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The so-called “non-commutative theory’ of integration for rings of operators on 

Hilbert spaces has been much developed by Segal [26] and Dixmier [9], indepen- 

dently. The former's theory is a theory of integrals (or traces) for certain (un- 

bounded) “measurable operators”, analogous to measurable functions in the classical 

theory of integrations over abstract measure spaces. His idea of the “measurable 

operators’ originates from the works of Murray and v. Neumann ([18], Chap. 16) 

for factors of type II, and of Dye [11] for finite rings. The latter’s theory is a 

theory of integrals as linear forms. For both theories the rings may be assumed 

to be semi-finite without loss of generality. A ring M of operators is called semi- 

finite [15] provided every non-zero projection €M contains a non-zero finite projec- 

tion €M. Let M and N be *isomorphic rings of operators, and let m and u be 

regular gages of M and N respectively such that m and jp correspond by means 

of the above isomorphism. If we stand on the view-point of Dixmer [9], the 

measurable integrable operators with respect to m and 1 must correspond >-isomor- 

phically. We show (Theorem 1) that if M is *-isomorphic with N by means of a 

mapping 6, then ¢ is uniquely extended to a *-isomorphic mapping between 

measurable operators with respect to M and N. To develop the theory of Segal 

[26] for a given ring M it seems, therefore, preferable to take an appropriate 

ring N #-isomorphic with M and to develop the theory for N instead of M and then 

lo transfer it to that for M, if such a process is more suitable. It is known that 

every semi-finite ring M is s*-isomorphic with the left ring IL of an H-system H, 

arid the regular gage of M in question corresponds to the canonical gage u of H. 

Left multiplication operators L., x<H form a Hilbert space when the inner product 

Tol, > is defined by <I. [L,>=<xy>. The set ¥; of all L. is the set of | 

square integrable measurable operators with respect to pu. Thus in H the square 

integrable measurable operators are given a priori. ~~ We define that T=L,L, 1s 

integrable with respect to x and define its integral p(T) by <I. Lyx>. Let ¢; be
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the set of all 7. To prove that &, is the set of all measurable integrable operators 

is reduced to the proof of the following: in H (a) strong and ultrastrong (=st. 

rongest) topologies, (b) weak and ultraweak (=oc-weak [15]) topologies coincide 

respectively (Theorem 3). This is an easy consequence of a theorem of Griffin 

((15], Theorem 12). But we shall prove it by an elementary way somewhat similar 

to Segal’s method of proof of a certain theorem on a commutative ring [25]. As 

its consequence, the Radon-Nikodym theorem and Lebesgue monotone convergence 

theorem follow. 

If M is commutative, then the above I. is a masa (=maximal abelian self- 

adjoint) algebra which is s*.isomorphic with M. In this case the set H' of self- 

adjoint elements of H is a vector lattice in which the lattice order is the usual 

operator order. Finally we shall give a somewhat axiomatic definition of ¢, for a 

general ring M and compare it with the AL-space of a vector lattice developed 

previously by one of the present authors ([19] p. 86). oo 

Some applications to the structure of I. are given in 3. 

1. Measurable operators 

1.1. Let M be a ring of operators on a Hilbert space © of arbitrary dimensions. 

We shall always assume that M contains the identity operator / on $H. Mp and 

M,,, respectivly, stand for the set of projections and that of unitary operators in 

M. Let m be an ideal of M generated by a certain set of finite projections & M. 

Any projection €n1 is then finite since the ideal 11, generated by all finite projec- 

tions € M contains only finite projections. 

~ Derinvirion: 1.1. (ef. [26], Def. 2.1). A linear set © in § is said to be strongly 

M—dense provided (a) UD CO for every Ue My; (b) there exists a sequence of 

projections I’, € M such that PHCOPL] 0 and P,l-€m. An operator TmM is 

called essentiully W—restrictedly measurable if 1 has a strongly Wl-dense domain and a 

closed extension. Moreover if 7 is closed, 7 is called m-—restrictedly measurable. In 

case 11==111,, we shall say simply that DO is strongly dense, T' is essentially measurable or 

Tis measurable as the case may be. 

Limma 1.1. Let 1° be a dosed densely defined operator nM, Then : 

(G1) 7 is m-restrictedly measurable if and only if so is |T'| ; 

(it) Tet 720 and lee T= |, ME: be its spectral resolution. 1" is Wi-restrictedly 

measurable if only if E vi(=I—E) em for a positive 

Proor. (i) is evident since 7 and |7| have the same domain. The “if” part
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of (ii) is clear. Let T'>0 be m-restrictedly measurable. Then there exists a 

projection PEM such that TP is bounded and P-€m. Let [TP] <Xo. We show 

that P\Exi-=0. If the contrary holds, there exits a non-zero x € $H with PNEy\;x=x. 

| T]| = || TP] < Nol 6] while | Tol] = | TEx ge] >No |]. This is a contradiction. Since 

for every projection REM, 0—QNR~QUR—R [17], we have E,g=FE.g—Pn 

Exf~PUE,; —P<P-em, as desired. | 

Segal [26] proved that if § and T are essentially measurable and agree on a 

strongly dense domain, then they have identical closures. Next is its slight general- 

ization. 

Lemma 1.2. If two essentially Wi~restrictedly measurable operators S and T agree on a 

dense domain, then they have identical closures. 

Proor. With no loss of generality, we may assume that S and 1° are Mi-restr- 

ictedly measurable. The set O=1{x; Tx=Sx} is obviously invariant under every 

’e M/,, and is dense in §. Let 7, be the restriction of S and T on ©. TD2> Tp 

implies 7% CTo*. As T™* is m-restrictedly measurable, as proved below, so is To* 

by the very definition of measurability. It follows, from the result of Segal above 

mentioned, that T*=T," and hence T=Toy**. By symmetry S=T,**, and we have 

T=S, as desired. 

From Lemma 1.1. if 7 is M-restrictedly measurable, then so are TT, |T|* 

(@>0). We show that T'* is m—restrictedly measurable if so is 7. Let T=W|T| 

be the polar decomposition of 7, where W is a partially isometric operator €M 

with the closure of the range of |I'| as the initial set and with the closure of 

the range of T as the final set. Let Wi *=FE and let |T| =| aE, | 7%) =| "nar, 

be the spectral resolutions of |7'| and | T*| respectively. TF =W|T|W* yields 

F.=WEW?*+E- (\>0). Hence FL=WE,-W*. This implies by Lemma 1.1 that 

| 7%| is m-restrictedly measurable. It is clear that the intersection of a finite 

number of strongly wi-dense domains is sO also. After Segal we define the 

strong sum S+ 7" and strong product S-7T of two M-restrictedly measurable operators 

Sand 7. S47 and S-7 are the closures of S+ 7 and S7' respectively. (cf. 126], 

Def. 2.2). But in case of our nt-restrictedly measurable operators, S+7 is seen to 

be essentially ni-restrictedly measurable from the above. That ST is so also, follows 

from a modification of a proof given in [26], and details are omitted. Hence in 

our case S47 and ST are ni-restrictedly measurable. Thus we have the 

Livima 1.3. The set of all M-restrictedly measurable operators forms a #-al gebra with 

respect to the strong sum S+ 1 and product S+T, the scalar multiplication (except that
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Q + T=0) and adjunction. 

We remark that the two measurable self-adjoint operators S, T are commutative 

(S-T=T-S) if and only if every two projections in their spectral resolutions com- 

mute (This is usually a definition of commutativity of two self-adjoint operators on 

$). The “if” part is well known. Let S and I' commute, and if we put V'=S+iT, 

then V*V=VV* will follow and therefore V is normal. From this we obtain the 

statement of the “‘only if” part. 

1.2. A projection PE Mp is called countably decomposable if each set of mutually 

orthogonal non-zero projections in PMP is at most countable. In the sequel only. 

three types of ideals Ut are concerned : (a) My is the ideal of M generated by all 

finite projections € M; (b) ut, is the ideal of all finite countably decomposable 

projections € M ; (¢) M, is an ideal of M generated by the metrically finite projec- 

tions with respect to a regular gage. In the last case we assume that M is semi- 

finite. A ring M is called semi-finize [15] if every non-zero projection € M contains 

a non-zero finite projection & M. Clearly nt, Dnt, DMs. Lest d(P) be a dimension 

function on Mp in a certain sense of Segal [26]. He proved that if we let 

{P, ;;i,j=1,2,3,-} be an indexed family of projections € 11; such that for each 

i, d(P;, ){0 (pointwise except for a non dense set) as j1oo, then there exists a 

subsequence {j()} of the integers such that D>);2:d(P;, jy) < oo (pointwise except for 

a non-dense set). In particular, if P; ;{ 0 for each i as jt oo, then there exists a 

subsequence {j(i)} of the integers such that \J.Z, FP ji €M and {0 as nf oo. 

For m=mnt,, if we use a regular gage instead of a dimension function, we get a 

corresponding result. Segal’s discussion is concerned with the case when the center 

M' of M is countably decomposable, but it holds as well for the modified statement 

above mentioned, since a countable number of countably decomposable finite projec 

tions €M is contained in a center which is countably decomposable in MF, 

Segal exposed a convergencs discussion by the following definition ([26], Def. 

2.3). A sequence {7} of measurable operators is said to converge nearly everywhere 

(n.e.) to a measurable operator 7, if for every positive & there exists a sequence 

{P,} of projections, such that uy > P| 0 as nfeo and I(T, =T)P,J|<& (n=1,2,3,-). 

In case M is a factor of Type II[, a measurable operator is nothing but an element 

of M, and n.e. convergence in this sense means T.=T (n==1, 2,3, ++). This shows 

that the uniform convergence does not necessarily imply the n.e. convergence. On 

account of this unsuitableness, we shall give the following improved 

Derinverion 1.2. Let {7T,} be a sequence of N-restrictedly measurable operators
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pn M. {T.} is said to converge M-nearly everywhere (M-n. e.) to a measurable operator 

T if for every positive number &, there exists a sequence of projections P, € M 

(n>>n,) such that [[(T—=T,)P.[ <¢, P,L}0 as ntoo and Plem. If m=m, we 

‘shall omit “m—". 

~~ It will turn out from the discussion below that 7 is necessarily M-restrictedly 

measurable. Segal [26] proved that T is unique for an n.e. convergent sequence 

{Ta} 
Lewma 1.4. Let {T,} be a sequence of M-restrictedly measurable operators nM. A 

necessary and, sufficient condition for {T.) to converge M-n.ec. to a measurable operator nM 

is that, for erery positive €>0, there exists a sequence of projections P,€M (n>>n.) such 

that |[(Tw—To)P,||<E for m>n_>ne and PL 0, Pm. 

Proor. That the condition is necessary is evident. For the sufficiency proof 

we only consider the cases M=Ml, and m=m1. For the case m=, it is treated 

in much the same way as in the case m=. First consider the case M=m,. 

Write n.=n; and P,=P!” when e=7r. We may assume that n;fo0 as kfoo, 

and that 

(1) Ql=u,z PlHlem, UZ. P10 as noo. 

We use the symbol Or to denote the domain of operator 7. The intersection 

O=NOr, is strongly mni;—dense [26]. By definition there exists a sequence of * 

projections E,€M such that EH CO, E40 and E,-€m. Put 

(2) Q.= Ni=1 PE. x, n) NE, (Q:1=0Q). 

Then Q,-=\:il.P Coin, ng VE, 0 as nteo, since U2 POL ny 40 and EO 

as ntoo. Evidently Q,-€nt. We obtain 

3) T,~T)Qu< 12 1 pg max (n,n) (3, HT, —T,)Q.|< 2 for every pg. max n,n). 

Let ©, be the set-theoretical union of {0.9}. Then ©, is strongly 11,—dense. (3) 

shows that {T,} is a Cauchy sequence on each 0,9 in the uniform topology. Hence we 

rr hd hd If A rrr " 1 ha 

have an operator 7 M with domain Oy such that ||(I'—T,)0Q.,!< 22 for g=> max(n,n,). 

. X 1 | 

For any positive number > 0, we take k=Fk(E) so large that == <é. Then we have 

(4) (T—T)Q,l<& for n> Me)» Q.10, and Qu. 

If we can show that 7° has a closed extension 7. then 7 will be 1, -resirictedly 

measurable and {7} converges ul-n.e. to 7. The proof will follow from the
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following lemma (we take N=11). 

Lemma 1.5. If {T.} satisfies the condition of the preceding lemma, then cvery stsb- 

sequence of {T.*} has a subsequence satisfying a condition of the same type. 

Proor. It suffices to prove that {T,*} has a subsequence stated in this lemma. 

We use the notation in the proof of the preceding lemma. Let O*=NYr,* which 

is strongly ni,--dense. There exists a sequence of projections F,E€M such that 

F.HCO* F,1l0 and F lem, Put 

Q) 1= Fay DONT} = T2) "(Qui ) for [> k. 

Then i =Ful-HU (Tal TY" Y(QueD]+. By a result of Segal ([26], Lemma 3.1) 

we have d(Put) <d (Fur) + 2d(Qn). We select a subsequence {ny;} such that 

SY, d (Fal) < 00, 3); d (Quiz) < oo except for a non-dense set. Let 

(5) Qo o= Zul Ly] and G,= P.. 

Then G,.€ my, G,'{0 as ntoe. It follows from (3) that | (Tots = Ton) Qual] < 7 

Then we obtain (Tks, — Th < 7x lx] for every x€ GD for i>n ((26], the 

proof of Theorem 9). Hence 

7] CN oo 1 . 

(6) (Tk; = Tk) Gill <>Zrp 2 for j=, 

which shows that {T:%;} satisfies the condition of the preceding lemma. The proof 

is completed. 

We return to the proof of Lemma 1.4. By making use of Lemma 1.5 and 

the result so far obtained in the proof of Lemma 1.4, we can infer that there 

may exist a subsequence {7} of {T,*} converging pointwise to an operator T" in 

a strongly 11,--dense domain Oo*. Let x€D,, y€L,™ be chosen arbitrarily. Then 

(Tous y p= x, T.ky,, which yields (Tx, y,="{x, T'y). This implies that T* has a 

dense domain, so that, 7" has a closed extension T as desired. It is noted that 7 

is 11,-restrictedly measurable. 

We show that [[(T=T,)P,.l <_é&. (7T,—71.) (P.NQ 2) < & for mn. Let m too 

in this inequality, then we have I(T —T)(P.NQ,)||<E Since P,—P,nQ,~P,\ JQ, 

—(Q, by [17] and PQ,—Q,<<Q,~+]0 as pfoo, we can easily obtain the desired 

inequality. 

Next we turn to the case nt=1m, Let {Q.} be a maximal orthogonal family 

of projections € MY, each of which is countably decomposable in M®. For each Q, 

consider the sequence {T..}, where T,  =T,0Q. Put P,,.=P,\/Q,*. Then (Toye =Thn,)
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Pp. =(T,=T)Q.P, and therefore ||(Tn,.=T,)P,.[|<E for m>n, PL=P10Q 0 as 

afeo and Pl.€my. T,, is evidently m,~restrictedly measurable. We can apply 

the result for m=m, to {T,.}. Let 7, be the limit of {T,.} in the m,~n.e. con- 

vergence. Then I(T, =T,.) QP. <& Let T be the closed operator such that 

T0,=T,. Evidently T.Q.-1-=0, so that the existence of T is proved in a usual way. 

It is easy to see that 7M and (T=T,)P,|| <& Therefore T is the n.e. limit of 

{T.}. The proof of Lemma 1.4 is completed. | oo 

© From (3) in this proof we can incidentally read off the following 

© Lemma 1.6. Let {T.} be a sequence of m-restrictedly (where m=; or My) measurable 

operators converging M-n. e., and {&.} be a sequence of positive numbers decreasing to 0. 

Then there exists a sequence of projections {04 Qilem, Qul0 as kfoo, and an in- 

easing sequence of positive integers {ni}, such that (Tw —T)Qull < & for every 

mn > Ng. oo oo 

Remark. At this juncture we shall point out the following fact which will be 

wed later. If {T.} be a sequence of uniformly bounded m-restrictedly (where 

m=1ll,, U1, or Ny) measurable operators converging W-n.e. in the star semse to an 

m-restrictedly measurable operator T, then T' is bounded and 7,—T strongly. 

This follows easily from Lemma 1.6 if m=m,; or mM, As for the case m=, we 

decompose M into direct summands by the family of projections {Q.} used in the 

last part of the proof of Lemma 1.4, and the problem can be reduced to the case 

m=m, on each direct summand MQ. | | 

Lemma 1.4 together with Lemma 1.5 shows that if a sequence {T.} of 1- 

restrictedly measurable operators converges u-n.e. to a measurable operator T, 

then 7’ is necessarily n1,—restrictedly measurable and {T,*} converges nt;-n.e. to T* 

io the star sense. This is also proved by Segal [26]. 

Let {T.} be a sequence of m,~restrictedly measurable operators converging i;- 

ne. to 0, Then | IP) <5 for n>n;, P10 and plem,. Let M,=P 0 N 

T*YP,8). Let E, be a projection on the closure of M.. Then d(E.) <d(P,") + 

2(P,1)=3d(P,"). And we can find a subsequence {p.j of the integers, such that 

VEL en and JZ, E,, {0 as nfoo. It is easy to see TE ll SIT pPral and there- 

fore || TpuT i X Eyl] <||T on Pp,ll?. Thus {T,.,Tsi} converges n,n. e. 10 0. From this we see 

that {7.7."} converges nt-n.e. to 0 in the star sense. Similarly {T,*T,} converges 

m;-n. e. to 0 in the star sense. Segal [26] proved that if {7.} is a sequence of 

m,-restrictedly measurable operators nM converging n;—n. e. to a measurable operator
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TnM and S is an 1m, -restrictedly measurable operator, then {S-7,} and {T,-S) 

converges mi-n.e. to S+7 and 7-8 in the star sense respectively. 

Lemma 1.7. Let {S.} and {T.} be. sequences of wi-restrictedly measurable operators 

converging My—n. e. to S and T' in the star sense respectively, then so does {S, + Ty} to ST. 

Proor. Since S- T=—{(5*+ TY (S*¥4T) = (S*=T)* + (S*=T) = i (S*4iT)*- 

(S*4iT) +i (S*—iT)* + (S*=iT)}, it is sufficient to prove the lemma under the 

assumption S=T*  T,*T,— T* T=(T*=T,") (T=TH)+T, TH+ T*T,—2T*T. 

This equation yields that {I,*7.} converges Wli-n.e. to T*T in the star sense. But 

(Sum=T.*) + (Su*¥=T)=8,8, + T* T= (Su * ToT. - $,*) and (S$, +iT,%) + (5," —iTw) 

—S. S* pT *T, —i(S, + T,—T,%+S,*). The first of these equations shows that 

{S,- T+ T.*+S,*} converges ny—n.e. to 2T*T in the star sense and the second 

one shows that {S.: 7,—T,"+S."} converges un,—n.e. to 0 in the star sense. There- 

fore{ S,- T.} converges N,—n.e. to T*T in the star sense. The proof is completed. 

The discussions so far given hold also for m=mi,. Hence Lemma 1.7 is true 

for m=nt,. Therefore if m=11,, or My, the algebra of m-restrictedly measurable 

operators is a topological algebra with respect to the star topology. Let m=ut; or 

n,. Then we have the following 

Lemma 1.8. If a sequence {T.} of m-measurable operators nM converges Mm-n. e. to 

0 in the star sense, then so does {|Tn|}- 

Proor. From the above discussion {T,*7T,} converges m-n.e. to zero in the 

star sence. Therefore any subsequence of {T,*T,} contains a subsequence converging 

M-n. e. to 0. Let it be denoted by {T,57Tp.}. For any given positive &, there 

exists a sequence of projections P,EM (n2>ne) such that TE TP | <8 Prem 

and P,LJ0. Let x be an arbitrary element of P.O. I Tw|xlP=<T) Tux, > 

NT ET xl [xl] <<E|x||?. Hence || | Tha PJ] <<& The proof is completed. 

1.3. Let N be a ring of operators on a Hilbert space Y'. Suppose that 

there exists a #-isomorphic mapping 6(4) from M onto N (¢ is bi-continuous in 

the ultrastrong (= strongest = ultrafort [9]) and ultraweak (= o-weak = ultrafaible 

115], [9]) topologies [9]). Let u be the ideal of N corresponding to ut under 0, 

that is, nw=0(n). Let 4 and 9 be the *-algebras of all nt-and n-restrictedly 

measurable operators respectively. We shall show that ¢ can be uniquely extended 

to a *-isomorphic mapping from 4 onto J. When this is once done, we see that 

0 will preserve the convergence character, since the Definition 1.2 is concerned only 

with the algebraic property of M (note that *-isomorphism preserves norms). The fact 

that there is a unique extension of 6 will be important for our theory of integra- 

tion for operators, because our point of view is that the theory is first developed
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for a certain ring N s-isomorphic with M and then we transfer it to the theory 

for M through the extended *-isomorphism. 

© Tugozem 1. Let M and N be *-isomorphic rings of operators by a mapping 6. 0 

can be uniquely extended to a x-isomorphic mapping from SH onto Jl. 

~~ Proor. We prove the theorem for m =m, and m=m,. For, the case m=, 

is treated along the same line as in the case m=mu1;. First we shall consider the 

case m=m. Let T be any element of i. There exists a sequence {4.} of 

operators € M converging Tt,~n. e. to T. For example, let T=W|T| be the polar 

decomposition of 7), let 7) =| "na, be the spectral resolution of |T'[, and put 

A=W Rt: then it is clear that {4,} converges mi-un.e. to T. A *-isomorphism 

0 preserves norms. The criterion for Mn. e. convergence given in Lemma 1.4 is 

concerned only with the operators cM. = Therefore {6(A4,)} converges &(um)-n.e. 

to a O(m,)-restrictedly measurable operator which we shall denote by 8(T). &(T) is 

independent of the particular sequence {A,), because if {4,} is another sequence 

with the same property as {4.}, then {4,— A.) converges n-n.e. to 0 and then 

[6(4,) —6(45)} converges 0(m,)-n. e. to 0. {A,*} contains a subsequence converging 

mn. e. to T*, so that we obtain G6(T)*=6(T*). It is clear that the mapping 6 is 

linear and one-to-one. From Lemma 1.7 we see that 0(S-T)=0(S) + 8(T). Therefore 

is a *-isomiorphism. Uniqueness is evident, and details are omitted. 

© Next consider the case m1 =1l,. Let the mapping O(T) be defined in the 

same manner as before. Only points for us to make clear are the following : 

Q(TH)=0(T)* and O(S- TY=6(S) - 6(T). Let {Q.} be a maximal orthogonal system 

of central projections € M* each of which is countably decomposable in M'. From 

"the proof of Lemma 1.4, {4,0} converges m-n.e. to TQ, if {4,} converges n.e. 

to T. Hence 6(TQ,) =06(T)0(Q.). Since TQ. is ut,-restrictedly measurable, 

9(T*)6(Q.) — Q(T*Q)=0(TQ)*=0(T)*0(Q.) This equation holds for every Q, and {0(Q.)} 

is also a maximal orthogonal system of central projections. Hence HT*=0(T)". 

In like manner it is easy to see that 0(ST)=0(S)0(T). The proof is completed. 

CoroLtany 1.1. 0(|T|®)=1T)|* (a>0) for every measurable T nM. 

Proor. First suppose that 7'2>0. Let r=|"\dE, be the spectral resolution 

of T. Put F,=0(E,). Then {F.} is a resolution of identity. Put A=\" ME. 

Then oa) =\' NdF, and 04.5) = NaF. It follows from the manner of extension
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of @ that or)=| ANdF) and o(r)=| \dF,. Therefore (T*)=0(T)*. The general 
0 0 

» 

3 a @ 
case follows easily from the above. o(|T|*)=0(|T|*%=0(T*T)? ={0(T)*0(T)}*= 

16(T)|*. The proof is completed. 

The theorem is wellknown when M is commutative ([26], Lemma 15.1). | 

1.4. Derinmion 1.3. A linear set € of measurable operators nM is called an 

invariant linear system of M if Te Q implies UT, TUE & for every U& My. 

Let be an invariant linear system. Let K be a self-adjoint operator €M 

such that 0<K<T. Then U=K+iI—K*»®€My and 2K=U+U* Hence K+ &, 

QK CQ As every operator AEM is expressed as a linear combination of such 

K, we see that A-%, 24C8 for every AEM. Let 7 and S be measurable oper- 

ators such that 0<<S<T and T€S. Following Dixmier [9], we show S€& as 

follows. It is easy to see that the domain D1 of 7 is contained in the domain 

; ; 1 | 
Da of st and 1586) < || 77%] for every x€ © 1. Let C be an operator such that 

1 1 . 
Cy=S>x for y=T"x and zero for any y €|range of rE We denote by the same 

t i 
C the closed linear extension of C. Then CEM and S°=C-7°. And in turn 

S=C.TC*cQ. We can also show that TEX implies 7% [7] €X. For let 

T=W|T| be the polar decomposition of T, then |T|=W*T¢€ Q and T= |T|W*e L. 

Let &* stand for the set of positive operators € X. Every operator & { is expressed 

as a linear combination of operators € &. 

It follows from the above discussion that the set ¥* has the following properties : 

(a) if 7'€¥" and U& My, then UTU*e &* 

(b) if 7€¥" and 0<S<T, then SE, S being a measurable operator ; 

(¢c) if S, 7€¥*, theu S+T€X". 

Conversely let £* be any set of positive measurable operators satisfying the 

conditions (a), (b) and (¢). Then L* is an ¥% of an invariant linear system 

determined as the set of linear combinations of elements of £*. This is also shown 

by the method of proof due to Dixmier [7] for an ideal. The main idea of the 

proof is that we let Q denote the set of all >);*,7;+S* where I; and S; are 

measurable and 7 T*,S;+S* € 8%. The details are omitted. 

Dirinition 1.4. (cf. [8] Def. 2). Let & be an invariant linear system of M. 

The power ¢*(a>0) is defined as the invariant linear system generated by all 

7% such that T€¥*.
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~~ Let T and S be positive m-restricted measurable operators and r=|"xam. 

= fee Ly : ’ : 

=| AdF, be their spectral resolutions respectively. If we put Gy=E\NF,, then 

Gr=E}-UF-€ m for sufficiently large \ by Lemma 1.1 and G10 as Nt oo. 

We define TVS =| AdG,, which is also positive and m-restrictedly measurable. We 

F 0 | | 

note that if P and Q are projections €M, then P\VVQ coincides with the usual one 

(PUQ). We write TKS [8] if E\>F, for every positive A>0. T&S implies 

7% <8" for every a>0. Since we can write r= Eid) and =| "Fan It 

MRE | Jo 0 

is clear from the definition of TVS that T, SE TVS. Assume that Q satisfies the 

conditions : | 

8 (nh If r=\"\aE ce and s=| AdF\>0 are measurable opertors such 
J . | 1, | | 

that F\1<{E,L for every positive \, then Seg. 

© (&), If T, SEL, then TVTEL". 

These conditions are always satisfied if QCM ([8], Lemma 7 and 8). By using 

(€), and (£); we can show after Dixmier [8] that the set {T%;T€¥"} satisfies 

the conditions (a), (b) and (c). (a) is evident. Let Ty, To€ €F and S® <Th*+T7 S 

being a positive measurable operator. Put T=T,VT,€ 8". Then T\*+4T* 27% 

: oo 1 oo 

Let s=| NdF, and 2°T =| Ad E, be the spectral resolutions respectively. Then 

JO 0 

E,NF,-=0 18 easily verified. Fl=FLl—FLNE~FRLIVE — EES [17]. 

Therefore by (€). we have S€ Q*, Hence (b) and (c) are satisfied. 

We note that if © satisfies (€); and (K) then so do all the other *(a>0). 
1 1 

For if T€ 2%" and S satisfy the hypothesis of (£);, then so do T¢ €Q* and S%. 

1 
Therefore S® € &F, that is, S€X". Te\/S*=(T\/ S)* shows that X* satisfies (Ke 

We state the following theorem for the powers of €, corresponding to that of 

the powers of ideals due to Dixmier [8]. 

Tucorem 2. Let & be an invariant linear system of M satisfying the conditions (1 

and (K)g. Then, 

(G) (L)P=0%, Q*. ¥=0"F a, 3>0; 

(ii) if an &* is an algebra for some a>0 then so are all the other XP. 

Proor. (i): The proof is modelled after that given by Dixmier [8] for the 

1 

case QCM. Let 7 be any positive element of (¥*), then TP €¥*" and therefore



322 T. OGASAWARA and XK. YOSHINAGA | 

1 | . | | 
Tac that is, 7€ 8". The converse is also true. Therefore (8%)°=8%, Let 

Toe and TP ¥F*. We show that 7: - Toe *f [8]. Let T'=T,\/T.. Then 

T28<T%, Ty <I? therefore T\*=C,-T* and T*=C,- T° for some Ci, C;&M. 
To. TA=T¢ (T)*=C, - T***C,*€ &*** Therefore 8*- LF CL*P. Conversely let 

Ta+8c (Q¥*3* Then TEL" and T*P=T"-T°, Tel", T° &**, and therefore 

Te+Bc Q2. QB, Hence {+ LP=1%"E, | 

(ii) That ¢% is an algebra is the same as Q* > ¢* and therefore ¥D¥% From 

this we ohtain €3> 8% for every 8>0. The proof is completed. 

"We note that if an L° is composed of ni-restrictedly measurable operators, then 

so are all the other YP. | 

Leva 1.9. Let &7 stand for the linear space composed of the self-adjoint operators 

€ an invariant linear system 8. If 8 is a vector lattice by the ordering of operators, 

then & is commutative. | | 

Proor. The lemma follows immediately from a result of Sherman [27] or of 

Kadison [16]. But it seems that the following direct proof has some interest. We 

have only to show that any two projections E, Fe are commutative. We show 

1 

first that ENF is a projection. Let EnF=| Ad G, be the spectral resolution of 
JO 

3 3 
ENF. It follows from (ENF)* <E, F [22] that (EVF)® ENF, and therefore 

1 1 1 1 1 - 1 ) 1 

AN dG, <| \dG,. On the other hand ae, =| AG, since AF > for O<A<1. 
JO JO JO 0 

1 "y he . - - . - 

Hence (ENF)*=ENF, that is, ENF is a projection. As ¥ is assumed to be a 

vector lattice, EUJF—F=E—ENF. Since the right side of the equation and F 

are projections, so is KUF. Put E'=E—FENnF and F'=F—FENF, then L'+F'= 

EJF —~FENF=FE uF This means that E+ F" is a projection, and therefore 

E'F'=(, that is, (K—FENF) (F—-ENF)=0. This yields EF=FENF. By symmetry 

we have EF =FFE, as desired. 

2. Integrals with respect to a canonical gage. 

2.1. Segal [26] has developed a theory of non-commulative extension of 

integration for the measurable operators associated with a ring of operators on a 

Hilbert space. Theorem 1 shows that a *-isomorphism between two rings of 

operators has a unique *-isomorphic extension between measurable operators.  There- 

fore in order to develop such a theory it does not matter how to choose any one 

of s.isomorphic rings. For his theory the singular part of a ring plays no essential
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role, and therefore we assume, otherwise stated, that rings are semi-finite [15]. A 

semi-finite ring is *-isomorphic with a left ring of a Hilbert system (system), 

which we shall take as a basic ring for our development of Segal’s theory of inte- 

gration for operators. | 

Let A be a unitary algebra [14]: A is a x-algebra and a pre-Hilbert space with 

the inner product <a, b> satisfying the following conditions : | oo 

(a) <a, ay=<a*,a*) for every a€ A; | 

(b) <ab, c)=<b, a*c> for every a,b,cE A; 

(¢) the mapping b—ab is continuous for every fixed a € A; 

(d) A? is dense in A. 

Generally A is not a Hilbert space. If A is a Hilbert space, then A becomes 

an H*-algebra of Ambrose [1], taking the norm multiplied by an appropriate 

positive number as its new norm. In this case we say that A is essentially an H*- | 

algebra. | 

The completion H of a unitary algebra A is equivalent to an H-system [2]. 

For any x € H, x*, xa, ax are defined by continuity. Let L; denote the operator 

—=xa (a € A) ‘and we define L,=(L.+)*. Likewise we define R.. Ly is defined if 

and only if R,x is defined. Then Ly =R,x will be denoted by xy. The left ring 

L of an H-system H is the ring of operators on H generated by L.a€ A). Similarly 

the right ring R is defined. The operation J:x—x* is a conjugation of H and 

R=/JLJ. IL. and R are commutants of each other [10], [13], [14], [26]. By mak- 

ing use of this fact R. Pallu de la Barriere [24] proved that L.*=L.» and 

R¥=R.. x€H is called bounded if L, (equivalently R,) is bounded. The set B 

of bounded elements of HF becomes a *-algebra called bounded algebra of BH. We 

denote by lg the set {L.;x€B}. Lg is an ideal of L and is dense in I. in the 

strong topology. Any projection Pc Lg is of the form L, with a self-adjoint idem- 

potent ¢. We write x_>0 if L.>0. 

Leswa 2.1. - Let {e} be a maximal orthogonal system of sel f-adjoint idempotents. Then 

i) H=D!.PDeH=>) DHe,; 

(ii) Put H(A)=>],{Ae, ¢.> for A€L*. Then ¢(4 ) is a faithful, essential, normal, 

pseudo-trace of 1... The maximal ideal associated with ¢ is Li. 

(iii) (A) is independent of the particular choice of {e.}. 

Gv) If we put w(P)={(P) for PELs, then p(P)=|el* or + oo according as 

P=, for some c or not (i is a canonical gage of H in ~ certain sense of Segal [26]). 

Proor. (i): Each eH is the range of projection P= Le. eH | eH for e, Fee
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If 1&=\U.P, we can find a non-zero projection P=L. such that P<I-V.P, and 

therefore {e} will not be maximal. This is a contradiction. Similarly we have 

H=>'.@®He,. We note that for any x€H, x=). ex=2) xe and |x] *=>3 [lex]? 

=>. [xe 
A 

: (ii): That ¢ is linear, normal and positive is clear. Let {(4)=0 for some 

A>>0. Then Ae, =0, and therefore Ale. x)= A(R.e,)=(4e)x=0. Owing to x=3 ex, 

A must be 0, that is, ¢ 1s faithful. Let A=L,: for some x€B*. Then $(4) = 

SVL Lae, ep=2].{xe0 xe >=|x||?, while for any Ue Ly, dUAU*=>1.{UL,U"e, 

UL U*e>=>1.{UU xe, UU’ x)e) = U0 x)? = || || where U’=JUJ. Therefore 

H(A) =P(UAU*) for any Ade L2*. Hence by normality of ¢ we have H(A) =pUAU™) 

for any Ae”. If $(4) 3 0, then we can take an L.: such that 0<x€B¥ and 

Lo < A. Then ¢(L.)=]lx||® is positive and finite. That is, ¢ is essential. The 

first part of (ii) is proved. To see the last part it suffices to show that if ¢(A4) 

is finite for A€ L.* then 4€ 1.3, Put 5. = Ae. Then x, € He, and $p(A)=>] |=.|% 

and therefore there exists an x€ H such that xe, =x.. Ae = xe. It is easy to see 

that AF=1, with x€ B*, that is A€ L%. 

(iii). For any choice of {e}, Pp(4)=||x[* for A=L.:€ L3. Hence by normality, 

¢ 1s unique. 

(iv) P€ Lg is equivalent to Pc Lg. Hence (iv) follows from the last part of 

(ii). The proof is completed. 

Since I. has a faithful, essential, normal pseudo-trace ¢h, Li 1s semi-finite, and 

is known [7] that ¢ is uniquely determined by ju. 

Devinviion 2.1. ¢ in Lemma 2.1 is called the canonical pseudo-trace of H. 

To make clear the independence of ¢(4) of the particular choice of {e}, we 

give another expression of H(A). 

Livma 2.2. lo A= ) Nd Ey be the spectral resolution of Ael.r. Then ¢ (A) = 

|| wE:d= -— \ Nel (Ey). | 

Proor. Let [ be the bound of A. Let {A} be Oh <The <han =[. 

ASN En (By — Ey). The set {> (Exjor—Ey:)} is a directed set converging 

uniformly to A. Hence by normality of ¢, H(A) = lim DN; P(E — FE, )=1im > \; 

(Eri — Ey) = — \ NE) = \ p(Ey)dh. | | 

Cororrary. Let A= \ na, be the spectral resolution of A€L’. In order that
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[=] 1 ©0 

A€ Ly it is necessary and sufficient that w(E, x )dh= - Ndu(EL) < oo. In this case 
0 | 0 

the integral equals ||x|?, where A=L., x€B". | | 

Proor. AE L3 is equivalent to A*€L3, and therefore to that (4%) < oe. 

Hence the statement of the lemma is true by the preceding two lemmas. 

~~ Here we note that x € B* is approximated by >1;Z1\e; as nearly as we want, 

where \;>>0 and ¢; are orthogonal self-adjoint idempotents. Let A=L.=| "aE, 
0 

be the spectral resolution of L.. Since Lim|| Ex — x] =0, we may assume E;lx=x 

for some 6>0. Let C= dE for x>0 then E\1=C,L.,=L¢,., therefore Cx is a 

self-adjoint idempotent-e,. Using. the notation of the proof of Lemma 2.2 and letting 

A = 0, {37:20 (Brinn — E\;) es} converges to Aes. Lis=ALy=AEl=A=1L.. 

Lex, —Ernies=Erier — Exi=Lex;~enias Therefore x is approximated by SVE nen: 

—eni+,) a8 near as we want. 

2.2. A projection P is called metrically finite [26] if w(P)< +oco. Such a 

projection is evidently countably decomposable and the ideal mt generated by all 

metrically finite projections is of type my of 1.2. We shall use the terms “‘u— 

restrictedly measurable” and *-nearly everywhere” according to the cases. It is wellknown 

that m is dense in L in the strong topology (It is the restricted ideal of the 

maximal ideal associated with ¢ [7]). Let &; be the set {L; x€H}. Let us 

introduce an inner product {L,, L,>={x, Ys then &; is a Hilbert space isometric 

with FL. The element of &,, is called square integrable with respect to pu. 

Lemma 2.3. (1) Le is p-restrictedly measurable. 

(ii) Qs is an invariant linear system of Lu. 

(iii) LanL=Lg. Therefore a projection Pe L is metrically finite if and only if 

Pe ¥,. 

Proor. (i): Let L,=WW|L.| be the polar decomposition of L.. | L,|=W*L,= 

Ly+, [24]. By Lemma 1.1 we have only to show that L., x>0 is p-restrictedly 

measurable. Let r.=\ "ag, be the spectral resolution of L.. Put a=\ S dE, , 

JO 
. 

§>0. Then A€ 1. and AL,CL,. and therefore Loan*D LA= Ej, that is Lx = 

Eile L.. This implies Ax€ Lg. By Lemma 2.1, Es! is metrically finite. Lemma 

1.1 shows that L, is p-restrictedly measurable. 

(ii): That &, is linear is evident. Let U& Ly. U-IL,=UL,C Lyx. Since UL, 

and L,, are measurable, we obtain U + L,= Ly, € Xs. LU=U*-Lx)*e &*=¥Y,.
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(iii) follows from the definition of Lg. 
| 

Now we show that ¥, satisfies the conditions (£), and (£), stated in 1.4. To 

this end the following lemma is needed. 

Lemma 2.4. Let r=| NE, be the spectral resolution of a positive measurable oper- 
, 

Z 

ator Toll. TER, if and only if -\ Ad w(EH= p(EL)dN is finite. In this case 
0 0 

(x. 15=\" WE) 
0 

Proor. First assume that T€ Qf. that is, T=0L, with some xeHY. Lg.= 

x 
\ 

ET= dE, being bounded, Exx€eB* and [Ear]? =— | Mdu(EL) by Cor. of 

0 
vO 

Lemma 2.2. Exx—x as Mfeo. Hence Jof?=—| Med (EF) = | (Edy dn < + co. 
0 0 

A 

Now we shall show the converse. ExT is bounded and -| Ndu(Eyd-) < +00. Then 
0 

A 

by the same Cor., we can write E\T=Lx,, where x, € B* and [[x,[|*= -\ Nd u(EL). 
0 

A 

For M >\>0, fr —xa= = | Mdu(EyL) since Lay xy = Lay — Lay = (Ey, — E\) T= 
A 

A’ 0 
NN 

\ NE, € Lg. ~| Nd u(E\L) < + oo implies that -| Ndp(Ey-)—0 as XM >\—o00, 

A Jo A 

and therefore there exists x EH such that x,—x as A—co. That x,=E\x, for 

N > implies x,=FE,x. Then E,T=Lx,=Lgx=E,+Lx for every A>0. This implies 

T=1I, The proof is completed. 

Let r= ME, € &;" and s=| \dF, be a positive measurable operator. If 

0 0 

EF. <E. for every A >0. Then w(Fit) < w(Ey) and therefore | p (FLAN +o, 
JO 

which implies S€¥,". Hence Q, satisfies (¢);. Next assume that Se ¥,t. Let 

G.=E. NF, then (CG L) = (EU FL) << u(E) + (Fy) and therefore | | (GEA < + oo, 
JO 

This means that 7\/S€ ¥,".  Y, satisfies (€)g- 

We define ¥,=Y3* for a >0. ¥, also satisfies the condition («{),, and (a. 

Fach 7€¥, is expressed by L,-L, or more generally by >5:” Ly; Ly. 

Limma 2.5. D1" Ly, e L,,=0 implies > {Yi af r=. 

Proor. Let © be the intersection of the domains of L.,+I,; and L..(i=1,2,-,m). 

O is strongly pu-dense, and therefore there exists a sequence of projections P,€L 

such that PH CD, P," is metrically finite and P,! | 0. Since I’, is a least upper 

bound of metrically finite projections, we can take a maximal orthogonal system
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{e,} of self-adjoint idempotents such that  e HCO. 31,7: {y,, 5S =3, ye, ite) 

=31 Ly; + Lye, e)=21. {>1:Ly, + Le. e>=0. The proof is completed. | 

© Dernirion 2.2. p(T) =>3:21Ly:, x*) for T=2>1;21 Ly; + L,; is called the integral 

of IT. SSA CA Said tne ae The 

Co Lemma 2.5 shows that (TT) is independent of the particular expression of T. 

If Tis a projection pe L, then p(P) coincides with the old one. And if Te L3*, 

then w(T)=¢(T). It follows from Lemma 2.4 ‘that a positive measurable operator 

7=\ "ME, is an element of ¥; if and only if r¥eq, that is, | WEDD + oo. 

In this case w(T =| w(EyL)dh= —\ Mp (BD). 

We remark that &» is an H-system isomorphic with H by the mapping x—L.. 

This follows from the facts that (1) if xy is defined and equals z, then L.,-L,=L., 

and (2) if L,+L, equals L,, then xy is defined and equals z. To prove (1) let © 

be the intersection of domains ©; and Or,.z,. DO is strongly p-dense. For 

any z€ 0D, we have L, + L,u=x(yu) and Lu=(xy)u. It follows from a result of 

Ambrose [2] that x(yu)=(xy)u. Since measurable operators L.-L, and L. agree 

on a strongly p—dense domain 0, we must have L.=L.+L,. Now we show (2). 

let a be any element of 4. {z a>=<a*, z2¥p={La#, (L.+L,)*>=p(Lax+L.+Ly)= 

Lory + L,)=<a*x, y*y={x, ay*). Hence xy is defined and equals =. Ambrose [2] 

defined H to be commutative if so is its bounded algebra. It is easy to see that this 

definition is cquivalent to say that ¢, is commutative. 

Levva 2.6. The integral pw has the following properties ; 

(i) po is linear. | 

(ii) p(T) =D). 
Gi) w(T)>0 for T>>0. The equality holds if and only if T=0. 

(iv) For every A€ LL, uA Ly + L)=wuL,-A+L)=p(lL.+L, Ay={Ax, y* >. In 

particular (AT) = (TA). 

(v) Lu. b. p(4-T) | =p(|T]). 

(vi) For a fixed T, jo(A+T)Z>0 for every A€ L* if and only if T>0. 

(vii) Ly, L,>0 imply w( Lge Ly) 20. | 

Proor. (i)-(iii) are evident. 

(iv): (A Tol) = (Lge L,) = y (Ax) ) = (Ax, y*>=p(Ly + A-L)=p((Ly+ A) L) 

=u(Ly+L, +A). Since any T is of the form L,- L,, we have pu(A-T)=p(TA). 

(v): Let T=W|T| be the polar decomposition of T. w(WET)=p(|T])=P(| TD. 

On the other hand, let |7|=L% x€H", then |p (AT) = |pw(A- WL, L)|=
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1<AWx, xp | <|[AWa]| |] <llxl* = T]). : 

(vi) : p(4+T)>0 for every A>0 if T>0, since (A-Ty=p(A* 7. 4%) and 

A.roat>o Conversely assume that w(A-T)=0 for every A>0. u(d-T)= 

w(T* + A)=p(4 + T*). Since any element of I. is a linear combination of positive 

ones, it follows from (v) that T=T%*. Let r= NE, be the spectral resolution of 

co 0 a 

T. | \dE,) = u(E,T) => 0, while \ NE, <0. Therefore from (iii) we have 

0 —oe 
—oe 

| 

| NE,=0 that is, 70. 
| 

(vii) (Ly L,)={x,y). Let L=\ dE, be the spectral resolution of L,. 
0 

(1—E)y=y and (E,—EL)y—>y as n—>2. (E.—Ev)y is approximated by an expres- 

sion Sm Ne, A; >>0, as-mear as we want, where e; is a self-adjoint idempotent. 

CONTI EDWIN? e,>=>1\;{xe; e;)>>0. Hence {x,y>>>0. This completes the: 

proof. 

Lowa 27. If T>S=0 for T, SEL, then TH =8". : 

Proor. Suppose the contrary. Let str) NIE, be the spectral resolution 

of st 7%, Then for some A>8>0, (E\—E;) (ST =T%) > 8(E, — Ey) >0. Put 

E=F,—F,, then E=L, for some e€B. Then by (vii) of the above lemma, 

| 1 | I 1 

SES =T) « (SETH > 8u(L - (SFT) >0, while on the other hand w(E(S” — 7%) 
vo 9 L y Ia me ¢ 

(SEE) = Be (S=T) + p(B-SE TH = (Beh Sh) = pu (S= 1) + p (17 B57) 
— lb (St ETH and u(r E87) is conjugate to W(SE ETD, and thereforeu(E(SE —T?) 

(SFT) = p(B (S=T) <0. Henee p(T (S411) =0, that is, B+(8'+7%)E=0. 

This implies that ES E=—ETE and therefore E.-S?E= —E-T E=0. Using 

these equalities, we have ES =r) = Bos —ThHE= E-SSE— ET E= 0, and 

therefore E=0, since E-(S¥ =7%)>>8E. This is a contradiction. The proof is 

completed. 

Added in proof. This lemma 1s a special case of a theorem due to E. Heinz, 

Math. Ann. 123 (1951), p. 425, Satz 2. Cf. also 122]. 

2.3. Now we are ready to show that in the left ring I. of a Hilbert system, 

(a) ultraweak and weak topologies, and (b) ultrastrong and strong topologies coin- 

cide respectively. The following theorem is wellknown [15]. But it would seem 

that much interest lies in the method of proof given here.
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Card . Tueorem 3. Let IL. be the left ring of a Hilbert system. Then COR 

i (a) ultraweak and weak topologies of L coincide ; | 

- ~~ (b) ultrastrong and strong topologies of L.coincide. ~~. | 

in Let D(A) be any linear functional continuous in the weak (equivalently strong, ultraweak 

or ultrastrong) topology, then D(A) is of the form’ {Ax, y> and if moreover @ is positive 

we can write O(Ay={dm, xy. SR RAE Tt Fe 

" Proor. Let {x} be any sequence of elements of H such that Sl2s]|2< oo. 

We can write S17 Ls; +L} =L;, for som y. EH. lyal*=205 2 For 

 m>n, [2,>12, and therefore L,,>L,, by Lemma 2.7. Therefore |y.—y./*= 

bonl+ [yo 7— Fm 95 = gd yal [72 = al = Lyall = lym = since 
(yng ly F= Crm 72220. Hence [yum yall SB 1]P=>0 as m>nos, 
that is, { Vn converges to an element x H. Sn dAxg x= 2 wd + Ly; + Ly)= 

me. « L2) =< Ayn ¥.>. Therefore SY = Ax, x,y ={Ax, x). From this equation we 

see that (a) and (b) hold. oo i, 

If ¢(A) is continuous in the weak topology, we can write D(A) =>)" {Ax vy.) 

for some x;y; (=1, 9, + n). Let T=L,* Ly+=>);4L, +L," Then @(A)= 

(Ax, y>=u(A-T). If @(4) is positive for every A>>0, then T2>0 and therefore 

we can write T=L% for some x€H", that is @(A)=<{Ax, x). This completes the 

proof. So 

We shall consider some ‘consequences of this theorem. 

For every T€ &; we define||T|[;=p(|T]). Then || |. has the norm property 

by Lemma 2.6 (v) since |w(AT)| is a pseudo-norm and w(|T|)=0 implies I'=0. 

We show that €, is complete with respect to this norm, that is, ¥&; is a Banach 

space. | 

Corotrary 3.1. Let @ be any linear functional on IL continuous in the ultraweak 

topology (=normal), (91, then there exists a T€ Q, such that P(A)=u(A-T) for every 

Ae. And 

(i) Tis uniquely determined by @. 

(i) @ is positive linear if and only if T=>0. 

Gi) @ is central if and only if TELL. 

Proor. By Theorem 3 we can write GA) = Ax, yp=m(A +L, Ly)=u(4-T) 

for every A€ L, where x,y€H and I'=L,- Lx€%:. (i) follows from Lemma 2.6 

(v). (ii) follows from (iii) of the same lemma. ® is called central if @(AB)=®(BA) 

for every 4, B€lL. This condition is written as u(4+«(B-T=T8))=0 for every
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A BEL. By Lemma 2.6 (vi) this condition is equivalent to that B-T=TR for 

every BEL, that is, T€ LY. | | oo 

Dixmier [9] proved the following theorem : “Let M be a ring of operators and 

denote by Mx the Banach space of all normal linear functionals @. If we | 

identify A with the | continuous functional (4, y=, A>=®(A) then M is. the 

conjugate space of Mi". Therefore (i) of the above Corollary shows that Q, is 

complete with respect to || [[1, that is, Q, is a Banach space. Theorem of Dixmier 

just stated shows that |A]|=L ub. |@4-T)| and L is the conjugate space of g.. 

| rh =1 4 

By this reason we write L=8.. 

CoroLrary 3.2. Let {T.} be a monotone increasing sequence of posittive operators € &;. 

There exists a TEL, such that T, <T and lim wW(T)=mu(T) if and only if lim (To) < +0, 
i n—roo n— oO 

In this case T is the Low. b. of {Ta} and is the pn. e. star convergence limit of {Ty}. 

Proor. If lim w(T,)= +oco, there exists no 7 stated above. We assume 

that lim u(T,)< +oo. Let T,=L: ,y.€H". We define LL: =12,—L} _. where 

yo=0. Then T,=I1%,=>\;2Lz and, w(T)=|ly.lF=>: 1 ||x:][%. From the proof of 

Theorem 3, {y.} converges to some yEH and Lim (4 + To) =< Ay, yy=p(A-T) 

where T=L2. Tor every Aecl,, wlA-T,)<u(A-T). This implies, by Lemma 2.6 

(vi), T.<<T. If we let A=I, we have lim u(T,)=p(T). Such T is unique. For 
1-00 

otherwise, let 77 be such that 7,<T’ and lim W(TY)=u(T"). Then ||[T'=T,|.= oo 

w(T'=T,)—>0. Thus I" is the limit of {T..} with respect to || |l;. Thus T is unique. 

That 7 is the lu. b. of {T.} is clear from the discussion just given above. To 

show that {7} star converges pu-n.e. to T, it suffices to show that there exists a 

sequence of integers n; such that {7.;} converges p-n.e. to 7. To this end it 

suffices 10 show under the conditions [|[7=T,/,>> Pr that {7,} converges p-n.e. to 

TT. Tet T=17T,= ) NE" be the spectral resolution of T'—7,. ET AEDES 

2m" PUN IN (FLY Pym [Tam T | << 1 "(n) | 1 
o- ry HCE DYN TN p(B) d= NTT, < an Therefore (EP!) <C ut Put 

Ja Jo 21 

Po=NkZ,ED. Then P=, ZK Wand w(P) 200, Saor = Sty Therefore 
2h 2k ~ - 

5 DS rr rnroNT a 1 « rv rn 

P,LL0 and Pl emmy. [[(T—=T)P.) << on (n=1, 2 3,---). Thus {7,} converges u- 

n. e. to 7. . 

The method of proof used in this lemma is applied to show that if a sequence 

{T,} of elements of ¥, converges to 7" with respect to the norm | 11, then {T,}
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converges pu-n. e. in the star sense to I. The details are ‘omitted. ; 

 Cororrary 3.3. Le 0<ThXT 2 <1 be a sequence of elements of ¥y such that 

AIT } is bounded. T hen there exists the L u. b. T of {T ts | Tn—T||2—=>0 as n—>oo, 

‘and. T is the p—n.e. star convergence Limit of {iT ote oo 

~~ Ppoor. {T,} is a Cauchy sequence in Ly In fact, for m>n, ||Tn=—T|"= 

NTL Tos To ~ CTs Tot | Tolls IT |Tola® since {Top Tod =CTos To =| Toll? 
by Lemma 2.6. lim [7,2 exists and is finite. This implies that lim ||T,=T4,|[2=0. 

; n—0oo n, moo 

Let T= lim T,. For any S€&,", <S, T=T.>=1im<S,T,—T,>>0. Hence T>T. 
Le (Ie) i | Cysts Is 00 

(n=1,2,3,---). Let To be any measurable operator such that T>To>T7, (n= 

1,2,3,:--). Then To, € &, and | Tom=Tol| 8 || T=T| 2° by Lemma 2.6. Therefore 

we have To=T. The last part of the statement of this corollary follows by the same 

reasoning as in Cor. 3.2.- and details are omitted. The proof is completed. 

| Let T be any positive measurable operator and let r= "aE, be the spectral re- 
0 

solution of 7. Define w(T)=1. uw. b. u(S)=L u.b. (Ad). w(T) is finite if and only 
Set, SET Acme*, AST 

if T€Q*: and then we have w/(T)=u(T). The “if” part is evident. Now we 

A 
show the “only if” part. E\I'= \, MEL. w(ET) << p(T) < + oo. Then 

p(E\T)=¢(E\T)< + oo and therefore E\T€ Li- by Lemma 2.1. Then {E.T} is a 

monotone increasing sequence of elements of £; and lim WET) <pu(T)< +00. {ET} 
Ihde el 

converges pn. e. to I. Then by Cor. 3.2., T€ Q,. Thus &,* consists of measurable 

operators 7" such that w/(T)<C + oo. 

Let @ be any linear functional of LL continuous in the ultraweak topology. ¢ 

is uniquely expressed as @=;+i®;, where &; and @, are of real type. With 

regard to @ of real type we have the following 

Lessa 2.8. Let @ be a linear functional on Li of real type continuous in the ultra- 

weak topology. @ can be expressed uniquely as a difference of wo functionals of positive 

type @, and @_ such that P=®D,—P_, 10] = ||P] + ||P-]. 

. oo 0 

Proor. @(A)=u(A-T), where T is self-adjoint. Let 7.=| NE, T_= - NE), 
Jo 0 

where r=| | ME, is the spectral resolution of 7. Put @,(A)=u(A-T,), O_-(A)= 

w(A-T). Then @d=d,—@. and 10) =p(|T|)= p(T) + w(T)= ||P. | + [pl]. Next 

we show the uniqueness of such representation. Let #=% ,—¥,, where ¥, and ¥ 

are of positive type. F(A)=u(4-S), T:(A)=p(4:S:) where S., Se". Let
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Si=| iF, and s,= | 16, be the spectral resolutions of S; and S. respectively. 

0 0 

. DE) = p(T) = pl Eo’ +81) — pul Bo -+ 52) < Est +S) <8) =|¥.l, and therefore ||, I 

<||7,| similarly |@-]| <[|#al. Hence if we require that [0] =]:]| +72] then 

we have u(Eol-+S))=p(S:) and therefore Eo-Si+Eo=0. Therefore E,+S;=0. This 

is equivalent to Fol < Et. Similarly Go+ << Eo-. Then @.(A)=u(A-T,)=u( A-Ey- -T) 

= P(AE,L) = (AEs +S) — (AB Sp) = (A+ S1) =¥ (A). Similarly @-(4)=¥ (A). The 

proof is completed. x a 

2.4. Some applications to the structure of the left ring IL. of an Hsystem H 

are given here. An element x €H is called central if xa=aa holds for every ¢€ B, 

that is, L.nL'. A central element x is also characterized by the property: 

(x, aby={x, bay for every 2. bEB. ‘Tet H' stand for the set of central elements of 

H. It is clear that H' is a closed linear manifold of H, since ax and xa are 

continuous functions of x for each fixed a. Let x! denote the projection of x on 

H'. Let K. be the convex closure of {UU’x; UE Ly}. By an ergodic theorem of 

G. Birkhoff [3], #' is just the unique element common to K,. and H', or the element 

of K, whose norm is minimum (cf. [3], [12)). «' is approximated by forms 

SUP UU x as close as we want, where U;€ Ly, «;>>0 and DJa;=1. It follows 

then from this remark that if x >>y>>0, then (n'a, ap) ><{y"a, a)>>0 for every a€B, 

that is, #'>>y">>0. For every B=L,, x€ DB, we define, after Godement [13], B*=L,x. 

It is easy to see [13] that x'€B and IB*| <|IBll.  B—B" has the following 

properties (cf. [4], [13]): 

(a) if BE Lyn! then B'=B; 

(b) BR" is a posilive linear mapping from Lg to LY; 

(¢) (AR) =(BA)" for every A€l. and BE Ly; 

(d) if A€ Lr, then (AB)*=AR" for every BE Lg; 

(e) B-—B'" is normal; 

(f) ||BY|<<||B]] for every BE Lp. 

(a), (b) and (f) are clear from the above. To prove (ec) it suffices to show that 

(UBU**=B" for every UE I;. This is evident from the defining property of xt. 

(1) follows from AUU’x=UU’ Ax. There remains only to show (e). Let {B;} be a 

directed set CI. with B as its Lu. b. Put B=, and B;=1,;. From Lemma 2.6 

| (vii) we have [xs <|jx|- im {xs,ub) = lim (xs, a) = lim Bib* ap=<{Bb*,a)= 

{x,ab). Since B” is dense in H, it follows that lim {xs,z)="{x, 2) for every z€ H.
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of (ii) is clear. Let T'>0 be m-restrictedly measurable. Then there exists a 

projection PEM such that TP is bounded and P-€m. Let [TP] <Xo. We show 

that P\Eyi-=0. If the contrary holds, there exits a non-zero x € $H with PNEy\;x=x. 

| T]| = || TP] < Nol 6] while | Tol] = | TEyg-]| >No |x]. This is a contradiction. Since 

for every projection REM, 0—QNR~QUR—R [17], we have E,g=FE.g—Pn 

Exf~PUE,; —P<P-em, as desired. | 

Segal [26] proved that if § and T are essentially measurable and agree on a 

strongly dense domain, then they have identical closures. Next is its slight general- 

ization. 

Lemma 1.2. If two essentially Wi~restrictedly measurable operators S and T agree on a 

dense domain, then they have identical closures. 

Proor. With no loss of generality, we may assume that S and 71° are Mi-restr- 

ictedly measurable. The set O=1{x; Tx=Sx} is obviously invariant under every 

’e M/,, and is dense in §. Let 7, be the restriction of S and T on ©. T2> Tp 

implies 7% CTo*. As T™* is m-restrictedly measurable, as proved below, so is To* 

by the very definition of measurability. It follows, from the result of Segal above 

mentioned, that T*=T," and hence T=Toy**. By symmetry S=T,**, and we have 

T=S, as desired. 

From Lemma 1.1. if 7 is M-restrictedly measurable, then so are TT, |T|* 

(@>0). We show that T'* is m—restrictedly measurable if so is 7. Let T=W|T| 

be the polar decomposition of 7, where W is a partially isometric operator €M 

with the closure of the range of |I'| as the initial set and with the closure of 

the range of T as the final set. Let Wi *=FE and let |T| =| aE, | 7%) =| "nar, 

be the spectral resolutions of |7'| and | T*| respectively. TF =W|T|W* yields 

F.=WEW?*+E- (\>0). Hence FL=WE,-W*. This implies by Lemma 1.1 that 

| 7%| is m-restrictedly measurable. It is clear that the intersection of a finite 

number of strongly mt-dense domains is sO also. After Segal we define the 

strong sum S+ 7" and strong product S-7T of two M-restrictedly measurable operators 

Sand 7. S47 and S-7 are the closures of S+ 7 and S7' respectively. (cf. 126], 

Def. 2.2). But in case of our M-restrictedly measurable operators, S-+ T is seen to 

be essentially ni-restrictedly measurable from the above. That ST is so also, follows 

from a modification of a proof given in [26], and details are omitted. Hence in 

our case S47 and ST are ni-restrictedly measurable. Thus we have the 

Livima 1.3. The set of all M-restrictedly measurable operators forms a #-al gebra with 

respect to the strong sum S+ 1 and product S+T, the scalar multiplication (except that
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L is finite if H has the unit. This follows from (i). It is easy to see that L 

is a finite factor if and only if H has the unit and H' is of one-dimension. These 

are all proved by Godement [13]. | N 

Tusonem 5. Let 1. be the left ring of an H-system H. Then the following conditions 

(1)-(iv) are equivalent: | SRI 

i) is an algebra ; - 

(il) &; is an algebra: 

(iii) HM is essentially an H*-algebra ; 

(iv) There exists a positive unmber 8 such that le|| ==6 for every non-zero self-adjoint 

idemptent e€ H. And if any of these conditions is satisfied, then L. is a direct sum of 

(generally uncountable number of) factors of type I. 

} Proor. (i) and (ii) are evident from Theorem 2. Owing to the remark 

given in 2.2, ¥; and H are isomorphic and therefore (ii) and (iii) are equivalent. 

If (iii) holds, there exists a positive number k such that ly|| <kllx|||lyl] for every 

x,y € H, and therefore Jel] = for every non-zero slef-adjoint element e¢ of H, 

that is, (iii) implies (iv). We note that the bound of IL, is l. u.b. | wel]. For, if 
e=0 ef 

we let| MB, be the spectral resolution of L.#+L,, then = for L.=E,1-=%0. 

If (iv) holds, then rel led and therefore I, is bounded, that is, (iv) implies (it). 

There remains to show that last statement of our theorem. In an H*.algebra every 

non-zero self-adjont idempotent contains a primitive one e¢ that is, eHe= (complex 

field)» (1), [17]. This means that [L. is a primitive abelian projection [17]. 

Then I. is a direct sum of factors of type I. The proof is completed. 

Covoriany 5.1. Lis a factor of type Lif and only if H is simple and consists of 

bounded elements. 

Poor. The “if” part is evident from the preceding theorem. As remarked 

later in 3.5, if i. is a factor of type I, then every measurable operator is bounded 

and therefore H consists of bounded elements. For any closed ideal I of H, the 

projection [I with the range I is a central projection & I., and therefore P=0 or 

I, that is, 1={0} or H. The proof is completed. 

Godement (cf. [13] Chap. II, II) gave another characterization for I. to be a 

factor of type I: I. is a factor of type I if and only if H is #-isomorphic with the 

algebra of operators of Hilbert-Schmidt-type on a Hilbert space. We remark that 

this follows from Cor. 5.1 and the structure theorem of Ambrose [1].



A Non-Commautative Theory of Integration for Operators 335 

“% Cozorrary 5.2. In order that every “measurable operator € IL is bounded it is necessary 

and’ sufficient that IL is a direct sum of finite number of factors of type L 

"Pros. The “if” part is evident sine in a factor of type I every measurable 

operator is bounded. If every measurable operator nL is bounded, the & is an 

algebra, and therefore I. is a direct sum of factors of type I from the precading 

theorem. The number of thess factors is finite, for otherwisz, we can construct an 

unbounded measurable operator 7L. The proof is completed. 

- ~ Cororrary 5.3. The following conditions are equivalent : 

] (i) &=Y%; | | : 

(ii) IL. is finite-dimensional ; | 

(iii) MH is finite-dimensional. Sa 

) Proor. It is evident that (ii) and (iii) are equivalent and imply (i). If (i) 

holds, £, CY, implies that ¥; is is an algebra, and therefore L. is a direct sum 

of factors of type I from Theorem 5. Unless each of these factor is finite-dimens. 

ional and the number of these factors is finite, we can construct an element of 

2; but not in Q,. Therefore IL. is finite-dimensional. ~The proof is completed. 

We have shown (Lemma 1.9) that an invariant linear system £ is commutative 

if the set Q of self-adjoint operators of & is a vector lattice by the ordering of 

operators. The converse is evidently true. Owing to this fact, the following statements 

are equivalent : 

(a) any of QF or I. is commutative ; 

(b) any of 7 or I.” is a vector lattice. 

In particular, it follows from the isomorphism between $s and H that H is com- 

mutative if and only if H’ is a vector lattice. 

‘ 

3. Integrals with respect to a regular gage. 

3.1. Let M be a semi-finite ring of operators on a Hilbert space , and let 

m be a regular gage of M [26]: (a) m is a non-negative valued function defined 

on Mp; (b) m(P)=0 if and only if P=0; (¢c) m(P+ O)=m(P) +m(Q) if P+Q&Mp; 

(d) m(P)=m(UPU*) for every UE My; (e) m is countably additive; (f) if 

m(P)= + co, there exists Q such that 0<Q <P and m(Q)<-+woo. It is shown [7] 

that m is a restriction on Mp of a uniquely determined faithful, essential, normal 

pseudo-trace vr, and vice versa. Let a be the maximal ideal associated with A, 

that is, the set of AEM with (| 4]|)< +00. +r is extended to a faithful normal
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trace of a [7]. For any two B,C€a, we define <(B, C)=(C*B). It is easy to see 

that a becomes a unitary algebra with inner product <B,C). Its completion H is 

an Hsystem as stated in 2.1. For any AEM, the mapping a >B—>AB is continu- 

ous since <AB, AB» <||4|%B, B) holds. This mapping is uniquely extended to an 

~ operator (4) on H. Let L be the left ring of H. It is easy to see that 6(A)EL, 

and that 0 is a *-isomorphic normal mapping. + By a theorem of Dixmier [9], ov) 

is a ring of operators on H. And it coincides with IL since it contains all 6(B), 

Bea. Let {E} be a maximal orthogonal system of projections €a. Then it is 

clear that I= UE. Dixmier [8] proved that (4) => (FE AE,) for AEM, and 

therefore (4)=>).{4E, E». If we put P(0(A4))=(4) for AeMT, ¢ is the 

canonical pseudo-trace of H (Lemma 2.1 and Def. 2.1). Let B be the bounded 

algebra of H. By Lemma 2.1 we see that O(a) is the maximal ideal associated 

with ¢, and that 6(a)=IL3. That is, oad) = La. If we put u(0(P))=m(P), then. 

is the canonical gage of H. This shows that M is *-isomorphic with the left ring 

L of H by means of the mapping 6 and the regular gage m corresponds to the 

canonical gage wu. It follows from Theorem 1 that 6 is uniquely extended to a 

*-isomorphism ¢ between measurable operators with respect to M and IL. The 

theory of integrals with respect to the canonical gage 41 developed in the preceding 

section is now translated into the theory of integrals with respect to the regular 

gage m. This will be carried out in the sequel. Co 

3.2. Let m be a regular gage of a semi-finite ring M of operators on a Hilbert 

space 9), and let #, u have the same meaning as described in 3.1. Let 9 be the 

set of all measurable operators nM. For every Te& 9%", we put 

(1) m (IT) = Lub. {Jr (A4). 
Acat, AST 

From the the discussions given in 2.3, m(7)=u(0(T)) anid, if we let L;, denote the 

set of all 7" such that m(|T|)< +o, then O(L,)=Y, the set of all integrable 

measurable operators 5 I. with respect to w, and therefore m is uniquely extended 

to a linear functional on L,. 

Derinirion 3.1. A measurable operator 1" is said to be integrable with respect to 

m if m (|T])< +o. Let L; stand for the set of all integrable operators aM, 

and let m be Lhe extended linear functional on L, as described above. m(7T) is 

called the integral of 7'€ L, with respect to the gage m. 

From lemmas given in 2, we have the following theorem. 

Turorem 6. Let Ly be the set of integrable measurable operators nM. Then Ly is
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an invariant linear system of M satisfying the conditions (K)1 and (L)q. And the follow- 

ing statements hold. | | 

(i) La is a Banach space with norm ITh=m(|T|), a is dense in Li, and has 

the following properties : | EE | } | 

Ua) if Ty, To€Lt, then | Tod Tolh=| Tl + | Tal; | . 

ob) if LNT KL, and {||T.|l.} is bounded, then there exists the 1. u. b. 

Te LT of {T.} and lim ||T=T,|;—>0. {T.} converges m-n.e. to T in the star sense; 

| (ii) the integral m is a positive linear functional on La, with the following properties : 

CC @ wT=n); 
(b) m(T)>0 for TEL}. The equality holds if and only if T=0; 

(¢) m(A-T)=m(TA) for AEM and T€L,. If AEM, TEL], then m(A-T)>0; 

~~ (b) For a fivxed T, m(A-T)>0 for every AEM" if and only if T€L ; 

~~ (e) For a fixed A, m(A-T)=>0 for every TE L} if and only if Ae M™; 

iii) ||T)li= 1l.u. b. |m(4-T)|, and |A]l= Lub. [m(4-T)]. 
A=], AeM IT) <1,T€Ll; 

(iv) @r(A)=m(A-T) is a linear normal functional defined on M, and conversely 

every normal linear functional @ is an @r, T€ La. M is a conjugate space of Lu. 

(v) A positive measurable operator 7=|"xd E, is integrable if and only if 

| mE Lan< + co. Then this value equals the integrals of T. 

(vi) If lim ||T.=T|1=0, then {T.} converges m-n.e. to T in the star sense. 

| R00 

Segal [26] cited (i), (b) the Lebesgue convergence theorem and the second part 

of the first statement of (iv) the Radon-Nikodym theorem. We remark that the 

Radon-Nikodym theorem of Dye [11] follows from that of Segal. 

Cosorisny. Let M be a semi-finite ring of operators cn a Hilbert space. Let @ and 

T" be positive normal linear functionals such that @(P)=0, PEM, implies U(P)=0. Let 

0s be the canonical representation of M defined by @ and < > denote the inner product 

of the representation space $o. Then ¥ (A) is represented as T(A) =<b0a(A)z, z)e for 

some z € Pao. 

Proor. We may assume without loss of generality that M is a left ring IL. of 

an H-system. We use the notations in 9. We may write @(A)=<{4x, x», and 

¥(A)={Ay,y> where x,y are positive elements of H. @(P)=0 is equivalent to 

Px=0, and in turn to P/x=0. This implies P/[Lx]=0. Put P’ = PrLx]*-. Then 

since #(P)=0 and therefore by the same reason as the above P/y=0. It follows 

that y€[Lx]. By a theorem of Murray and v. Neumann (BT-Theorem called by
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Dye [11], [16]), y=B1x where BEL and T is a closed operator nll. We may take 

T>0. Let 7=| "ME, be the spectral resolution of T and put 7.=\’ ME,. || Tx — 

Tx|—>0 as n—>oo. Since O(B*A)={A, BYo={Ax, Bx), there exists u€ Do such that 

lu—=Twu—Tre—0. It follows therefore (A) ={04(A)z, z)s, where z=Bu. The 

proof is completed. | 

In the above corollary, if M is finite, then y is written as y=1x since B-T 

is a closed measurable operator nL. Let T=W |T'| be its polar decomposition. 

And consider the spectral resolution \ ME, of |T| and put 7].=| "aE, and 

T.=W|T|, {T.} converges m-n.e. to T. It is easy to see that V(4)=lim 

@(T*AT,) which is defined as @(T*-A4-T) [11]. ” 

Derinition 3.2. A measurable operator T'7M is called square-integrable with 

respect to the gage m if T*TeL,. Let Ly, be the set of all square-integrable 

operators. For any two S,T€L, we define (S, T)=m(T*-S) and IT], =m (T*T)E. 

Tt is clear from the discussions given in 2 that 0(Ly)=2Y,. Therefore we 

have the following theorem. 

Tucoriv 7. Ls is an invariant linear system of M satisfying the conditions (<_)1 and 

(Ls, and 1.2=L,. Ls, has the following properties : 

(i) Ls, is an H-system with inner product (8S, T)=m(T*-S). The bounded algebra 

of Lg 1s at 

(ii) (a) <S,T>>>0 for S,T€Lz, 

(b) if <S, T>>0 for every TE Lot, then S>0, 

if S-TF=0, then [SH T]:=S]2 +7] 
if [S117], then IS]. NIT] 
(e) [|T|,=U-TU*|ly for every Uc My, 

(£5) (mS) <"m(|S-T|)=|[SI[2l| Tl 

(g) || A-T|lo "INA |T]|2 for AEM and T€ Ly; 

(ii) fet OT, <"Ty<C-- be a sequence of elements of Lo such that {IT.0la} is 

bounded. Then there exists the lub. T of {T.} and 17, =T|3>0 as n—>oo. {T.} 

converges m--n. ce. to 1" in the star sense ; 

(iv) if ||T="T|2>0 as n—>o0, then {T.} converges m-n.c. to T in the star sense; 

(v) Let T be «a positive measurable operator nM. Let T= \ Nls\ be the spectral 

resolution of T. Then T€ Ly if and only if \ mi E') ANC 4-00; and ||T]]S* equals this 

value.
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Corovrery. If T is a measurable operator such that T-S€ Ly for every S€ Lz, 

C then TE Lo. | | | 

Proor. Let T=W|T| be the polar decomposition of T. Since |T|-S=W*T-Sel, 

for every SEL, we may assume without loss of generality that T'>0. Let T= 

| "ME, be the spectral resolution of T. EL is metrically finite for A>0. For 
Jo 

So CL 

otherwise, E 1 is metrically infinite for some No>0 and we can write EL=>)P. 

where P, are metrically finite projections. We can choose a sequence {P.,} such 

that S3.m(P.,)= +o. Let {a} be an arbitrary sequence of positive numbers such 

that Sa 2m(P.)< +00. Put S=31,aPon. Clearly SELF. Put A=| Lrem 
AO 

Then S=Ej,-S=A-T-S€L,, and therefore Stam (Py) < Foo. Since ot, m(P.,)= 

{am Pym (PY, we can conclude that >),m(P.,)< +oo, a contradiction. Let 

s=| @(\)dE, such thal -\ | p(\) | 2dm(E\L)< +00, where @(}) is a Baire funct- 
0 0 : 

ion of \. r-5=| rp (\)dE, € Lu. This implies | Ap (V) dm (ExL) | < + oe. 
0 

0 . 

It follows from a classical result concerning square-integrable functions that 

-| Ndm(E\L)<< oo. Hence T'€L, The proof is completed. 
0 : 

Similarly we can show that if T' is a measurable operator such that T-S€La, 

for every S€ LI, then Te M. 

3.3. We give some remarks on “normed” operators. An operator A is called 

normed ([19], [14]) if A€ LonM. Let M be a semi-finite ring of operator with a 

regular gage m. If a sequence of normed operators 7, with bounded uniform norms 

converges to 1" in Lg, then, by the remark after Lemma 1.6, Tis a normed operator 

and {7} converges strongly to 7. If the converse of this statement holds, that is, 

strong convergence entails Lp—convergence for every sequence of normed operators 

with bounded uniform norms, then m(I)< + co. To prove this, write =>. FE, 

where E, are metrically finite projections. For any sequence {4;} from {¢}, {>1%E;} 

converges strongly to Di Ee Hence >);21E; € Io,"M and >); m(E.;) = 

m(>) 2 Ed) <4 oo. It follows from this that m(E)>0 for atmost countable ¢, and 

therefore m(I)< +oo. Conversely, let m (I)< + oo, then strong convergence entails 

L.-convergence for every sequence of normed operators 1°, with bounded uniform norms. 

We may assume that M is a left ring I. of an H-system, since two topologies, 

ultrastrong and strong, have the same effect on the sequential convergence. Then 

(A, By=J{AI, BI) for any operators A,BeM. If {T',} converges strongly to 7, then
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(T,=T, T,—T>—>0 as n—>oco. The proof is completed. 

These facts are remarked by Dixmier [9] on a topological stand point, but the 

method of our proof is different. See also [19], p. 106—. : 

3.4. Dermvrion 3.3. A measurable operator T'7M is said to be p™ power 

integrable with respect to m if |T|?eL;. Let L,(1<p< +00) stand for the set 

of p power integrable operators nM. The L,-norm of T€L, is defined as 

m(|T| 7? and designated by |T||,. If p=+eco, we shall identify M with L.. : 

From this definition a measurable operator T belongs to L, (1 <p< +00) if 

and only if T is m—restrictedly measurable and - Adm (EL) < + oo, where 
Jo cy 

| "nae, is the spectral resolution of | T|. 
0 

Ce 

1 
Livan 3.1. (cf. [9]). Let = += where 1<p, << +o. Then | 

i) m(ST)=m(T-S) for SEL, and TEL, If furthermore S,T >0, then m(S-T) 

>0; and conversely, if m(S-T)>0 for every T 20, then S>0. 

(ii) | m (Tye Tyee To) | <m(| Ty To: TLD) Tull pu 1 Tel] po I Tall for Te Lp 

with >in o=1, p>1 (i=1,2, --,n). | 

(iii) ||S||,= 1. u. b. m(S-T)| for SEL, where the 1. u. b. is attained by some T 
TE Ly, |T];<1 | 

if 1<p< +00; 

(iv) L, is a normed linear space, and 7), =I1T*|| ,=|\U-T-U*||, for TEL, and 

veM,. ||T)],<|IS|l, for SS TEL, such that | T|<]S]. 

(v) nm (ST) |2<m(|S*|+|T)m(|S]|T*) <m(|S-T|)m(}T-S]) for SeL, and 

Tel, 

Poor. The lemma will be proved with necessary modifications along the 

similar lines as Dixmier [9], and the details are omitted. 

Livma 3.2. Let T be an me—restrictedly measurable operator nM and ~ ; - 4 " = re 

where 1p, q, r=_ Hoo. If T- Se LL, for cvery SEL, then TE Li, | 

Proor. The proof will be carried out along the similar line as Cor. of Theorem 

7 and the details are omitted. 

Turorem 8. LL, is complete. 

Proor. Let {T,} be any Cauchy sequence of elements of L,. It is easy to see 

that {7} converges m—n.e. in the star sense to an m-restrictedly measurable operator
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T. Let S be any element of L, with —+r=1 then by Lemma 3.1 ||T,-S— 

ToS, <||Tw="Tal » |Sll;, which implies that {T,-S} converges m-n.e. in the star 

sense to T+S and ||T,S—7T-S|,;—0 as noc since L; is complete. Lemma 3.2 

shows that T€L, Let & be any given positive number. Choose n, such that 

| Tn—T.|| ,<& for every m>n>n.. If [|S][,<1, then [[(T=T,)-S|<lim |[(T,— 

TS: <<& Hence by Lemma 3.1 we have |[|T—T,||,<& for n>>n,, that is, 

lim [7 —T,l|,=0. The proof is completed. 

As Dixmier [9] did, we can show that L, is reflexive if 1<{p<{+o0. Using 

this fact we show 

Tueorem 9. If OT) To <<: is a sequence of elements of L, (1<p< + oo) 

such that {|| Tall} is bounded, then there exists the 1.u.b. T of {Tu} and ||[T—T,||,~>0 

as noo. And {T,} converges m—n.e. to T in the star sense. 

Proor. It is sufficient to show the theorem for 1<p<+oo. Let S be any 

operator € L, with —S+e=1 It follows from Lemma 3.1 that 0=m(7,-S)< 

m (Torr S) < || Tosa plIS| ES]; for some constant k>0. Since every operator &€L, 

is a linear combination of positive ones €L, {T.} converges weakly (=in the 

topology o(L,, Ly) to T€L,, that is, m(T-8)=1limm(T,*S). m(T-S)>mT,-S) for 
nn 00 

every SEL}. Therefore T>T,(n=1,2,3,--) by Lemma 3.1. For every &>0 

there exist non-negative numbers «;(j=1,2,---,m) with >};Z,a;=1 such that 

17-3)" aT; ,<& OZ T=T,<T=2>};Z1a;T; for every n=m. This implies 

that |T— Tal, <I T—> a;T}|| p< E for n >m, that is, |T—T,|],~0 as n—>oo. The 

other parts of the theorem will be proved by the same way as in Cor. 3.2. 

3.5. Let M be an arbitrary ring of operators. There exists a central projec- 

tion Q such that QM is semifinite and QM is of type IIL (cf. [17]). Any 

measurable operator 7 Q1M is bounded since there exists no non-zero finite projec- 

tion in a ring of type IIL. It follows from 2.4 that every measurable operator 7M 

is bounded if and only if M is a direct sum of a ring of type III and a finite 

number of factors of type I. In the rest of this section we assume that M is a 

semi-finite ring with a regular gage m. 

Lemma 3.3. Let 1<p<r<+oo. The following conditions (1)-(1ii) are equivalent : 

i) L,DOL,; 

(ii) MNL,DOMANL,;
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(iii) M is finite and ml) < + oo. 

Proor. (i)—(ii) is evident. (ii)— (iii) : We may assume that r< +o. Put 

g=—5 MANL,>MANL, is equivalent to MANL DOMANL!=MANL, (Theorem 2). We 

can write I=) E, where E, are metrically finite projections. If, for some £30, 

the set {E;m(E)>&} is infinite, we can take a sequence {E,} from the set. Let {a,} 

be a sequence of positive numbers such that >), a. /m(E,) < + oo, and put I'=2,a,E,. 

Evidently T'€ MNL,, and therefore T€MNL,, that is, SM oam(E)< +o. Let 

{B.} be an arbitrary sequence of positive numbers such that >),B3,7< +o. We 

1 

can find {«,.} satisfying the above condition and such that am(E,)?=f,. Then 

1 
| 

a,m(E,)=B.m(E)" for r=l Hence we must obtain D>).m(E,)< +oco, a 

contradiction. Hence {E.,} is at most countable. If >) ,m(E)= + co, we may assume 

that m(E)>1. If we repeat the above discussion, we reach a contradiction. Hence 

m([)< + oo. iii)—>(1): We may assume r< + oo since the case r= +oco is evident. 

I€L,, where rant! Therefore from Theorem 2 we have L,=L,/ CLs. 

The proof is completed. 

Lovma 3.4. Let 1 <p<r<+oo. The following conditions are equivalent : 

i) L,CL,; | | 

(ii) M is a direct sum of factors of type I and there exists a positive number ©, such 

that m(E)>>8 for every non-zero projection Ee M. 

Proor. (1)—(ii): Suppose that r<T-+ ce. Put =," L,CL, is equivalent 

to L, (L,Y =L, (Theorem 2) and in turn we obtain LCL, CLC. We may 

assume that ¢ >2. Let 7 be any measurable operator & LT and Ad E, be its spe- 
JO 

ctral resolution. Put 7,=TFE, and To=TFE,. Then 7,,7,€ L,, and therefore 

Ty€L, Ti€MNL, implies that 7 € Lo. — | Nm (Fy) = — | Nod m (Ey!) implies 
. . | 

that 7% € Ly. Hence we obtain T'€ Le. Thus L, CLs. If r==+4-c0, then for any 

Te Lt we have 7" € LL, CM and therefore 7€ M, which implies that that T?€L,. 

In any case we have I, CLy. It follows from Theorem o thal the left ring IL 

considered in 3.1 satisfies (ii), and therefore M satishes (ii). 

(ii)—(i): Owing to Theorem 5 and. Cor. 5.2, the isomorphic mapping 6 con- 

sidered in 3.1 shows that Ls CM. Then it is clear that LL, CL, for any 1<p<r 

< 400.
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: Using these lemmas we obtain the condition under which every measurable 

operator is integrable. = EE RUEE a 

" Tucomem 10. Let M be a semi-finite ring. with a regular gage m. The following 

conditions (i)-(iii) are equivalent : | | | | 

nr G)  M is finite-dimensional ; | | | 

CO (G) L,=L, for some p=r; | 

(iii) Every measurable operator is integrable. | 

Proor. The preceding two lemmas shows that (i) and (ii) are equivalent. (1)— (iii) 

is evident. (iii) implies that LCL; and LiCL;. The latter is equivalent to 

I, CLs. Thus we have Ly=L,. The proof is completed. 

Let @ be the ring of all bounded operators on a Hilbert space 9, and let {f} 

be a complete orthonormal system of D. If we put H(A) =>), {Af f.) for A€ B~, 

it is easy to see that ¢ is a faithful, essential, normal pseudo-trace, and that any 

other such pseudo-trace is a multiple of ¢ since 8 is a factor. The corresponding 

gage m(P) is the dimension of P§. It follows that in a factor of type I every 

measurable operator is bounded. Lj (1<p<+o°) consists of positive operators, 

the sums of the p* powers of whose proper values counted as their multiplicities 

are finite. Therefore every operator € L,(1 p< + oo) is completely continuous, and 

L,CL, for p<q. Since (co) is mot the union of (J), 1 p< +oo, we see that O 

is finite-dimensional if and only if every completely continuous operator is integra- | 

ble. These considerations suggest the following generalization. 

Theorem 11. Let M be a semi-simple ring with a regular gage m. The following 

statements are cputvalent : | 

(i) every operator €L,AM (1 p< +400, p fixed) is a w. c.c. element of M ; 

* (ii) M is a direct sum of factors of type 1 and there exists a positive number & such 

that m(E)>8 for cvery non-zero projection E& M. 

If any of (i) and (ii) holds, and furthermore if every w. c. c. clement of M is € L, for some 

1 <p< +oo, then M is finite-dimensional. 

Proor. An operator AEM is called w. ec. c. [23] if the right (or left) multip- 

lication by A is a completely continuous operator on M in the topology o(M, M¥). 

The set <9 of all w.ec.c. elements of M forms a closed ideal of M. We note that 

the second part of (ii) implies the first part of (1). 

(i)—>(ii) : Let a be the maximal ideal of M associated with m, that is, a =L,;M. 

af =L, NM. a and ar have identical uniform closure J which is an ideal of
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M contained in 4. Therefore (i) holds for every p if so does for some p. J is 

a w.c.c C* algebra. This shows [23] that every non-zero projection €J contains 

a primitive one, that is, PJ P=(complex field) x P. ~~ Since a is dense in M in the 

strong topology, it follows that PMP = (complex field) x P, and therefore P: is 

a primitive abelian projection € M. Every non-zero projection €M contains a 

non-zero metrically finite projection, and a fortiori a primitive abelian projection. 

It follows that M is a direct sum of factors of type I. If the second part of (ii) 

does not hold, we can choose a sequence of orthogonal primitive projections E, such 

that m(E,) <-r. Put A=>),E,. Then ded’, but not a w.c.c. element of M. 

(ii)—(@{): MM is assumed to be a direct sum of ®, where @, is the ring of 

all bounded operators on a certain Hilbert space. A is determined by its components 

A, and ||4]=1 wb. [4s]. A w.c.c. element 4 is characterized by the properties 

that each A, fs a completely continuous operator on § and the set {oes [| 4a >6) 

is finite for every £>0. The pseudo-trace of M in question uniquely determined 

by m is of the form >3,ca¢, where each ¢, is the ordinary pseudo-trace of Ba. 

¢, is a positive number >8 and H(A)=Ducapu(A) for AeM*. P(A) < +o 

implies that each 4, is completely continuous and {a ; ¢pn(A4.)>E} is finite. Since 

| Ay]l <b, (A) holds, we see that 4 is a w.c.c. element of M. 

Now we show the rest part of the theorem. We follow the notations of the 

proof of (ii)—(i). Each @, is finite-dimensional as remarked above. We have only 

to show that the index set {a} is finite. Otherwise we can choose a sequence {B.} 

of positive numbers such that 8,{0 and >),B3."¢u, (Ea,) = + °°, where E,, is a 

primitive projection € %,,. Put A=>' B,E,,. Then A is a w.c.c. element of M, 

but ((A”)=c0. The proof is completed. 

Conotrany. L,(1<p< 400) coincides with the set of w.c.c. clements of M if 

and only if M is finite-climensional. 

Let 1.5, be the set of self-adjoint operators eL,. If L/ is a vector lattice by 

the ordering of operators, L, is commutative by Theorem 2, and vice versa. 

4. Analogies to (AL). 

4.1. Let V be a normed vector lattice with norm lx||. We say [20] that V 

is an (AL) if 

(a) if |x| <|y| holds, [[x[|<llyll; 

(b) if xNy=0 holds, [x+y] =x] +x];
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= () if 0<<x;<<a,<--- and {||x.||} is bounded, then there exists .the I u.b. 

xE V of {x,} such that |, — x] —>0 as n—0. Then it is shown [20] that V is a 

| Banach lattice, and is representable as an I-space on a measure space. The same 

is true for a complex vector lattice [21]. ny oo 

| ~~ 4.2. Let £ be an invariant linear system consisting of | measurable operators 

~ #M, where M is an arbitrary ring of operators. Let & be a normed linear space 

with norm ||T|| and have the following properties: | | 

() if |S|<|T| holds, [|S||<|IT||l. And [|T||=[[UTU*|| for every UE My ; 

(B) if S:T=0 for S,T€L*, then HS+TI=1SI+ ITI; 

(7) if 0<T<T,<+ be a sequence of ‘mutually commutative operators el 

such that {|T.|l} is bounded, then there exists the lL. u.b. T€X of {T.} such that 

T= T||—0 as n—> oe. RARE | R I 

© Let-m be the ideal of M generated by the projections €£. wm is the union of 

PMP, Pc Q. Let M; be the closure of Wm in the strong topology. It is known [7] 

that there exists a central projection Q€ M such that M;=QM. Let T€£" and 

|, ME: be the spectral resolution of 7. Put T.=>172% A (Bgeany n= Bryan) Since 

0<T,<T, it follows that T,€¥ and Eihiryjon—Erjen€ XK. It is clear that T is the 

lu. b. of {T.}. Hence it is easy to see that Q-T=0 since Q+7,=0. Therefore 

we may assume Q-iM=0, that 18, Q=L And IT) = Yim 33 Egy s2n = Epon 

From (o)—(v) we see that EL €& for erery 2>0, and j71= IB Conver- 
0 

sely if for a given positive measurable operator r—| "ME, E,L€8 for every A>0 
0 

and \ TIE dr + oo, then 7€8. The proof is easy. Put for any P&Msy, 
v0 

m(P)= l.u.b. ||[E]. It is easy to see that m(P) is finite if and only if Pep, 

ECP, Ecmp 

and that m(P)=||P|| for PE mp. It follows easily from (a)—(7) that m is a regular 

gage of M and that M is semi-finite. ~~ Therefore from Theorem 6 (v) we conclude 

that © is the set of all integrable operators nM. Moreover it is clear from 

Theorem 6 that any L; satisfies («)—(7) | 

Thus (@)—(y) are the characteristic properties for an ¥ to be La. Compare 

(a)—(7) with (a)—(c) of 4.1. Let &" be a vector lattice, then QM and therefore 

Q is commutative. This is proved in 2. And (f) is reduced to (b). [|TII=IUTU*| 

is always satisfied, and therefore (a) is reduced to (a). Thus L; is considered as
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a non-commutative extension of (AL). 

In like manner, we can state characteristic properties for L, and find an 

analogy to (AL,). It suffices to replace (B) by (B),: if S:T=0 fer S, T€Q*, then 

IS+7T|7=|Sl|?+||T||>. The details are omitted. B 
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