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The so-called “non-commutative theory’ of integration for rings of operators on
Hilbert spaces has been much developed by Segal [26] and Dixmier [9], indepen-
dently. The former’s theory is a theory of integrals (or traces) for certain (un-
bounded) “measurable operators”, analogous to measurable functions in the classi;:al
theory of integrations over abstract measure spaces. His idea of the “measurable
operators’ originates from the works of Murray and v. Neumann ([18], Chap. 16)
for factors of type II, and of Dye [11] for finite rings. The latter’s theory is a
theory of integrals as linear forms. For both theories the rings may be assumed
to be semi-finite without loss of generality. A ring M of operators is called semi-
finite [157] provided every non-zero projection €M contains a non-zero finite projec-
tion €M. Let M and N be isomorphic rings of operators, and let m and p be
regular gages of M and N respectively such that m and p correspond by means
of the above #isomorphism. If we stand on the view-point of Dixmer [9], the
measurable integrable operators with respect to m and p must correspond *-isomor-
phically. We show (Theorem 1) that if M is xisomorphic with N by means of a
mapping ¢, then ¢ is uniquely extended to a s-isomorphic mapping between
measurable operators with respect to M and N. To develop the theory of Segal
[26] for a given ring M it seems, therefore, preferable to take an appropriate
ring N - isomorphic with M and to develop the theory for N instead of M and then
lo transfer it to that for M, if such a process is more suitable. It is known that
every semi-finite ring M is *-isomorphic with the left ring L of an H-system H,
arid the regular gage of M in question corresponds to the canonical gage w of H.
Left multiplication operators L., x&H form a Hilbert space when the inner product
Lo L, > is defined by <L, L,>=<xy2>. The set &, of all L. is the set of
square integrable measurable operators with respect to p. Thus in H the square
integrable measurable operators are given a priori. ~ We define that T=L.,L, is

integrable with respect to x and define its integral u(T) by < L., Lyx>. Let & be
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the set of all 7. To prove that &, is the set of all measurable integrable operators
is reduced to the proof of the following: in H (a) strong and ultrastrong (=st-
rongest) topologies, (b) weak and ultraweak (=o-weak [15]) topologies coincide
respectively (Theorem 3).  This is an easy consequence of a theorem of Griffin
((15], Theorem 12). But we shall prove it by an elementary way somewhat similar
to Segal’s method of proof of a certain theorem on a commutative ring [25]. As
its consequence, the Radon-Nikodym theorem and Lebesgue monotone convergence
theorem follow.

If M is commutative, then the above L is a masa (=maximal abelian self-
adjoint) algebra which is *-isomorphic with M. In this case the set H' of self-
adjoint elements of H is a vector lattice in which the lattice order is the usual
operator order. Finally we shall give a somewhat axiomatic definition of Y, for a
general ring M and compare it with the AL-space of a vector lattice developed
previously by one of the present authors ([19] p. 86).

Some applications to the structure of I, are given in 3.

1. Measurable operators

1.1. Let M be a ring of operators on a Hilbert space £ of arbitrary dimensions.
We shall always assume that M contains the identity operator I on §. Mp and
M, respectivly, stand for the set of projections and that of unitary operators in
M. Let m be an ideal of M generated by a certain set of finite projections € M.
Any projection €M is then finite since the ideal 1, generated by all finite projec-
tions € M contains only finite projections.

Dirinition 1.1. (cf. [26], Def. 2.1). A linear set O in ) is said to be strongly
Wedense provided (1) U'DCDO for every U'€ M'y; (b) there exists a sequence of
projections ”,€ M such that PHCOPL| 0 and Pl em.  An operator TnM is
called essentially Wrestrictedly measurable if T has a strongly Wi-dense domain and a
closed extension. Moreover if 7 is closed, T is called wi-restrictedly measurable. In
case N =:11,, we shall say simply that O is strongly dense, T' is essentially measurable or
T is measurable as the case may be.

Limma 1.1, Let T be a dosed densely defined operator 9 M, Then :

(i) 7 is m-restrictedly measurable if and only if so is |T| ;

(i) Let T>>0 and let T—-:S NdE, be its spectral resolution. T is m-restrictedly
0

measurable if only if Ex'(=I—E\)&€m for a positive \.

Proor. (i) is evident since 7 and |7'| have the same domain. The “if” part
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of (i) is clear. Let T>>0 be m-restrictedly measurable. Then there exists a
projection PEM such that TP is bounded and PLem. Let ||[TP| <. We show
that PNE,g-=0. If the contrary holds, there exits a non-zero x < 9 with PNEyla==x.
“T'cl[‘—HTPxH<7von|| while [|TxH——HTE>\é‘xHZ)~o|IxH This is a contradiction. Since
for every projection Q,REM, Q— Q/\R~QUR R [17], we have E\g=E\.;—PN
E\} L_PUE,} —P<PLem, as desired.

Segal [26] proved that if S and T are essentially measurable and agree on a
strongly dense domain, then they have identical closures. Next is its slight general-
ization.

Lewwa 1.2, If two essentially W~restrictedly measurable operators S and T agree on a

dense domain, then they have identical closures.

Proor. With no loss of generality, we may assume that S and 7' are Ti-restr-
ictedly measurable. The set D={x; Tx=Sx} is obviously invariant under every
U’c M/, and is dense in . Let T, be the restriction of S and T on ©. TD>7T,
implies T*CTy*. As T* is m-restrictedly measurable, as proved below, so is To*
by the very definition of measurability. It follows, from the result of Segal above

mentioned, that T*=7," and hence T=T,**. By symmetry S=T,** and we have
T=S, as desired.

From Lemma 1.1. if T is m-restrictedly measurable, then so are 17T,
(@>0). We show that T* is m-restrictedly measurable if sois T. Let T=W|T|
be the polar decomposition of T, where W is a partially isometric operator EM

with the closure of the range of |T| as the initial set and with the closure of

the range of T as the final set. Let Wiw*=E and let |1 =S NdE,, | T* =S AFy
(4] 0

7%

yields

be the spectral resolutions of |T'| and T*| respectively. |T*|=W|T
Fo=WEW*+E! (\>0). Hence Fl=WE,LW* This implies by Lemma 1.1 that

T¥| is M-restrictedly measurable. It is clear that the intersection of a finite

number of strongly mM-dense domains is so also. After Segal we define the
strong sum S+ 7 and strong product S+ T of two W-restrictedly measurable operators
Sand . S+ T and S-7 are the closures of S+ 7 and S7' respectively. (cf. [26],
Def. 2.2). But in case of our ut-restrictedly measurable operators, S+7 is seen to
be essentially Wi-restrictedly measurable from the above. That ST is so also, follows
from a modification of a proof given in [26], and details are omitted. Hence in
our case S+ T and S- T are nt-restrictedly measurable. Thus we have the

Levma 1.3. The set of all W-restrictedly measurable operators forms a #-algebra with
respect to the strong sum S+ T and product S-T, the scalar multiplication (except that
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Q- T=0) and adjunction.

We remark that the two measurable self-adjoint operators S, T' are commutative
(S-T=T-S) if and only if every two projections in their spectral resolutions com-
mute (This is usually a definition of commutativity of two self-adjoint operators on
). The “if” part is well known. Let S and T commute, and if we put V'=S+iT,
then V¥V =VF* will follow and therefore ¥ is mormal. From this we obtain the
statement of the “‘only if” part.

1.2. A projection PEMp is called countably decomposable if each set of mutually
orthogonal non-zero projections in PMP is at most countable. In the sequel only.
three types of ideals M are concerned: (a) Mo is the ideal of M gencrated by all
finite projections €M ; (b) m, is the ideal of all finite countably decomposable
projections € M ; (c) M, is an ideal of M generated by the metrically finite projec-
tions with respect to a regular gage. In the last case we assume that M is semi-
finits. A ring M is called semi-finite [15] if every non-zero projection € M contains
a mnon-zero finite projection € M. Clearly 1o D 1ty D . Lst d(P) be a dimension
function on Mp in a certain semse of Segal [26]. He proved that if we let
{P, ;s ij=1,2,3, --:} be an indexed family of projections € 11, such that for each
i, d(P;, )10 (pointwise except for a non dense set) as jfoo, then there exists a
subsequence {j(@)} of the integers such that SVi21d (P, ) < oo (pointwise except for
a non-dense set). In particular, if P;, ;|0 for each i as jfoo, then there exists a
subsequence {j(i)} of the integers such that \J.Z. P €M, and |0 as n?oo.
For m=t,, if we usc a regular gage instead of a dimension function, we get a
corresponding result. Segal’s discussion is concerned with the case when the center
M' of M is countably decomposable, but it holds as well for the modified statement
above mentioned, since a countable number of countably decomposable finite projec-
tions €M is contained in a center which is countably decomposable in M'.

Segal exposed a convergencs discussion by the following definition ([26], Def.
2.3). A sequence {7} of measurable operators is said to converge ncarly everywhere
(n.e.) to a measurable operator T, if for every positive & there exists a sequence
{P,} of projections, such that 11,3 P,'{0 as nfeo and (T, =T)P,)| <& (n=1,2,3,).
In case M is a factor of Type III, a measurable operator is nothing but an element
of M, and n.e. convergence in this sense means 7.,=T (n=1,2,3,---). This shows
that the uniform convergence does not necessarily imply the n.e. convergence. On
account of this unsuitableness, we shall give the following improved

Derinvirion 1.2, Let {T,} be a sequence of m-restrictedly measurable operators
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n M. {T,} is said to converge M-nearly everywhere (M—n. e.) to a measurable operator
T if for every positive number &, there exists a sequence of projections P, €M
(n>n.) such that [[(T=T,)P.[ <&, PLl0 as ntoo and Plem. If m=muy,, we
shall omit “m—".

It will turn out from the discussion below that 7' is necessarily m-restrictedly
measurable. Segal [26] proved that T’ is unique for an n.e. convergent sequence
{Ta}-

Levwa 1.4, Let {T.} be a sequence of M-restrictedly measurable operators nM. A
necessary and sufficient condition for {T.} to comerge M-n.e. to a measurable operator ML
is that, for erery positive €>0, there exists a sequence of projections P,EM (n>>n.) such
that ||(Tw—=T)P||<E for m>n>ne and P} 0, Plem.

Proor. That the condition is necessary is evident. For the sufficiency proof
we only consider the cases M=1l, and m=m,. For the case M=y, it is treated

in much the same way as in the case M=l First consider the case mM=11,.
Write n.=n; and P,=P{” when 8='7}2~. We may assume that niteo as kfoo,

and that

@ Ql=yv 2, PilLtem, U2, PELL0 as nteo.

We use the symbol Or to denote the domain of operator 7. The intersection
O=NDOr, is strongly my-dense [26]. By definition there exists a sequence of °
projections E,€ M such that E,9CD, E, -0 and E,-€m. Put

2 Q.= N1 P, gy NEn. (Ql:Q)

Then Q=2 PEYn nw UE, |0 as ntoo, since U PRy by 40 and E LU0

0

as nfeo. Evidently Q€. We obtain
3) (T, —T,)Ql< ';2 for every p>q_>max(m,ny).

Let O, be the set-theoretical union of {Q.H}. Then D, is strongly m-—dense. (3)

shows that {T,} is a Cauchy sequence on each Q.9 in the uniform topology. Hencs we

(T—T)0. < ]}2 for q}_max(n,n,ﬂ).

have an operator 7% M with domain D, such that
For any positive number &>0, we take E=k(&) so large that “%2-<E. Then we have

(4) (T =T)Q.|| <& for n>>nue» Qu'40, and Q.-€mn,

If we can show that 7' has a closed extension T, then T will be m-restrictedly

measurable and {7,} converges u-n.e. to T. The proof will follow from the
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following lemma (we take m=m,).
Levva 1.5, If {T.} satisfies the condition of the preceding lemma, then every sub-

sequence of {T,*} has a subsequence satisfying a condition of the same type.
Proor. It suffices to prove that {T.*} has a subsequence stated in this lemma.
We use the notation in the proof of the preceding lemma. Let D*=NOr,*, which
is strongly wi;—-dense.  There exists a sequence of projections F,E€M such that
FHCO* F,40 and Flem. Put
Qo= Fu O (T = Taf) " (Qui D) for 1>k

Then Lo =Fuf-OU (T =1 ) 1(Qu L. By a result of Segal ([26], Lemma 3.1)
we have d(Put) <d(Fui) + 2d(Qut). We select a subsequence {ns;} such that
SV d(Ful) < oo, S, d(Quiy) < oo except for a non-dense set. Let

(5) gn = ni:n[ﬂkid—].k,}] and Gn. - Plln,-

Then G,L€m,, G, 0 as ntoo. It follows from (3) that |[(Tary,=Tnk;) Qn,'H<7};.

Then we obtain II(T,.’,‘EHI——Y’,?‘M)xIIg—l%z— x| for every x€G,H for in ((26], the

proof of Theorem 9). Hence

(6) (T =Toly) Gill <232 kl for j>=1,

which shows that {7.%;} satisfies the condition of the preceding lemma. The proof
is completed.

We return to the proof of Lemma 1.4. By making use of Lemma 1.5 and
the result so far obtained in the proof of Lemma 1.4, we can infer that there
may exist a subsequence {74} of {T.*} converging pointwise to an operator T" in
a strongly nt,--dense domain O,*. Let x€Dy, yE€ Oo* be chosen arbitrarily. Then
T, y )= 2, Tyky ), which yields {Tx,y)={x,Ty). This implies that 7" has a
dense domain, so that, 7 has a closed extension T, as desired. Tt is noted that 7
is 11,-restrictedly measurable.

We show that [[(7T—T)P.| <& [[(Ta=T.) (PunQ,)| <& for m>n. Let mteo
in this inequality, then we have (T—T)P.NQ,)| <& Since P,—P.NQ,~P.\VQ,
—Q, by [17] and PUQ,—Q,<Q,0 as pfoo, we can easily obtain the desired

inequality.

Next we turn to the case m=1, Let {Q.} be a maximal orthogonal family
of projections €M, each of which is countably decomposable in M*. For each @,
consider the sequence {7,,.}, where 7,,,=T.Q.. Put P, .= 0, JQ. . Then (Tw, =T,
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15,;_‘=(T,,,-T,,)QL P, and therefore [|(Tw,.=Tn )P, || <& for m>n, Pn}‘%PnLQLlO as
nteo and Pl €wm,. T, is evidently m-restrictedly measurable. We can apply
the result for m=m, to {T,.}. Let T, be the limit of {T,.} in the m;-n.e. con-
vergence.  Then [[(T,=T,,.) Q.P.| <¢& ‘Let T be the closed operator such that
70,=T.. Evidently T.Q.-=0, so that the existence of T is proved in a usual way.
It is easy to see that TnM and [(T=T,)P.[| <& Therefore T is the n.e. limit of
{T.}. The proof of Lemma 1.4 is completed.

From (3) in this proof we can incidentally read off the following

Lemma 1.6, Let {T.} be a sequence of m-restrictedly (where M =11, or M) measurable
aperatars converging M-n. e., and {&.} be a sequence of positive numbers decreasing to 0.
Then there exists a sequence of projections {Qu}, Qi-€m, Q:40 as ktoo, and an in-
aeusing  sequence of - positive integers {nk},“‘ such that ||(Tnw—=To)Qull <& for every
m>n_>n.

Remark. At this juncture we shall point out the following fact which will be
used later. If {T.} be a sequence of uniformly bounded m-restrictedly (where
M=11ly, U1, or M) measurable operators converging M-n.e. in the star sense to an
m-restrictedly measurable operator T, then T’ is bounded and 7,—T strongly.
This follows easily from Lemma 1.6 if m=m, or Ny As for the case M =11, we
decompose M into direct summands by the family of projections {Q.} used in the
last part of the proof of Lemma 1.4, and the problem can be reduced to the case
m=m, on each direct summand MQ..

Lemma 1.4 together with Lemma 1.5 shows that if a sequence {T.} of m-
restrictedly measurable operators converges nt-n.e. to a measurable operator T,
then T’ is necessarily 1 —restrictedly measurable and {T.*} converges m;-n.e. to T
io the star sense. This is also proved by Segal [26].

Let {T,} be a sequence of m,—restrictedly measurable operators converging Wl-
ne. to 0, Then ||T.1Pn”<““,1t“" for n>m, P10 and Plem,. Let M.=P.HN
T*YP,9). Let E, be a projection on the closure of M,. Then d(E 1) <d(P, )+

924(P,')=3d(P,'). And we can find a subsequence {p.} of the integers, such that

U,EL €m, and U2, Ep 40 as nteo. Tt is easy to see T ol <[ T Pp,l| and there-

“pn
fore ||TpaT 1k Epnll < |7, Pp.lI*- Thus {T,,Ts:} converges n,—n.e. to 0. From this we see
. .« s P
that {7,7,.*} converges n-n.e. to 0 in the star sense. Similarly {T.*T,} converges
Segal [26] proved that if {T.} is a sequence of

M converging W-n.e. o a measurable operator

m-n.e. to 0 in the star sense.

m,-restrictedly measurable operators 7
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TnM and S is an 1ﬁ1~restrictedly measurable operator, tilen {§-T,} and {T,-S}
converges m-n.e. to S+7 and TS in the star sense respectively.

Lewma 1.7. Let {S.} and {T.} be sequences of wu-restrictedly measurable operators
converging Wy-n. e. to S and T in the star sense respectively, then so does {S,+ T} to S-T.

Proor. Since S- T=—i——{(S*+ TY o (§¥ 4 T) = (S*=T)*« (§*=T) = i (S*+iT)*-
(S*4iT) +i(S*—=iT)* - (S*=iT)}, it is sufficient to prove the lemma under  the
assumption S=T% T*T,—T*T=(T*=T,)« (T—=T)+T.*- T+ T*«T,=2T*T.
This equation yields that {7,*T,} converges Wi-n.e. to T*T in the star sense. But
(So=TX) + (S =T =SS 4 Tn* To=(Sa - Tut T0" - S.*) and (S, +iT.*) « (S.* —iT,)
=S, 8, 4 T *¥Ty—i(Sy+ Ta—=T.*+S,¥). The first of these equations shows that
{8, T.+T.*+S.*} converges ni—n.e. to 9T*T in the star sense and the second
one shows that {S,+ 7,=T,*+S,*} converges n;-n.e. to 0 in the star sense. There-
fore{ S,+ T.} converges n—n.e. to T'*T in the star sense. The proof is completed.

The discussions so far given hold also for m=mt,. Hence Lemma 1.7 is true
for m=mut,. Therefore if M =mn1;,, or My, the algebra of mm-restrictedly measurable
operators is a topological algebra with respect to the stai topology. Let m=u1 or
m,. Then we have the following

Levwa 1.8, If a sequence {T.} of m-measurable operators nM converges m-n. e. to
0 in the star sense, then so does {|Ta|}-

Proor. From the above discussion {7,*7,} converges w-n.e. to zero in the
star sence. Therefore any subsequence of {7.*T,} contains a subsequence converging
m-n.e. to 0. Let it be denoted by {T/*T),}. For any given positive &, there
exists a sequence of projections P, € M (n2>n) such that T8 TPl <&, Pr€m
and P,L}0. Let x be an arbitrary element of P,9. | Toul )P =< TS Tpures x>
T T ||| <<&%|x]|% Hence || |Tpa|Pal| <& The proof is completed.

1.3. Let N be a ring of operators on a Hilbert space . Suppose that
there exists a *-isomorphic mapping 6(4) from M onto N (¢ is bi-continuous in
the ultrastrong (= strongest = ultrafort [9]) and ultraweak (= o-weak = ulirafaible
[15], [9]) topologies [9]). Let 1 be the ideal of N corresponding to 1t under 0,
that is, t=0(n). Let < and 7 be the *-algebras of all ni-and n-restrictedly
measurable operators respectively. We shall show that ¢ can be uniquely extended
lo a *-isomorphic mapping from .4 onto 7. When this is once done, we see that
0 will preserve the convergence character, since the Definition 1.2 is concerned only
with the algebraic property of M (note that *-isomorphism preserves norms). The fact
that there is a unique extension of 6 will be important for our theory of integra-

tion for operators, because our point of view is that the theory is first developed
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for a certain ring N x-isomorphic with M and then we transfer it to the theory

for M through the extended *-isomorphism.
Taeoxem 1. Let M and N be =-isomorphic rings of operators by a mapping 6. ¢
can be uniquely extended to a *-isomorphic mapping from SH onto J.
 Proor. We prove the theorem for m=m, and m=mt,. For, the case M=l
is treated along the same line as in the case m=mn1. First we shall consider the

case m=nt,. Let T be any element of K. There exists a sequence {A,} of

operators € M converging nt-n. &. to T. For example, let T=W|T| be the polar

decomposition of T, let |T|=S“)»clEA be the spectral resolution of |T|, and put
0

4,= WS \dE,, then it is clear that {4.} converges t—u.e. to T. A *-isomorphism
. 0

¢ preserves norms. The criterion for m-n.e. convergence given in Lemma 1.4 is '
concerned only with the operators €M.  Therefore {6(4,)} converges 6(u)-n.e.
to a 6(m,)-restrictedly measurable operator which we shall denote by 6(T). &(T) is
_independent of the particular sequence {4,}, because if {4;} is another sequence

with the same property as {4,}, then {4,—A,} converges my-n.e. to 0 and then

{6(A4,)—6(47)} converges g(my)-n.e. to 0. {4,*} contains a subsequence converging
fn. e. to T% so that we obtain 6(T)*=6(T*). It is clear that the mapping 0 is
linear and one-to-one. From Lemma 1.7 we see that 0(S-T)=0(S) + 6(T). Therefore

g is a =-isomorphism. Uniqueness is evident, and details are omitted.

Next consider the case m=m. Let the mapping 9(T) be defined in the

came manner as before. Only points for us to make clear are the following :

Q(T*)=0(T)* and 6(S- T)=6(S) - 6(T). Let {0.} be a maximal orthogonal system
of central projections € M' each of which is countably decomposable in M'. From
" the proof of Lemma 1.4, {4,0Q.} converges my-n.e. to TQ, if {4,} converges n.e.
to T. Hence 6(TQ,) =0(T)0(Q.). Since TQ. is w1 -restrictedly measurable,
a(T*)6(Q.) = 9(T*Q.)=0(TQ.)*=06(T)*6(Q.). This equation holds for every Q. and {6(Q.)}
is also a maximal orthogonal system of central projections. Hence O(T*)=0(T)*.

In like manner it is easy to see that 0(ST)=0(S))(T). The proof is completed.

Corotrany 1.1. 0(|T|®)=18(T)|* (a>0) for every measurable TnM.
Proor. First suppose that 772>0. Let T=SMMZEA be the spectral resolution
0

of T. Put F\=0(E,). Then {F.} is a resolution of identity. Put A,L=X;>\,(1EA.

Then 8(4,)= Sn rdF), and ()(A;‘):Sn)»“dﬂ. It follows from the manner of extension
0 0
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of @ that H(T)=Sw7»dF)\ and H(T“)=wa‘”dF,\. Therefore 0(T®)=0(T)*. The general
) 0 .

[+ @ @
case follows easily from the above. 0| T|*=0(|T|>* =0(T*1)? ={6(T)*6(T)} =
16(T)|*. The proof is completed.

The theorem is wellknown when M is commutative ([26], Lenmma 15.1).

1.4. Dermnimion 1.3. A linear set € of measurable operators M is called an -
invariant linear system of M if T€ S implies UT, TUE & for every UEMy.

Let € be an invariant linear system. Let K be a self-adjoint operator € M

such that 0 <K<T. Then U=K+i(I—K»¥ €My and 2K=U+U*. Hence K- &,
LK C& As every operator A€M is expressed as a linear combination of such
K, we see that A-Q, SACL for every AGM. Let 7 and S be measurable oper-
ators such that 0<{S< T and T€$. Following Dixmier [9], we show Sel as

3

follows. It is easy to see that the domain DT of T9 is contained in the domain

1
3

D1 of Sé and ’]S%xl[gHT%xH for every x€ ©,1.  Let C be an operator such that

1
Cyr—Séx for y=T%x and zero for any y € [range of T%}!» We denote by the same

1
C the closed linear extension of C. Then CEM and §2=C- T%. And in turn
S=C-TC*€Q. We: can also show that 7€ implies 7% |7'|€¥. For let
T=W|T| be the polar decomposition of 7, then |T|=W+*T€ ¥ and T*=|T|W*e L.

Let ©* stand for the set of positive operators € L. Every operator € £ is expressed

as a linear combination of operators € &£.

It follows from the above discussion that the set £* has the following properties :

(a) if 7€8* and UE My, then UTUTEX";

(b) if 7€ ¥ and 0<S<T, then SEX¥", S being a measurable operator ;

(¢) if S, 7€ ¥*, theu S+TeL™.

Conversely let £* be any set of positive measurable operators satisfying the
conditions (a), (b) and (¢c). Then €* is an ¥* of an invariant linear system e
determined as the set of linear combinations of elements of £*. This is also shown
by the method of proof due to Dixmier [7] for an ideal. The main idea of the
proof is that we let Q denote the set of all >);*,7;+S¥ where T; and S; are
measurable and 7+ TF,S;S¥, € 2*. The details are omitted.

Derivirion 1.4, (cf. [8] Def. 2). Let £ be an invariant linear system of M.
The power £*(a>0) is defined as the invariant linear system generated by all
7* such that 7€ ".
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Let T and S be positive m-restricted measurable operators and T=’Sw)»dE,\',
o]

S= rde,‘ be their spectral resolutions respectively. If we put Gy=E,NF,, then
0 !

J ; 5
, ‘Q‘,‘—'—=EAJ—UF>\-|—Em for sufficiently large N by Lemma 1.1 and G110 as Mtoo.
We define T/ S= S AdG,, which is also positive and m-restrictedly measurable. We

note that if P and Q are projections €M, then PV Q coincides with the usual one -
(PUQ). We write TS [8] if E\>F, for every positive \>0. T& S implies

7% < S* for every a>0. Since we can write T‘”=SwE;‘L§d>» and S“=S“Fi'%d7\. It
0 0
is clear from the definition of TS that T, S TVS. Assume that € satisfies the

conditions :
(<<)1 If T= S“)de}\ €g* and S= S“XdF)\ >0 are ‘measuréble opertors such

that F,1<E,.l for every pos1t1ve A, then S€&*.
(£), If T, S€L", then TVTe L.

These conditions are always satisfied if € CM (8], Lemma 7 and 8). By using
(€), and (£)2 we can show after Dixmier [8] that the set {T%;T€ "} satlsﬁes
the conditions (a), (b) and (c). (a) is evident. Let Th, T,€ &* and S” <T*+T",
being a positive measurable operator. Put T=T\VT:€ L. Then T\*+T%° SZT .

: - 1 -
Let S=S AdF, and 2‘”T=S AdE, be the spectral resolutions respectively. Then
0

0
E,NF,L=0 is easily verified. FAL=FAJ——FA-L/\EA~FA—LUEA-—EASEA—L 7]
Therefore by (), we have S€ Q. Hence (b) and (c) are satisfied.
We note that if @ satisfies ()1 and (£), then so do all the other 2”(a>0)

For if T€ 2 and S satisfy the hypothesis of (), then so do 7% €@ and s°.
Therefore S'm € ¢*, that is, SEQ™ T*VS*=(T'V S\ shows that 2% satisfies (K)o

We state the following theorem for the powers of €, corresponding to that of
the powers of ideals due to Dixmier (8].

Turorem 2. Let € be an invariant linear sysiem of M satisfying the conditions (€
and (L)g.  Then,

() (o=, Lo L=, @, £>0;

(i) if an & is an algebra for some a>0 then so are all the other $P.

Proor. (i): The proof is modelled after that given by Dixmier [8] for the

case @CM. Let T be any positive element of (83, then TB €% and therefore
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T'Elffé Q that is, 7€ . The converse is also true. Therefore (£*)°=8%. Let
T2 and TS €. We show that Ti-To€€™P [8]. Let T=T1VT,. Then
T2 LT, T8 <T% therefore T1*=C;+T" and T,=Cy+ T? for some C,, C;€ M.
T2 TA=T2 - (TPH)*=C, - T**PC,*€ ¢**? Therefore L - QL C**f. Conversely let
T8¢ (L+#*. Then T€ Q" and T**P=T"- T3, T*eQ*, T°c %, and therefore
T*+$cQ*. Q8. Hence &% LF=1*", |

(i) That * is an algebra is the same as £*D ¥ and therefore £ ¥%  From

this we ohtain ©*> 2% for every 8>>0. The proof is completed.

'We note that if an €* is composed of ni-restrictedly measurable operators, then

so are all the other L.

Lewwa 1.9, Let & stand for the linear space composed of the self-adjoint operators
€ an ivariant linear sysem S. If ' is a vezor lattice by the ordering of operators,
then & is commutative.

Proor. The lemma follows immediately from a result of Sherman [27] or of
Kadison [16]. But it seems that the following direct proof has some interest. We

have only to show that any two projections E, Fe{ are commutative. ~We show

1
first that ENF is a projection. Let Ef\F=S AdG, be the spectral resolution of
. JO

1
ENnF. Tt follows from (E/\_F)%SE , F [22] that (EUF)> <<ENF, and therefore

1 1 1 1 1
S \EdG, A<§ MG.. On the other handg MMGAQS MG, sinee N = for 0< A< 1.
0 Jo . Jo

0
Hence (EﬂF)%rEﬂF, that is, ENF is a projection. As &’ is assumed to be a
vector lattice, K JF—F=E—ENF. Since the right side of the equation and F
are projections, so is EUF. Put E'=E—ENnF and FF'=F—FENF, then E'+F'=
EJF—ENF=EUF. This means that E’4I" is a projection, and therefore
E'F' =0, that is, (E—ENF) (F—ENF)=0. This yields EF=ENF. By symmetry

we have EF=FE, as desired.

2. Integrals with respect to a canonical gage.

2.1. Segal [26] has developed a theory of non-commulative extension of
integration for the measurable operators associated with a ring of operators on a
Hilbert space. Theorem 1 shows that a *-isomorphism belween two rings of
operators has a unique *-isomorphic extension between measurable operators. There-
fore in order to develop such a theory it does not matter how to choose any one

of x.isomorphic rings. For his theory the singular part of a ring plays no essential
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rile, and therefore we assume, otherwise stated, that rings are semi-finite [15]. A
gemifinite ring is *-isomorphic with a left ring of a Hilbert system (H-system),
which we shall take as a basic ring for our development of Segal’s theory of inte-

gration for operators.

Let A be a unitary algebra [14]: A is a *.algebra and a pre-Hilbert space with
the inner product <, b> satisfying the following conditions : '

(a) <a,ap=<a*, a*) for every a€A;

(b) <ab, c)=<b, a*cy for every a,b,cEA;

(¢) the mapping b—ab is continuous for every fixed a€ A ;

(d) A? is dense in A.

Generally A is not a Hilbert space. If A is a Hilbert space, then A becomes

an H*-algebra of Ambrose [1], taking the norm multiplied by an appropriate

positive number as its new norm. In this case we say that A is essentially an H*-
algebra.

The completion H of a unitary algebra A is equivalent to an H-system [2].
For any x€ H, x*, xa, ax are defined by continuity. ~Let L, denote the operator
a=xa (@€ A) ‘and we define L,=(L.+)*. Likewise we define R,. Ly is defined if
and only if R,x is defined. Then Ly=R,x will be denoted by xy. The left ring
L of an H-system H is the ring of operators on H generated by L. a€ A). Similarly
the right ring R is defined. The operation J:x—x* is a conjugation of H and
R=JLJ. L. and R are commutants of each other [10], [13], [14], [26]. By mak-
ing use of this fact R. Pallu de la Barriere [24] proved that L,*=L,» and
2 ¥=R.+. x€H is called bounded if L, (equivalently R.) is bounded. The set B
of bounded elements of H becomes a *-algebra called bounded algebra of H. We
denote by Iy the set {[.;x€B}. Lg is an ideal of L and is dense in L. in the
strong topology. Any projection P& Lg is of the form L. with 2 self-adjoint idem-
potent ¢. We write x>0 if L.>0.

Levma 2.1. - Let {e.} be @ maximal orthogonal system of self-adjoint idempotents.  Then

() H=>!.®eH=>].DHe,;

(i) Put p(A)=>){de, e for AEL*. Then §( A) is a faithful, essential, normal,
pseudo-trace of V.. The maximal ideal associated with ¢ is L.

(iii) (A4) is independent of the particular choice of {e.}.

(iv) If we pu (P)={(P) for PELp, then wP)=|e|* or +oo acccording as
P=L, for some ¢ or not (u is a canonical gage of H in a certain sense of Segal [26]).

Proor. (i): Each ¢H is the range of projection P.=L.. c¢H_|eH foreFee
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If I#=\U.P, we can find a non-zero projection P=L. such that P<I—VU.P, and
therefore {e,} will not be maximal. This is a contradiction. Similarly we have
H=>).PHe. We note that for any x€H, =3 e, x=>).xe, and [|x][2=31]e. %]
=>1lxell

(ii): That ¢ is linear, normal and positive is clear. Let $p(A4)=0 for some
A>0. Then Ae.=0, and therefore A(eLx)=A(R,¢eL)=(AeL)x=O. Owing to x=2].¢,%,
A must be 0, that is, ¢ is faithful. Let A=L.: for some x€B*. Then ¢(4)=
SV (Lae, e>=>1.{xe0s x2>=|x|? while for any U€ Lu, dUAT*) =1 {UL.U"e,
ULU*e>=>1UU" %)e, U’ x)e)= U0 %]*==[* where U’=JU0J. Therefore
$(A)=p(UAU*) for any Ae L2*. Hence by normality of ¢ we have H(A)=pUAU*)
for any AeL*. If $(4)F0, then we can take an L, such that 0<x€B* and
L.:<<A. Then (L) =]x||* is positive and finite. That is, ¢ is essential. The
first part of (ii) is proved. To see the last part it suffices to show that if p(A)
is finite for A€ L* then A€ L, Put xL=A%0‘. Then x, € He, and $(A)=>lx|%

1
and therefore there exists an x€ H such that xe,=x. A%e,=xe. It is easy to see

that A =1, with x€B*, that is 4€ Ly

(iii). For any choice of {e}, P(A)=| x| for A=L.2€ Lj. Hence by normality,
P is uhique.

(iv) P€Lj is equivalent to P& Lg. Hence (iv) follows from the last part of

(ii). The proof is completed.
Since L. has a faithful, essential, normal pseudo-trace ¢, L. is semi-finite, and

is known |7] that ¢ is uniquely determined by 1=
Devinvirioy 2.1 ¢ in Lemma 2.1 is called the canonical pseudo-trace of H.
To make clear the independence of ((4) of the particular choice of {e), we

ive another expression of O(A).
) p )

Limva 2.2, Let /1=§ N E, be the spectral resolution of A€ LS. Then P(4)=

0
Sm/,o(E,\ D= — Sw )ul/z‘(E,\-! ).
0 [§)

Proor. Let | be the bound of 4. Let {A:} be 0N <A< <N =1
AN (Bva = Ew). The set N (Eaer—Ex)} is o directed set converging
uniformly to 4. Hence by normality of ¢, ¢(A)=lim 23N (Ersr = By =Lim 23,

(B — Exi) = — S ’ Mu(E' ) = SM/L(E)\J Y\
0 0

Cororrary. Let A=S ML, be the spectral resolution of A" In order that
0
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) J_ =)
AE Ly it is necessary and sufficient that S M(Eyfx)d)»=—g Ndu(EL) <oo. In this case
0

the integral equals [|x||?, where A=Ls, xE B*.
Proor. A€ L} is equivalent to A€ L3, and therefore to that ¢(4)< oo.
Hence the statement of the lemma is true by the preceding two lemmas.

Here we note that x€B™ is ap‘proximated' by 3321 \e; as nearly as we want,
where \;>>0 and ¢; are orthogonal self-adjoint idempotents. ~ Let A=Lx=S:7ndE)\
be the spectral resolution of L. Singe lgﬂllEH‘x—xH=0, we may assume Ejlu=x
for some 8>0. Let C,\=gr—%dE,\ for )»}O then E,-=C\L.,=Lc,., therefore Cyx is a

self-adjoint idempotent-e,. Using. the notation of the proof of Lemma 2.2 and letting
=28, {33:Z1Ni(Eriw— Ex) es} converges to Aes. Lig=ALy= AEsl =A=1L,.
Lgr; s 1—Erpes =Enis1— Exi=Lexi~ensar- Therefore x is approximated by >3;IiNi(ex:

—e+,) 4s near as we want.

22. A projection P is called metrically finite [26] if p(P)< +oo. Such a
projection is evidently countably decomposable and the ideal m generated by all
metrically finite projections is of type W, of 1.2. We shall use the terms “u-
restrictedly measurable” and “u—nearly everywhere” according to the cases. It is wellknown
that 1 is demse in L in the strong topology (m is the restricted ideal of the
maximal ideal associated with ¢ [7]).  Let Q, be the set {L,; x€H}. Let us
introduce an inner product (L., L,>=<{xy), then ¥, is a Hilbert space isometric
with H. The element of s, is called square integrable with respect to p.

Lemsa 2.3. (i) L, is p-restrictedly measurable.

(i) Q. is an invariant linear system of L.

(i) LnIL=ILg. Therefore a projection PE L is metrically finite if and only if
Pc8,.

Proor. (i): Let L,=W|L,| be the polar decomposition of L. | =W L=
L+, [24]. By Lemma 1.1 we have only to show that L., x>0 is pu-restrictedly

measurable. Let L,= m7\dE,\ be the spectral resolution of L, Put A= S dE.,
JO

$>0. Then A€l and AL,CL,, and therefore L+ L.A=FE;", that is Ly+=
Eyl€l.. This implies Ax€ Lp. By Lemma 2.1, Es! is metrically finite. Lemma
1.1 shows that L, is p-restrictedly measurable.

(ii): That ¥, is linear is evident. Let U& Ly. U-1,=UL,CLy, Since UL,
and L,, are measurable, we obtain U+ L,=Ly,€ ¥a. LU=(U* - La)*€ Qu*=Y,.
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(iii) follows from the definition of Lp.
Now we show that & satisfies the conditions (&), and (). stated in 1.4. To

this end the following lemma is needed.

Levma 2.4, Let T'= wadE)\ be the speciral resolution of a positive measurable oper-
0
ator Tn L. Te 82 Lf and Oflly if __S de/vb(E)\—L):S #(E;E')\ )d)\. is ﬁllilc- In this case
0 0

{T, T>=S w(E5) da
0
Proor. First assume that T'€ €7, that is, T=L, with some x€H". Lg,,=

ET= S \dE, being bounded, Exx€B* and |Ewl’= -S \Ndu(EL) by Cor. of
Lemma 2.2. Exx—x as Mfoo. Hence ||x|*= —S deM(E'L)—S p(ELdn < + oo,
Now we shall show the converse. E,T is bounded and — SO Ndp(Ey+) < 4o0.  Then
by the same Cor., we can write E\T=Lzx,, where x, € B" and ||| 2= — S:)\?d#(EA.L).
For W >)\>0, ||xA/—xAHZ=—S:,w,ﬁ(lm) since Lxy —xy = Lay—La, = (Ey, — E\) T=

’ oo A7
g’\ NE, € Lig. —& Ndu(EL) < + oo implies that —S N2dp(E\-)—0 as M >A—o0,
A ] A

and therefore there exists x€H such that x,—x as A—oo. That x,=Ex, for
N >N\ implies x,=E,x. Then E\T=1ILzx, =Lgx=E\-Lx for every A>0. This implies
7=I.. The proof is completed.

Let T—~S ME, € ¥," and S S MdF, be a positive measurable operator. If

F. <E,. for every A.>0. Then w(Fot) < w(Ey) and therefore g pFLOAN< + o0,

JO
which implies S€¥,".  Hence Q, satisfies (<));.  Next assume that Se .. Let
Gy =E,NF,, then u(G)) =B, U F) <k 1)+ p(FY) and therefore g /A(Gf,x)(1x< + oo,
This means that 7\/S€ ¥,*. Y, satisfies (£)s-

We define ¥,=43% for «>0. ¥, also satisfies the condition (<), and (£)s.

Each 7€ ¥, is expressed by L.-L, or more generally by > DATEAY PR

Livwa 2.5. D07 L+ Ly =0 implies 23,2 (yi a7 )= 0.

Proor. Let O be the intersection of the domains of L;+L,; and La(i=1,2,-+,m).
O is strongly p-dense, and therefore there exists a sequence of projections P,€ L

such that PLHCD, P, is metrically finite and Pl } 0. Since I, is a least upper

bound of metrically finite projections, we can take a maximal orthogonal system
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{e} of self-adjoint idempotents such that e HCO. 33,7, {y;, 23> =31;, Lyie, xite)

=310 L Ly ed>=33, (3iLs;+ Ly, e)=0. The proof is completed.
Depmvition 2.2, w(T)=31,"1 <y, %:*> for T=23;"1 Ly + Ly; is called the integral

of T.. o e Vneiraly o R B

” Lemma 2.5 shows that M(T) is lndependent of the partlcular expression of 7.

‘ ITis a projection PE L, then u(P) coincides with the old one. And if Te Ly

then w(T)=¢(T). It follows from Lemma 2.4 that a positive measurable operator

T:.erEA is an element of &; if and only if T%E Q,, that is, SM;L(E;\L)dX< + oo.
0 0
In this case /.o(T)=S //J(E,'\i)dX=—Sw)ud/ﬁ(E)\;L).

0 0

We remark that 8, is an H.system isomorphic with H by the mapping x—L..
This follows from the facts that (1) if xy is defined and equals z, then L.-L,=L,
and (2) if L.+ L, equals L., then xy is defined and equals z. To prove (1) let ©
be the intersection of domains D, and Dr,.z,. O is strongly p-dense. For
any u€ D, we have L, L,u=x(yu) and Lu=(xy)u. It follows from a result of
Ambrose [2] that x(yu)=(xy)u. Since measurable opérators L.-L, and L. agree
on a strongly p—dense domain O, we must have L.=L.-L,. Now we show (2).
et a be any element of 4. {(z,ap=<a* z*)={La, (Le+ LY*>=p(Lex + Ly Ly)=
Ly » L) ={a*x, y*)=<x,ay*). Hence xy is defined and equals z. Ambrose [2]
defined H to be commutative if so is its bounded algebra. It is easy to see that this

definition is cquivalent to say that &, is commutative.

Levivia 2.6.  The integral o has the following properties ;

‘(i) g is lincar.

() (1) =p(T).

(iii) (T)>0 for T>>0. The equality holds if and only if T=0.

(iv) For cvery A€L, w(A Lo+ Ly)=u(L, -4+ L)=pu(l,~ L, A)={Ax,y* . In
particular p(A-T)= (T A).

@) Lu b |ud- D] =T
(vi) For a fixed T, p(A-T)=>0 for cvery AeL* if and only if T>0.

(vii) Ly, L,>>0 imply p(Ls -L,)>0.

Proos. (i)-(iii) are evident.

(iv) 1 (A LoLy) = p(LaneL,) =y, (An)* ) ={Ax, y yry=p(Ly s A-L)=p((L,-A) L)
=u(Ly+L,+A). Since any T is of the form L+ L,, we have u(A-T)=p(TA).

(v): Let T=W|T| be the polar decomposition of 7. w(WETYy=p(|T])=(| T))-
On the other hand, let |T|=L% x€H", then |p(A-T)| = |p(A- WL L)| =
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1< AW, x| <[ AW [l Zl=]*=¢(|T]).
(vi): p(4-T)>0 for every A=>0 if T>0, since /L(A‘T)—-—IU,(A%‘T-A%) and
A%-T-A%zo. Conversely assume that ,w(A-T)20 for every A>0. wd-T)=

w(T* + Ay=p(A - T*). Since any element of L is a linear combination of positive

ones, it follows from (v) that T=T*. Let T=S ME, be the spectral resolution of

—o0

0
T. p(so NdE,) = p(E, T) =0, while S AE, <0. Therefore from (iii) we have

0
R NE)=0 that is, 7>0.

(vii) (L, L,)=<x,y). Let Ly-=S:7»dEA be the spectral resolution of L,.
(1—Ey)y=y and (E.,—Ey)y—y as n—>o°. (E,—E1)y is approximated by an expres-
sion S Ne, Ni>>0, as-mear as we want, where ¢; is a self-adjoint idempotent.
2y DINey= >N {%, e>=>\;{xe;, e, >>0. Hence {x,y>>>0. This completes the-:
proof.

Lowws 27, If TS0 for T, S€ &, then T4 =8P,

3

Proor. Suppose the contrary. Let S%—T‘=X NdE) be the spectral resolution

of S%—T%. Then for some \>86>0, (E\—E;) (S%_T%)ZS(EA_ES)>O- Put
E=E,—E;, then E=L, for some e€B. Then by (vii) of the above lemma,
SESE =T - (st 1H > 8u(L. - (S 47%) >0, while on the other hand W(ESE=T1%)
. 3 o3 Y ra g : 3
(ST = B (=T + p(B-SETH — p(Be T SH= (B (S=1)) + p(1 - B-5)
3
)
Yook e boyopdy STy =
J(SEFTE))=p(l-(S=T)) <0. Hence w(L.+(S*+717))=0, that is, E«(S*4+T7)E=0.
This implies that E-S%E=—E°T%E and therefore E-S%E= —E'T%E=O. Using

these equalities, we have E-(St—=7%) =Bt =rhE= E-S E—-ET*E=0, and

(st B 1Y) and w(rEE-SP) i conjugate to u(S-E- 1), and thereforeu(E(S® =T

therefore E=0, since E-(S%—T%)28E. This is a contradiction. The proof is
completed.
Added in proof. This lemma is a special case of a theorem due to E. Heinz,

Math. Ann. 123 (1951), p. 425, Satz 2. Cf. also [22].

2.3. Now we are ready to show that in the left ring I. of a Hilbert system,
(a) ultraweak and weak topologies, and (b) ultrastrong and strong topologies coin-
cide respectively. The following theorem is wellknown [15]. But it would seem

that much interest lies in the method of proof given here.
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Tueorem 3. . Let L be the left ring of a Hilbert system. Then
"(a) ultraweak and weak topologies of L coincide ;
(b) ultrastrong and strong topologies of L coincide.
v Let @(A) be any linear functional continuous in ‘the ‘weak (equivalently strong, ultraweak
o ultrastrong) topology, then @(A) is of the' form' {Ax,y> and if moreover @ is positive
we can write O(Ay={Ax, ). S GRS S S e e

H

' Proor. Let {x;} be any sequénce of elements of H such that 3)[x*< co.
We can write 317 L+ L =L, for some y, € H'. |yall®=230:5]wf®  For
m>n, L%, >12, and therefore L,,>L,, by Lemma 2.7. Therefore ||y.—y./’=
[y mll2+ yall? = <Y Y0 = <Gy Zlymll* + 172l = llyall> = lyall®=1lyall* = [lyal* since
Gmiged—3al2=n—r ya» 0. Hence [lyn—yall* <33T [l2]*0 as m>n—>co,
that is, {y.} conmverges to an element x€H. S dxy x>=0 2 (A + Ly - LY)=
w(A + I2)={Aym yn). Therefore SY.=1{Ax,, x> ={Ax, x). From this equation we
sée that (a) and (b) hold.

If ®(A) is continuous in the weak topology, we can write @(A)=>);"{Ax;, y:>
for some xny; (i=1,2,-,n). Let T=L,+ Lyx=>V:"1L.+L,* Then &4)=
(A, yy=p(A-T). If @A) is positive for every A>>0, then 7>>0 and therefore
we can write T=L2 for some x€H", that is @(A)={Ax,x). This completes the
proof.

We shall consider some consequences of this theorem.

For every TE€ %, we define||T];=p(|T]). Then | [|i has the norm property
by Lemma 2.6 (v) since | u(AT)| is a pseudo-norm and w(|T])=0 implies T=0.
We show that &, is complete with respect to this norm, that is, &, is a Banach
space.

Corotary 3.1. Let @ be any linear functional on L. continuous in the ultraweak
topology (=normal), (9], then there exists a TE L, such that PA)=u(A-T) for ecvery
AeL. And

() T is uniquely determined by @

(i) @ is positive linear if and only if T2>0.

(iii) @ is central if and only if T€ L

Proor. By Theorem 3 we can write @(A)=Ax, yp=m(A+L,* Ly)y=u(A-T)
for every A€ L, where %, y€H and T=L, - Ly»€ ¢,. (i) follows from Lemma 2.6
(v). (ii) follows from (iii) of the same lemma. @ is called central if @?(AB)=®(BA)
for every A, BEL. This condition is written as w(A+(B-T=TB))=0 for every
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A BEL. By Lemma 2.6 (vi) this condition is equivalent to that B-T=TB for
every BE L, that is, T'€ L '
Dixmier [9] proved the following theorem : “Let M be a ring of operators and
denote by M the Banach space. of all normal linear functionals . If we
identify 4 with the continuous functional {4, @)={@, A>=="(A) then M is the
conjugate space of M. Therefore (i) of the above Corollary shows that &, .is
complete with respect to | |, that is, €, is a Banach space. Theorem of Dixmier

just stated shows that HAH::I. 111 b. |@#(4-T)| and L is the conjugate space of £,
1 i

By this reason we write L= L

Cororrary 3.2. Let {T.} be a monotone increasing sequence of posittive operators € &1
There exists a TEL,™ such that T, <T and r}nglo (T =(T) if and only if lim u(T,)< +-co.
d n—oco

In this case T is the 1. w. b. of {T.} and is the p—n. e. star convergence limit of {T.}.
Proor. If lim (T,)= +oo, there exists no T stated above. We assume
that lim u(T,)< +oo. Let T,=Lj, ,y,€H". We define L3, =L} =12 _, where
yo=0. Then T, =12,=>),2LZ and, w(T)=lyal*=>1:21 ||lx;[|>.  From the proof of
Theorem 3, {y.} converges to some y€H and lim pA-T)y={Ay, y)=p(A-T)

n—-o0
where T=L2. For every A€ L., (A T)<(A-T). This implies, by Lemma 2.6
(vi), T.<<T. If we let A=I, we have lim w(T)=p(T). Such T is unique. For
n—-o0

otherwise, let 77 be such that 7, <{T' and lim u(T,)= = u(T").

n—co

(T =T,)—0. Thus 7" is the limit of {7.} with respect to | lli. Thus T is unique.

—Tn”1=

That 7 is the L u.b. of {T,} is clear from the discussion just given above. To
show that {7,} star converges u-n.e. to 7, it suffices to show that there exists a

sequence of integers n; such that {T.;} converges p-n.e. to T. To this end it

suffices to show under the conditions [|7=T,[/\> i,, that {7} converges p-n.e. to

T. lLet ’l’—-'l',;—:g NAEM be the spectral resolution of T'=T7,. —27};1-/1‘(E‘f,§"3§v)y§

JO

2-n .
[y dvﬁ WE )= [T, < g Therefore (D) <gir. P

o= (at+]

1

-z Therefore

[n"" f\K nr/ . rI‘hen [)n| ==\/ k’:nE('z‘k,i"l :lnd /‘l’<[)n P ></\ ‘A :u 2’1 RS

. : s 1 r
P, L0 and P €. [(T=T)P) < oo (=1, 2', 3,---). Thus {7.} converges p-
n.e to 7.

The method of proof used in this lemma is applied to show that if a sequence

{T,} of elements of ¥, converges to 7' with respect to the norm [ [, then {7}
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converges p—n.e. in the star sense to T. The details are omitted. ,

Cororrary 3.3: Let 0T T, < be a sequence of elements of ¥y such that
{|IT.]l} is bounded. Then there exists the Lu b. T of {Tu}, [|[Ta=Tll2=>0 as n—>oo,
and T is the p-n.e. star conver‘gence Limiy of {T}

_ Proor. {T,} is a Cauchy sequence in £ In fact, for m>n, | Tw=T| %=

"““TWA”22;<TM9 Tn>_—<Tn: Tm>+ ”TYLHZSHT"‘sz—“T"“22 SiHCé <T"’ T”‘>=<T"" T">2”T"“22
by Lemma 2.6. lim | T,||» exists and is finite. This implies that lim ||7,—Ty/[>=0.
; n-co n,m-00

Let T=lim T,.. For any SE€&;*, S, T=Tp=1im<S,T»—T,>>0. Hence T=>T.
n—-oo } : 4 m~Co ;

(w=1,2,3,--). Let To be any measurable operator such that T>To>T, (n=

1,2,3,---). Then To€ &, and | To=Tal|* <||T—T|l* by Lemma 2.6.  Therefore

- we have To=T. The last part of the statement of this corollary follows by the same

reasoning as in Cor. 3.2, and details are omitted. The proof -is 'completed.
Let T be any positive measurable operator and let T=SNXdE,\ be the spectral re-

solution of 7. Define /.L(T)"l uw. b. w(S)=1L u. b ,u(A) w(T) is finite if and only
Seg+, ST Aemyr, AT

if T€Q*; and then we have w/(T)=u(T). The “if” part is evident. Now we
A
show the “only if” part. ET= So NE €L, w(ET) < p(T)< +o. Then

WET)=HET)< +oo and therefore ExT€ L% by Lemma 2.1. Then {E,T} is a
monotone increasing sequence of elements of £, and lim W ET) < i(T)< +oo. {E.T}

n—o0
converges p-n.e.to I. Then by Cor. 3.2., T€Q,. Thus &, consists of measurable
operators T such that p/(T) <+ .
Let @ be any linear functional of L continuous in the ultraweak topology. @
is uniquely expressed as @=@,+i0,, where @ and @, are of real type. With

regard to @ of real type we have the following

Livva 2.8. Let @ be a linear functional on 1. of real type continuous in the ultra-
weak topology. @ can be expressed uniquely as a difference of two functionals of positive
type @ and P_ such that P=®D, —D_, @)= ?.] + |-l

. o0 0
Proor. @(A)=pu(A-T), where T is self-adjoint. Let T+==S ME,, T-= —S AdE},
Jo -
where T———S ME, is the spectral resolution of 7. Put @ (A)=pu(4-T.), @_(4)=

W(A-T.). Then @=@,—@. and |@||=p(|T|)=pu(T.)+u(T-)=P] +[p-1. Next
we show the uniqueness of such representation. Let ¢=U,—¥,, where ¥, and ¥,

are of positive type. ¥ (A)=u(4-S), Fx(4)=p(4-S,) where S, S, et Let
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S = S \F, and S;—S \G, be the spectral resolutions of S; and S, respectively.

D(Eyt) =l Ts) = ju Eo'-+ S1) — (B 52) L (Bt 8) < p(Sy)=|P |, and therefore ||, |
<||F,| similarly |@_|| <[Pl Hpnc° if we require that |@]|=|F.]| + |7, then
we have u(Eol-+S)=u(S) and therefore Ey+Si*Eo=0. Therefore E,-S,=0. This
is equivalent to Fol <Eyl. Similarly Go+ <E,-. Then O (A)=mw(A-Ty)=u(A-Ey-+T)
=(p(AEO_L)=M(AE0.L.SI)—M(AEDL-Sz)zp(A-Sl)=IF1(A). Similarly @_(4)=¥(A). The

proof is completed.

2.4. Some applications to the structure of the left ring L of an H-system H
are given here. An element xEH is called central if xa=aa holds for every «€B,
that is, L.nL*. A central element x is also characterized by the property :
x, aby=<x, bay for every a,bE€B. Let H' stand for the set of central elements of
H. It is clear th.at H' is a closed linear manifold of H, since ax and wxa are
continuous functions of x for each fixed a. Let x' denote the projection of x on
H'. Let K. be the convex closure of {U07x; U& Ly}. By an ergodic theorem of
G. Birkhoff [3], ' is just the unique element common to K, and H', or the element

of K, whose norm is minimum (cf. [3], [12]). «' is approximated by forms

SVhaU.U % as close as we want, where U, € Ly, a;>>0 and >la;=1. It follows
then from this remark that if x>>y>>0, then {x'a, a)><{y%a,a)>>0 for every a€B,
that is, '>>y">>0. For every B=L,, x€B, we define, after Godement [13], B'=L,s.
It is easy to see [13] that x'€B and |BY| <|IBll. B—B" has the following
properties (cf. [4], [13]):

(a) if BE LynL!, then B'=D;

(b) B-DB"is a posilive linear mapping from Lz to LY
(¢) (AB)'=(BA)' for every A€, and BE Ly;

(d) if A€t then (AR)*=AB" for every BE Lg;

() B->B" is normal;

(f) ||B*||<Z|B| for every BE L.

(a), (b) and (f) are clear from the above. To prove (¢) it suffices to show that
(UBU*)*=B" for every UE Iy This is evident from the defining property of x'.
(d) follows from AUU’x=UU’Ax. There remains only to show (e). Let {Bs} be a
directed set CILi with B as its L.u.b. Put B=L, and B;=/,;. From Lemma 2.6

(vii) we have |xsl] ||| 11m {xsuby = lim (b ™, @)= hm(lf‘\b*, a)=<{Bb*, a)=
5

{x,ab). Since B’ is dense in H, it follows that lim \x,s,:)z(x, z) for every z€H.
5
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of (i) is clear. Let T>>0 be m-restrictedly measurable. Then there exists a
projection PEM such that TP is bounded and PLem. Let ||[TP| <. We show
that PN E,g-=0. If the contrary holds, there exits a non-zero x < 9 with PNEyla==x.
“T'cl[‘—HTPxH<7von|| while [|TxH——HTE>\é‘xHZ)~o|IxH This is a contradiction. Since
for every projection Q,REM, Q— Q/\R~QUR R [17], we have E\g=E\.;—PN
E\} L_PUE,} —P<PLem, as desired.

Segal [26] proved that if S and T are essentially measurable and agree on a
strongly dense domain, then they have identical closures. Next is its slight general-
ization.

Lewwa 1.2, If two essentially W~restrictedly measurable operators S and T agree on a

dense domain, then they have identical closures.

Proor. With no loss of generality, we may assume that S and 7' are Ti-restr-
ictedly measurable. The set D={x; Tx=Sx} is obviously invariant under every
U’€ M/, and is dense in §. Let To be the restriction of Sand T on O. TD>T,
implies T*CTy*. As T* is m-restrictedly measurable, as proved below, so is To*
by the very definition of measurability. It follows, from the result of Segal above

mentioned, that T*=7," and hence T=T,**. By symmetry S=T,** and we have
T=S, as desired.

From Lemma 1.1. if T is m-restrictedly measurable, then so are 17T,
(@>0). We show that T* is m-restrictedly measurable if sois T. Let T=W|T|
be the polar decomposition of T, where W is a partially isometric operator EM

with the closure of the range of |T| as the initial set and with the closure of

the range of T as the final set. Let Wiw*=E and let |1 =S NdE,, | T* =S AFy
(4] 0

7%

yields

be the spectral resolutions of |T'| and T*| respectively. |T*|=W|T
Fo=WEW*+E! (\>0). Hence F.l=WE,LW* This implies by Lemma 1.1 that

T¥| is M-restrictedly measurable. It is clear that the intersection of a finite

number of strongly mM-dense domains is so also. After Segal we define the
strong sum S+ 7 and strong product S+ T of two W-restrictedly measurable operators
Sand . S+ T and S-7 are the closures of S+ 7 and S7' respectively. (cf. [26],
Def. 2.2). But in case of our ut-restrictedly measurable operators, S+7 is seen to
be essentially Wi-restrictedly measurable from the above. That ST is so also, follows
from a modification of a proof given in [26], and details are omitted. Hence in
our case S+ T and S- T are nt-restrictedly measurable. Thus we have the

Levma 1.3. The set of all W-restrictedly measurable operators forms a #-algebra with
respect to the strong sum S+ T and product S-T, the scalar multiplication (except that
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L is finite if H has the unit. This follows from (i). It is easy to see that L.
is a finite factor if and only if H has the unit and H"' is of one-dimension. These
are all proved by Godement [13].

Tuconsm 5. Let L be the left ring of an H-system H.  Then the following conditions
(1)-(iv) are equivalent: ‘

G & is an algebra ;

(i) Ly is an algebra:

Gil) M is essentially an H™-dlgebra ;

(iv) There exists a positive unmber & such that lle|| >& for every non-zero self.adjoint
idemptent e€ H.  And if any of these conditions is satisfied, then 1L is a direct sum of
(generally uncountable number of) factors of type L

Proor. (i) and (ii) are evident from Theorem 2. Owing to the remark
given in 2.2, ¥, and H are isomorphic and therefore (ii) and (iii) are equivalent.

If (iii) holds, there exists a positive number k such that [[xy|| <klx||[[y] for every

%,y € H, and therefore HeHZ’kL for every non-zero slef-adjoint element ¢ of H,

that is, (iii) implies (iv). We note that the bound of L. is L u.g). ”“‘;@[;I For, if
ex¢

- 2
we letS ME, be the spectral resolution of L.« L,, then ”Iﬁ‘ﬂzz) for L,=FE\1--=0.
0

If (iv) holds, then “”’ijl'

There remains to show that last statement of our theorem. In an H*.algebra ever
g y

gﬂg—” and therefore L, is bounded, that is, (iv) implies (ii).

non-zero self-adjont idempotent contains a primitive one e that is, eHe=(complex
field) ¢ (1], [17]). This means that I, is a primitive abelian projection [17].
Then 1. is a direct sum of factors of type I. The proof is completed.

Corortany 5.1, L is « factor of type 1if and only if H is simple and consists of
bounded clements.

Proor. The “if” part is evident from the preceding theorem. As remarked
later in 3.5, if . is a [actor of type I, then every measurable operator is bounded
and therefore H consists of bounded elements. For any closed ideal I of H, the
projection P with the range I is a central projection & I, and therefore P=0 or
I, that is, 1={0} or H. The proof is completed.

Godement (cf. {13
factor of type L: L. is a factor of type I if and only if H is *-isomorphic with the

Chap. II, II) gave another characterization for I, to be a

algebra of operators of Hilbert-Schmidt-type on a Hilbert space. We remark that

this follows from Cor. 5.1 and the structure theorem of Ambrose [1].
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Cozotrary 5.2. In order that every measurable operator € 1L is bounded it is necessary
and ‘sufficient that L is a direct sum of ﬁnzte number of Sfactors of type L

Proor. The “if” part is ev1dent sincs m a factor of type I every measurable
operator is bounded. If every measurable operator nL is bounded, the ¥, is an
algebra,‘ and therefore I is a direct sum of factors of type I from the prec=d1ng
theorem The number of these factors is finite, for otherwiss, we can construct an
unbounded measurable operator nl.. The proof is completed.

" Cowtiary 5.3. The following conditions are equivalent :

i) Li=%;

(ii) L is finite-dimensional ;

(iii) H is finite-dimensional.

Pnoo: It is evident that (ii) and (iii) are equivalent and imply (i). If (i)
holds, ¢, CY, implies that ¥¢; is is an algebra, and therefore L is a direct sum
of factors of type I from Theorem 5. Unless each of these factor is finite-dimens
ional and the number of these factors is finite, we can construct an element of
&, but not in &;. Therefore L is finite-dimensional. ~ The proof is completed.

We have shown (Lemma 1.9) that an invariant linear system ¥ is commutative
if the set L of self-adjoint operators of £ is a vector lattice by the ordering of
operators. The converse is evidently true. Owing to this fact, the following statements
are equivalent :

(a) any of 531’1; or L is commutative ;

(b) any of 81%/ or L. is a vector lattice.

In particular, it follows from the isomorphism between Q, and H that H is com-
mutative if and only if H’ is a vector lattice.

3. Integrals with respect to a regular gage.

3.1. Let M be a semi-finite ring of operators on a Hilbert space 9, and let
m be a regular gage of M [26]: (a) m is a nonmnegative valued function defined
on Mp; (b) m(P)=0 if and only if P=0; (c) m(P+Q)=m(P) +m(Q) if P+Q&Mp;
(d) m(P)=m(UPU*) for every UE My; (e) m is countably additive; (f) if
m(P)= +oco, there exists Q such that 0<<Q <P and m(Q)<+ oo. It is shown [7]
that m is a restriction on My of a uniquely determined faithful, essential, normal
pseudo-trace v, and vice versa. Let a be the maximal ideal associated with s,

that is, the set of A€M with (| 4])< +oo. +r is extended to a faithful normal
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trace of a [7]. For any two B,CEa, we define (B, CO>=Y(C*B). It is easy to see
that @ becomes a unitary algebra with inner product <B,C). Its completion H is
an H.system as stated in 2.1. For any A€M, the mapping a >B—4B is coptinu-
ous since (4B, AB) <||A||*B, B) holds. This mapping is uniquely extended to an
operator 6(4) on H. Let L be the left ring of H. It is easy to see ‘that H(A)A L
‘and that @ is a *-isomorphic normal mapplng By a theorem of Dixmier [9], G(M)

is a ring of operators on H. And it coincides with L since it contains all - G(B),
Bea. Let {E} be a maximal orthogonal system of projections €a. Then it is
clear that I=\U.E. Dixmier [8] proved that y-(4)=>].y(E AE,) for AEMT™, and
therefore y(4)=>).{AE, E». If we put H(0(A))=(4) for A€M, (l)‘is the
canonical pseudo-trace of H (Lemma 2.1 and Def. 2.1).  Let B be the bounded
algebra of H. By Lemma 2.1 we see that 6(a) is the maximal ideal associated
with ¢, and that &(a)= I.Z. That is, 6’((1%) Lg. If we put p(6(P))=m(P), ~then.
is the canonical gage of H. This shows that M is *isomorphic with the left ring
L of H by means of the mapping ¢ and the regular gage m corresponds to the
canonical gage u. It follows from Theorem 1 that 6 is uniquely extended to a
*.isomorphism 6 between measurable operators with respect to M and L. The
theory of integrals with respect to the canonical gage 1 developed in the preceding
section is now translated into the theory of integrals with respect to the regular

gage m. This will be carried out in the sequel.

3.2. Let m be a regular gage of a semi-finite ring M of operators on a Hilbert
space 9, and let 6, u have the same meaning as described in 3.1. Let . be the
set of all measurable operators M. For every T€ %", we put

(1) m(T) = Lub. 4 (A).
Acat, AST

From the the discussions given in 2.3, m(7)=pu(0(T)) and, if we let L,, denote the
set of all 7" such that m(|T'|)<+o0, then O(L)=¢, the set of all integrable
measurable operators »l. with respect to p, and therefore m is uniquely extended

to a linear functional on L,.

Derinirion 3.1. A measurable operator 7' is said to be integrable with respect to
m if m (|T|)< +oo. Let L, stand for the set of all integrable operators nM,
and let m be the extended linear functional on L, as described above. m(T) is

called the integral of 7'€ L, with respect to the gage m.

From lemmas given in 2, we have the following theorem.

Turorem 6. Let Ly be the set of integrable measurable operators nM.  Then L, is
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an invarians linear system of M satisfying the conditions ()1 and ()z.  And the follow-
ing statements hold.

(i) L is a Banach space wzth norm |fT[|1=m(|T]), a is dense in L, and bhas
the following properties : ;
U@ if T Tt then [T Tala= T [Tl
’ ) if O <Nh<T,< ", and {IT.]1} is bounded, then there exists the l.u. b.
TeL: of {T.} and lim||T=T,[,—0. {T.} converges m-n.e. to T in the star sense;
(ii) the integral m is a positive linear functional on Ly, with the following properties :
(@) m(T*)=mT); |
(b) m(T)>0 for TELT. The equality holds if and only if T=0
(©) m(A-T)=m(T4) for AEM and TE€Ly. If AEM., TELY, then m(4-T)=0;
(b) For a fixed T, m(A-T)>0 for every AEM?* if and only if TeLT;
(&) For a fixed A, m(4-T)=>0 for every TE L} if and only if A€ M™;

(iii) ||Thi= l.u b. Im(A )|, and HAH lLub |m(4:T)].
14|<1, A€ ITh<1Tel,

(iv) Pr(A)=m(A-T) is a linear normal functwnal defined on M, and conwersely
every normal linear functional & is an @7, TEL,. M is a conjugate space of L.

(v) A positive measurable operator T=Sm7\dE>\ is integrable if and only if
0

SM m(ExL)d\< +co. Then this value equals the integrals of T.
0

(vi) If lim || To=T|l1=0, then {T.} comverges m-n.e. to T in the star sense.

n—-co

Segal [26] cited (i), (b) the Lebesgue convergence theorem and the second part
of the first statement of (iv) the Radon-Nikodym theorem. We remark that the
Radon-Nikodym theorem of Dye [11] follows from that of Segal.

Conortary. Let M be a semifinite ring of cperators cn a Hilbert space. Let @ and
¥ be positive normal linear functionals such that @(P)=0, PEM, implies T (P)= Let
0o be the canonical representation of M defined by @ and < , > denote the inner product
of the representation space De. Then ¥(A) is represenlcd as T(A) ={0s(A)z, z e for
some z € Po-

Proor. We may assume without loss of generality that M is a left ring L of
an H.system. We use the notations in 2.  We may write P(A)={Ax,x), and
U'(4)={Ay,y» where x,y are positive elements of H. @(P)=0 is equivalent to
Px=0, and in turn to P/x=0. This implies P /[Lx]=0. Put P/=PrL«y. Then
since #(P)=0 and therefore by the same reason as the above P’y=0. It follows

that y € [ILx]. By a theorem of Murray and v. Neumann (BT-Theorem called by
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Dye [11], [16]), y=BTx where BE L and T is a closed operator nl. We may take
T>0. Let T=S«>ndE,\ be the spectral resolution of 7' and put T,,=Sn NE,. ||Tx—
0 . 0

Tx||—>0 as n—>co. ‘Since P(B*A)=<A, BYo={Ax, Bx), there exists u€ Ho such that
{u—Twu—Twpe—>0. It follows therefore ¥(A) =<{0s(4)z, z)s, where z =Bu. Thé
proof is completed.

In the above corollary, if M is finite, then y is written as y=Tx since B-T
is a closed measurable operator 7L. Let T=W|T| be its polar decomposition.
And consider the spectral resolution S:XdEA of |T| and put ]Tin=g”>»dE>‘ and

=W|T|. {T.} converges m-n.e. to T. It is easy to see that 61.”(A)=£im
@(T*AT,) which is defined as &(T*-A-T) (11]. e

Derinirion 3.2, A measurable operator TnM s called square-integrable with
respect lo the gage m if T*T€Li. Let L, be the set of all square- integrable
operators. For any two S, T€L, we define (S, T)=m(T*:S) and HTHz—m(T*T)“

It is clear from the discussions given in 2 that 0(Ly)=Z&,. Therefore we
have the following theorem.

Tuconsm 7. Ls is an invariant linear system of M satisfying the conditions ()1 and
(L)ay and L3=L.. Ly has the following propertics :

(i) L is an H-system with inner product (8. TO=m(T*-S). The bounded algebra
of Ly is a"} ;

(i) (a) <S,T>>>0 for S,T€L3,

(b) if <S,T>>>0 for every TE Ly*, then S>>0,
(c) if S-T*=0, then (IS4 T||:2=|S|l2*+ | T"]]2%
(d) if 1S| =17, then (| Sl <1171l
(e) 2= U TU*y for every U€ My,
(f [m(S Ty < NIVAIPR

< |1 Al H e for AEM and T € Ly ;

(iii) [,r’l 01 '// < be a sequence of clements of Lo such that {172} is
bounded.  Then there exists the 1.u.b. T of {T.} and T, =T|s>0 «us n—oo. {T.}

converges m-n. e. 1o T in the star sense ;
Gv) if [|[Tw=T|

(v)  Let T be a positive measurable  operator M. Let 'I'::S NdEy\ be the spectral
4]

20 as n—>o00, then {T,} converges m-n.c. (o T in the star sense;

resolution of T. Then T€ Ly if and only if S m( E AN oo and || 5% equals this

value.
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Corourery. If T is a measurable operator such that T+S€ Ly for every S€L3,
~ then T € L. .

Proor. Let T=W|T| be the polar decomposition of T. Since |T[-S=W*T-S€L
for every SEL; we may assume without loss of gep’erality that 7>>0. Let T=

Yﬂ')\dEA be the spectral resolution of T. | E,l is metrically finite for A>0. For
Jo

otherwise, Ej-- is metrically infinite for some N>0 and we can write EL=3)P.
where P, are metrically finite projections. We can choose a sequence {P..} such

that Shm(P.)=+oo. Let {a,} be an arbitrary sequence of positive numbers such
that S1,a,2m(Pu)< +o00. Put S=31,0,P.n. Clearly SEL}. Put A=S:O—)1“—EAEM.
Then S=EFEj;-S=A-T-S€ Ly, and therefore St oam(Pr)< +oo.  Since ,m(Pu)=
{(x,,m(Pm)é}m(Pm)%, we can conclude that >).m(P.)< +oo, a contradiction. Let

S=Sm¢>()\)dE)\ such thal —r | p(\) |2dm(ExL) < + o, where p(}) is a Baire funet-
0 0

jon of . T-S=Sm7\(p(x)dEAEL1. This implies lgoﬂ?\,q)(h)dm(E;\J-)|<+°°.
0 0 .
It follows from a classical result concerning square-integrable functions that

—S&dem(EAJ—)<00. Hence T€L, The proof is completed.
4] .

Similarly we can show that if T is a measurable operator such that 7-S€Li,
for every S€L{, then T€ M.

3.3. We give some remarks on “normed” operators. An operator A is called
normed ((19], [14]) if A€ L;AM. Let M be a semi-finite ring of operator with a
regular gage m. If a sequence of normed operators 77, with bounded uniform norms
converges to I" in Lg, then, by the remark after Lemma 1.6, T is a normed operator
and {7,} converges strongly to 7. If the converse of this statement holds, that is,
strong convergence entails Ly—convergence for every sequence of normed operators
with bounded uniform norms, then m(I)< +oo.  To prove this, write I=>.E,
where E, are metrically finite projections. For any sequence {¢;} from {:}, {>%E )
converges strongly to >3 ;2 K. Hence >1,2:E; € L.AM and >);2m(E)) =
m(>3 ;2 E )< +oo. Tt follows from this that m(E)>0 for atmost countable ¢, and
therefore m(I)< +oo. Conversely, let m(I)< + oo, then strong convergence entails
Ly-convergence for every sequence of normed operators 7, with bounded uniform norms.
We may assume that M is a left ring I of an H-system, since two topologies,
ulirastrong and strong, have the same effect on the sequential convergence. Then

‘A, B>=<{AI, BI> for any operators 4, BeM. If {T,} converges strongly to 7, then
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{T,—=T, T,—T>—0 as n—>co. The proof is completed.

These facts are remarked by Dixmier [9] on a topological stand point, but the -
method of our proof is different. See also [19], p. 106—.

3.4. Dermnrion 3.3, A measurable operator T#M is said to be p* power
integrable with respect to m if |T|P€l;. Let L,(1<p<+o0) stand for the set
of p™ power integrable operators nM. The L,-norm of T€E€L, is defined as
m(|T|P)% and designated by [|T][,- If p=+oo, we shall identify M with L.. '

Frorﬁ this definition a measurable operator T belongs to L, 1 <p< +e0) if

and only if T is m—restrictedly me‘asurable and —S ANedm (E\L) < + oo, whére
Jo X

S:XdE)\ is the spectral resolution of |T].

Lewwa 3.1, (cf. [9)). Iet %—4-%:1 where 1< p, q< +co. Then

@) m(S-T)=m(T-S) for SEL, and TE€L,. If furthermore S, T >0, then m(S-T)
>0; and conversely, if m(S~Y")}_O for every T2>0, then S=>0.

(i) lm(Tl-Tz-"'-Tn)ISm(lT1'Tz""'Tul)SHTleHTszz“'HTann for T:€ Ly,
with Lml——-—l p>1 (i=1,2, 7).

(iii) ]|S||,,— Lub. |m(S-T)] for SE L, where the 1. u. b. is attamed by some T
TeLy, [Tl<l
if 1<p<+oo;

(iv) L, is a normed linear space, and

1)

=T*,=|U-T-U*||, for TEL, and

U< M. p< for S, T€L, such tha |T|<|S|.
v) |m(S-T) 2<m(fS*|-ITI)m(]S]-fT*])gm(]S-TI)m(fT‘SI) for SELP and
TeL,

Proor. The lemma will be proved with mnecessary modifications along the

similar lines as Dixmier |9], and the details are omitted.

T

Ll
q

Limma 3.2. Let T be an m—restrictedly measurable operator n M and }'
where 1< p, q,r<_+-eo. If T-SEL, for cvery SEL], then TE L.

Proor. The proof will be carried out along the similar line as Cor. of Theorem
7 and the details are omitted.

Turorem 8. L, is complete.

Proor. Let {T,} be any Cauchy sequence of elements of L,. It is easy to see

that {7’} converges m-n.e. in the star sense Lo an m-restrictedly measurable operator
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T. Iet S be any element of L, with %+—;—=1, then by Lemma 3.1 [|T,-S—

T SIh<||T=Ta| » IS|; which implies that {T,-S} converges m-n.e. in the star

sense to T+S and [|T,+S—T:S|[,—>0 as n—>oo since L; is complete. Lemma 3.2

shows that T€L,  Lst & be any given positive number. Choose n. such that

|Tn—Tall, <& for every m>n>n.. If IS, <1, then [(T—T,)-S];<lim [(T,—
" m—=co

T)+Sli<& Hence by Lemma 3.1 we have |[T—T,|,<& for n>>n,, that is,
}ZimOOHT —T./l,=0. The proof is compléted.

As Dixmier [9] did, we can show that L, is reflexive if 1<p<<'+oo. Using
this fact we show

Tucorem 9. If 0TI <To< -+ is a sequence of elements of L, (1<p< +o0)
such that {||T.l|,} is bounded, then there exists the 1. u.b. T of {T.} and [[T—T,||,~0
as n—>o0. And {T,} converges m—n.e. to T in the star sense.

Proor. It is sufficient to show the theorem for 1<p<{+oo. Let S be any

operator € L, with -%*—I——(l]*:l. It follows from Lemma 3.1 that 0=m(T,-S) <

m(Tosr*S) < || Tsn| olIS]l<K||SI|; for some constant £>0. Since every operator € L,
is a linear combination of positive ones €L, {T.} converges weakly (=in the

topology o(L,, L)) to TE€L,, that is, m(T-S)=n1i1§31 m(T,+S). m(T-S)>mT,-S) for

every S€ L}. Therefore T>>T,(n=1,2,3,---) by Lemma 3.1. For every &>0
there exist non-negative numbers o;(j=1,2, -, m) with 2);T,;=1 such that
1T=33 Tl <& 0<L<T=T,<T=3);%0,T; for every n=m. This implies
that |T—T. , <|T—> a;T;| ,<& for n>m, that is, |IT—T,||,~0 as n—>co. The

other parts of the theorem will be proved by the same way as in Cor. 3.2.

3.5. Let M be an arbitrary ring of operators. There exists a central projec-
tion Q such that QM is semi-finite and Q'M is of type IIl (cf. [17]). Any
measurable operator » QLM is bounded since there exists mo non-=zero finite projec-
tion in a ring of type IIl. It follows from 2.4 that every measurable operator M
is bounded if and only if M is a direct sum of a ring of type IIl and a finite
number of factors of type I. In the rest of this section we assume that M is a

semi-finite ring with a regular gage m.
Lemva 3.3, Let 1 <p<r<{+woco. The following conditions (i)-(iii) are equivalent :

(i) L,OL,;
(i) MAL,OMANL,;



342 . T. OGASAWARA and K. YOSHINAGA

(i) M is finite and m(I)< + .
Proor. (i)—(ii) is evident. (i))—>(iii) : We may assume that r< +oo. Put
q——-—— MANL,DMANL, is equivalent to MANAL OMANL:=MNL, (Theorem 2). We

can write /=) E, where E, are metrically finite projections. If, for some E>0
the set {E;m(E)>¢&} is infinite, we can take a sequence {E,} from the set. Let {oz,,,}
be a sequence of positive numbers such that D), a./m(E,) < + oo, and put T'=2>30a,E,.
Evidently T€ MNL,, and therefore TeMANL;, that is, >\, am(E,)< +oo. Let
{B.} be an -arbitrary sequence of positive numbers such that 21, /3,,‘7<+oo We

can find {a.} satlsfymg the above condition and such that am(E, )q Ba.  Then

n(E)=Bm(E)T for "%I‘"-l-?:].. Hence we must obtain >,m(E)< +oo, a

contradiction. Hence {E.} is at most countable. If >}, m(E)= +co, we may assume
that m(E,)>1. If we repeat the above discussion, we reach a contradiction. Hence
m(I)< +oo. iii)—>(i): We may assume r< 4+ oo since the case r= + oo is evident.

I€L,, where —L+-ql’_=1' Therefore from Theorem 2 we have L,=L/JCL,.

The proof is completed.

Lovva 3.4. Let 1 <p<r<+oo. The following conditions are equivalent :

(i) L,CL;

(i) M is a direct sum of factors of type 1 and there exists a positive number 8, such
that m(E)>>8 for every non-zero projection E€ M.

Proor. (i)—(ii): Suppose that r<+oo. Put ¢= ;)* L,CL, is equivalent

1

to L, (L, =L, (Theorem 2) and in turn we obtain L, CL,CL,C-. We may

assume that ¢~~2. Let 7" be any measurable operator et undg N E, be its spe-
JO

ctral resolution.  Put 7/=TE, and Tyo=TE, " Then 7,,7.€ L, and therefore

7y€ L, T\€MAL, implies that 7)€ Lg.—r Nl (By!) = — g':x?dm(Ew) implies
that 72 € La. Hmwe we obtain T€ Ls.  Thus L, CLe. If r.“':‘—l'Oo then for any
Te LT we have /’ €L,CM and therefore 7€M, whu. h implies that that T*eL,.
In any case we have I, CLy,. Tt follows from Theorem 5 that the left ring L
considered in 3.1 salisfies (ii), and therefore M satisfies (ii).

(ii)—>(i): Owing to Theorem 5 and. Cor. 5.2, the isomorphic mapping ¢ con-
sidered in 3.1 shows that L, CM. Then it is clear that L,CL, for any 1<p<r

<+ oo,
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Using these lemmas we obtain the condition under which every measurable
operator is integrable.

Tucorem 10. Let M be a semi-finite ring with a regular gage m. The following
conditions (i)~(iii) are equivalent :

(i) M is finite-dimensional ;

(i) L,=L, for some p=Fr;

(iii) Every measurable operator is integrable.

Proor. The preceding two lemmas shows that (i) and (ii) are equivalent. (1)—(iii)
is evident. (iii) implies that L,CIL; and LiCL,. The latter is equivalent to
L, CLs. Thus we have Li=L,. The proof is completed.

Let @ be the ring of all bounded operators on a Hilbert space §, and let {f.}
be a complete orthonormal system of 9. If we put p(A)=>1, {Af, f> for A€ B,
it is easy to see that ¢ is a faithful, essential, normal pseudo-trace, and that any
other such pseudo-trace is a multiple of ¢ since B is a factor. The corresponding
gage m(P) is the dimension of P9. It follows that in a factor of type I every
measurable operator is bounded. Lj (1<{p< +oo) consists of positive operators,
the sums of the p* powers of whose proper values counted as their multiplicities
are finite. Therefore every operator € L (1 <{p< + o) is completely continuous, and
L,CL, for p<q. Since (co) is mot the union of (1), 1<p< +o0, we see that H
is finite-dimensional if and only if every completely continuous operator is integra-
ble. These considerations suggest the following generalization.

Turorem 11. Let M be a semi-simple ring with a regular gage m. The following
statements are cpuivalent :

(i) every operator €L,NM (1 <p<+oo, p fixed) is a w.c.c. element of M ;

*(il) M is a direct sum of factors of type 1 and there exists a positive number S such
that m(E)>8 for cvery non-zero projection Ee M.
If any of (i) and (ii) holds, and furthermore if every w. c. c. clement of M is €L, for some
1<p< + o0, then M is finite-dimensional.

Proor. An operator A€M is called w.c.c. [23] if the right (or left) multip-
lication by A is a completely continuous operator on M in the topology o (M, M™).
The set 4 of all w. c.c. elements of M forms a closed ideal of M. We note that
the second part of (ii) implies the first part of (1).

(i)=(ii): Let a be the maximal ideal of M associated with m, that is, a =L; M.

1 T C . .
a? =L,N\M. a and a’ have identical uniform closure J which is an ideal of
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M contained in 4.  Therefore (i) holds for every p if so does for some p. [ is
a w.c. c C*algebra. This shows [23] that every non-zero projection €J contains
a primitive one, that is, PJ P =(complex field) x P.  Since a is dense in M in the
strong topology, it follows that PMP= (complex field) x P, and therefore P is
a primitive abelian projection € M. Every non-zero projection €M contains a
non-zero metrically finite projection, and a fortiori a primitive abelian projection.
It follows that M is a direct sum of factors of type I. If the second part of (ii)

does not hold, we can choose a sequence of orthogonal primitive projections E, such

1
that m(E,) S-;lg Put A=>),E,. Then A€a”, but not a w.c.c. element of M.

(i)—>(i): M is assumed to be a direct sum of ®, where 3, is the ring of
all bounded operators on a certain Hilbert space. A is determined by its components

A, and [A]=1.w b.[[4all. A w.c.c. element 4 is characterized by the properties

that each A, is a completely continuous operator on § and the set {a; ”A“H>8}
is finite for every £>0. The pseudo-trace of M in question uniquely determined
by m is of the form >l ¢cay where each ¢, is the ordinary pseudo-trace of Ba.
¢y is a positive number >& and HA) =D ucapu(A) for AEM*.  P(ds)< o0
implies that each A, is completely continuous and {a; pa(As) >E} is finite. Since
| Aall < ba(A4a) holds, we see that A is a w.c.c. element of M.

Now we show the rest part of the theorem. ~We follow the notations of the
proof of (ii)—(i). Each 8, is finite-dimensional as remarked above. We have only
to show that the index set {a} is finite. Otherwise we can choose a sequence {B.}
of positive numbers such that B.40 and >3, B."pa, (Es,) = 42, where E,, is a
primitive projection & %,. Put A=>) B.E,,. Then A is a w.c.c. element of M,
but (A”)=co. The proof is completed.

Conotiany. L, (1<p < +00) coincides with the set of w.c.c. clements of M if
and only if M is finite-dimensional.

Let 1.5, be the set of self-adjoint operators €L,. If L) is a vector lattice by

the ordering of operators, L, is commutative by Theorem 2, and vice versa.

4. Analogies to (AL).
4.1. Let ¥ be a normed vector lattice with norm lx||. We say [20] that ¥
is an (AL) if

(@ if x| <[y| holds, =] <llylis
(b) if xNy=0 holds, ||x+y|=Ilx]+Ilyl;
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(¢) if 0w <a;<--- and {||x,]|} is bounded, then there exists.the I u.b.
ZEV of {x.} such that |x,—x[—>0 as n—>co. Then it is shown [20] that V. is a
Banach lattice, and is representable as an Li-space on a measure space. The same

is true for a complex vector lattice [21]

4.2. Let € be an invariant 1inear system consisting of measurable operators
#M, where M is an arbitrary ring of operators. Let £ be a normed linear space
with norm [|T]| and have the following properties :

() if |S|<|T| holds, [[SI<TI. And ||T||=[lUTU*|| for every U€ My ;

(8) if S-T=0 for S,T€L*, then [|S+T{=|IS|+[[T];

(v) if 0<T'<T,<- be a sequence of mutually commutative operators € e
such that {]|T.||} is bounded, then there exists the L. u.b. T€E of {7, } such that
IT.— T[] =0 as n—>oo.

Let m be the ideal of M generated by the projections € €. m is the union of
PMP, P€Q. Let M; be the closure of ™ in the strong topology. It is known [7]
that there exists a central projection Q€ M such that M1=QM Let T€ Q" and

S:X.dEA be the spectral resolution of 7. Put T,=>124 on (E(;,,,I) —Eyjsn). Since
0<T,<T, it follows that T,€ & and Egs1)2n—Erj2n € 8. Tt is clear that T is the
Lu b. of {T.}. Hence it is easy to see that Q+T=0 since QLT,=0. Therefore
we may assume Q-M=0, that is, Q=I And HTH=7}115102—;c;—||E(,,+1),2n—E,,,?,.H.

Lo

From (a)—(v) we see that E,L€ & for erery X>0, and [|T||=&M |Ext|ld\h. Conver-
0
sely if for a given positive measurable operator T=Sm}\dE)\, E,LeQ for every A>0
0

and VHE,\-‘-HdX<+OO, then T€Q. The proof is easy. Put for any PEMp,
vO

m(P)= L u.b. |[E|. It is easy to see that m(P) is finite if and only if Peamp,
ECP,Ecmp

and that m(P)=||P|| for PEmp. It follows easily from (a)—(7) that m is a regular
gage of M and that M is semi-finite. ~ Therefore from Theorem 6 (v) we conclude
that ¢ is the set of all integrable operators 7M. Moreover it is clear from
Theorem 6 that any L; satisfies ()—(7).

Thus (e)—(v) are the characteristic properties for an ¥ to be Li. Compare
(e)—(v) with (a)—(c) of 4.1. Let £’ be a vector lattice, then QM and therefore
€ is commutative. This is proved in 2. And (B) is reduced to (). |ITi=luTU*|

is always satisfied, and therefore («) is reduced to (a). Thus L, is considered as
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a non-commutative extension of (AL).

In like manner, we can state characteristic properties for L, and find an
analogy to (AL,). It suffices to replace (8) by (B),: if S:T=0 fer S, T€Q*, then
IS+T|?=]S||?+]|/T[|. The details are omitted. ‘
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