU™|?)"; 

(10) If S, TES, then |(S- TPIT] |S*)I(ISI- [TFT SITS TI 

(11) If S, T€&?, then (ST) 2<(|S- TH <(S*S)" (T*T)* (Schwarz’s Ine- 

quality), and ((S*S)H*= Lu.b. [(S-T)"]. 
(T*T)I<I 

PROOF. First we shall prove a part of (11): [(S-T)"|2<(S*S)"(T*T)". For 

any complex numbers a and f£, 

la] 2(SS®)! + 2RAB(S-T)' + |B|*(T*T) = (aS* + BT)*« (aS* + BT)" >0 

By means of this inequality, we do the trick in the usual canonical fashion. 

Ad (1): Let T=U|T| be the polar decomposition of T and ||4]] <1. Then 

(AT) |? = | (4-U|T]) |? = (AU | T| 2 | TID) P< (| TEU A AU | TT] 

by Schwarz’s Inequality just proved. But as 1s easily verified, |T| LL U*A*AU- | T| 

<|T|. Hence (|T|}-U*4*4U-|T|)'<|T|*. Thus we have (4-7) | <|T|* 

for every AEM, [[4|| <1. |T'| = U*T shows that |T|* is the least upper bound 

really attainable by an A= U*. 

"Ad (2): Let S+T=U|S+T| be the polar decomposition of S+7. Then 

by using (1) we obtain 

ISH T|t = U*S+T) = U*-)' + U*- 1) <[S|* + |T]".
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"Ad (3): From the assumption, we have (S-7%)"=0. Hence 

(|S+T|2 = ((S*+ 1%) (S+ 1) = (S*S)! + (I-85)! + (T'-S*)* + (T*T)’ 

= (ISI) + (IT?) + (ST + (S-T* = (S|) + (|T[*)* 

Ad (4): By Lemma 7, it is sufficient to prove the “if” part. If T=T,4iT, 

oo 5 

with 77 =7,* and To=7>", then (4-T)"=0 for every Ae M*. Let 1,=\"_ ME, 

be the spectral resolution. Then for any A<<0, F\7;<0. But, as F\eM", we 

have (F\T2)"=0. Hence F\T;=0 since the mapping § is faithful. This shows 

us that Fy =0 for every A <<0. In the same way, we can prove that for any 

A>0, F,-=0. Thus we have T5=0." Let T} =|" nar, be the srectral resolu- 

tion. Then for any A<0, ET, <0 and (ExT)! — (E\T)">>0 since E, €M*. This 

shows (E\T1)'=0 so that E,77=0, and hence E,=0 for every M<0. Thus 

r=7= "NE 0, This proves (4). 

Ad (5): By Lemma 7, itis sufficient to prove the “if” part. If A=A;+iA4, 

with 4; =A," and 4, = A4,", then (42+ T)"=0 for every T€ S*. Hence (4,7)! 

=0 for every T€&, so that (|4y]-T)"=0 for every TES. Thus T'*|4,|T =0 

for every T€&*. Let |A4;] =|"xaF, be the spectral resolution. If F240 for 

some A\g>0, then there is a non-zero projection Q€& such that Q<{F,y. For 

every x€ 8 we have | 

0=<Q|4|Qx, x> =| "ralF alr = | Na FQ 
0 

Hence 0 = Fy; Q =. This is a contradiction. Therefore F\" = ( for every A> 0. 

That is 4; =0. Let A=\" an, be the spectral resolution. If FE, ,==0 for 

some Ay > 0, then there exists a non-zero projection PES such that PCE). As 

PA P0 and 0 (PAP)" = (PA, P)", we see that (PA, P)"=0 and hence PA,P=0. 

I'rom this we can prove in the same manner as above 0 =k, P= PF. This is a 

contradiction. Thus we have 4 = A4, =|"nar, The proof is complete. 

Ad (6): The “only if” part is evident by Lemma 8. The proof of the 

“if” part is nearly the same as that of (4). Hence details are omitted. 

Ad (7): |T|=|S8|>>0. Hence (|S|-(|T|=]S|)!>>0. This leads to the 

first inequality (|S][%)*<C(|7’|-[S])". The second is similarly proved.
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| Ad (8): 0((T=98)%)'= (T?)! — (T+ 8)" + (8) << 2((T* = (S+ THY). Hence 

(TS) <(T?)". 
| 

Ad (9): |UTU*|*= UT*U*UTU* = U|T|?U* Hence (| UTU™* |?" = 

UITPU = (IT) 
Ad (10): Let S=U|S| and T= V|T| be the polar decompositions of S and 

T respectively. Then |S*|= U|S|U*=S8U* and |T7|= VIT|V*=TV*. Hence 

| (5-7) [= [WIS] -VITI 2 = (72 U- [SB - (SHV [TI 

<(I8|E-U*- (T-Sh (TTP S| VTE 

— (UF |T|-U- |S] (7*- |S] V+ |T)'=(T|- TUS US VI|T|V*) 

= (|| -|S* IS] + [T* = (|T|-STS (IS|- TV) 

=>. TSU) (U*.S-TV* <|T-S|*|S-T|" 

Ad (11): Consider the polar decomposition W|S+T| of S-T, where WV is a 

partially isometric operator. Then 

(ST) P= | [STF IWIR(S TIS (ST) = (0-8) TY 

<(S*-Www*.S) (T*T)' =W Wx SS*) (T*T)t < (SS) (T*T)" 

This proves Schwarz’s Inequality. The proof of the last statement goes as follows. 

Put g= Lu.b.[(S-T)*[. Then, by Schwarz’s Inequality just proved, it follows 

(T*T)i<1 

that g <((S*S)M?. Let S=U|S| be the polar decomposition and P, be the cen- 

tral projection corresponding to the open-closed set fw; (§*S))(w)>1/n}. Then 

P, 

P, 

(EM! € C(£) and hence we may regard (59M! as an operator EM. Thus 

P , 
I, = my * = 2, I~. n "<< d sm SY &:, (I,*T,)'<1 an 

(ST = iy | (US PU%) | = oiasy (S81 = PSS)" 
((§*S8))* ((§*8)")* 

Therefore g>P,((§*S)")* for every n, and hence g=> ((S* S$), completing the proof. 

The theorem is thus completely proved. 

In the rest of this §, we consider, as an example, the canonical -application 

of an H-system (= Ambrose space [14]). Let H be an H-system, and B, LI. and 

R be its bounded algebra, left ring and right ring respectively. The partial appli- 

cations y —> xy and y — yx are denoted by L. and R, respectively. An element x cH 

is called central if xb=0bx for every beB, that is, L.yL"=R" The set of all
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central elements forms a closed linear subspace H'nlL\VR. Let x—x' be the 

projection of x on H'. It is known that B'CB and x'_>0 for every x>>0. Put 
Ly} = Ly for b€B. Then L,—L,' is an application of the ideal Lg={L,; beB} 

of IL. into the center L' of L. with the following properties : 2 

I. If BelLgnL' then B'=RB; 

2. B—B' is a positive, linear and normal mapping ; - 

3. (AB)"=(BA)" for every A€l. and BE Ly: 

4. (AB)"= AB" for every A€L' and BE Lg; 

5. |B <||B| for every BE€ Lip. 

Thus B— B" is a normal and essential H-application defined on Lg. Owing 

to the property (5), B—B' is uniquely extended to a normal and essential B- 

application defined on IL. We have called this extended application the canonical 

B-application of H [13]. The pseudo-f-application, obtained by restricting it to 

L*, can be extended by means of (§) to an extended pseudo-f-application defined 

on the set of all positive operators 7 on H : 

T'=1.u.b. A" 
L+3A<T 

As remarked earlier, every element of Z’ is identified with an operator nL" and 

vice versa. With this identification we obtain the following 

THEOREM 11. L,=L, for every x € H. | 

PROOF. We need only to consider the case x>>0. Let L, ={"raz, be the 

spectral resolution. Then Lub. Lg» =L,. Thus by the normality of the extended 

pseudo-f-application (Remark 5), we have 

lu.b. Lig,xt = lu.b. Lil, =L1. 
A A 

As {Ex} is an increasing set with an upper bound x, {L(s,,!} is a commutative 

and increasing set with an upper bound L,i. Hence {L?y,,!} is an increasing 

set of positive operators with an upper bound LZ. It follows that, by Theorem 

I, Lub. Ligygt = ToL, where Lub. is taken in the sense of the ordering of 

the positive operators nL. 7, is a measurable operator nL. with D7 DD, «DB 

and lim {(Exx)'d, by = (Tob, b> for every bE B. On the other hand, as ||(Exx)'— 

x1||—=>0 for A—> co, we have lim<{(E\x)'b, b> = xb, b> for every b&B. Hence 

To and L.t are identical on the dense set B. Measurability of 7p and L,' assures 

that To=L,1 [13]. Thus Lu.b. L g,,t = L,» in the sense of the ordering of the 

positive operators on H, and a fortiori in the sense of the ordering of the real
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elements of Z'. Thus we have L/}=L,1, completing the proof. 

| § 3. Application to the theory of integration 

In this § some applications of the ‘previous results to the theory of non-com- 

mutative integrations will be considered. In contrast to our previous paper [13], 

we assume the classical theory of integrations over an abstract measure space. 

© Let m be a normal, faithful and essential pseudo-trace defined on M*. Then 

there exists a unique normal, faithful and essential pseudo-measure @ on £ such 

that m (4) = @(4") holds for every 4€M” [4]. Put 

oo m(T) = 1. u. b. m (4) 
M*234<T 

for every positive operator TnM. Then by Theorem 2, T"= lub. T.', where 

r=\"rdE, 1s the spectral resolution and 7,=\" dE. Hence on account of the 

normality of @ we obtain 
| 

m (T) = Lub. p (4) = Lub. p(T.) = (T*). 
M+ 3A<T n 

LEMMA 10. If T is a positive operator nN with m(T)< +oo, then TES" and 

the support of T' is of countable genre, that is every family of disjoint non-void open-closed 

sels contained in this support is at most countable [3]. 

PROOF. Essentiality of the pseudo-measure @ shows us that @(I'")=m(T) 

< +oo implies T"(0)< + oo except on a nowhere dense set, that is 7€&". If 

the support of T' is not of countable genre, it is not difficult to see that m(T)= 

+ oo, a contradiction. 

LEMMA 11. Let TES". Then following statements are equivalent : 

(1) There is a normal, faithful and essential pseudo-trace m such that m(T)< +00; 

(2) The support of T" is of countable genre. 

PROOF. The lemma is evident from the classical theory of integration. So 

the proof is omitted. 

A positive operator TnM is integrable only if Te &*. The converse does 

not hold in general. For this we have 

LEMMA 12. The following statements are equivalent : 

(1) For every TES", there is a normal, faithful and essential pseudo-trace m such that 

(2) £2 is of countable genre;
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(8) MM is countably decomposable. 

PROOF. Ad (1)—> (2): Let f be an arbitrary element of Z such that 0<f(w) 

< + oo except on a nowhere dense set. Then there exists a positive operator 

THM with T" =f by Theorem 5. Hence by assumption, a normal, faithful and 

essential pseudo-trace m on M7, and hence the corresponding normal, faithful and 

essential pseudo-measure @ on £ exist, such that @(f) =p") =m(T)< + oo. Put 

o(&) =p (fo) Then @, is also a normal faithful and essential pseudo-measure 

on £. @(1)=@(f)<+ oo shows us that @, is a measure with support £. Hence 

2 is of countable genre [3]. 

Ad (2)—> (1): If £ is of countable genre, there exists a bounded normal 

measure [3]. Hence for every f€Z, there exists a normal, faithful and essential 

pseudo-measure @ such that @(f)< +oo. This shows (2)—(l). Equivalence of 

(2) and (3) is obvious. The proof is thus complete. 

In the sequel, m is a fixed normal, faithful and essential pseudo-trace defined 

on M*, and ¢ is the corresponding pseudo-measure on £. 

DEFINITION 3. An operator TnM is called integrable if m(|T|)<+oo. T 

is called square-integrable if m(T*T)< +4 co. The set of all integrable operators is 

denoted by L; and that of all square-integrable operators by Lo. 

| L, and L; are invariant linear systems satisfying (€); and (£)s. Lp = Li? 

LCS and Ly CS: The proof is not difficult and the details are omitted. By 

a canonical fashion m(7T") is uniquely extended as a linear form on L;. Then 

we have 

| mT) = q(T?) oo 

for every T€L,. m(T) is called the wnlegral of T. 

As an immediate consequence of Theorem 3 we have 

THEOREM 12. The integral m(T), T € Ly has the following properties : 

(1) If Te€L, and T\€L,, and « « are complex numbers, then m(al + oy T) = 

am(T) + a,m(T)) ; | | 

(2) If T€L, and AEM, then m(A-T)=m(T A) ; 

(8) If TeL*, then m(T)>0; | 

4) m(T*)=m(T) for every TEL, ; | 

(5) If SS*€L, for an operator S, then S*S€ Ly and m(8S™) = m(S*S). 

~~ REMARK 8. The statements in Theorem 10 may be transferred to the rela- 

tions in terms of integrals. For instance: |m(S-T)|><m(|T|+|S*|)m(|S|-|T™*]) 

for every S€L, and T€L, (10); [m(S-T)|?<m(|S-T|P?<m(S*S) m(T*T) for
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every S&L, and T € L, (Schwarz’s Inequality). Details are omitted. 

As in our previous paper. [13], we denote ITI, =m(|T|) for Tel, and 

IT]s =m (T*T)? for T€L,. Then it is clear that L, and L; are normed spaces 

with norms ||T|l; and ||T]2 respectively (Theorem. 10). First we show 

THEOREM 13. (Monotone Convergence Theorem). Let {T.} be a monotone increas- 

ing sequence of positive operators cL,. Then there exists a T € Ly such that l.u.b. T,=T, 

if and only if {||Tallr} is bounded. In this case lim ||T —Toli=0, T"'=lub.T.', and 

{T.} converges n.e. to T in the star sense. Ce 

PROOF. If {||T./l1} is not bounded, no such IT exists. Assume that {||T./1} 

is bounded. By taking a subsequence, if necessary, we may assume that 

| T par —Tall << 1/4" (n=1,2,3,---). Let Ton = To= | NIE be the spectral re- 

solution of Tps1 =—TH»>0. Then 
| 

(1/2) m(EE) = =, (1/27) dm(B) << — 7m (Ee) | 

<-[Pram@E") = Tus = Tul < 1/4 

Hence m(E{ kz) <1/2". Put P= (Eff. Then m(P,)<<1/2"7% Thus we have 

Pl 0 and P, is finite. Since (Ter = To) Pal] 1/2" and {P,} is increasing, 

we have ||(Tn—T)P.) <1/2"" for every m>n. Let ® be the intersection of 

all Dy, (n=1,2,3,--) and the set-theoretic sum of all PH (n=1, 2, 3, ...). 

Then D is strongly dense [13]. Now, for every x& D, {T.x} is a Cauchy sequence 

of elements of §. Hence lim T,x exists which we will denote by Sx. Clearly S 

R00 

is a linear not necessarily closed operator with strongly dense domain PD, and 

has the adjoint S*D>S. Therefore S has its own closure 7. Evidently 7'>0. 

For every x€D, lub. {T,x, x) = (Tx, x). Hence by Theorem I, Lub. T,=T, 

and by normality of 4, IL. u.b. Th =T' Thus [T= IT. = | T—=T,|1 = 

@(T*=T,") —0. This proves the theorem. 

COROLLARY 1. Let {T,} be a monotone increasing sequence of positive operators nM. 

If lub. Tt =g€Z’ and the support of g is of countable genre, then lub. T,=TnM exists 

with T"=g. And {T.} converges n.e. to T in the star sense. | 

PROOF. Since the support of g is of countable genre, there is a normal, 

faithful and essential pseudo-measure ¢’ such. that (g) << +oco. Let m’ be the 

corresponding normal, faithful and essential pseudo-trace. Then ‘the norm 17.11 

=m! (T,) <q’ (g), that is, {||Ta[1} is bounded. To complete the proof we have
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only to apply the preceding theorem. 

COROLLARY 2. Let {T.} be a monotone increasing sequence of positive operators. mM. 

If Lub. T))=g¢€ Z', then lub. T,=TnM exists and T = g. B 

PROOF. As M is a central direct sum of countably decomposable centers, 

the proof follows from the preceding corollary. 

THEOREM 14. L, is a Banach space. 

~ PROOF. The only point to be proved here is the completeness of L; with 

respect to the norm || [[;. Let {T,} be a Cauchy sequence, that is, [T= Tl —>0 

(m, n— 0). We have to prove the existence of T€L, such that |T = T,||.—0 

(n—> 0). With no loss of generality, we may assume that (1): T,=T,* for every 

n and (2): [|Twsr — Tal] <1/2* for every n. Put | | 

So=|Ti=Ts| + |Te=Ts| + + |[To—Tru]. 

Then {S,} is an increasing sequence and, 

1S) = [Ty = Tally + [|Te = Tally +--+ + [Tw = Ton [i <201/2°=1 

for every n. Hence by Theorem 13, there is an S€L, such that |S =S.|]|—0 

and Lub.S,=S. Put 7) =7T,~T,+S..1 for n=2,3,... and TY =0. Then 

Ti =T,=Twi1=Tn+ |To=Tre1|>>0 and ||Th]:<||T,— Till + [Sells <¢ for 

some constant ¢. Again Theorem 13 is applicable to the sequence {7.}, and there 

exists a 7" € I; such that Lub. 7,/=T and |[|[T'=T,]i—>0 (n—>o0). T=T"4+T1,=—S 

is the desired limit. In fact 

T=T,=T +T1—=S=T,=T" =T))+(S,-1 =) 

and [77 =T.ll;—0, ||S.-1. —S|[i—0. This completes the proof. 

From this proof we have 

COROLLARY. If 1T,—7T in L,, then TT. —T" in the siar sense and T,—T n.e. in 

lhe star sense. 

PROOF. TH — 7 =1"—T" +8 _, —8" and T.)>T7" Si. —§. Hence the 

first assertion holds. By using 7'—7,=7"=T,4S,-1 —=S, the second assertion 

may be similarly proved. | 

As for L, we have the next analogue to Theorem 13. 

THEOREM 15. Let {I',} be a monotone increasing sequence of positive operators € Ly. 

Then there exists a T'€ Ly such that Lub. T,="T, if and only if {||T.||2} is bounded. In 

this case lim |T = Tl =0, T"= Lub. T., (T®"= Lub. (.>", and {T.} converges n.e. 

to T' in the star sense.
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PROOF. If T= lub.T, exists in Lj then (T*' > (T.»)" (Theorem 10, (7)) 

implies that {||T.|]2} is bounded. Assume the converse. If m>n, then 

(T= TD) = (Tl = Tne To= Tat TF T.2)" <(T.0)" — (7) 

Hence || = Tolls || Tl 2” — [| Tll2* for 'm>n. Thus by taking a subsequence, 

if necessary, we may assume that |Twer = Talla < 1/4" (n=1,2, 3, ---). As in the 

proof of Theorem 13, we can construct a T#M such that {T.} converges n.e. to 

T and lLub.T,=T. Hence Lub.T,f=T" We are now to show that Te Ly and 

lim |T — T.]ls=0. Since {T,.*} is a Cauchy sequence In L,, there is an ScL, 

such that ||7,2=S|;—0. Hence by the preceding corollary T.>—>S n.e. in the 

star sense. On the other hand, as T,—>T n.e. in the star sense, T2—>T% n.e. 

in the star sense [13]. Hence S=T°. But (T=T)» = (TH —2(T-T)' + (T.25)" 

and T,<T. This shows us that (T =T)D'< (TH — (TD) = 8S" — (7.2). Hence 

IT = T,)l2—0. Thus [|[T[lz= Lub. [[T.]s or (THY) = Lu.b. p((T,°)") which im- 

plies (7?)" = Lu.b. (T,2)%. This completes the proof. 

THEOREM 16. Ls is a Hilbert space with an inner product S,T)=m(S-T . 

PROOF. The proof of the completeness of Ly is the same as that of Lj, 

except that || ||1 is replaced by || [[z, and that Theorem 15 is used in place of 

Theoremn 13. Details are omitted. | 

To each AEM corresponds a mapping 6(4) of Lp into itself, defined by 

the relation 8(A)T =A-T for every Tec L, Tt is easy to see that ¢ is a normal 

x-isomorphism, so that #(M) is a ring of operators on L. [6]. We can also show 

that L, is an H-system whose left ring is ¢(M). But this will not be used in 

the sequel, so the proof is omitted. | 

THEOREM 17. (Radon-Nikodym’s Theorem). For every TE Ly, Pr(A)y=m(A-T) 

is a linear form on M continuous in the ultraweak topology on MM. Conversely, every such 

linear form on M is a @r, TE Ly, and |@7|| = ||T||;. MM is the conjugate space of L,. 

PROOF. First we prove that @r is continuous in the ultraweak topology on 

M. Since 7€ L, is a linear combination of positive operators € L,, we may assume 

that 7>>0. We note that a positive linear form on M is normal if and only if 

it is continuous in the ultraweak topology on M [6]. Hence the problem is 

reduced to prove that @r(4)=m(4-T) is normal for T7>>0. But we have shown 

that A—(A-T)" is a normal mapping (Theorem 9). Hence the normality of 

Or follows directly from that of @. Conversely, let @ be a linear form continuous 

in the ultraweak topology. We may assume that @ is positive. Then @ is 

normal. Define @(0(A)=® (4). @ is a normal linear form on 0(M), so that
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we may write | 

P(A) = P(A) = 21<A-S,, S.> = 21m(4- 85.2), 
n=] n=1 

where S,€ L,* and D)||S,[*< +0 [6]. Let Tw=2357. Then Tally = 2311S: 5" - 

Theorem 13 shows us that T= Lu.b.T, exists and ||[T=7,/,—~0. Thus @(4) = 

limm(A-T,)=m(A-T), or ®=@p. || @r]| = Lub. |mA-T)|=|T|, is obvious 
AEM, [4] <1 

from Theorem 10, (1). 

It remains to prove the last statement. For each A&M, U,(T)=m(4-T) 

is a bounded linear form on L,. That ||[¥ | = [4] may be proved in the follow- 

ing way. Since [4] =]||4]|]] and Lu. b. [mA-T)|=1 ub. |m([4]-T) we 
TeLy,|Th=] Te Ly,|Tlhi=l | 

may assume that 4€M*. Clearly ||¥,]|<||4]] by Theorem 10, (1). If 0 

[4] 
a<||A]| for some «a, then aE,” < AE,” where a=, INE, is the spectral resolu- 

tion of 4. As E,” #0, there exists a projection P<E," such that 0<m(P)< + co. 

Put T= 5P Then |[T]li=1 and aT<PA-T. Hence a=am(T) m(PA-T) 

=m(A+T). Thus [|[4*1L ub. [m(A-T)|=||7,4. That is ||4]| =||¥,]|. That 
Tel, |Th=l 

every bounded linear form on L; is of the form ¥, with A€M is obvious from 

Dixmier’s Theorem ([6], Theorem 1), since we have already shown that IL, may 

be regarded as the set Mx of all ultraweakly continuous linear forms on M. 

Thus the theorem is completely proved. 
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