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1. SEMI -SIMPIJICIAL COMPLEXES 

In classical algebraic topology one gtudies 

simplicial complexes. However, modern developments have 

shown that these are inadequate, particularly for problems 

in homotopy theory. In recent years there has been a 

tendency to study the total singular complex of & space 

(cf. example 2 below) instead of simplicial compleres; but i 

this method is also inconvenient from the point of view of 

homotopy. A more useful procedure geems to be the study 

of abstract semi -simplicial complexes, lntroduced by 

Eilenberg and Zilber [1], and of the sub-class consisting 

of semi-simplicial complexes satisfying the extension con- ( 

dition of Kan (cf. definition 1.2 below). ) 

Let 27 denote the set of non-negative integers. 

‘Definition 1.1: A semi-gimplicial complex con- 

sists of the following: 
1) A get X= pe - xy , 

where the xq are disjoint sets (an slement 

of X4 1s called a g-simplex of xX); 

(11) functions fe) : X41 a Xq , 1 =0,...,q+1, 

called face operators; - 

functions 8y° Xyg = X41 , 1 =0,...,q, 

called degeneracy operators, satisfying the relations 

D1 Qj TO5-1 01 1<7 

8155 = 83418 LSJ 9
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| 185 = 95-104 ARE 
0483 = 0354195 = ldentity 

018; 8391 1> 35+ 1 

We shall usually denote a seml-simplicial complex by 

its set X of simplexes. 

A simplex X€X 4 1s called degenerate if there exlsts 

yeX, and g degeneracy operator 9 5 such that x = 8,7 y other-~ 

wise Xx 18 called non-degenerate. 

Example 1: Recall that a simplicial complex K 1s & set whose 

elements are finite subsets of a given set K , subject to the 

condition that if xeX and y 1s a non-empty subset of x, then’ 

y eK. Sets with n+l elements are called n-simplexes, and the 

get of n-simplexes of X is denoted by KX... 

We now define a semi-simplicial complex X(K) which 

arises from K in a natural mamner. An n-simplex of X(K) is : 

ra sequence (aq, . © v8) of elements of K such that the set 

lags « A 18 an r-simplex of K for some I < Il. Define 

Oy (845 oo ay) = (aq, «0 EA Rl FAK . . «581, ) 5 

3; (aq, coo 8.) = (aq, co 18g 584 58 175 A 8.) . 

Example 0: Let A_ denote the standard n-simplex, so that a 

point of A 1s an (n+1)-tuple (tgs +--st,) of real numbers such 

that 0 < ty {1l, '= 0,...,n, and Ft, = 1, Let A be a 

topological space. A singular n-simplex of A 1s a map* 

u:A, —> A. Let S_(A) be the set of singular n-simplex in 

*by "map" we shall always mean a continuous function, provided 
both the domain and image are topological spaces.
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A, and set S(A) = U . 8S (A). Define 
nev n 

?y + 8 (A) —> 8 (A) [= 

by 04 u(tgseeesrt iq) = Wtgseeesty 950,t5,..058,9), 

and define 

8; S (A)— S41 (A) 

by S94 u(t, soot 1) =~ U(tgseeosty qstydtynqsty ose st iq) 

It is easy to verify that S(A) is a semi-simplicial complex, 

the total singular complex of the space A, [2]. 

In the examples we have geen two ways in which semi- 

simplicial complexes arise; henceforth we shall consider abstract 

semi -simplicial complexes. For problems in homotopy theory .it 

1s convenient to restrict attention to semi -simplicial complexes 

- satisfying the following condition: . 

Definition 1.2 + A semi-simplicial complex X is sald to satisfy 
Xx 

k-1 
“the extension condition if given xg,.. 3 IX + 1 seeesX,, €X, such 

that CRY = 5 _4%y 5 1 <3, 1d + k, then there exists xeX 

such that 9,x = x;, 1 + k. Such a complex will be called a 

Kan complex. 

Proposition 1.5: If A is a topological space,. then the total 

glngular complex S(A) gatisfles the extension condition. 

The proposition follows from the fact that the union 

of n+tt faces of A 1s a retract of A ; thus a given map 

defined on the union of the n+1 faces can always be extended to 

& nt |
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Although it has long been realized that the total 

singular complex satisfies the extension condition, it was only 

recently that D.M.Kan pointed out that the extension condition 

15 sufficient for the definition of homotopy groups. 

Definition 1.4: Let 'X be a semi-simplicial complex. A point 

of X 1s a O-simplex, i.e. an element of X,; and a path in X 1s 

a 1-slmplex, i.e. an element of x, +. If x 1s a path in X, 

then 0.x is the initial point or origin of x, and OX is the 

final or terminal point of x. 

| Note that if A 1s a topological space, then a path 

in A is a map -u : A, ——> A, and therefore & path in S(A). Further, 

the inltlal and final polnts of the path consldered &s an element 

of S(A) are the same as when considered as the map u : A —> A, 

Let X be a Kan complex. The point &a€X ig said 

to be in.the. same path component as the point beéX 1f there 

exists a path with initial point a and final point Db. 

Proposition 1.5: The relation "to be in the same path component" 

1s an equlvalence relation. 

Proof: (1) To show that the relation 1s symmetric, let x, 

be a bath from & to b, and let X, = 58. Now 9.x, = a = 

04 8g8 = 0 1% Consequently there exists xeX, such that 

J; X = Xy L=1,2, Let Xg = 9px. Then d5%q = 9,9 x = 

90d; x = JgX; = Jpg = a, and d,%q = 09x = y9,x =9 ox, = b.. 
Therefore x5 1s & path from b to a. 

X= Rol 
J ~ 

| b Xp @



: (11) To show. that the relation 1s transitive, let ‘ 

Xs Xo be paths from a to b and b to c¢ respectively. oo 

Thendyx, = b =9,X4- Let x be a 2-simplex such that 

DX = Xgs 9X = X,, and let x, = 0.x. Then x, 1s a path in 

X from & to c. 

(111) That the relation 1s reflexive 1s clear. 

Let T5(X) denote the set of path components of X. 

X 1s called connected if T,(X) has only one element. 

Definition 1.6: If X 1s a seml-simplicial complex, and 

x*¢ X,, defineSX(X; x ) as follows: 
%* | n _* ce oe * 

1) (Xx) = { x|xeX  ., pk = 85 X , Ly" Vinx = x | 

11) 04 (Xo, x") — ND (X,5*) 1s the function : 

determined by, ,, : X,., —> X ,., 1 =0,...,0 + 1 

111) sy tO. (X,x%) —_— QL, (Xx) 1s the functlon 

| determined by 8441 : Xi —> LY i= 0 JAG a] 

v) ( ) AY n(X; x) 

Theorem 1.7: If X is a seml~simplicial complex, and xe xy; then 

~ 1) N(X,x™) is a gemlOsimplclial complex 

11) Iff X satisfles the extension condition, then so 

does NX, x") : 

The proof of this theorem lg straightforward, 

and will be left to the reader.



-6~ 

Proposition 1.8: If X 1s a Kan complex, and Xp Xz € X, 

are such that Ops = 00% 0%, =Q,x,, then there exists 

x, € X, such that ox, = 5020%%2 71%, =D. X,, By, = CI 

Proof: Let xg = 5,0q%,. Then Opxs = Opky =O pps. 

op =70,Xg, and there exists xe Xs such that 

° x = xy T+ 1. Let x, ="0. Xx. Then. 

Boxy =RgoX = BX = 330%, = 532590, » 
| 01% = Oo = CIP = 01 %p, and 

0px =0.09x ="3,0,x = 0y%5. o 

3.x 

22% Cia Co 
73 

dF” 

|< a | 053, 0:% 

3 

Notation and Convention: If X 1s a sel ~semplicial complex, 

and x* is a point of X, let NOx, x*) = X, and let NM (X,x*) = 

ND x,x*)Y, 55 x). The point 5, x € nk of Xx" } (here 99 

denotes the degeneracy operator in X) 1s the natural base polnt 

for Dx, x*). 

Definition 1.9: If X is a Kan complex, and x* 13 a point of X, 

define Mn (X,x*) to be T,(AN™ (X,x*)). 

Now TC, (X,x*) 1s the set we wish to make into the 

n-dimensional homotopy group of X. Therefore lt remains to 

define a8 multiplication in TC (X,x* ) for n > 0. However, to do
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thls 1t ls sufficlent to define a multiplication in IT (Kx 

since Ty, (Xx) = T (N02 ,xy), sp x) E 
Let X be a Kan complex and x" € Xj. According to 

the preceding proposition there is & map of \ 

Sy (X,x") x NX, x" )—> TW, (NUX,x*)) defined as follows: 

if x, 3e0 (X,x%) C X, then there exlsts 

| weX, and Zep (X,x") such that 

DW = X, OW = ¥,9w =2,. Let 

[2] denote the image of Z in y(SL(X,x")). 

Although % 1s not unique, [2] 1s so, according 

to the preceding propogition.. We therefore denote 

[Z] by x:y, and the desired map 1s given by 

(X,¥7) —2. x5 
Proposition 1.10: If x,y eng (X,x*), and x,x! represent: { 

the same element of (SLX, x"), then X*y = yy. 

Proof: Since Ix] = [x'1, there exists y x, such 

that 0,7 = x,2,7 = X,042 = BX By the ex- 

tenslon condition, there exlsts ae€X, such that 

Dot =, 8 = x, 9.8 = xy, and there exists be X54 

such that Db = 557, 9b = &, 0b =Z . Setting 

c= 0b , we have Ct 

dpc =, b =9.9yh = 0,857 = Ys 

0,0 = 0,9, b = 0p0s b-=9,L = Xo 

therefore 0, = X + y; but ‘0.0 = 0405 b=%9,9,b = 9.a = xy, 

and the proposition follows.
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Oo 

) $y = XY | 

X 
* | ed 
— — 

(<7 , 

RoR x 

Proposition 1:11: If X,7,¥'efly (X,x°), and [yl] = [y'l, 

then X+y = Xeyt, | : 

Proof: By hypothesis there exist a,b,ze X, such that 

Dod = ¥,08 = x,08 = Xy 

Oqb = y 50, = x,0,b = xy!’ 

00% = 50X92 = y's 9,7 = y 

Then by the extension condition there exists 

ces such that 0 

Oc = z,0,0 = b,c = a. x/ | xy 

Let 4d =", ¢C; then | CY a 2 

0,d = 0,9,¢ = 0,9;¢ = 9.8 = xy 7 | 

A — — — — y 244 =3,%¢ = 9,9,c = ob = XY 

04 = 50,0 = CRON = 07 = Y950%0 = Xq 

Therefore  X-.y = X-y!. 

According to propositions lo , 111 there ls a map 

Tol DoE," x THN 5(X,x*))—>  T(N(X,x7) ) 

given by [x] «fy = Xy
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=a If X 1s a Kan complex, we shall denote by T (X,x™) the .(— 

5st previously defined together with this multiplication. We 

hall uge Greek letters to denote the elements of TT (X,x). 

Theorem 1.12t If X 1s a Kan complex, x eX, then TT (X,x) 

1s a group for n > 1. | 

Proof: Leto, B,7¥ € TT (X,x™) = (OMX, x) ) = 

To (L(A (x,x))) | 
. have representatives x,7,% & Sy (OF (X,x*)) cnn (X,x™) 

1) Asgsociatlvity: There exist 80,8, ae 07H (XK, x) 

such that pa, = 2, 980 =¥, 984 = yz 

Op? = Y 59585 = X, 9, Ex = Xy ” 

By the extension condition there exists Ny 
- | ( 

be; h(x,x*) such that XYIL=%,.c) 
p 8 

?b=4a,,l =0,1,5. Bet a, =7,b. Then. | 

22 = pb = 39gP = 8g = yz "3 

da, = 9,9,b = 3,9;b 9,8, x | - 

and therefore 9, a, = x{yz). But 

x(y,2) = 3,8, =3;9,b =9,9b = 8; = (xy)z. 
11) A left identity 1s furnished by sux, ; for 

sgxey (X,x*) has ag faces Osx = X,3,80% = 

509; X = 90X09; 50K = X ; 

and hence (54% )x = X. 

111) Left inverse: 

By the extension condition there exists 

a.é ap (X,x™) such that dpa = x,938 = sx, ;



then by definiton 

(0,8)x = 85Xg» 

go that 0,8 ig a left inverse for x. 

In order to see the conmection between the homotopy 

groups of a Kan complex X and homotopy groups as classically 

defined 1t 1s convenient to define NX,x™) directly, instead 

of inductively. We therefore write down the explicit definition 

of Ox, x*) using elements of X, and face and degeneracy 

operators of X. ) 

* -1 
0 (Xx ) = {X]|xe Xpeq? 04x = 55 Ly¥ for 

~~ % 
1 <n, and dy +d; x = 8G X]. This definition is easily 
seen to coincide with that originally given. Now 

Qo (Xx) = {x|x€Xn, "dx = 5 x for -1 < nm, and 

Dx = gi lx*y, Therefore an element of SL ~(X,x*) 1s 

an n-gimplex of X all of whose faces are at the base point, 

and an element of TT, (X,x*) 1g an equivalence class of such 

simplexes. Two such simplexes x,x' are equivalent if there 

| = == ! . = nx exists zeX  , such that Q z= x, z= x', and "9,7 34 X 

for 1 { n. Fiuther, if Xx,x' are two n-simplexes all of whose 

faces are at the base point, then [x:x'] 1s represented ag 

follows: By the extension condition thers exists Z€X 

such that 9.12 = X02 = x!', and (2%: = 5 for 1 < n. 

[xx] is represented by 0 _z. 

Definition 1.13: If X,Y ave semi -gimplicial conplexesg, then 

f 1X —>Y 1s a gemi-simplicial map if
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b tidy) - Yq ’ | ( 

3) 8, f = £3, , &ll 1 . 

We shall often denote FX, by fq . 

Definition 1.14: If X, Y are Kan complexes and f:X — YX 

is a semi. ~simplicial map, then for every gq > O. ff induces a 

function 

4 * * fq MEX) —= W(Lea)y) 
1 as Na (x LF by. fy'lxl=1f xl, for xe LL (Xx ). 

Proposition 1.15: The function rr is a homomorphism for q » O. 

‘The proof is evident from the definition. 

Proposition 1.16: Let A, B, C be Kan complexes 

IYIf £f: A—B, g:B—> CC, are semi -simplicial ( 

maps, and a'e A, » then 

| df at 4 * * 
1 = HG A : . —— TT © y . (g )q Bq Tq + WglXa') —> ql ¥ssfla’) ) 

11) If 1 15 the identity map of A, then 1p 1s the 
identity aut smo rphi sm of TIq(A a ). 

It 1s convenient to derive some of the relations 

between the faces of s 5-simplex. For the following five 

propositions let X be a Kan complex, x€Xy. 

Proposition 1.17: Let x, be 3-slmplex such that 9 95%5 = SgX 5 

all 1, Jj. Let the faces of Xz bE a, by c, 35% in order. 

Then [a] [ec] = [Dbl].
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Proof: Lt -1s straightforward to check ‘that the 

following four 3-simplexes satlsfy the extension 

condition: 

ac 2 _ _ . 
x, has faces x, = 90 Xs IX, = b, dx, = a, and is 

then obtained by the extension condition. Set w = Cho 

x, as glven 

xy = 8g 
Therefore there exists a L-simplex z such that 

ee ale _ _ 2 Then Jpx, = 8%, X, = W, 0.x, = Cy AX, = 39 Xe 

Therefore, by.the rule for addition, [wl] = [ec]. But 

from x, we have [a]lw] = [bl]; therefore [allc] = [Db]. 

Proposition 1.18: Let Xx, be & 3-gimplex such that 

213:%5 = 55%» all i, J. Let the faces of Xs be 8,3 %,0,d, in 

order. Then [cl[al = [4d]. 

Proof: The following four 3-simplexeg satisfy ths 

extengioh condition: - 

£0 = So - 

wee | S— o—— 2. % has faces Jpx, = 8,0 X, = 9.x, = 855%, 

and 1s -obtalhed by extension. Let y ="9 ,X, . 

X, ag glven 

Therefore there exlsts a L-slmplex z such that



= 2 3 - 
- Then 90% = 55% Xz = ¥> CAS = C, 5X3 = qd. erefore 

Ea [dilly] = lec]. From x, and 1.17 we have [y] = [a] 

. Therefore [d] = [cllal. 

ZaProposition 1.19: Let x) be a 3-simplex such that 219%) = 

px,all 1, ]. Let the faces of x) be a,b,c,d in order. Then 
rr 

ildlvllal "= [cl. ) 
SE . four 
A Prooi’: The followlng/3-gimplexes satlsfy the extension 

E condition: 

wr = — pS po =o xy has faces 3 x, ~X( 5%, 9X a, and is 

obtained by extension. 

get v = 9% . 

x, has faces yx, = v,9,%, = 50%, 95%5= Db, and ig 

obtained by extension. 

set w = 9.x, 

X; = 9,0 

X), as glven. 

Therefore there exists a Lk-simplex z such that 

“9 _ = . & o= p . 12 Xy 143 Set Xs O57 | 

By 1.18, (vl = [a], and [w] = [bl{v]™' = [bllal™'. 
| 2 ny 

_ has face I. = H~X = Ww,3.X, = ¢,a,X, = d. 

Therefore [cl] = [dllw] = [d1[blla]”'. 

Setting 4 = sgx in 1.19, x, then has faces 

a,b,c,55%, in order, and the relation [c] = [blla]™! 

holds. But 1.17 applies to the simplex x), to give 

the relation {c] = (al Ib]. Therefore, for 

arbitrary [a] and [bl], [bllal™! = [al”'[b], or



+ [&]lb] = [bllal], and Tm, 1s therefore abelian, 

Since the higher homotopy groups were defined 

by lteration, we have 

Corollary 1.20: T,(X,x) 1s abelian for n 2. 

We shall henceforth write T additively for n 2 2. 

Propogition 1.21: .- Let ze€X »4.2 2, be guch that - 

(1) 9,2 = 8,9, 2 =p, O {r dq 

(2) 9,2 = 35% 5 11, r+] 

(3) 9:9, 2 = sd 7x, all j,k. 

Then [a] = [bl]. 

Proof: If r ='q, the proposltion follows from 

the definition of homotopy classes. Suppose r< q; 

then the following got of g+1 (g+1) — slmplexes 

satisfies the extension condition: 

yy = sgt lx for 1<{r and 1) r +3 

Tpse1 =. p41 

pig = 2 ) 

Tpaz = 840 

Then there exists ye& q+ such that Oy = ¥y> sk 

Vp = 0,.y has faces CRS = 85%» 1$1r+1,r+2; 

iY = 8-37 = b. 
If we iterate this process q-r times we obtain a 

(q+1 )-simplex yy! such that 

ay! = 50% y1 < ad, CRA = a, Oq1 = Db. 

‘Hence [al = [bl].
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i Prop ogitlon i.22: Let X be a Kan complex x€Xy. Tet 

| zeXy » 422, be such that (1) 3, yz = 8,32 =D,3 2 = c, 

“where 1 r <q, (2) Oy Z = 35% i4r-1,r,r+1. (3) 2,3, 2 = sd x, 

all Joke 

Then [b] = [c]la]l = {allc]. 

) Proof: Hypothesis (3) {implies that a,b,c represent 

elements of Ty (Xsx) 5 and since this group is abelian, 

[clla]l = [allc]l. . If r= .q,[b] = [clla] 1p just the 

definition of the group operation. If r< ¢, then 

the following set of g+1 (g+1)-simplexes satisfies 

the extension condition: | 

| Vy = sgt 'x for 1 r and 1Dr+4% 

1 T Ppye® 

and is obtained by extension. Tet w = 9, +1040, 

pes = 2 : 

Ypph = Spe : 
Then there exists 'y €Xyun such that dy = y, ,ifrat. 

Vpep = 3,.1Y has faces 3 Vpyy = 55% 1<r+ 1 or 

10743, dy Tp = W Opto = LBC Fe = 8. 

By the previous proposition, [w] = [cl]. 

It 1s easy to see that by lterating thls process 

g-r-1 times we obtain a (g+1)-simplex y' such that 

CIA = 85%» 1 <a-1, g-17" = wl,
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4 

— and such that either [w'] = [a], [w"] = [¢], or 

w'] = [ec], [w"] = [al. 
In either case [b] = [ella] = [allel]. 

Definition 1.231 A geml-simplicial fiber space 1s a triple 

(E, »,B) where E,B are somt ~gimpliclal complexes, and PIE —> B 

1s a emt -simpiicial map, satlsfylng the following condition: 

if XeBy, 1s Tore er sTmq 2 Ticpq 2+ 2 Tqqe1 € Eg 8TO such that 

p(yy) =J; X for 14k, and ERE = 04 Tyr for 1< Js i,k, 

then there exlsts TEE, such that p(y) = x, and 9,7 = Yi 

for 1k. | 

| let b ‘be a point of B,'and let F,= [xIx By, p(x) = 

5g b ts. Let F =UF, , and defines CH ! Fou ™7 Fq to be 

the function induced by 9; : Boge Bq» and 8, Fy For 

to be the functlon induced by sy By Le ~~ Now F 1s 

8 semi simplicial complex called the flbre over b. 

Proposition 1.24: F is a Kan complex. 

Proof':. SUPPOSE Xs + +s Xpe qs Kp qa re 1X € Fy 

| are such that OX = 344%, for 1< J, 1, Hk. 

Then p(x; ) = 35D; and since (E,p,B) is a fibre 

Space, there exists xe Eg, ~such that px) = 

53*'p, and 3;x = x, for il. Since p(x) = 

53" , xeF yg which proves the proposition. 

oo Now let (B,p,B) be a gsemi-gimplicial fibre 

space 1n which BE and B are Kan complexes, and 

let F be the fibre over a point b of B. Let 

a be a point of F, which we assume to be non-empty,
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For q >» 2 we define a homomorphism 

# n 
1 We (Bob) —> qq (Fra) 

as follows. Recall that an element oe q(Bsb) 

1.8 represented by xe B, guch that Ch = ST for 

all 1 , Since p 1s a fibre map, there exists 

yeE, such that p(y) = x and y= sg a for 1,0, 

Then oY 13 contained in F-1 , and represents an 

element of Ty (F,a). Suppose x eB also represents 

oi » Then there exists ZeBy such that 

Ay Z = 83D, 1<aq, 9? =X, I, 412 = x!, let ye By 

be such that p(y) = x' and 3,y = sg 'a for 1> 0. 

Since. p 18 a fibre map, there. exists wek,, such 

that p(w) = z, aw == 858 0<1 <q, dw = Y, Het" = yi, 

= a9f = = «4 ars Now p(3gw) = gb ¢ andddqw 301 4q¥ 958 1< a1, 

¥-1%0" = CINE CXNY = 9,y'. Therefore [3571 = [3gy’] 

in My (F,a). Since in particular we may take x' = x, 

the element [yy] 1s Independent of both the cholce of 

X .repregenting [x] and the ctiolice of y. We set 

a [3,71 | | 

We now show that 2* 1s a homomorphism. let 

‘pe “Ma(B,b) have representatives x,x! respectively. 

Let ze B+1 have faces 

Then (% represents od +p . Let VE Ey 4, be such 

that p(v) = z, Jv = 508, 0<{1<q-1, and
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CAC = sda for j = q-1 , 4d, g+l, and 1 >0., 

0 Then Jv € Fg, and 
Bx : : 

93 9v 5 &. for 1<q-2, Oy-20" 9% 17 

] Since 999-1 v, 90%" , %% ;4V represent 

oo "3, M(A+p), 3K respectively, from their: 
relatlonship as faces of JV it follows that 

Fda) = +37. 

Theorem 1.25: Let (E,p,B) be & seml-simplicial fibre space in 

which E and B are Kan complexes. Let b€B,, F the flbre 

-over b, a €F, ( we agsume- F non-empty). Let 1: F —> E 

be the Ilncluslon map. Then the following sequence 1s exact: 
NE. H 4 

— yd p fl ——— coe mT, (F,a) — mM, (E,a) — My (B,D) —-> LL pe (F,a) D eee 

Proof: Let X-represent LETT, (Fra). Then pix = 35D» 

and consequently pf * = 0. If X represents 

se TT, (E,a), then OX = 55 a represents ot and 

StH = 0. Agaln, lst % represent L&T], (Bb). 

Let 'y€E, be such that 3;y = 55a, 0<1, and p(y) = x. 

Then 9,7 represents atu ; but as an element of 

LA. (E,a), by proposition 1.21, [yy] = [3,¥] = 

159781 = 0, ana i*3" = 0. 
If x represents AT] (F,a) and 1*(d) = 0, 

then there exlsts veka such that 9;¥ = 58 1 < a+1, 

and Yer = X. Therefore 9; p(y) = 5.0 1<q + 1,



F -19- 

and § [p(y)] =o. 
. Suppose that x represents de Tr, (B ,a) such 

that Hl = 0 . Then we may agsume that x¢F q’ 

= and thus Hx] =. 

Finally suppose that Xx represents Le TT, (B yD) 

such that A = (. Then there exlsts yek such 

that p(y) = X,9,y = sia, 0<1, and [Jy] = 

537 al in T-1 (F,a). Therefore, since p 18 a 

fibre map , there exists y'eE,, such that p(y!) = x 

and 9; = 5371, all 1. Then Sy] =. 

This completes: the proof of the theorem. 

Proposition 1.26: Tot (E,p,B) be a fibre space, p:E —> B 

pe onto, xB» and let FUREPRR FC Ey ,0¢< 15< + oC L, <a, 

be such that Oy V1y™ 01-1 Vig for 8 <t, [1s TE + {0,...,4}, 

and p(y) = 93 Xi then there exists yeEy such that p(y) = x, 

and J, y = yi» 8 = 0,...,r. 
g g 

Proof: If q = 1, then the proposition follows 

Immediately from the definition of fibre space. 

Consequently suppose that the proposition is true 

for 4g <{ mn, and that q = n+1. If the set 

Lgrereslp] has gq elements, the result follows 

immediately from the definitlon of fibre spaces. 

In this case r = q-1. suppose then that the 

proposition is true for rm, m < q-1, and 

that r =m-1>0. Let te{0....,a] be the least 

integer such ‘that tElly, coe A] , Define
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— Jg = 1q for 1.< t.let s' be the largest integer s 

such that 1, <t. Define Jy .= t, and Jj = 

1, for s' + 1 { 8 < r+1 =m. We now wish to define 

Jy such that 

‘ == gf = . 9jgTt =g-1¥y, 5 8 r QT = Yj, 8282. 

The 56% RI EEERR SFR FYPPYRRRER IY has at most 

(a-1) elements. Therefore, using the inductive 

hypothesis, we may choose Vp = Vy such that | ot : 

CIR dT, 5X 8 195, Tt = Vy B28'F 2, 

and p(y) = J. xX. Now the set 

«ig» reens pq] has m elements; therefore by 

inductive hypothesis there exists yeE, such that 

p(y) = x, and 9, y=¥y,.9=0,...,r+1. Then 
g. . 

p(y) = x, ended) v= Tig 1 =0,...,r, 

Proposition 1.27: If (E,p,B) 1s a fibre space, and p 1s 

onto, then B 1s a Kan complex if and only if E 1s a Kan 

complex « : 

Prooft Let E be a Kan: complex; and let 

i Xs vo 1 Xp Xie 41 yess xy be elements of B, , such 

thatd, x = 31% 1 < ds ijk. Choose YoeEq- 

such that p(¥q) = Xgs Choose Viel, such. that 

oly, ) = X and CORNED = 3¥0 , and continue in this 

mammer untlil Yor ogg Tegra Tq have been 

chosen such that 47; = y-¥y,1K i, 1,i+ Xk, and 

ply) = X4 1 + k, This procedure 1s possible 

by the preceding proposition, Now choose yeE,



3d _ ‘such that 9,y = V4 for 1 =k, and let x = p(y). 

= Then 9 x = X, - for 1 +k, and B is a Kan complex 

F Now let B be a Kan complex, and let 

RA EERRED [FE FERRE A be elements of Bg -such 

1] that 3,5, = 3,73, 1< J, L,i4k. Tet x = bly), 
: and let Xé€ By be an element such that Nx =X; 

- for 14k. Slnce p - 1s a fibre map, there exigts 

y € Ey guch that p(y) = x and 9;y = yy for 14k. 

= Therefore KE is a Kan ccmplex. : 

‘Definition 1.28: let X De a semi ~siuplicial complex. 

If x,x'é€ x, Jj and n ls & non-negative Integer then x 2 x 

‘if and only if dy: Jy x = 3 co dy x! for every iterated 

face operator 9%. . $y such that n+r)aq. 

Lemma, 1.29: If x,x!,x'eX, , then 

1) A 1s an equivalence relation 

2) If xAx', then J, x RY x, and 

3) If xn! then 5, X78, X! . 

Definition 1.30: Let X be & semi-simplicial complex. 

Define a semi-simplicial complex x(n) a3 follows: 

1) An element of x 19 an equlvalence clags of 

q-simplexes of A, XxleX being equivalent if 

x Ax, 

2) 3: X= x 1s induced by J, :X,  —>X and 

3) 94. xs PM—s XH 1s induced by 84 TY Kye
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Let X'®) = X, and let Di, : x(n) x(k) be the natural 

map for nk, where o > k, for every k. When there is 

‘no danger of confusion, io will be abbreviated by bp. 

Theorem 1.31: If X 1s a Kan complex, then (x(®) p xy 

is a fibre space for n 2 k, and x(n) 13 a Kan complex. 

- Proof: We wlll first prove that (x{ ,p% x(k), 

1s a flbre space. Suppose that x ex(l) , and 

“that IRENE RTD (PRR 18% are guch that 

Y= dy yy, 1, THK, 1< J, and p(y) =9x. 

Now 1f gq {k, then x) = xy, and yy = 94x. 

Therefore if we choose y = x, then yeXy, 94 = Yq 

and p(y) = X. Agsume therefore that q > k. 

olnce X is a Kan complex there exists yeXy 

such that I; y= 4 for i 4 k. Purther any face 

of dimension <n of y is 2130 a face of some 

Yq + Therefore p(y) = Xx, and p 1s a flbre map. 

Now x) = X 13 a Kan complex, and og ig a 

fibre map. Therefore, x(k) 1s a Kan complex. 

The fact that (xt?) p xk) 15 a fibre space 

follows similarly, and the details will be left to 

the reader. | | 

Pp The fibre spaces (X,p,X 2) are closely 

related to the construction CI) of Cartan and 

Serre [2]. : | 

Notation: If X 1s a Kan complex, xeXn, let 

E (X,x) denotes the fibre of p : X —> x(n ).
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P The complex E (X,x) 1s the n-th Eilenberg 

. subcomplex of X based at x.[31]. 
ES 
#0 
iTheorem 1.32. Let X be a Kan complex, x6X,, and 

i : E, +1 (X,x) ——> X the natural inclusion map. Then 
AH ‘ 

i ) 1 
i 1) bp Tq(X,x) ~~ T(x x) for qa < n, 

2) Tax(®) x) =0 for qn, 

# LL _F 3) LT ME, (Xx),x) = MX,x) for qn. 

I) Ty (Brg (XK, %)5%) = 0 for gq { n. 

Proof: Notice that Boi (X,X)4 hag a single element 

for q <n. This implies(4), and (4) implies (1) 

since (x,p,x\2y 1s a fibre space with fibre : 

| RYE (X,x). 

Let y represent Le wr, (x) x); then 9, y = sd” x for 

all 1 . Nowy 1s an equlvalence class of simplexes | zeX, 

and the above condition on the faces of y implies that all 

faces of dimension -r { n: of & are 5X Therefore 35% is 

in the class y, and A= 0. This proves (2), which implies (3), . 

using the exact gequence of the fibre space. 

Definition 1.33: If X is a Kan complex, let 32 = (x(®1) 5 x(n)y 
i 

The sequence HY, = x° x. 5 i «..) 1s defined to be the natural 

Postnikov gystem of X. [4]. 

Theorem 1.34, If X 1s a Kan complex, ¥ is the natural Pogtnikov 

system of X, x 1s a part of X, and 1f F{0*1) 45 the fibre over



| in the fibre space X, then 

LL (FH) x) = 0 for q#F n+ 
Se 

Lo qr (Fe) yo 7 

: The proof, whlch follows easily from the previous theorems, 

“wlll be omitted. | 

Definition 1.35: If X is a connected Kan complex, n 1s 

«a positive integer, Tr, (X,%) = 0 for q+ n, and TC, (Xx) = TT; 

then X will be called an Ellenberg-Maclane complex of type 

(T0,n). 

Thus what we have shown 1s that, in some sense, any 

Kan complex X can be constructed from Eilenberg-Maclane complexes, 

and that this 1s done by means of the natural Postnlkov system 

of X.
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Chapter 1. Appendix A. 

In Chapter 1, no general definition was given of 

homotopy between maps of* one gemi-simpllcial complex into : 

another. The purpose of this appendix is to rectify that 

situation, and further to prove after the manner of Ellenberg- 

Zilber ([11), that every Kan complex is equivalent to a 

minimal subcomplex. 

Definition: If X and Y ary seml-gimplicial complexes, 

the Cartesian product of X and Y 1s the seml-simpliclal 

complex X Xx Y glven by 

1) (XxY), = { (a,b) | ae Xb e 1 

2) if (a,b) € (XXX), ,, then?d, (a,b) = (Ja,3;b) 

3) Af (a,b) € (Xx ¥)ys then 54 (8,b) = (948,9,b) 

Notation and Convention: Let By denote the seml-simplicial 

-complex defined by the following: 

1) an n-simplex 1s an. (n+1 )-tuple’ (8g ‘eo 18) of integers 

a; such that 0 ay <...{ 8 <8 <...<L8, q 

2) 94 (a4, . 98) = (ag, voor 8y 158g 400 v38.), and 

3) 84 (ag. . vr8) = (8g; veer By 18 584 584 4 yoo »8,,) . 

The semi-simplicial complex OQ gq 18 the gtandard d-simplex, 

and itself has a canonical element of dimension d, namely
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(0,...,9). If X is any semi-simplicial complex, and (oc 

xeX,, there ig & unique geml-simplicial map f hy —> X 

such that £( (0, ceed) ) =X. The semi-simplicial complex 

A, will also be denoted by I. 

Definition: If X,Y are genil -gimplicial complexes, 

for £1 X —> Y are homotopic if there exists F : XXI —> Y 

such that for any simplex. € of X, 

1) Fe x(0,...,0) ) = fala) , and 

2). F(X (1,.0.51) ) = £ (¢) 

The map F 13 a homotopy from fg to £0 If A 1s a 

subcomplex of X, and fla = £, |A, then f, 1s said to bse 

“horiotopic to f, relative to A 1f there exists & homotopy 

FF from £4. to ff, such that F(¢xt) = f(g) for c¢€ A. 

The subcomplex A is a deformation retract of X, Lif the 

identity map of X-——) X 1s homotopic relative to. A .to a 

map of -X into A. 

Proposition 1: : If X and ¥ are seml-gimplicial com- 

plexes, then £4, £, Fl X—>Y are homot pie if and only if 

there exlst functions Ky : Xq —> Your defined for 

1=20,...,4 , and all gq such that 

1) ko = Ly : 
2) +1Kq = fq; 

3) ky =ky 13; LL 

+) 9541K 541 = J31Ky a | 
5) ky = esd yo for 1 > j+1, 

6) syky = ky,q8y for 1 <j, and
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If A 1s a subcomplex of X, and Lola = £1 A, then 

fs is homotopic to £ relatlve to A 1f and only 1f 

ky ( 7) = fale, (0) ) for ec A. - 

Proof’: Suppose that F 1s a homotopy connect- 

ting f, and f,. Define ky (07) = 

Fo40 x CPTERL FIRE Fay .84(0,1).) for 

Té X;, 1=0,...,9. The verification that 

the k's satisfy relation 1) - 7) 19 now a 

routine matter. | 

Suppoge that there exist functlons ky 

satisfying 1) -7). Define 

F(6 x By 1 SRL PULTE .085(0,1) ) = CEL ( T) 

. for ¢e Xgr 1= 0,000,071, Flox 55 (0) ) = foo) 

and F(x s5( 1°) ) = ff. ( ¢). Using relations 

1) = 7), one secs readily that F 1s a gemi- 

simplicial map, and hence a homotpy from f, to fe 

Notation and Convention: For 1 = 0,.. ., q+ , Jet 

AL: {050..,0) —> [0,...,q+1 | be the function defined by 

An = 3<1, and 

AH(5) = + I>. 
Similarly let 9° : {0,..,q+1 } —> {0,...,q4} be defined by 

pI) = j <1, end 
nt (J) = J~1 j > 1 foris= 0,...,4,
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Further denote by at thy —> A q+1 the seml-gimplicial 

map defined by the function at, and by nt : Bg”? Aq 

‘the map defined by nt. 

We now wigh to translate these definitions into a 

slightly different framework .. In ordinary topology, if A 

and B are spaces, a map of. A into B 13 a point in the 

functlion-space of maps of A Into B, and this functlon-space 

is usually denoted by BA, Following an idea of A. Heller, 

we shall now define the semi-simpliclal analogue of a function- 

space. | 

Definition: If X and Y are seml-simplicial complexes, then 

a 13 the seml=-simplicial complex defined as follows: 

1) (9) 1s the set of semi-gimpliclal maps 

f : Xx 8, —> Y, and 

2) if f£ : XXA; — Y, then EYE t XXB, —>Y 

ls defined by 

9% f= riix aly, where 1 ¢: X —>-X 1g the identity map, 

and gyf : XX Bi > Y is defined by 9;f = fo (1 xv"). 

Now, as in the geometric cage, a homotopy between 

between Lost : X —> XY 1s just a path in Y& which starts 

at the point LPN and ends at the point f, . Consequently, 

for homotopy to be an equlvalence relation 1t would suffice 

for Y& to be a Kan complex. (cf. definition of Ty in 

Chapter 1). This 1s indeed the case br Y 1 a Kan com- 

plex. The next few pages will therefore be devoted to the 

proof of this theorem.
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‘Definition: A (p,q) "shuffle" 1s a partition (m,) 

of the ‘set {0,...,p+q-1 | of integers into two dis jolnt 

sets such that AM, ene <M and Vere KY The 

(p,q) shuffle is determined by mM or yp. 

The reason for introducing (p,q)-shuffles 1s 

the following: If T ig a non-degenerate p-gimplex of K, 

let ¥ denote the smallest gubcomplex of K containing z= . 

Then the non-degenerate (p+q)-simplexes of TxA gq are of 

the form N 

3, veeS X 8, «..9,, (0,...,q9) 

where (m,3) 1s a (p,q)-shuffle; and the set of such simplex 

1s thus ina natural 1-1 correspondence with the set of 

(p,q)-shuffles. 

Let 1e€{ 0,...,p+a}. The (p,q) shuffle (Mm, +) 1s 

of type I relative to 1 If either 

1) 1 <M s or 

2) 1,11 € Ly, yee Sy ¥q bs or 

3) 1 ="piq, lm = 9, 

It is of type II relative to I if elther : 

2) 1i,i-1€ Pgs ees py i, or 

3) 1 = p+q, 1-1 =m 

If the (p,q) shuffle (x,v) 1s not of type I or II relative 

to 1, then 1t 1s sald to be of type III relative to 1.
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In this case max {pes s V, }< 1 <{p+g and elther 

1) te {m,,. cop | and 1-1efv ,..., Yq |, on 

2) 1€ (Vea vg | and Telesis | . 

Now we wish to define a new shuffle (M,w) 

associated with (u,v) and 1. 

If (M7) is of type I relative to 1, then (M52) 1s a 

(p,q-1) shuffle. Tet k be the integer such that +) = 1 

in case 1 or case 2, and let k = q in case 3, Let. Vs = vs 

for j<k, ¥y=v5,,-1 for k<J<a-1 (RP) 1s the 

corresponding (p,q-1) shuffle. There 1s an integer r , 

called the index of 1 in (pes v), such that Iz = Hi 

for j { r, and 3 = Ms -1 for r <{j< p. 

If (pm, ¥) 1s of type II relative to 1, then (pm, ¥) is a 

(p-1,q) shuffle. Let k be the integer such that Foo = 1 

In case 1 or case 2, and let k =p 1n case 3. let 

My = py For Jk, pgm pg -1 for kk J<p-1; (4,9) 

1s the corresponding (p-1,q) shuffle. There 1s an integer 

r, called the index of 1 in (Mm, +) such that vy = vs 

for j <r, and v, = V1 for r <{Jj< aq. 

If (p,+) ls of type III relative to 1, then in 

case 1, 1 =p_,1-1 =v . Let fA = My for jr, Fo, = 1-1, 

and let (J ,¥) be the corresponding (p,q) shuffle. In 

case 1,1-1 =p, 1 =v. Let M5 =p for Jw, Myo= 1, 

and let (m,v) be the corresponding (p,q) shuffle. 

Now the associated shuffle (M,¥) of (pm, 7) relative
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to 1 1s defined for all (m,») and 1. However, we want 

a gecond assoclated shuffle (k,%) relative to 1; it 1s to 

be a (p+1,q) shuffle, defined as follows. If r 1s the 
largest Integer such ‘that p< for j <r, then M5 = Hs 

for <r; py = 1, and M5 = Mya] for j)>r. The 

gecond index of 1 in (pm,v) is the number of Vs such that 

LOH; 

Definition: Let X and Y be semi-simplicial complexes, 

and F : X A —> Y aseml simplicial map. If (pms v) 1s 

a (p,q) shuffle, define 

Fla) Fp TT Ipaq by 
F, v8 = 9, +¢.9,, 8X 9, «+9, (0,...,3). i A SS 

Further define 

1 hs ¢ X, > YX 
Fula! ) + %p ? Yprg- 

by Rt a = g | vos ' a xX 3 1 veo t (0, ¢ceu,i-1,1+1,. vey a) 

where (pho!) is a (p,q~1) shuffle; and 1 = 0,...,q. 

Propogition 2: If F : XX ATS —_— Y is a seml simpliclal 

map, then 

Yo 4; z= Hee — is Vv 0 Pn” Frm dame 19 (fo) 
ls a (p,q) ghuffle of type II relative to 1, r 1s the Index 

of 1 in (u,v), and (ps) 1s the associated shuffle of 

(m,y) relative to 1, 

2) Fwy = Fig, zy HF (ov) 

1s a (p,q) shuffle of type III relative to 1, and
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(7) 1s the associated shuffle of (M, 7) relative to i, 
| = PF _ _. 1s the second, agsoci 3) 51 Hse, 9) f(%,7) ond, agsocliated 

shuffle of (pm, ¥) relative to 1, and r 1s the second 

index of i in (Mm, v), and 
RARE yop : - 

+) Hp, v) a F(%) Lf {pm v) 15 a (p,q) 
shuffle of type I relative to 1, (rv) 1s the assoclated 

(p,q-1) shuffle, and r 1s the index of 1 in (k,¥). 

Further, a get {F | of functions 
Co (paw) | 

: —> XY ind on the | | Fs) x, > Dg ndexed on the (p,q) shuffles for 

fixed q, and satisfying conditions 1)-3) above, determine 

a mop F : X XB —> Y. 

The proof ls entirely similar to the proof of the 

first proposition of this. appendix, but more tedious. It 

will be omitted. 

Theorem 3: If X 1s a semli-simpllclal complex, and X 

1s a Kan complex, then Yr 1s a Kan complex. 

Proof: Let F; F__,F LF oe (Yh) —_———t 2° k-1"’ k+1?2°*°*/ 0] q-1 

“be such that {YF = 95-1Fy 5 1<j,1,j+k. 

Let Fl +} ‘be the functions indexed on 
CM) 

the (p,q-1) shuffles determined by F, for 

14k. We wish to produce a set of functions 

Fr , indexed on the (p,q) shuffles, and 
(pv) | TOE 

satisfying relation 1)-4). Order the shuffls 

ag follows: an {r,q) shuffle precedes a (p,q) 

shuffle if r { p. A (p,q) shuffle
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(ps ¥) precedes a (p,q) shuffle (pm, 2) if 

* n 
My = My for 1 < j, and Ms <p . The 

first shuffle is a (0,q) shuffle, and thig 

unique. Therefore, if a ¢ xq we must find 

i 
an element beY_ such that b =_F 

p 9b = (0,...,q-1)" 
for 1 + k; and we can do so since Y is a 

Kan complex. Define Fo, ,q)2 = D. 

suppose now that Fe K, 7) 1s defined for 

(mv) < (M, 7) . 

Cage 1: (*, 9%) 1s the first (p,q) shuffle; 

i.e. My = 1-1 for 1=1,..,p, ¢ =1+p-1. This 

shuffle 1s of type III with respect to p, and (pm, %) 

the agsociated (p,q) shuffle relative to 1p, 1s glven by 

My = 1-1 for 1 {p, Mo =D, ¥,; = Pl, v,;=1+p-1 for 

1 > 1. (Therefore (m,y) precedes (m,v). Consequent- 

ly if aéx, Op (¥, ,*) 13 not specified. Therefore 

If a 1s non-degenerate we may use the extension condition 

to define Fx CE while if a 1s degenerate we may 
3 1 

condltion 3) of the proposition to make the definition. 

Case 2: For some integer 1, and for some 

refl,.e.,pisefl,...;qa}, we have Po =-i-1, and 

vg=1. Now (4, +*) precedes (K,¥), the associated 

(p,q) shuffle relative to” 1, and UF (ux, 4%) 1s not 

specified. The proof for this case is then completed as 

in case 1.
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i Case 3: Mi=1+a-1, vf =1-1, k <q. In ° 

this case wo must have a" Fer, 2) = Fim, 7) where 

(Mv) 1s associated with (A »*) relative to k. But 

FX _. _ 1s undefined, so that F x» *x. 1s free, and 
Tp, v) K* (p59) ’ 
we may proceed as before. 

If k { q, cases 1,2,3 are exhaustive. Therefore 

1t remains to prove the extension condition in cass k= q. 

To do this we reorder the Fs) 's by simply reversing 

the ordering of the (p,q)~-shuffles for each fixed p. 

Now in the inductive step, Mi = 1+q-1, vy = 1-1 

1s the first case to be considered ’ and this may be carried 

through. The reverse of the previous case 2) 1s now case 2}, 

1,6. for some. 1,r,s, re {1,...,p}, 3 {1,¢00,0} 

mM = 1, vi == 1-1, and we proceed as in.case 2. The last 

case is now mf = 1-1, vi = 1+ p-1, and by the relations 

we gee that pra Fux, 2%) 1s unspecified, and the proof 

may be completed.
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Theorem b 2 If X 1s a seml simpliclal complex, A 1s 

= a subcomplex of X, and Y is a Kan complex, then the map 

: p : > —_— veh glven by p(f) = f]A x Ly where f: Xx Ay? Y, 

| is 8 Fibre map. : 

Proof: The proof of this theorem 19 essentially 

the same as the proof of the preceding theorem, 

Corollary 5: (Homotopy Extension Theorem) Tet (X,A) he a 

gemi-glmplicial pair, Y a Kan complex. ‘let f : X — ¥,- 

cand let FF ¢t Ax I ——> Y be a homotopy such that 

F(x 0p,...0,) ) = £(7) for xeA,, all r. Then there 

exlsts a homotopy F:iXxI —> Y which agrees with F on 

Ax I and such that F(a x 0p» + v050,) = f(§) for ge X_, 

all r. oo So 

Now followlng Eilenberg and Z21lber ({1]) we shall. 

show the existence of a minimal subcomplex of any Kan complex 

which 1s equivalent to that Kan complex up to homotopy. We 

first glve some preliminary definitions and lemmas. 

Definition: Ir X 1s a semi ~simplicial complex, then 

XxX, Ve xq are compatible if 9X = cha for £ = 0,...,q. Now 

x defines a unique map Xx : A a X, determined by x(0,...,q) 

= X,; and similarly for vy. The simplexes x and y are 

sald to be homotoplc if X and y are homotopic rel Ag : 

Lemma 6: If X 195 sg Kan complex, then X 1s minimal if and 

only if for each compatible palr x yéXg such that x 1g 

homotopic to y, we have XxX =Yy.
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Proof: suppose first that X 1s minimal, and 

X,7 € xq with x homotopic to y. let k; : (8g) 

xX, 41 be functions satisfying the conditions of Proposition 1 

generating a homotopy from XxX to .y rel Bo 

We then have Okg(0;s eee ,a) = X, 

kel0s..4,a) =kp(0,00051-2,1,..0,0) = x(55(0,...,1-2,1,...,q) ) 

= 8094 X = Jy 8gx for 151. 

Therefore ku(0,...,q) has the same faces, other than the first, 

as does syx. Since X 1s mintmal, we have therefore 

3k, (0y,¢44.,Q) = RILTORERPLS, = 3, 8% = X, 

By an inductive argument of thls nsgture 1t 1s easy to show that 

dq41%4€0,...5,4) = x for all 1. Hence Xx = 1g (0s era) = y. 

The converse is proved in a similar manner. 

Lemma, 73 If X ‘ls a semi -gimpliclal complex, X,ye€ xy and 

Xx and y are compatible and degenerate, then X. = FJ. 

Proof: let x= 5.27, y= s.2'. Then either 

m=n, in which case IX = z and 9.7 = z' implies 7 = z', 

or m4 n. In thls latter case suppose m<n, Now 

eM oq or _ — EN ! Z = 39,7 = I X = oy = 8.7 9-4 92's Therefore 

— 1 a o — ] | X= 8,8, _, 7% Sm 2 m2 and 3X 5. 9,2'+. Since 

I = rm —_ ! : a ; — Z .y PX = 5m % py 2 , z! 8,9, 2' + Then x 

5 8,9,2' = 8.2'=7. 

Now let X be a Kan complex, and define a new 

seim-gimplicial complex M as follows. For each component
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of X choose & representative point. These are to be the 

elements of My. Suppose now that M, 1s 1s defined with 

face operators for r < n, go that M,, C xX, and the face 

operators agree. Consider the homotopy classes of (n+1)- 

gimplexes of X, each simplex having all its faces in M_ - Ws 

choose one representative from each such class, always choosing 

g degenerate representative ir such exists ; these ars to bs 

the elements of Mo qe dy and 8, are induced by the corres- 

ponding operators in X, Thus we obtain by induction a semi - 

gimpliclal complex MCX which is clearly minimal. Wo now 

define by induction a sot of functions 

ky Xx —_— Xppq 1 =0,...,0 

for each diménsion n= 0,1,..., satisfying the relations of 

proposition 1, and such that Bok (x) = X, Fpaikn(x)e M for 

xeX , and k(x) = 8, (x) if xeM,. 

1) If xeXg, ka(x) 1s to be a path such that kg = 

x, d kg(x)eM,. ) 

Further, 1f x eM, we take q(x) = 55(x). 

2) Suppose that the functlons k, have been. defined for 

Xx, for nr, satisfying the above conditions. Last 

X€X, 4+ If x 1s degenerate, then ko{x) 1g de- 

fined by the relations, while 1f x eM, +1 We set 

kq(x) = 3o(x). Otherwise we must find an element 

y= kq(x) such that OY = x and %y = ka(94 4X) 

for 1)> 1. We may choose such a y using the ex- 

tension condition.
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5) Suppose further that ky : Xn +1 —> XL +0 has been - 

defined for 1< j. Then for xé€ x, “1 we must find 

y = k5(x) such that 

= k. cK = 3.k. qy ks dx for 1< J, BF k(x) FL. (x), and 

Ok 5(x) = k dy. for 1) j+1. If x 1s degen- 

erate, define k (x) using the relations. If xeM, ., 

set ke (x) = 3 5(x). Otherwise apply the extension 

condition and chooss ke +(x) arbltrarily, provided 

JHret. If J = r+1, we must have the further condition 

ppp (Xe M.,. : First choose y =k, (x) by the 

‘extension condition to satisfy all the above conditions 

except that on 9, ..7, y 

Then | 

31 9p42Kpyq (X= Jpg Fg Kp q (X) = 9p 4k, x) € My, for 1<r+1 

Ar419 poked (x) = Ip 1d pt Kay (x) = pip Opp Kl X) 

= Ip41 dpapp(X) = Fp Kp D pag X) € Mp 

Thus dp 1o¥ has all ‘its faces in M.., ‘and there 1s therefore a 

unique z¢€ Mo q whlch 1s compatible with and homotopic to 

cy +o Then by an obvious modification of the homotopy exten 

sion theorem, there exists y'e X,..p Such that Jy =v’, irs2, 

and dpia¥ = gz, We finally define k(x) =7y'. This cou- 

pletes the induction. 

Theorem 8: If X 1s a Kan complex,” then there exists a minimal 

subcomplax M of X which 1s a deformation retract of X. 

Further, if M' is another guch subcomplex, then M is isomorphic 

| 
to M'. |
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Proof: The exlstence of M has already been proved, so 

suppose that M' 1s another such complex 

Let r»*: X —>M, rv! : X — M' be deformation retractions. 

Then we have maps 

| 

M—i—> Xx —IZ5M, and 

J SET M —> X > M 

where 1 and 1' are inclusions. 

The mep 1 or is homotople to the identity map of X, and hence 

‘p'oloroit~riol! = 1, One verifies readily that the ldentity 

1s the only map of a minimal complex ‘into 1tself which 1s homo~ 

toplc to the identity, and hence r'oloroil! = 1, 

Similarly roitor'loil= 1, and hence r'oil 1s an lsomorphism. 

Thls completes the proof. 

Reference 

[1] BS. Eilenberg and J. A. Zilber, Semi-gimplicial complexes 
and singular homology, Annals of Math. 51 (1950), 
pp. 499-513... = :
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Appendix 1 B. Definition of Homotopy Groups 

by Mappings of Spheres 

W. Barcus 

let A a denote the semi-simpliclal complex on 

"the standard g-simplex; an r-simplex of A 1s a. sequence 

(Lgs++eslp) with 0<15<...<1,{d the 1, being 

the "vertices" of the simplex. We shall also denote the 

complex A, by I. Similarly, let Aq denote the 

ugual semi-simplicial complex on the boundary of “the standard 

q-simplex, so that Bq 1s a subcomplex of By B gu 1s 

the analogue of a q-sphers, for seml-gimplicial theory. Let 

I denote the simplex (Oy 00e,l-1,141,.. er ) of A q+1’ | 

and let "1 By ‘denote the subcomplex of [ ql consisting 

of simplexes which do not comtalin the vertex 1, We may 

embed Bq in A gat 88 gu OD geq- 

Let X be a Kan complex, x*e Xq. It 1s clear 

that TC (Xx™) , the gth homotopy group of - X based at x * , 

as previously defined, may be considered as the set of 

equivalence clasges of maps’ h:( ay» By) —> (X,X*) 

two maps h, k being equivalent ("simpliclally homotopic”) 

1f thers exists a map F: 8 qa ——> X such that 

F(3; 3) = sg | x*, all 1,]; F(oy) = 59x %, 1=q, q+; 

F(oq)= h(0,...,q9); F041) = k{(0,...,q). 

"For any simplex ¥eX, let T denote the smallest subcomplex 
of X containing ¥ .
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let TT Fx) denote the set whose elements 

are the homotopy classes’ rel(q+1) of maps 

£:1(Bg pq, (a+1)) —> (X,x*), (q+1) being the O-simplex 

consisting of just the vertex a+. 

Lemna 1B.1: Any map g:( Ag. ,(q+1))—> (X,x¥) 1s 
homotopic rel (q+1) to a map Br ( A gyqs (a+ MN (X,x*) 

such that g (ey) = 5g X* for 1 < g+1. 

Lemma 18.2: Let h,k:( A q+1,@12) —>(X,x™) be maps 

such that hie) = (a3) = 5g X* 1 < gq+1, and suppose that 

hak rel (+1). Then h~k rel GU... Ue: 

The proofs of the above two lemmas are stralght- 

forward; one need only extend maps defined on subcomplexes of 

A qe XI and APPR IxI. Detalls will be omitted. 

Lommg 1B.3: Iet h,k:(a,,0 ) —> (X,x*). Then h~k 

rel Aq Af and only 1f ho k . 

Proof: Suppose that h ~ k rel By under a 

homotopy F': 8x1 ——> X. The non-degenerate (q+1)-simplexes 

of A xT are 

Ty = (0, os . 1-1 y1,1,1+1 PI +» @)x(0y, > 904 51 141° oy | q+1 ). 

For each L,33yT;€ A ox I for all K, J , and 3,7 ¢ Ag X I 

for j4+1,1 +1. -Applylng lemma (1.21), from Ty we have 

YoIn the sense of Appendix 1A. Homotopy in this sense will 
be denoted ~; in the simplicial sense, 39 .
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k FFI Ty; from ¥, we have F[3T;=TFRT a FI5,T; 

hence by the transitivity of 7; kg F 13,T,. Proceeding 

inductively, LS EY PR h. 

Conversely, let hg" k. Then we define 

Fb x1 —_— X ag follows. fq = F(ty) 1s to have faces 

Sasi pg = 8000050), By = KO, eeuq),3y fy = 80 x*, 1< a. 
Let P 1 = Fry) ="8,k(0,...,0),1 <q. F - 1s then determined, 

and 1s a homotopy from h to k rel Ag 

Define a function § :T——> TT, as follows: 

[Kh] 1s represented by the map h':( B gaps (a+ )) —> (X,x*) 

determined by h'(6,) = 55 x*, 14 q +1; h'(0,q) = h(0,...,q). 

Theorem 1B.h: $ 1g 1-1. 

A group structure is therefore induced in T, such. 

that § 1s an isomorphism. } 

Proof of 1B. 4: To show that Y 1g single-valued s 

suppose that h~k. Then by (1B.3), h~k rel Ag: If the 

homotopy is Fil x I ~——> X, then F ‘can be extended to .- 

or A q* I —> X by setting F'(w,) = 8, x* for any sim- 

plex “pp of A q+1¥ I - B84 xI. F' 1g then a homotopy from 

h' to k 

Define @: wT, mt, by $ig,] £2 i=l, where 

g: (By Ag) —> (X,x*) 1s the restriction of the map 

g of (1B.1). ¢ is single-valued by (1B.2),(1B.3). It 

is clear that ¢¥%¥ = identity, and by (1B.1) ¢ is onto. 

Therefore $ 13 1~1, which proves (1B.4).
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Using the representation of the elements of Tr q 

88 homotopy classes of mappings of Bq? it 1s easy to 
| 1 oo 

define the isomorphism induced by a path ® in X from 

Xq to x, | R 

A 4: (Xs xg). —_—> mm, (Xx, ). 

Let } € my (X,xg) have representative map £0: (Bq, (q+) —>(X,x5). 

Define F: 8 1X I —> X by F(tx (0g . .+,0,)) = 

fot), ve (Bg, )ps 811 r; F( (g+1,9+1)x (0,1) )=«; . and 

extend by the homotopy extension theorem. Define 

£1108 (a41)) => (Xx) by £,(F) = FTX (1500515) ); 
then A § =f, ]. That Ay, 18 an isomorphism follows by 

applying the homotopy extenslon theorem. The usual properties 

of’ the induced 1somorphlsm may also be demonstrated. 

1) It 1s more convenient to define this isomorphism rather 
than its inverse, as is usually done.



Chapter 1. _ Appendex C, 

In the preceding parts of chapter 1, a good deal 

of elementary homotopy theory has been developed, but some 

gtandard and necessary properties have not yet been stated. 

Thls section will first take up a few of these, and then 

pass on to a proof of the Hurewlcz Theorem. | 

Theorem: If X,Y are Kan complexes, and f,g:X —> XY 

are semi-simplicial maps homotopic relative to [x]- (the 

subcomplex of X generated by xe Xy),. then 

= gh: W(X,x) ——> (YL, E(x)). 

Proof: The theorem follows immediately from the fact 

that elements of TT, (X, x) correspond to homotopy classes of 

maps $1( Ay» Ay) —> (X,x) (see appendix B); since 'f, a 

sre homotopic relative to [x], fod, go: (By Bg) —> (¥, f(x) 

are homotoplc. 

Definition: Two Kan complexes X and Y are sald to have 

the same homotopy type 1f and only if there exist maps 

f:X —>Y and g:Y —)> X such that fg 1s homotoplc to 

the ldentity map of Y and gf 1s homotopic to the identity 

~map of X. 

Propogitlion:: If X and Y are connected minimal Kan 

complexes such that Ti (X,x) =  (L,5) = 0 for g#n, and 

$:1T(X,x) ——> TW (Y,y) 1s a homomorphism, then there is a 

unique semi-sgsimplicial map £:X —_— Y such that
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¥a gs TU(X,x) —D TO(Y f= ¢: TM (X,x > T(Y,y). 

Proof: Since X and Y are minimal they both have 

exactly ons simplex in each dimension < n. Further there 

is a natural 1:1 correspondence between TW (X,x) and X, 

and between © (Y,y) and Y . Therefore f 1s defined and 

15 unique in dimension. < n. Suppose now that f 1s 

defined in dimension < gq, where gq > n, and let ge x, pr 

Then f£( 36) 1s defined for i = 0,...,9+1, and there is 

g& unique element 72 of Yq ne such that oyt= £3) for 

1 =0,...,q. Set f(o)=1. Thus f 1s defined in- 

ductively and satisfies the condition xf = £9,. Suppose 

that sf = £8, in dimension < q (we may suppose that 

qn); and TeX... Then Us; f(g) = sy, Isf(c) = 

8g 4 £( 940) = £gy.4350)= f( 9481 6) = f(s 0 ) for 

J<L, Jay f(a) = f(a) = £(J8;0) = Uf(sy6), JY, 84f(a) = 

9, £( 94,0) Flay 34-1 ec) = 95 f(sy0) for J > 141, 

Consequently By £( v) and f(sy0) haye the same faces, 

and since qg+1 )>n, and To (Y,y) = 0, we have fs ) = 

8, (0). This last assertion completes the inductlve step 

in the proof. | 

Corollary: If X and Y are connected minimal Kan com- 

plexes such that My (X,%) =, (Ly) = 0 for q+ n, and 

Tm (X,x) = (Y,y), then X and Y are isomorphic.
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Theorem: If X and Y are connected minimal Kan complexes, 

and ff: X —> Y 1s a semi-simplicial map such that 

£*, MX, x) => TW _(Y,y) for all q, then f 1s an iso- 

morphism. 

Proof’: Let x1 = (x(n ) P, $1) be the n'th term in 

the natursl Postnikov system of- X, and YH = (yn ),p, YB) 

that for Y (Chapter 1, p. 23). Now it 1s evident that all 

the terms in the Postnlkov system of a minimal complex are 

minimal. Using the preceding corollary, we may make the 

Inductive hypothesls that pln) x(n) —_ y(n) ls an 

1 somorphism. There is a commutative diagram 

| +1 
x (n+1) _ elt) —> (n+) 

| (n) 

Suppose that «,7eX{*') and that (P(g) = £1) (4). 

Then ote(BH) (gy = prem) gy, and plo) = p(t). There- 

fore ¢ =v 1f q< n. Suppose we have proved that 

(D+ Yaty=p 1) (ry implies q' = t' when dim ¢' = 

dim t' < q. We then have 040 = dT, 1 =0,...,9, and 

GG = T unless gq = n+l. If g = n+! we recall that the 

simplexes of dimension (n+1) with a given boundary in a 

minimal complex are in a natural 1:1 correspondence with Tr... 

lett [0l, [tr] be the element of TW, .q corresponding to
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¢ and 7 respectively. Since f(g) = £(7), by 

naturallty #1) = £°¢] ; Since £* 15 an 1somorphism, 

[¢] = [tl and hence ¢ is homotopic to + . Since ¢ and 

T are compatible (1A-11) and homotople, ¢ = ¢ . 

The fact that pint] ) is onto may be proved 

gimilarly. It then follows that f 1s an isomorphism; 

since X, =X») for q  n. 

Theorem: Iet X and Y be connected Kan complexes. Then 

the following conditions are equivalent 

1) X and Y have the same homotopy type, 

2) : there. 1s a map :X — Y such that 

r(x, x) ED Mo {¥,£(x)) for all gq, 

\ where Xx e Xj, and 

) 3) x and Y have isomorphic minimal subcomplexes. 

The proof is straightforward, using the earlier 

theorems of the appendix. and the fact that every Kan complex 

has a minimal ‘subcomplex which 1s a deformation retract of the 

original complex (tA-14 Theorem 8). | oT 

The fact that 1)and 2)1in the preceding theorem 

are equivalent 1s in the topological case a theorem of 

J. H. C. Whitehead [1]. 

Corollary: If X is a connected Kan complex, xe€X,, 

MT, (X,x) = 0 for gq {n, and E_(X,x) 1s the n-th Ellenberg 

subcomplex of X based at Xx, then the inclusion map



1: (X ,X) —> X 1s a homotopy equivalence. 

Definitions and Notations: If X 1s a gsemi-simplicial 

complex, then CX), the group of n-chaing of X, 1s the 

free abellan group generated by the elements of Xi, C(X) = 

¥.C (X) 1s the chaln group of X. Let 3:C_  (X) —> C_(X) 

be the homomorphism defined by 9x = I+ (~1 y1 94x for 
i=0 

xeX, .,- C(X), together with the endomorphism 9, 1s 

the chain complex of X. Let Zz (X) be the kernel of 

3 :C,(X) ——— Crt (X), Bp(X) the image of 9 1Cp pq (X) —> C (X). 

The. group Zz (X) 1s the group of n-cycles of X, and B (X) 

1s the group of n-dimensional boundaries of X. The endo- 

morphism 9 of C(X) has the property that 39 = 0. There- | 

fore B (X)CZ ( X), and the n-dimensional homology group of X | 

ts H_ (X) = Z_(X)/B.(X). The homology group of X is 

H(X) = Zins 0 H (X). 

— { 

Theorem: If X and Y are semi-simpliclal complexes, and 

f,g:X —> Y are homotopic maps, then f, = Be: H(X) — H(Y). 

Proof: lot ky: Xy —> ¥ +1 be functions determining sg 

homotopy between f and g (1A-2, proposition 2), and define 

. — — q.,._,41i : k:C(X) > Ca¥) bY kix) = 33 10 1)" ky(x) for 

xeX, - Now k(x) + k(x) = f(x) - g(x), and the 

result follows. 

The preceding theorem 1s the usual statement that 

homology is an invariant of homotopy type.
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_ Theorem: If X 1s a Kan complex, then Hy (X) = Z(15(X)), 

* the free abellan group gensrated by MX). 

: Proof: There 1s a natural map X, —_— To(X), which 

induces 8 homomorphism Ch(X) ——> Z(15(X)). Clearly this 

map 1s an epimorphism (homomorphism onto). Suppose that 

x€X, ; then IX and 9, X are in the same component of X, 

go that the above epimorphism induces an eplmorphism 

01Hy(X) —> Z(MG(X)). For xcWy(X), let % be an element 
of X, which represents Xx. Suppose that § also represents 

X, then there exlsts. ze X,  guch that YZ =X, 9, z= 5, 

and x ~- J €By(X). Consequently x —> %X induces a 

homomorphism ¢ :Z(T4(X)) ——> Hy(X). Since 46 and of 
are the respective identities, ¢ 1s an isomorphism. 

Definition: Iet X be a Kan complex, XxeX,, and define 8, 

homomorphism - 

o: To (X,x) —— H (X,x) . for n} 0 

as followss, 

Let oe 1m, (X,x) have representative aeX 6 such 

dB = 5g x for 1=0,...,n. Now if n is odd, 3s = 0, 

while if n 1s even, Ja = 52x. Therefore we may take | 

¢(el) to have representative a if h 1s odd, and a-87 X 

if n 1s even, 

To show that ¢ is single-valued, suppose that 

a'e Xx al1s80 represents of Then there exlsts weX
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such that 

n | dw =a, 9, .W=a', OW = 8X for 1<n. 

Then if n 1s even, ow = a~a&', while if n 1g odd, 

OW = 99% - a+a'; and since 85% 1s a boundary, in either 

case &' 1s homologous to a. 

To show that ¢ 1s homomorphism, suppose that 

a,beX, represent %, ga em (X,x). There exlsts veX, 

guch that 

947 = 8, 9p V = b, and 9 = 5 x for 1<{n-t, 

and cha then represents & +p. If n 1s odd, $d +p) 

1s represented by 3 v; but since dv = b- va, Jv 1g 

homologous to & +b, which represents ¢(ad) + ¢( p. Y. ~Simllar- 

ly 1f =n 1s even, bok + pF) 1s repressnted by JV ~ 85 x ; 

and since dv = 5p X - b +O V- a, thls 1s homologous to a +b, 

which represents ¢(d )+ $(p ). 

Theorem (Poincaré): If X is a comnected Kan complex 

end  xe€X,, then $b: m ( X,x) — H, (X) induces an iso~ 

morphism ¢': W (X,x)/[ Tm (X,x), T (X,x) 1, 

Proof: We may assume that X = E, (X,x). Then thers is a 

natural map ) 12, (X) = C, (X) — w/in, 1, and as 

natural map nN 34 (X) —> H, (X). We thus have s dlagram 

m(X,x)/[T(X,x), Wm (X,x)] — 7 H&E
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and we know that: T/ (Tv, 5 Tv, I H, (X) 1s an 

epimorphism. 

IP 8¢€B, (X), a = ob, b€X,, then a 1s represented by 

Ab J,b +3, , which 1s already O in (X,x); hence 

h (B, (X)) = 0, and 1 induces a homomorphlsm 

y EH (X) —> mW / [mw , ml. Clearly ¢'w' and hb’ b 

are the respective identitles, and the result follows. 

Definition: A Xan complex X is n-commected 1f for 

xeX, Te (X,%) = 0 for (¢ < n. 

Theorem (Hurewicz): Let X be a Kan complex, xeX,. 

If X 1s (n-1) connected, n') 2, then Hy (X) =. 0 for 

0<a <n, and ¢ :T (X,x) > H(X). 
The proof of this theorem 1s similar to that of 

the preceding theorem. Here it may be assumed that 

X= E _, (X,x) so that X has only one simplex in each 

dimension < n. 
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grrata: 

1A-7 1ine 7, should be 1) Vs instead of 1 m y 

1A-8 line 2, should start 1 (yw) = F(5,%) By-p 

instead of 1 (x y ) = Y(%,7)



: The geometric realization of a seml-simplicial complex 

John Milnor 

Corresponding to each (complete) semi-simplicial com- 

plex K, a topological space IK] will be definsd.. This con- 

struction will be different from thal used by Glever [4] and 

Hu [5] in that the degeneracy operations of 'K are used. This 

difference is important when dealing with product complexes. 

If K end K' are countable it is shown that |KxK'|- 

ts canonically homeomorphic to [K|x|K'|, It follows that if 

K 1s a countable group complex then |X| is a topological group. 

In particular |K(Tr,n)| is an abelian group. ) 

The terminology for semi -gimplicial complexes will 

follow John Moore [7]. 

1. The definition 
As standard n-simplsx A take the set of all 

(n+2)-tuples (0; RPL ) satisfying O = to <t, Cool LS = 1, 

The face and degeneracy maps ‘dy 3 Wa band 

Dy Amb, are deflned by 

9 (Bs +esty) == (tgreenstysty,ena,ty) 

84 (tg, ? n+2) == (Bs evesbynty oreresty). 

Tet. K = Uso Ky be a semi-simplicial complex. Giving 

K the discrete topology, form the topological Sum 

| K = (Ky) +(K ge ETRE 10:6 J. We) LPP 

These notes sponsored by Pri aceton University under Alr Force 
Contract No. AF 18(600) ~ 1494 |
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Thus K 18 a disjoint union of open sets k.xB,. An 

equivalence relation in K 1s generated by the relations 

2k 
~ (Se 5-1) ~ (98,1) 

(gk, 60, ) ~ LIEN ) 

for 1 = 0,1,...,n. The identification space |K| = K/(~) 

willl be called the geomstric realization of K. The equivalence 

class of (Knob) will be .denoted by lk, 1. 

Theorem 1. |K| is a CW-cotplex 

having one n-cell corresponding to each 

non-degenerate n~glmplex of K. 

For the definition of CW-complex see Whitehead [8]. 

lemma 1. Every ‘simplex k.€ Ko can 

be expressed in one and only one way as 

LE LE 3, Fnep where Kp 1s non- 

degenerate and 0< Jy {...<¢ jpn. The 

indices Jx ‘which occur are preclsaly those 

j for which k € g FL 

The proof is not difficult. See [3] 8.3. Similavly 

it can be shown that every $e A, can be written in exactly 

one way ag 5, = 9: . 93 Ong where 6g is an interior 

point ( that is tot <eCtogag ? and 0 << EL Ln.
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~ By a non-degenerate polnt of XK will be meant a 

point (k 8.) with k, non-degenerate and o, interior. 

lemma 2. Each (k,» o. ek 1s 

equlvalent to a unique non-degenerate point. 

Define the map MN: K —> K as follows. Given kK, 

chooge Jyseeesdys Kp ag In lemma 1 and set 

Niy,By) = (i pp85, 0. 81). 
Define the discontinuous function € :K —> K by choosing 

Lye 150g ‘a3 apove and getting 

ok ,0,) = (9,4 «ns dy LW Sp-q) | 

1 qd 

Now the composition ANP: K —> K carries each point into 

an equivalsnt, non~degenerate point. 1t can be verified thab 

if Xv then AP(x) = Ap(x'); which proves lemma 2, 

Take as n-cells of |K| the images of the non-degenccate 

simplexes of K. By lemme 2 the interiors of these colls 

partition [K{. Since the remaining conditions for a CW—-comp lex 

are easily verified, this proves theorem 1. 

lemma 3. A geml-gimplical map 

£f:K —> K' induces a continuous map 

K{ —> JK] 

In fact the map [ff] defined by kK. 0, => 1£{k,),0, | 

ig clearly well defined and continous,
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As an example of the geometric realization, let C 

be an ordered simpllcilal complex ‘with spaces |[C]. (Ses [2] 

pg. 56 and 67). From C we can define a semi ~simplicial 

complex K, where XK is the set of all (n+1)-tuples 

(8g, «+,8,) of vertices of C which (1) all lie in a common 

simplex, and (2) satisfy agL a; < ...{a_. The operations 

9,84 are defined in the usual way. 

Agsertion The space [C| 1s homeomorphic to the 

geometric realization IK]. In fact the point 

| (ag, ‘eo +08); (Bg, RPA TU )| of |K| corresponds to the point 

of |C| whose a-th barycentric coordinate, a being a vertex of 

C, is the sum, over all i for which 8; = a, of ty “ty. 

The proof 1s easily glven. 

2. Product complexes. 

let KxK' be the cartesian product of two seml- 

simplicial complexes (that 1s (KxK' Jn = K xX, ). The pro- 

jection maps §: K x'K' ——>K and e':Kx K' —> K' induce 

maps || and |p") of the geouetric realizations. A map 

ne Kx KY — IKIx|K'| 1s define by h = | o|x | of » 

Theorem 2, % 1s a one-one map of 

[KxX!'] onto IK|x|K'(. If either (a) 

K and K' are countable, or (b) one of 

the two CW-complexes |K{, 1K" 1s locally 

finite; then % 1s a homeomorphism.
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3 The restrictions (a) or (b) are necessary in order 

to prove that [K|[x|K'| 1s a CW-complex. For ths proof in 
Ean a 
icase (b) see [8] and for case (a) see [6]. 

: Proof (Compare [2] pgz.58). If x" 1s & point of 

© IKx K'| with non-degenerats representative (k x Ko sO) vie will 

. Flirt determine the non-degenerate representative of 

: lol (x") = LN ; Since &, is an interior point of A, 

thls representative has the form 

Co id Ss se | — (kyy-p2 91, 5 8) where  k, Ieee Sy Kg 

(See proof of lemma 2). Similarly |§'|(x") is represented 

b (k! ge PRPS S I oS where Kk! == g . ...a. k! : .. — y LR PRE a) 5) iq 51 Fn-q° Thé in 

duces 14 and Jp must be distinct; for if iy = Js for 
u } | oe : pr 
some  &, A “then kx kK would be an element of Sq, Bp = K ) 

However the point =x" can be completely determined 

by its image. 

i. _ 
: 3 se Lo «2 » . 

In fact given any pair (x,x! Je|K|x]K' | define #(x,x ye[KxK' | 

as follows. Let (iy 8g) and. (k, »6p, ) be the non-degsherate 

representatives; where o, == (tg, coast Js Oy = (ug, ER ). 

Let 0'=wy< ss Cw. = 1 be the distant numbers t, and Us 

arranged in order. Set &, = (Wg, ser,W,.)e Then if 

Mei g are the Lodices M such that Wee 41 1s not one 

of the t,, we have on = 3 . Bp &,- Similarly 

iy i | i ! } . oe _ Lo Co 

n Syyee Ty 0, where the sets {} | and [v3 are 

disjoint.
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Now deflne 

7 ( x,x") = (84 a" . Bu kglx(sy, ’ 8g. kp) o | ) 

Clearly 

w(x,x" = 3 a k S. = k 3 e+ 29 | IIx") = Is, ovog lgu8yl = lym, +008, 8g 

= Ik, 5, 1 = X 

! : . 

and |¢ I7(x,x") = x', which proves that 4% 1s the identity 

map of |[K|x|K|. On the other hand, taking x" as above we 

tty — = { 

= 3 » 8 9A. K es 0 > ~ " | ( i, 1, n-p?*{%3, 54, ¥n-q)> | x", 

To complete the proof it 1s only necessary to show 

that % 1s continuous, However it is easily verified that 

1] 1s continous on each product cell of 1KlxIK' |. Since we 

are assuming that this product is s CW-complex, this completes 

the proof. 

An important special cage 1s the following. let I 

‘denote the sem! ~simpIicial complex consisting of sa 1~simplex 

and 1ts faces and degensracles, 

Corollary. A seml-gimplicial 

homotopy miIKxI ——) XK induces an ordinary 

homotopy Kl x [0,1] ——> JK']. 

In fact the interval [0,1] may be identified with 

II}. The homotopy 1s now glven by the composition 

| | To CL hl IKI x [TI] —— [K xT | ——K'],
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3. Product operatlons 

: Now let K be a countable complex. Any semi-gsimplicial 

map p: X x K —> K induges by lemma 3 and theorem 2 a con- 

tinuous. product | 

ply: K[x [KI] —> |X]. 

If there is ‘an element 6g in Ky such that 85 eg 18 a two-sided 

identity in each XK, then it : follows that legs9p| 19 a two- 

sided ldentity in |X|; so that |K| is an H-space. If the 

product operation p 1s assoclative or commutative then it is 

easlly verifled that ply 15 associative or commutative, 

Hence we have the following. 

Theorem 3. If KX 'is a countable 

‘group complex (countable abelian group complex), 

then |K| 1s a topological group (abelian: 

topological group). 

Let K(m ,n) denote the Filenberg MacLane semi -simplicial 

complex (see [1]. | . 

Corollary. If TW is a countable abelian 

‘group, then for ny 0 the geometric reallzation 

IK(1T,1) | 18 an abelian topologlcal group. = 

Tt will be shown In the next * section that |K (7t,n)| 

‘actually is a space with one non-vanishing homotopy group. 

| The above construction can also be applied to other



| obratc operations. For example a pairing KxK —> K" 

toon countable group complexes induces a palring between 

het realizations. If K 1s a semi -gimplicial complex of 

A -modules, where \ 1s a discrete ring, then |K| ig a 

{opologieal A-module. | 

4 k, The topology of [KI. 

3 For any space X let S(X) be the total singular 

‘complex. For any seml-simplicial complex KX a one-one . 

gem -simplicial mep 1: K ——)> S([K{) 1s defined by. 

| Lk) (3) = Jp, 81. 
Let H,(K) denote homology with integer coefficients. 

lemma 4. The inclusion XK ——> 8([K|) 

induces an isomorphism H(K)~H, (3[K]) of 

homology groups. | | 

By the n-skeleton x(n) of K 1s meant the sub- 

complex consisting of all K,,1<{n and their degeneracies. 

Thus |K(2)] 1g" just the n-skeleton of , [K| considered as 

a CW-complex. The filtration 

| x0) cg) co. 

glves rise to a spéctral sequence (By) where E™® is 

the graded group corresponding to H;(K) under the lnduced 

filtration; and 

B) _ Ho, (KP) fod KP! )). 

Tt is easily verified. that Eq = 0 for q+ 0, and that
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hs 1s the free abellan generated by the non-degenerate 

 p-simplexes of K. From the! first assertion 1t follows that 

Fo = Bp = HE). 
| On the other hand the filtration 

s((x(®) csi) c.... 
gives rise to a spectral sequence [ok where Fo is 

the graded group corresponding to H,(3(|X]) ). Since 1t ig 

engl ly verified that the induced msep Bl BE, 1s an : 

isomorphism, it follows that the rest of the spectral sequence 

is also mapped 1somorphicly; which completes the proof. 

Now suppose that XK satisfies the Kan extension 

condition, so that TT, (K,kq) can be defined. 

lemmas 5. If K 15 a Kan complex then 

the inclusion 1 induces an 1 somorphism of 

mM, (5k) onto m (S(IK[),1(kg) ) =.T, (IKI, lkg,S41) 

Lot x" be the subcomplex consisting of all simplices 

of K whose vertices are all at kg. - Then 1, (K,kj) can be 

‘considered as a group with one generator for each element of 

kK and one relation for each element of K,. 

The space IK'] 15 a CW-complex with one vertex. For 

such a space the group T » 1s known to have one generator for 

each edge and one relation for each face. Thus the homomorphism 

It (K) = , X')y — T, (IK'] ) 1s an isomorphism. 

Wo may agsume that K 1g comnected. Then it is 

known (ses [71 ) that there ig a seml-simpliclal



| formation retraction r: Kx I—> K of K onto K', By 

he corollary to theorem 2 this proves that IK'| 15 a 

Weformation retract of |K| which completes the proof. 

Remark 1. From lemmas 4 and 5 it can be proved, 

ising a'relative Hurewicz theorem, that the homomorphisms 

1 IT (K,kg) —> (IKI, k0,8]) 
‘are isomorphisms for all n. 

y Remark 2. The gpace |K(w,n)| has n-th homotopy 

group TT, and other homotopy grouns trivial. This clearly 

follows from the precesding remark. Alternatively the proof 

given by Hu (51) mey be used wlthout essential change. 

Now let X be any topological gspace.. - There 18 a 

canoni.cal {map | | 

| 3+ 8x) —> X 
defined by  Jj(lk,8. 1) = k, (5 )- 

Theorem 4. The map J : [S(x) —> X 

induces lgomorphisms of the singular homology 

and homotopy groups . 

(This result is essentially dve to Glever [L4]). 

The map J ‘induces a semi-simplicial map Jy :S( | 8(x)|) —> 5(X). 

& map 1 in the opposite direction Was defined at the begin- 

ning of this section. The composition Jp 138K) —> HX). 

1g the ldentity map, Together with lemma k this implies that 

Ju induces 1 somorphi sms of the singular homology groups of 

|8(x)| onto those of X. By lemmas. 5, the fundamental group
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1s e150 mapped 1somorphicly. - Using the relative Hurewlcz 

theorem, thig completes the proof.
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, Chapter II 

4 Monoid Complexes and Production of 

3 Semi~-Simplicial Complexes. 

= In this chapter we ghall conslder special properties 

“=r %an complexes which have a multiplicative structure, and shall 

- =flien begin the consideration of the problem of constructing new 

Agi -simpliclal complexes from such a complex. 

Pefinition 1.1: A semi-simplicial complex [° 1s a monoid 

‘gomplex 1f 

Lo 1) My 1s monoid with ldentlty for qe A 

2) 9, ¢ —— az Sy —> 

are homomorphisms which send identity elements into identity 

elements. 

We will denote by eq thé ldentlty of Tq 

1s a group complex if [" is a monoid complex and 

each Cy is a group. When~each Tq is abelian, [" will be called 

an abelian monoid complex, or an abelian group complex,as the case 

N ) N JO, 

may be. If xelhs the inverge of x will be denoted by - x. 
t 

Example 1: let G be a topological group, and let [' be the 

total singular complex of G. If u,v By —> G are singular 

q-simplexes, define (u.v) : By ——> GO by (Uv) (tgs ee esty) = 

utes «os sty) (ART YRETRA ROR It 1s easlly verified that [' 1s a 

group complex, and that [T is abelian if and only if G 1s abelian.



Lanple 2 3 Iet X be a topological space. A path in X RB 

Le palr (f 1) where r 1s a non-negative real number, and (oes 

[0,7] —> X 1s a map ( [O,r] denotes the closed Interval : 

von 0 tor). A Toop is a path (f,r) such that £(0) = © (r). 

fopologlzo the set of all paths in X by using as a subbasls 

I. the topology the sets W(C,V,U) defined ag follows: 

a 1) C 1s a compact subset of [0,1] 

- 2) V 1s an open subset oF RY (the non-negative real number), 

. 3) U is an open subset of X 

3 4) W (C,V,U) = {{f,r) | (f,1) ls a path in X, 

rev, £(z0)cul. 
‘Now let xe X, and let E(X,x) be the space of paths in ZX which 

begin at x. Define p : E(X,x) — X by o(f,1) = Fr) ; 

Then (E(X,x),p,X) 1s a fibre space in the Feng of Serre [11. = 

l.e. the covering homotopy theorem holds for finite complexes. 

The proof 1s the sane as that of verre, In which noymallzed paths 

fi: [0,1] ——> X are used. Further the space E(X,x) 1s 

contractible, and hag as fibre £2 (X,x), the space. of Loops in X 

based at x. Define (f,r) (gs) = (h,r+s) where 

f(t) 0<t <r | 
-h(t) = { - 7 if (f,r),(g,9)€ R(X,x). 

glt-r) rlt{r +s 

It 1s easily verified that JS2(X,x) 1s a monoid with 

identity, and that Lif [™ 1s the total singular complex of SL(X,x), 

then (7 1g a monoid complsx when multiplication ig defined as in 

the preceding examples by point-wise multiplication of g-slmplexes.



Fo 2,2: If [ 1s a group complex, then [" 1s a Kan 

Ee. 
= Proof: To prove the proposition it suffices to show 

3 that sntisfies the extension condition. Suppose 

E therefore that TREE. FRCS SRR FRR X41 € My, and 

3 an xefy,, such that 3;x = x; for 1+ k. 

a We first show that there exists ue Cas 

‘such that du =x, for 1 {k. This is trivial if 

. k=0; 1f k> 0 we define uf, by induction on 
- r such: that qu” = Xy for i < r. First let 

i u® = $oXq; then du” =.Xg. Now if < k-1, 

set y= 8,1 (2%, 4) Wo wy. 

~ Now by an easy calculation 1t follows that dy" = 4 

for 1 4 r, and 0,7 == (9. UX 5 using the 

fact that 3; u” = xy for 1 < Tr. Therefore ‘Wwe deduce 

that ui! = x, fori {r+ 1. Finally let 

ug = ust and we have 9,u =X. for 1 < k. 

Now we shall show by induction on t that 

| there. exists an element xe Cy +1 such that Ce = xy 

for £ { k and for 1 > q-r+l. For r=20 let xV = u. 

Suppose xT is defined and rv < q ~ k. let 

z' = Bqer ( (gmp 1X MX gmppq y, x51 = xTz% A simple 

calculatlon shows that 3,7" = Sq if 1 { k and 

12 q~-r+1 and Cy = (Bers 1X) Xqopaq .~ It follows 

that 9, xT+ = Xy for 1. <k ‘and: for 1-> q-r. Finally
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q-k+1 if we take for x the element x s We have EB 

94% = X4 for 1 + k. Thus the proof of the theorem 

1s complete, 

Definition 2.3: The monoid complex T° is a monold complex 

with homotopy if it is a Kan complex, 

We shall denote T( (",eq) by T,(M). 

‘Proposition FRY If 7" is a monoid complex with homotopy and 

X,y&y are elements such that Ix = Uy = 04-1 for 1=0,. c,d, 

then [x],[yle T(r, and -[x1llyl = [xy]. 

. Proof: Consider the element z = JR COR A 

and 9 41% = Xo In view of the definition of 

additlon in the homotopy groups, the result 1s 

proved. 

Proposition 2.5: If [' 1s a monoid complex with homotopy, 

then TU (7) 1s abellan, bo 

Proof: ‘Let x,ye(, be such that 9x = Jyy.= ey, 

1= 0,1. Let w = Saye X. Then dW = y, 

Aw = yX, EAL = X., Therefore I[x]lyl = [yx]; 

but [yx] = [y1(x] by the preceding proposition, 

and the proof ig complete. 

The two preceding propositions are the analogues of the 

clagsical theorems that the group operations in the homotopy 

groups of a topologlcal group comey from the group operation in



5 and that the fundamental group of a topological group 

| abelian (cf. e.g. [2]). 

| If Pp is a group complex, we wish to define the homotopy 

_oup of TM in an alternative fashion. 

© rinition 2:6 a = 8 group complex, define 
= oa AA a. 

oo RAS No kornel Oy = [ly => T gr» ond 

El Ti) = TT, (FM. 

Proposition 217 If C 1s a group complex, then - 

1) Dg (Fy (PCT, (M) 

i 2) a1 (Tq (MM) 1s a normal subgroup of Fg. 

1 5) tmage Jy, + lg, (M —> Tl (1) 1s 
: contained in kernel Iq : TC) —> Tq (1) for q » 0. 

Proof: Let XT, (r). Now 31941% =9 qo X = 

for 1 <q, and this implies 1) and 3). 

Suppose ZeTys consider SPR 3q2- 

Since 9; (sz x 9%) = 9; (myz % Z)= oq. for 1 < d, 

Therefore 3g? X 54% € Tg 1 (rm. 

Since [ge (842 X82) == 294, 1X2 , 2) follows. 

The preceding proposition implies that Tr) is a 

chain complex (not necessarily abelian) with respect to the 

last face operator. 

Definition 2.8: If © 1s sa group complex , define 

Vv, ~
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Proposition 2.9: If (" 1s a group complex, 
Co 

Me (0 = Tm. 

Proof: An elemer% of Ty (M) 18 represented by: 

X € My such that 9x = 8-1 for 1 =20,..,., q. 

However, such an element x also represents an 

element of. T(r). Suppose [x] = [yle (rm . 

Then there exlsts Z€ 1 such that 94z = Oy 

for 31 < q, E% = Xx, ger? = Y. How 

8X 2 € Tg 4, and Fg+1 (84% * 2 ) = XY. 

Therefore {xl = {yle 0, (0), and there is a 

natural map of wr) into Ty (). Further 

it 1s evident that this map is onto, and it 1s a 

“homomorphism by proposition 2.k: Suppose now 

that [x] = 0 ETT, (ny. Then there exists 

ze 7, ,(M) such that yz =e) 1<q and 

417 = X. This means that [x] = Oetry (rl, 

and the proof 1s complete. 

Proposition 2.10: A group complex .[" 1s minimal 1f and 

only if gs s [UNREAD —_— hy (rr) 1s zero for all q, 

Proof: Suppose that [- is minimal; then if 

7 x, yer qt” and. dx =v for: 1=0,0..4; 

it follows that J, x = J,,,y. Now if 

XE Ty (M), then I;x = eq = 9304, for 1 <q; 

hence, since [| is minimal, Og41X = 9q41%q41 = 8g, 

and CPE Myer (1) —> Ty tr) 1s zero, 
~~ 

Suppose now that O41 Taser (7M —_— oy 

ig zero for all q, and that Xx,ye Cg+1 are elements
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such that 9,x =3,y for 1 + k. Then 

xy = 84 for 14k. If k=a+, let 

z= xy; if k=4q, let z = (83x TF) (yX ); 

while if k < a, let: z= (849 XT} { 8-19 YX ). 

Then 97 = oq for i # q+1, and dgs1Z = XT . 

But ZET, 4g (NM); therefore by hypothesis Oq+12 = 64s 

go that 9X = 7, and the proof 1s complete. 

In order to define the explicit complexes K(rT,n) 

of Ef lenberg-MacLano ([51,1%1,051) it 18 con- 

venient to recall the definition of the standard 

alternating cochain complex for the  g-simplex 

A q with coefficients in the abelian group WW . 

"The n-dimensional cochaln group CBT) 1s 

the group of functions u defined on (n+1)-tuples 

(fig, «+ opm) of integers such that 0< mos comely 

<. , .< mg q with values in TT , such that 

u (Mg +» opm) = if my = yo for. some idm . 

x cy BT) vigil (By, 10) 1s defined by 
Sumy, . epg) = = yu Its BE PRL 

Then Z™M( A q mm) ( the group of n-cocycles with - 

o coefficients in 1) 1s the kernel of. 

% e™(8y 5) —_— cP (by 3). 

Notation: Let N': [0,...,al —> {0,...,a+1} be 

defined by Nyy =3 for 3 <1, and N(3) = 3+1 

for § > 1. Further, lett: {0,...,q411—> {0,...,q |
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1 be defined by nti) = Jj for j<i, (5) = j-1 

| Definition 2,11: If T 1s an abelian group, define 
Co 0,0 | 

Ky (Thm) = A (Bgy3) . Further, define 9, : LET (Mn) — K, (msm) 

by “9 ulimy, oo Fpl) = WN (my), vos , RX (m) )s and 

5 Kg n) 7 Kgyq (Mn) by 
5; u(my, ¢ 00 sm, ) = aly (my), coy 7m) 

let K(Mn) = UX, (Tn) 

Theorem 2.121 | If TT 15. an abelian group, then 

1) K(W,n) 1s an abelian group complex ,. 

2) TWy(K(mn)) =0 for q+, 
3) TW (K(m,n)) =1T . 

4) XK(m,n) is minimal 

Proof: The verification of u 1s routine, sq that 

| only 2),3) and 4) will be verified. First notice that 

KE, (mn) =0 for gq < n. Therefore, 

{, (X(1T,n)) = 0 for q< n. Further since 

270, TV) = T', we have that TC (X(Tr,n) ) = 

K, (Tr,n) = TT . Suppose now u € 71, (K(Tr,n)) and 

q > n. Then Dgqu=0, i.e. WM qs eee my.) = 0 

_ Whenever (mg, . cet) is a sequence of integers 

such that 0 {my <...< My < g-1. This 

means u(my,...,m ) = 0 unless m, = 0. Therefore 

we only need congider sequences (0,1, gon Lom). 

However, J;u = 0, or in other words



u(0,m, +1, 40 CoM +1) = 0, but this implies that 

4 u(0,m,,...,m.) = 0- unless m, = te Continulng 

oo in this fasion we see that u(y, oT) = 0 

unless my =1 for 1=20,...,n Then since 

3 u 1s a cocycle, Su(0,...,n+1) = 

= 2. of “190, vv, 371, J41 500 e,m¥1) = 0; 

J thus u= 0, and T(r) = 0 for q¥ mn. This 

i implies 2) and 3). Statement 4) follows from 

Proposition 2.70, and the proof ls complete. 

| Definition 2.13% A twisted Cartesian product 1s a triple 

(F,B,E) such that 

| 1) F,B, and E are semi-simpliclal complexes, 

2) BE = {(a,b)laeF, ,beB |, a0, 

3) if (8;D) EE,» 9 (a,b) = (9;8,9ih) for 1 > 0, 

4) if (a,b) & By» 5,(a,b) = (848,8,b), and 

5) if p:®B —> B is the map defined by. 

p(a,b) = b, then PI = doP- 

F 1s called the fibre of the twisted Carteslan product, 

B the base, and E the total complex, Usually, but not 

always, the map p will be a fibre map. | 

E 1s the Cartesian product [6] of F and B if 

(F,B,E) 1s a twlsted Cartesian product and 9,(a,b) = (3 925 b) 

for (a,b)e LE gall q . In this case E ig denoted by 

FxB. Also, the elements of E in any twisted Cartesian 

product will sometimes be written a x b. | 

If 1s a monoid complex, and if (rB,E) 1s a



| hited Cartesian product, then ("acts on the left of E ( 

| boraing to the rule a'.(a,b) = (a'a,b) for a,a'e [yo DeBy | 

= twisted Cartesian product is said to be compabible with 

aL left action of if (a,b) = pa ple ,qsP) for | 

| an)e B,,,- It will invariably be assumed that if a twisted 

lartosian product has for fibre a monold complex [', then the 

| Jtructure 1s compatible with the left action of [ . 

ample 1: Iet A,B be topological spaces, S(A),S(B) 

tho total singular complexes of A and B regpectively. Let 

EA xB be the Cartesian product of A and B as topologlcal | 

spaces, and let D, :AxB —> A,p,:AxB —> B be the projections. 

Then jo induces 3 semi -gimplicial map which we shall still 

denote P, :3(AxB) —> S(A), and P, induces p, :8(AXB) —> 5(B). 

It is esagy, to verify that the map Dp 2 3{(AXB) —> 3(A)XS(B) 

defined by p(y) = (p. (7),0,(¥) ) is an 1 yomorphl sm of gsemi- 

simplicial complexes. 

Example 2: Let E be the total space of a principal fibre 

bundle with fibre a topological group G and base space B. 

Assume that G acts on the left of E. Denote the total 

singular complexes of E,B, and G by S(E),5(B), and S(@) res- 

pectively. : Since G acts on. the left of BE, 3(G) acts on the 

left of S(E), Let ¢:3(B) —> S(E) be a pseudo-cross section, 

i... $(3,) = 9,0 for 15> 0, and $s, = 5,4 . Define 

§ :8(G)x S8(B) ——> S(E) by Y (a,b) =a - $(b) for | 

8 €-5(G),beB(B) | Now V¢ is a 1:1 correspondance, 1s 

\
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| lowpatible with , for 1 > 0, and with s, for all i. 

| Jonsequently 1f S(E) is identified with S(®)xS(B), as a 

et by means of Y we see that (S(G),3(B),8(E)) 1s a twisted 

partostan product. In other words, to make the total singular 

complex of &a principal fibre bundle into the total complex of a 

twisted Cartesian product it suffices to choose a pseudo- 

“eross section, and this can be done for any fibre map. 

{Definition 2.14: If " is a monold complex, a twisted 

Cartesian product ((",B,E) 1s sald to gatisfy the condition (W) 

Lf | | 
: 1) By has one element, and 

2) the map ¢$ of Bye into. Eq defined 

by <(b) = 08g 41 ,b) 1s a 1:1 correspondance. 

‘Theorem 2.15: If 
! 

1) 7 are monold complexes, 

2) £f:0—>1' 1s a map of monoid complexes, 

3)  ((,B,E) and ((",B Bl) are twisted Cartesian 

‘products, the latter satisfying the. condition 

(W), then there is a unique map g:E —> E' 

A such that 

4) 8logPq Coq x Bly; and 

5) g(a,b) =f(a).g (0450) for (a,b)e By 

Proof: Suppose that we have such a map g. Denote 

by Bq the induced map of Eq Into E Then



3 gy(eqgsb)e egxBy; but By, hag one element, so 

1 that gg 18 uniquely determined. Let 

Sly > Og4r* Bi denote. the inverse of 9g 

] Since gio xB, — > 0 q* By » We have Eqe1(CqersP) = 

: SENET ,b) = SEACH +170) Consequently there 

1s at most one such map gj; nut the above formulas 

have defined a function g such that ‘He = gd, 

| Ce xB! . remains to and gle x By, ) Cox a It remains to verify 

that 94.18 = g9y,; and that s,8= B84 - 

If be B,, we observe that ’ 

9,8(e,,b) = (3gsD'), where b' 1s the unique 

element of BY . Further 89, (84,0) = g(e4,9,b) = 

(eg). Suppose now that 9,8 = gd; for 1 <j. 

Then for be Bros 935,418(64,0,D) = 94.1989 (e;b) = 

g CE (e,b) * 

. rN Foy Lt . Now 8:e,xB, 7 Oqu1X By 4118 1:1 into; but since 

909g = identity, 8 1s equal to. sy. Therefore 

358(e,b) = 55%89g(e,b) = 53g9,(e,b) = 3g(e,b) = 

Sgdysy(e,b) = gsgle,b). 

Finally, 84 41 Sg dy (e,b) = S8,895(e,b) = 

Sgs; 94 ( e,b) by inductive hypothesis, and 
C 

Sgs;9,4(e,b) = 8gdy3 4 (6,D) = g9;,,(e,b). 

This completes the proof, 

Corollary 2.16: If (f,B,E) and ({,A,D) are twlsted 

Cartesian products satisfying the condition (W), and g:E —> D, | 
: 

1



] D —- > E are the maps of the preceding theorem, induced 

Ly the identity map. of ™, then g'eg and gg! are the 

| contity maps of +E and D.. 

= We have now shown the essential unlqueness of twisted 

Cartesian products satisfying the condition (W), but it remains 

Feo prove existence. This will be done after the manner of 

‘MacLane [71]. 

Definition 2.17: let © be 8 monoid complex. . 

Lot Wo(P) = Ty, WL (0) = Ppt LATORTA(Y a set consisting 

of one- element, and War (0) =Tgt Wor). 

Now in wr) = IN] Hy (1) define 

1) (a,b) = Iga.b,d, (a,b) = a, where aefl,bely; 
2) Jdpla,b) = pb where 8€ [1 shel, (1M), for q> 0; 

3) 4080) = @ gD); 
4) 5o(a,b) == (808:8q,12P) noting that W, (TM) = 

Fgaztly pW (M5 oo 

>) 9) 41 (85D) = (54.442,5:b). 

Theorem 2.18: If is a monoid complex, then (7, W(r),w(r) ) 

1s a twlsted Cartesian produet satlsfyling.the condition (W). 

a ‘The proof of thls theorem ls straightforward, and is 

left to the reader. a 

‘We remark that the notation here is somewhat different 

from that of [5], in that we consider only semi-simpliclal 

complexes and not FD complexes, and that. w corregponds to 

the W of [5].



If X 1s a Kan complex, and x 1s a polnt of X, 

| ves shown In chapter 1 that there 1s a fibre space 

Ex), with fibre SL (X,x) such that 

of T(x, x) —5>T (LU X,X),85(x) ) 1s an lsomorphism 

or gq > 0. If a 1s a mono1d complex with homotopy , We 

[irs civers onooso tho base point to be sger, amv 
shall denote E(M,e,) by E(M,” and (L(P,e,) by Q((. 

Suppose Now that 3 1s a group complex such that 

Rom =f =0. Then E() =P, end . 

0 >My a E,(M £5 Py ——> 0 is exact; but the 

| homomorphism 30:0 — I q+1 induces ‘& homomorphism 

Cuil — E,(r) such that pu 1s the identity. - Therefore 
: E,(M) ‘1s a split extension of My by L(y this means 

that we may identify the set E([’) with the set SUP) x, : 

the ldentlfication being compatible with the degeneracy operators 

8;, and also with the face operators 94,10 Q. Consequently 

we have the Following | 

Theorem 2.19: If (T 1s a group complex such that 1m ot) = 0, 

then. (f(M),HE({) ) 1s a twisted Cartesian product satigfy- 

ing the condition (W). 

Proof: We need only verify that the twisted 

Cartesian product satisfies the condition (W). 

We have, however, that a = (Mm has one element. 

Further if 5:8, (M a Bopp (MY) 1s the homomorphism 

Induced by 80: Mge1 PM gun then 3,5 1s the 

ldentity; but the image of S 1s ‘just the subgroup
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a ldentified with eg, x ['q,,, 8nd the result is 
proved. 

By 'the preceding theorem we have, therefore, 

that d is in a natural 1:1 correspondence with 

WOM) . However [1 18 a group complex, and therefore 

in general has more structure than W(SU()). 
Suppose now that [' is a commutative monoid complex. 

Then the multiplication map of U'x[" ——>["is a map of monoid 

complexes, ‘This induces ‘by the preceding theorem & map 

W(x) — wr). "However W(x) may be identified in 

8 natural manner with Wr) xw(r). Now: Wo (1) = [gt +*oo 

and the map W(R)xW(f) —) W(r") 1s glven by 

CHPPRRUE YL 16 APRRE AY =D (KF qr ++ XY) Thus W(r) is 

a commutative monoid complex. Further, W(r) 1s also a com- 

mutative monold complex, and as a monoid, Wylr) = ryt Wy (pr). 

Therefore if " 1s a commutative monoid complex, we shall 

always mean by W(f') and w(r) the commutative monoid complexes 

whose structure has just been described. Notice that. if TI' -is 

an abelian group complex, then W({) and W((") are abelian 

group complexes. 

| | Now if [" 1g an abelian group complex and Tio) = Q, 

then Ey (M 18 the direct sum E (0) = q(T) + y Further, 

the map E(M) xE([") —-> E({") given by the multiplication is 

just the map induced by SU) xLUT) —> RUM. Therefore, ln 

this cage we may identify E({') and W{ n( mM), and [' and 

W(L(r) ), not only as seml-simplicial complexes, but as abellan 

group complexes,
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Theorem 2,20: If " is a minimal abelian group. complex ) 

guch that T(r = 0 for q 4 n, and TC, (0) =TT, then ( 

1s naturally isomorphic to K(1T,n). 

Proof: Since nt M) 1s an abelian group complex, 

WMP) ) is 8150; We may thus iterate the W 

construction, setting We = W, We = Warn “by, 

Then since Mg = Q for q<{n, 

P= WR RP). 
Now (1) ls a minimal abelian group complex with 

one homotopy group MT in dimension O. Therefore if 

we .prove the theorem for dimension 0, it will follow 

for dimension n by the above formula, slnce 

K(fT,n) = WHET,0) ). 

, Suppose that -n = Q. Then since 1" is minimal, 

(o =T0 and TT (Mm = 0 for q > 0. Further 

2(r) is minimal, and T, (41) ) = 0 for all q. 

Therefore 2M = 0 for all q. This ‘means that 

Lf Xe[y, 90% = 6g 8nd 3 ...9y, X= ep, then 

X = Ct” Suppose then that Xe 117 and let 

Vy = X 9900. % > z= 195q93%, Then yz = X,97 = 

qr 01+ Og ¥y, = (Free 1X1 3y503 + “3490%) 
= (3. B41 X) (3; ce get) = ey. Therefore y = © qt? 

and X = z. In other words if X€My41 2 then 

X = 8pdg%X, and therefore LEER PP hams Cg 1g an 

1 somorphiam, Consequently ME IT for all gq 

and the mappings TU —> MT induced by elther
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84 OF <q are the identity. However 98g 1s 

the identity, and thus the mapping TF —> TT in- 

duced by 9, is the identity. Continuing in this 

manner we see that the mappings MW —> TT determined 

by elther 31: M4 TT or 85: —_> Per are 

the identity. This proves the theorem,
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4 Chapter 2, Appendix A 

Abelian group complexes. 

Abelian group complexes have very speclal 

properties; we have already seen in the first part of this 

chapter that there 1s a unique minimal abelian group complex 

with the abelian group TU for its n-th homotopy group, 

and with all other homotopy groups zero. Egsentlally all 

other abellan group complexes 816 products of such complexes, 

This will be proved here only for minimal abelian group com- 

plexes, but it will be proved later in studying cohomology 

operations that this is true in general. 
Before dealing with minimal abelian group com- 

plexes, it Will be convenient to olear up a small point. In 

chapter I ,- appendix C, 1t was shown that there was , up to 

isomorphism, a unique minimal complex with a single non zero 

homotopy group Tn “in dimension n. We know therefore that 

such a complex is isomorphic as a seml-simplicial complex | 

with the explicit complex K(m,n). We now see that the 

multiplication in K(tt, n) 1s determined by the fact that 

1t has a single homotopy group TT in dimension n, and that 

1t 1s minimal. 

Theorem: If X 1s a minimal complex, T an abelian 

group, ne 7%, and T,X) = for qn, TC, (X) = 1 , 

then there 1s a unique multiplication in X such that 

xX, = TC (X), and X is a group complex. 

Proof: X, has only one element 1f g<{n. Therefore



|, multiplication 1s determined in dimension  k, where oo 

LL < nN. Suppose now that the multiplication is given in ( 

1 for q < k, k > n, and we want to define a multiplication 

il Xyrq Let X,yeX, 4 ; "we want the product of x and ‘vy 

be an element | zeX such that 04 2 = QX. 9,¥, 1=0,..,k+1. 

ov ere 1s a unlque such z since Tq (X) = 0 and X is : 

intimal. Therefore, we define x.y = =z. It 18 now easy 

to verify the group axioms using the uniqueness of =z. 

2 Now let us turn to the decomposition of minimal 

“abelian group complexes. 

‘Theorem: If is a minimal abelian group complex, then 

=X K(r(r), mn). 

. 

Proof: Since T ls minimal, we have (j=  T(). 

Further recall that Ky Ty Ct), 0) == T(r) , and that 

under thls isomorphism all face and degeneracy operators 

correspond to the Identity homomorphl sm, Now define 

$8 =D KTR), 00 by gt Ty > Klm(r), 0 
1s the composite of CEE Iq —_— ys » and 

55 + (= X(T), 0) — DK (Tod), 0). ¢ isa | 

homomorphi sim, glince J, and 8, are such, and we nesd 

only show that it comuutes with 9 and 8,. We have Co 

34 84 EX; = 537158 for 1< gq, and 55 9g 9 = 595123 

for 1 < q-1, so that Py-1 dx = 9 Ey i {q-1. Further 

587195 3g = se 19,93". Now since [1 is minimal, Lf 

x,x'e (', and J x = Jx, then Ix = J x!'. This means |



power that 3.x = 3, Fq 9X = J x for xe Fy and that 
7 -1.g=-14 1d LC I CEE TE, 
ror X€ NE sd dq IX = 5 33 X Henge we alge. have 

99-1 % = ACH y and A 1s a map of group complexes. 

4 Let A TK(1m, (r),0) —> I" be defined by 

Ao Kol Ty rn, o) Ra My. 1s the identity, and 

Aq = She Ado . It is easily verified that A 1s a map 

of group complexes, and én 1s the identity. Consequently, 

Jetting ' = kernel ¢ , we have p= K(nto (ym x r'. 

Now we are in a position to proceed by induction. 

First, T(r) = 0, Therefore t' = W((p') ) by 

theorem 2.19. However, by what we have already proved 

Py. a Co QUr)= K(m,(R),0)xQ", and M=KX(m(r), 1)x¥ (&) 
since M(S) =m (rm), and WEE ),0)) =K(w, (m1), 1). 
The remaining details of the induction will be left to the 

reader, and the theorem is now considered proved. 

Although we are not yet ready to prove that every 

abelian group complex has the same homotopy type 88 & pro- 

duct of K(TT,n) 'g » We will prove & key fact in this 

proof, namely that for abelian group complexes.there 1s sg 

natural map of homology into homotopy. 

Lemma: If {7 1s an abellan group complex N 
~~ | thy v(Jj) Xe MM), 3x =e, Je ACE and; To! 47) = X 

where &(j) = (-1)J, then there exists Z 6M, CT such 

| q-+1 1 
Proof: let y° =¥8,9,¥ + Then 1 (3,9) TH) = 228 jou



1 A= 

q+1 | oo 
T(J+1)y _ X37 dT — x8030 (M1, 955" TN) = x85 35(X 3y 9 F) = x. 

Suppose now that »r { q, and we have’ defined 

yT ‘80 that . Jyh = ey for 1< r, and” ACRE J) = Xo 

Let yr = V8 dpi « It is not ciritgult ‘to verify 

that Ea + =.8q for *1<r+1, and Tard) = X. 

Let ga, (y3)T a1) , and the result follows. A 

Definition: If ‘T° is an_abolian group complex, define 

Ni =p by 3x = TT (3.8), 

Define my (Pr) to be kernel 9:( — [7 ;: modulo image 

Let ¢:T(R) —> T(r) be the natural map.. 

Propogition: If I" is an abellan group complex, then 

TR EE 

Proof: By the preceding enma ¢ is monomorphism . To 

prove that ¢ 1s an eplmoiphl sm suppose that xy ’ 

and TW (9, x yd) = & WO ve NT and’ mo 3x ) °q-1 . let y~ =x 9090% . 

Tq 3.,00() LI (J) - ~ — 5 31 TT) and _ Now fmol 357 AERA jop(863934 X) » and 8p 

: (3) TT ia.00y (3) Y08q-1 2 do(3yx) . Consequently imo OF ) | 

Og-1 * |



| Tottce that TU (sx yeti) 2 
. gt of 1) 
¥ I) dip X 5% 0% xy”. 

Therefore [x] = [y0leTr ( ) and 9 a =-© 
3 Th TT Ty Ys 0¢ a-1. 

Now proceed inductively to find v3 guch that ERA = 

ogo 1 <{q, and [x] = [vy]. Then v9 represents an 

: plement of TT, "), and the proof is complete. 

Theorem: If [" 1s an abelian grcip complex, then there 

is a map 

AH (0) — mo (p) such that 1f MT (0) —> Hy Gr) 
is the natural map of homology into homotopy, then A ~ 18 

the ldentity. 

Proof: There is a natural map of cqlr) —_— Ug which 

sends r.x into xT for xe Tq This gives rise to 

a chain map of C([) _— or a homomorphism 
. ee 

) 
s 

AYE) — MM ("). We now have a commutative diagram 

M | 
Tm > Hy (0) 

1k 

| . 

mF) 

Letting A = - at , the proof 1s completes. 

Errata: p. 10-7, Theoren (Poincare):



4 The construction FK. 

John Milnor - 

§1. Introduction 

vo The reduced product construction of Ioan James [5] 

assigns to each (W-complex a new CW-complex having the 

| same “homotopy 5ype a8 the loops in the suspension of the 

poriginal. This paper wlll describe an analougous con- 

struction proceding from the category of semi ~gimplicial 

complexes to the category of group complexes. : The proper— 

bles of this construction FK are studied In $2, oo | 

A theorem of Peter Hilton [4] asserts that the 
gpace of loops tn 8 union 8 vee vB, of spheres splits 

into an infinite direct product of loops spaces of spheres . 

In ‘§3 the ¢onstructlon of FK 15 applied to prove g general 

ization (Theorem kh.) of Hilton's theorem in which: the spheres 

may be replaced by the suspensions of arbitrary connected 

(semi-simplicial) complexes. ; 

| The author 1s indebted to many helpful discussions 

with John Moore. Co



C §2. The construction. 

Tt will be understood that with every semi-simplicial 

 souplex there 1s to be assoclated a specified base point. 

let K be a semi-simplicial complex with pase point 

b, Denote = b, by by. Ist FX, denote the free 

group generated by the elements of XK, with the single 

relation b= 1. Let the face and degeneracy operations 

: 94,84 in FK =UFK, be the unique homomorphisms which 

carry the generators k, into CIE s;k, respectively. 

Thus each complex XK determines a group complex FK, 

| It will be shown that FK is a loop space for EK, | 

the suspension of K. (Definitions will be given presently.) 

+ Alternatively let F'K_C FK be the free monold 

(=associative semi-group with unit) generated by Ks with 

the same relation b.=1- » Then the monold complex FX 

is also a loop space for EK. This construction 1s the 

direct generalization of James’ construction. (See Lemma Wh) 

‘The suspension EK. of the semi-simplicial complex K 

is defined as follows. For each simplex k , other than 

b,,, of K there is to be a sequence (Bk), (8,Ek,), (5. Ek), RR 

of. simplexes of EK having dimensions n+l, n+2,,.. . In 

addition there is to be a base point - (b,) and its degeneracles 

(bp). The symbols (52D, ) will'be identified with (by. .). 

The face and degensracy operations in FK are given by 

Jy(Ek) = (Ey ky) (J>0,n p> 0) 

54(Bkp)) = (Bs ik) (J > o)



L 9p (Bley) = (by), J, (Bk) = (by) 

i 5, (Bhp) = (8,Ek,). 

The face and degeneracy operations on the remaining simplexes 

(8B) = 5c (Bk) are now determined by the identities 

1 _ 
9485 1 | 

sa! (3< 140) 

(558 (3 > 1) : ' O j-1 ro so 

5495 = . . 

git (J <1). 

It 1s not hard to show that this defines a semi- 

simplicial complex. The following lemma will justify 

calling it the suspension of X. Recall that the suspension 

of .& topologleal ‘pace A with base point & o 1s the identi- 

fication space of A X I obtaining by collapsing 

(AxI)u(a,x I) to a point. 

“Lemns, 1, The geometric reglization  |EK]| 15 

canonically homeomorphic to the suspension of Ki . 

(For the definition of realizatiofi see [6,] In 

fact the required homeomorphism 1s obtained by mapping. thd 

point (1k, §,l51-t ) of . the sispension of |K|, where §,,



[os peTToeme coordinates (t,,...,t.) into the point 

Ca Je |c IEK|, where O47 has barycentric coordinates 

2 Next the space of loops on a seml-simplicial complex 

wll be discussed. If K satisfies the Kan extension 

~ jspaition then ~~ SK ‘can be defined as in [7]. This 

 jérinition has two disadvantages: 

s (1) Many interesting complexes do not satisfy the 

* gbension conditlon, In particular EK does not, 

St (2) There is no natural way (and in some cagés! 

no possible way) of defining a group structure in £QXK. 

The following will be more convenient. A group com- 

plex G, or more generally a monoid Gomplex, will be.called a 

100p__ space for X If there exlats a (semli-gimpliclal) 

principal bundle with base space K, fibre &, and with con- 

tragctible total space T, 

{By & principal bundle is meant a projection p of 

? onto K together with a left translation Gx T —> T 

gatisfyling EE 

(g, gl )ety, = gor (8! tp) 

where 2, t = t, 1f and only if 2, = 11) and where 

Baty = t) for some g. ip and only if p(t, ) = p(t). 

A complex 1s called contractible if 1ts geometric realization 

is contractible. This is equivalent to requiring that the 

Integral homology groups and the fundamental group be trivial.) 

ERE rid oth Jr Re Se 
0K having the correct Pontrjagin ring, |
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3 The existence of such a loop space for any connected 

complex K. hag been shown in recent work of Kan, which 

|gororalizes the present paper. The following Lemma 1s 

given to help justify the definition. 
Lemma, 2, If K- gatisfies the extension condition, 

‘and the group complex G Ais & loop space for K, then there 

1g g_homotopy equivalence OK —> G, 

| The proof 1s based on the following easily proven fgct 

{compare [7] p. 2-10): Every principal bundle can be glven 

the structure of a twlsted cartesian product. That is ons 

can find a one-one function 

AK GX K — 

satisfying dyn r= Ny for 1>0 and 84 = hay for 

all 1, where 97 1s given by an expression of the form 

Ay (Bulky) = m3) + (Thy )y ky). 

(For this assertion the fibre must be a monoid complex satis 

fying the extension condition.) Thus the bundle is complete- 

ly described by G and K together with the "twlsting function" 

To K, —> CNY where 7 satisfies the identitles 

T= TE Uo), pt = By 11, 

Tagkn = Ips (Sy Th) + (Bagky) = 239k. 

oo Now & map T : 0K _. — Gey is defined by 

T(ky) = (ky). From the definition of QX and the
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"above identities it follows that % is a map. From the 
homotopy sequence of the bundle it is easily verified that T 

induces isomorphisms of the homotopy groups, which proves 

Lenma 2. 

To define a principal bundle with fibre FK and 

base space EK 1% is sufficient to define twisting functions 

TER ~—> FK,. These will be glven by 

(Be) =k, tsk) = 1, (1>o0). 

© Theorem 1. FK 1s a loop space for EK. In 

fact the twisted cartesian product {FK, EK, T | has a con- 

tractible total space. 

It is easy to verify that 7? satlsfles the conditions 

for a twlsting function. Hence we have defined a twisted 

cartesian product, and therefore 8 principal bundle. let T 

denote 1ts total space... . Note that T may be identified 

with FK x EK except that 3, 1s glven.by 

lens (Bky )) = (358, + K-17 (bs )) | 

3 (85 Ek 4 10) = (9g (857 (Bly Ly 10) (Wy) 0' Ens VF HE pg mg on’ ‘Fo n-1i-1 0 1) 

It will first be shown that the homology groups of T 

are trivial. This will be done by giving a contracting 

homotopy 8 for the chain complex C(T). 

Lemms 3, let @ be the free group on generators 

Xy Then the integral group ring ZG has as basis



| (over Z) tho olements gx, -g, where g ranges over 
AN elements of Gj together with. the. element 1 ‘ | 

. The proof iy not difficult. Now define 'S by 

the rules . 

an S(T. (B.)) [| (n even) 
go 1 )} = | | 
2i *‘n’*tn’? | | 

8 81g ky, (by) = (gy, (by NI] 

3 1 15 a1 | ~ pa (1) (948, (8B 30k) = (538, (Byyqd) ] 

Sly (55 Bly 1) = (gps (by) 1 
n a 

= 2 (1) sig dT - 
| ral 18 gs (55 BO0 “ky 1) = (548 (gq 0) 3 

where g, ranges over all elements of the group FR, 

It follows easily from lemma 3 that the elements 

for which 8 has been defined form a basis for C(T), pro- 

viding that k Kon axe restricted to elements other than 

VN) NY However the above rules reduce to the identity 

0 = 0 1f we substitute k= bo . or kK. .,.=Db,_,. This 

shows that 3 1s well defined. 

0 The necessary ldentity 8d+dS = 1-£, where 

dx, = 2 (1) yx and where § :C(T) — C(T) 1s 

the augmentation £2.44 (g5,b5) = 2idly (155b,)) can | 

now be verified by direct computation. Since this computa- 

tion is rather long it will not be given here. 

Prodf that |T| is simply connected. A maximal



Stree in ths CW-complex |T| will be chosen. Then mw CIT] ) 

can be considered as the group with one. generator correspond- 

ing to each 1~simplex not in the trée, and one relation corres- 

ponding to each 2-gimplex. 

- Ag maximal tree take all t-slmplexes of the form 

(8,8, (Ek). Then as generators of mw (IT]) we have all 

elements (g,,(Ek,)}) such that g, 1s non-degenerate. The 

‘relation 9x = (3,x) + (3x) where x = (sg (sEk,)) 

asserts that . 

= (g,,(b, J). 3 

From the 2-simplex (8,85 (Bk) we obtain 

‘ = (g.k,,(by)). 

Combining these two relations we have 

(gs (by) = (gk, (BD), 

from which 1t follows easily that 

for all g,. In view of the first relation, this shows that 

IT] is simply connected, and completes the proof of theorem 1.- 

The following theorem shows that FK is essentially 

unique.



2 Theorem 2. Any principal bundle over EK with - . 

any group complex G as fibre 1s induced from the above a 

 pundle by a homomorphism FE ——> G. . 

Proof: We may assume that this bundle 1s a twisted 

cartesian product with twisting function 7 HOEK), —> G, 

Define the homomorphism T :FK —> G by T(k,) = T(Ek). 

Since z(b,) = 7 (Eby) = T(s,(b,)) = 1 this defines a, 

‘homomorphism. It is easy to verify that T commutes with the 

face and degeneracy operations, and induces 8 map between the 

two twisted cartesian products, : 

| Corollary. If G ls also a loop space for EK 

then there 1s " homomorphism FK — G 1nducing an 1so= 

morphism between the Pontriagin rings. | 

This Follows easily using [7], IV Theorem B. 

. Analogues of theorems 1 and 2 for the construction 

FH(K) can be proved using exactly the ‘same formulas. The 

following shows the relationship between F'(K) and the cons- 

struction of James. | | 

Lemma bh. If K is countable then the realization | 

IF'K| 1s homeomorphic to the reduced product of IK]. 

{ | In fact the product (kp skp ps ve) —_> kok! k"e coe 

maps Kx...xK into F'K. Taking realizations we obtain 

8 map {K |x. x]K| —> FKL From these maps it 1s easy to 

define a map of the: reduced product of {K| into |FK|, and 

to show that 1t is a homeomorphism. |



ES -10~- , 

§3. A theorem of Hilton 

4 If A, B are seml~simplicial complexes with base 

i points a,b, let AvB denote the subcomplex 

Ax [b,lula,]XB of AXxB. Let AX B denote the com- 

plex obtained from AX DB by collapsing Av B to a polnt. 

The notation Atk) ‘wlll be used for the k~fold "collapsed 

| product” A X ves X A. : 

The free product G¥% H of two group complexes 1s 

defined by (G*H), = G * H,. There 1s clearly a canont cal 

isomorphism between the group complexes F(Avy B) and FA XFB, 

Lemma, 5. Th o Comp plex F(AvB) is isomorphic 

(ignoring group structure) ‘to FAX F(B v (BX FA) ) . 

In fact we will show that F(AvB) 1s a split 
extension: 

I—> F(Bv (BXFA) —> F(AvB) —> FA—> I. 

The collapsing map A~B 2 A induces a homomorphism 

¢! of F(AvB) onto FA, Denote the kernel of ec! by F!, 

The inclusion A EWEN AvB induces a homomorphism 

1! FA ——> F(A v B). Since c¢'1' 1s the identity it 

£o110WS that F(AvB) 1s a split extension of F by FA. 

We will determine this kernel F! for some fixed 
dimension n. let a, b, ¢ range over the n~simplexes 

other than the base point of A, B, and ‘FA respectively. 

Then F(AvB), 1s the free group (a,b) and Fl 1s the 

normal subgroup generated by the b. By the Reldemelster- 

Schreier theorem (see [8]) FJ 18 freely generated by the



| ements w(a)bw(a)! where w(a) ranges over all elements 

or the free group la] = FA. Thus 

bi Fi = (b, ¢bo |. 

Pow setting [b,¢] = béb'¢”! and making a simple Tietze 
transformation (see for example [1]) we obtain 

: Identify [b,#] with the simplex bX¢ of BXF(A). Then 

ye cen identify F! with F(Bv (BXFA)). Since this 

1dentiflcation commutes with face and degeneracy operations, 

this proves Loxma, 5. 

Lemma, 6, The group complex F(BXFA) 1s isomorphic 

to | 
F((BXA) v (BXAX FA)). 

The inclusion A ——)> FA induces a homomorphism 

F(B X A) => F(B X FA). 

A homomorphism 

F(B X A X FA) —> F(B'X FA) 

1s defined by | 

bXaXé —> (bxa)b¥ ¢a)(bxe ), 

(This is motivated by the group identity [[b,al],¢ ] = 

[b,a1ib, ¢al™'[b, ¢ 1). 

Combing ne these we obtain a homomorphism 

F(BX A) X2F(B X A X FA) — F(B X FA)



Le 15. asserted to be an isomorphism, 

|: Using the same notation gs in Lemma 5 and 1denti- 

| bXaXé¢ with [[b,al,¢ ] 1t is evidently suffi- 

Co to prove the following. 

= Lemma, 7. In the free group {a,b} the subgroup 

BF generated by the elements [b,¢] 1s also freely gener- 

Ls by the olements [b,a] and [[b,al, ¢]. 

3 The proof consists of a series of Tietze transforma- 

Sion. Details will not be glven. 

= oe As a consequence of Lemmas 6 we have: | 

 ] Lemma 8. For each m the group complex F(B X FA) 

F(B XA)X F(BX A KA)X + x F(BY AM) X F(B X Amy FA). 

Proof by induction on- m. For m= this is 

just Lemma 6. Given thls assertion for the integer m1 

it 1g only necessary to show that mB XA ym) 1s 

isomorphic to F(Bx AL) ) % F(BXATK FA) . But this follows 

immediately from Lemma 6 by substituting px ALT) in place 

of B.- | 

Theorem 3, If A and B are semi-gimplicial 

complexes with A connected, then there 1s an inclusion 

homomorphism 

F(Vo BXAL)y —> FBXF(A)) 

which 1g a homotopy equivalence. y 

Proof. Every element of FV, pxa‘lly



is already contained in | . oe 

2 FOV, BRAD) = FBXA) x - + ¥FBXAM)). 

or some wm. Hence by lemma 8 it may be identified with an 

| olomont oft F(BXTFA). Since A 1s connected , the "remainder 

orm’ B %A (18) x FA hag trivial homology groups in dimensions 

Jess than m. From this it follows easily that the above. 

inclusion induces 1 somorphisms of The homoLopy groups in all 

4 Ea Remaxic. : The complex B may be eliminated from 

‘Theorem 3 by taking B as the sphere 5° , and noting the 

oo Combining theorem 3 with Lomma, 5 we obtain the | 

following 

| Corollary. If A is connected then there 1s a 

homot; ony eq ulvalence I oo 

p(n) x FV, 2 Bra) C FavB). 
This corollary will be the basis for the following. 

Theorem he let Ags os A, be. connected complexes. 

Then F(A s+ vA.) has the same homotopy fLype as a weak. . 

infinite cartesian product TT,0. F(A;) where each A;,1i)>r, 

has the form 

ACI LL % a0) : 
1 Tr : 

Ihe number of factors of a given form 1s ‘equal to the Witt



a rs mld) (n/a)y oo 

here n= nk eer 4m =a CD (ny sve e51,)e 

ks Proof, For n=1,2,3%,... define complexes Ay 

to be called "basic products of wolght n" as follows, by. 

induction on n. The given complexes A ,...A, are the 

‘paste products of weight 1. Suppose that 
ve A, yes hy .e shy a or 

are the bagic products of welght less than n. To each 

where “e( 1) = . +omp (1) = 0. Then as basic products of 

welght n take all expressions. AX Ag where welght~ A, + 

weight A. =n and o(1)< $< 1. Call these new complexes 

Ay REEX Ag. in any order. If iy AX A, define 

eh) = J. (For this disussion we must consider complexes such 

as (AXB)XC and AX (BX C) to be distinct!) This completes 

“the construction of the Ay - 

For each m > 1 define 

R, = F( V's m Ande 

e(h)<m 
Thus R, = FAN ¢ 0 VAL). 

Lemma 9. There ls a homotopy egqulvalence 

F(A) % Rit ¢ Ry ’



. Note that R =TF(A v B), where B=N1pm A. 
8 g | | | CT elh <a 

tho corollary to theorem 3 there 1s 8 homotopy equivalence 

HFA) EF BX C F(A v B)=R . ot (An No, BRA) C F(A,v B)=R,. 

anc 

“dipstituting in the definition of B and using the distributive 

Law 
(AvB)YX C= (AXC) v (BKC), 

fhe gecond factor of the first expression becomes 

FN,_ mm, AXA). 

But (filling in parentheses correctly) this is just 

F(N rom y= R_. , 
K oth nm *n it 

which proves Lemma 9. 

| Now it follows by induction that theré 1s a homotopy 

equivalence 

Rr 5 * 60 | — - (A, ) X F(A, )x X F(A )X R41 C R, F(A v ooo vA: ). 

This defines an inclusion of the weak infinite cartesian 

product LI F(A;) into R, . Since A, yo cosh are con- 

nected, 1t follows easily that the "remainder terms" Ry 

are k-cormected where k —> ® ag mw —> © , From thig 

1t follows that the above inclusion map Induceg lgomorphismg 

of the homotopy groups in all dimensions. This proves the 

flrgt. part of theorem 4.



2 Let ® (n, soe FE denote the number of Ay, 

he vo com AX pal 20 comute then 
bers consider the free Lie ring Ii on generators ols cesy ole 

1 biloment oly = Lely, 4] of L, for hs= Tl, TH, . 

men the elements oy obtained in this way are exackhly the 

andar monomials of M. Hall [2] and P. Hall [3]. M.Hall has 
proved that these elements form an additive basis for L. 
[ The number of linearly independent elements of IL 

ten involve each of the geniorators o ress dy, A ‘given 

miber 1,,...,m, of bimes has been computed by Witt [9]. 
Binge His formula 1s the sams a8 that Ln theorem k, this com- 
sletes the proof. . 

In conclusion we mention one more’ interesting con- 

sequence of theorem 3. 

Theorem 5. If A is connected then the complex 

EFA has the Same homotopy. type ag Vie, EAL), 

The proof 1s based on the following lemma, which 

depends -on Theorem 1, | ; | 

Lemmas 10. If A 1s connected, there 1s a 

homotopy equivalence | | 

EA C WFA , 

In fact the inclusion is defined by 

(s>Ea_) — 5s (a, , Ine yo x15) IL is easily verified 

that this is a map, and that it Induces a map of the twisted



aH gslan product T into the twisted cartesian product W, 

ince both total spaces are acyclic, it follows from [7], IV" 

[ihoorom A that the homology groups:-of EA ~map lsomorphicly 

lito those of WFA. Since both spaces are simply connected,’ 

“this completes the proof of Lemma 10. - - 

. Now from Theorem 3 we have a homotopy equivalence 
— 0 (4 _ we(V,_, AY) wEEa. 

fin view of Lemma 10, and the identity 

2 E(AvB) = EAv EB, 

‘this. completes the proof. ~~
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Eo Chapter 3. Acyclic Models 

= Reyclic models. TL 

Eg If A 1s a category ard N{ a subset of the 

= sbjects of ., we shall denote By Q¥ -the set of mapplngs 

“dn A wlth domain in 6. = 7 wT 

Definition 5.1: ~The quadruple(@ ,qC, «, I< } will be called 

E category with wodels if A. is a category, §JY, a certain 

subset of the objects of A, called the set of models, and 

“f§, p ars functions.of A into itself such that 

+0) L (1AM) =p (1 (M)) = 1(M), Mee 

C1) plu)y«(u) =u 

2) « (f(a) =p(«(u)) = 1(M) where M = domaliri #8 (u) 

= range « (u). 

3) p(f ua) = b (fp (u)) where ff 1s a mapping of dL such 

that domain f = range u. 

A) JL (f uw) = A (fp (u)) L (u), where f msans the. same as 

in 3); 

where wu é al throughout. 

Notlce that 3) implies pp (0) =p (a) and 1) 

and 2) imply « (ol(u)) = (u). 

Aggumption: For the rest of this section, (QQ, ,«  f ) 

1s a flxed category with models; 1t will usually be denoted 

by dd ; "object" wlll mean "object of a", and "mapping', 

"mapping of A ". 

1)The theory ofacyllic models was introduced by Ellenberg 
and MacLane [1]. The version given here is a part of [2].



| sion .2: For any object A, S5(A) will denote the 

5 mappings u : M —> A with Met, such that & (u) = 1(M). 

Lion .3: For the rest of this paper, MN. wlll denote 

Eke commutative ring with unit element; Yn the category 

FN -modules and A -homomorphlsms. 

 Jrinitions nH If XK :&—)> G, 13 a covariant functor, 

a ua: M—> A an element of ql , We ghgll denote by 

mw the module K(M) with u added as an indexing 

oywol; the elements of K(M, 1) will be denoted by (k, u), 

| here ke K(M); (k, u) + (k', u) = (k +k, a), Nk, u) = 

ax, u) if Ae, We define the natural isomorphisms 

- 1(u) | 
: KM) &———— K(M, u) 

EAL 
=i 

- (uk = (k , vu); Jlu¥k ,u) =k . 

: We now define a new functor K tA => Gn as follows: 

: K(A) = 2 1eS(A) K(M, u) for any object A. 

K(f) | K(M,u) = 1(A (fu)) K (& (fu))j(u) for any 
map £ : A—> Bj thus K(f) | KM, u):XM, u) —> | 

K (M!, 8 (fu)) where M' = domain B (fu); clearly 

p (fu) € S(B), as required. 

Next, we define a natural transformation of 

functors [k: K— K by 

Tg (A) K(M, u) = K (u) j{u) for any object A; the 

necessary naturality condition 1g eaglly verified.



= 3-3 

The functor X ‘18 sald to be representable if 

hore 13 a at ural tranafomation of functors : 

I : K —) K such that [yg Kg: K—> K 1s the identity. 
a Cn 
“Notations and Convent lons. 305 ie Let d 9a denote the category 

of differential ‘A “modules ‘and admissible homomorphisms; 1in 

other words, an object of d%a is & palr (G , dg.) such 

that G “ZnS 0 Cy 8 direct sum of A -modules, dg. 1s a 

] A -endomorpht a of Ks such that da de = 0, d a, © Gp mg 

for nyo and dg Gy =. 0. A mapping f°: (G, dg)—> 

(F, a) of ag, 1s & MN -homomorphism f:G — F such 

that dgpf = fd. Usually we shall denote (G, dg) simply 

by G, and dy, indiscriminately, by d. The elements of 

G, will be called n-dimensional. For every object (G, d) 

we define the k-skeleton (a¥, d), 1tself an object of ad, , 

by setting G5 =G for n{k and & =0 for nd k, 

and using for d the natural regtrlction. In the category 

da » homology 1s defined as usual; we write 2(G) = 

kernel dy, B(G) = image dg, H(G) = Z(G)/ B(G),Z (G) = 

Z(G) 0 Gy, BL(G) = BG) Gy, H(G) = 2, (G)/By(0) 50. that 

H(G) = § nd o H (G). Note that H and Hy can be rogard- 

ed as covariant functors dda —> an ; the definition of 

H(f), H (f) being evident. © The natural transformation 

Gy — H, will be indiscriminately denoted by £ . 

Definition 3.6: If K :& —> dp 1s a covariant functor, 

define K? :q—> agp. by KA) = (K (A))" for any object
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snd KM) = K(f) | KA) for any mep f : A —> B, 

Further, define Ko: a—> du by K_ (A) = (K(A)). ,K (F) 

X_(A) = K(F) | K (A). We say that K is representable if 

KX is representable for every n > O, this 1s the same as 

saying that XK 1s representable when regarded as a functor 

X PA) Gy 

| Notations 5.7: By mn we denote the subcategory of ( the 

objects of which are those of ®t , and the maps all maps of 

the type A (u), or compositions of such maps. | 

Lot X, Lt Q—) gy be two functors and 

U: Kim —> L{fit a natural transformation; then UU deter- 

mines a natural transformation U: K — L by U IK(M , 1) = 

1(u) ot) 3a) (ef 1.4); so that J KM , a) : X(M, u) 

—> L{M, u). If U 1s the restriction of T : K —> IL, i.e. 

U=T 1ire, we shall write U= T ; and in this case we have 

Try =p T. 

This last remark ls applied, for a functor 

K :Q.~—> dgn , tod.: XK — K; we thus obtain d : K —5X 

such that ac = (0, d (x = "x d ; and accordingly we can (and 

ghall) regard KX as a functor A —> aga . 

Defindtion 3.8: A covariant functor K :d—> Ag will 

be sald to be a cyclic on models 1f there exist natural 

trang formations” of functors. 
A \ AN A n+ Hy K[—> K, la, U: KITE —> K |i 

0 Note that we use 1(u), (u) indiscriminately. In this 
formula J(u) 1s related to K, 1i(u) to L. 

2) Here dg, 1s considered only as a category of A -modules; 
l.e.\)(M) 1s a homomorphism of A -modules, but does not pre- 
serve gradation nor commute wlth Ad.



| oh that UK IRC EK [fkand, writing Ug = UI(K, #8), 
| conowing aro satisfied: 

Lore i: Ki —> HE 1s the natural transformation. 

otic that for MEE, any element he Hy XK (M) 1s of 

[the form ek where k € Ky (M). Now, by the above 

- cepsk = £( 1 -dUgk = £k 

50 that condition (1) implies 

Lemma 3.9: If K : => aga is acyclic on models, there 

‘are natural trensformations of functors yn iE HK —> K, , 

U: K —> K such that Uk, CK, and, writing 

0, =Ul kK, ) 

(1) a0, = 1 -9¢ 
(2) ad U, + Ups d= 1 if n> 0 

(3) Up? = 0 

(4) g J) ~ 1. | 

This 1s immediate from 1.8. 

Notation 3.10: By Tie denote the sub-category of ( the 

objects of which are all those of WY, and the mappings all 

mappings having models as domain and range. Te and 7¢ have 

the same objects; but Te has more mappings.



a iE let K, L : (LL —> d Gabe covariant functors 

if T : HK| 7% —_— HL | fe be a natural transformation 

ctor; let. XK be representable and L acyclic on models. 

"there is a natural transformation of functors O : K—> L 

tna 0 | (Ky|@) induces T; 0 will be called -"an’ 
Lionsion of T", | 

. a. 
4 Proof: T induces T : HK —— HL. Since L 

1s acyclic, we have transformations U: L -—> I, 

7 : HL —_ I, satisfying the conditions of 

| 1.9. We define 0g : Kg => Ly by 04 == 

Tek, and 0, : K, —_ L by % — 

or RAV PodX - (cf. eT). ‘Then d 9, = 

4 ar, Ug 0 aX = My, a Up 00 a% = 

: (1 #210, aXg = 0p, 0p dR = 00 3% = 

0, d, since £Qd = 0; in fact g 0g d [= O. 
For restricting everythlng to the category we, 

we haves 0, d = 215 Ten d = Conf T5%y d = 

Copp, Tx d =T Mg Eg d = TegAgd = T€d = 0. 

| We proceed by induction: if Or 1s defined, 

50 15 0 , and we Write Oy, = "0x0 a%e; and 

verify d Ori = ary,v ie Oy dXg 

= Lally axe | 
= [yg 0 pr 0 a xg 

= T'p, 0, aX 

C= 0 My aX 

= (,d, as required.



~~ Further notice that. on Wwe have 

== Or = MTe Res = 1. eX, = 3 ely =e Tedy = Ng eyTeXy= Og TeX 

= = LTlggt dg = Telly Ng = TE, and so 0 is 

- an extension.of Te 0. uo 

pofinition 3.12: Let K, L : & —> dda .be covarlant 

_ponctors and let 9, ¢' : K'~—> L be natural transforma- 

“%ions. A homotopy V between ¢ and O! 1s a natural 

‘transformation of functors-. V : XK —> L such that VK CL 

and AV + Vd = ¢ - 0. 

Theorem 3.1%: If XK, L : &—> d Gn are covariant 

functors, T : HK |W —> HyL [fiPis a natural transforma- 

tion of functors, K ls representable and IL acyclic on 

models, and 1f @, ¢' are extensions of T (cf. 1.7), then 
: t 

there 1s a homotopy V between ¢ and © . 

! Proof: Since 0, ¢ are both extensions of T, 
AA Aa, A A oo 

wo must have ¢05=205= Te . We define 
: TA RI 5 

—m — 1 

where U, 4 again are the functors appropriate to L, 
A A A ~ ) 

— | ay 
. Then. dv, = Cy, d Uo(®g Po) Ag 

Cp (1 =92) (By - 0X = tpn Vm WW © Poli 
Ce EASA 

= Ug (05 - 050%, 
— oh! 

as required. Now, we proceed inductively. Let 

Vis neo A with all the necessary properties be



defined. Then, in particular 

Po A 7 Oy maha 

- = Vg @d=0 Ey AA A AA : 
= whence d(¢_..-¢' , -V_d)=0. Now we define = k+1 Tk+1 k . 

i Near = PU Ogy = Byy — Vy A Rg 
3 Then 

=e = - 0 - 
= Ke+1 L~. eat Pe Byes 4) Xk, 

= TL =U d) (Gm Orc KAI Ag- 
IT YH 

_ = 0 (Oy 7 Op ~ Ve Dg 
I Ye oat IE 

i rr "Oey TV A 
as required . . 

: Combining 1.11 and 1.13 we get 

Meorem 3.1%: If K, L.: A—> d qx are covariant repres- 

entable functors which are acyclic on models, and 1f T : HK 7 

—> HyL[M® 1s a natural equivalence, then there is a 

unique natural equivalence ¢, : HK ——> HL such that 

Of (HK IW) = T,and such that ¢, 1s induced by an extension of T 

Now let (I be the category of semi-simpliciasl com- 

plexes and maps. The model objects are to be the semi- 

simplicial. complexes Ag (cf. appendix 1A), and « and fg are 

defined as follows, If u: AW —>X, let x = u(0,...,q)¢€ xq 

If x 1s non-degenerate, defines «(u): By — Bq to be



f | dentity, and @(u) = u: By —> X. Suppose that x 1s 

- then x =. 91, . 781 Ty where y 1s non-degénersate 

L (1) Define @(u)iA , —> X to be the map deter- 

| mined by B(u)(0,..:,q=r) = y. Then 

3 p(u) (51. +514 (0,...,q-r) ) = X. 

| (2) Define *(u): Ay—> Agr to be the map deter- 

Eos easily verified that & and f satisfy the axioms and 

=ar6 uniquely defined, so that (lL 1s a category with models. 

E Lot dg be the category of differential modules over 

“the Integers (taking A as the ring of integers in 3.5). We 

brine functors C,Cy: (I—> aq as follows. Let CX) be 

the free abelian group having the elements of xy a9 generators; 

and set CX) = 0X). The homomorphism ERY (X) — G(X) 

is determined by Ix = = (1 yk AX ,xeX . Let D_(X) be 
5 i g+1 q 

the free abelian group having the degenerate elements of xy 

a3 genergtors, and set Co (Ky = Cy (X)/Dy(X), C{Xy = Zo (Ky 

Now (Dy (X3 ) C Dy - (X); for 

1 | 141 c j Fg,X = 2 (~1)° Q45:X + (m1) 84% + (~1) 9X + 2 (-1)Y 9; 8. x 
Ee! JL 171 94191 PDL Jt 

~ T (-13)d; Z. $21! )¥84 9s X + Sy 91 9 §-1 Xx, 

since the two middle terms are equal. Therefore 9 induces a 

homomorphism 9 Ca (X)yg —> Cq(X)ye It follows in the 

tsual manner that 9d= 0 in both cases, which completes the 

definition of CC and Cope C 13 called the chain functor,



mm now wish to show that C and Cy give the same 

fo There 1s ‘a natural transformation of functors 

Lo Cy such that ¢ (X):C(X) —> C(X)y isa the pro- 

ition onto the factor. group. In order to obtaln a homotopy 

| erso for &, we shall show that both C and Cy are 

_ brosentable and acyclic on models, ‘and shall then apply 

| hoorens 3.11 and 3.13, | | 

To show that C_ is representable , we defing a natural 

ensromation xX, C —_— C as follows. Recall that Cq(X) 

is free abelian, and let x¢ Xq be a generator. There 1s 

| mia map  u: 2 —>X such that u(0,...,q9) = x. Let 

» be the domain of Alu). Then K(X) (x) = 

{/(0)(0,...,@), Bu) ) €(C (Bg), plu) Cc EX). Since 
4 MX, = identity, C 1s representable: 

: Now the homomorphism X(X):0(X) —> C(X) carries 

D(X) into the subgroup generated by degenerate simplexes, 

and hence induces a homomorphism x (X) :C(X)y a (CX) 

It 1s easy to verify that Xx! Cy —> (Cy) is a natural trans- 

formation of functors, and that [A = identity, so that Cy 

1s also representable. To show that C and Cx are acyclic 

on models, define 

Ss ( Dgly —_ (Bq Ipaq by S(my, . 9) = (0,m,, .o 51). 

Then S has the properties 

95S (my, east) = (mg, ee. ,my,) 

Vg 41° = 5 9 

54.90 = 5 84 

854° = 8%



Lx + Sex =x. If xe (Ago then 98x = x ~(0). 

oe Now suppose that h: By +1 —> A q 1s a map in the 

| togory mn . Since h is a simpliclial map onto A q’ We 

x only define 1t on the vertices , and 1t has the form 

0) =(j for j< 5 for some 1 < gq. Then clearly 

. Le for J > 1 

Sn = h S. Since any map in m is a composition of maps of 

ne form of h, © commutes with the maps of n . 

: We define a natural transformation of functors 

uv :C | —> CG 0 ag follows. The homomorphism’ 

ue AVR C( By) ——> C( Ay) 1s determined by 

DUCA) (0) = 8(x) for xeXy,x+(0);U(Ry) (0) = oO. 
The fact that 9 commutes with the maps of # implies that 

U is a natural transformation of functors. Define 

no: HC/M —_— Co/ M ag follows: Ho(A 4) may be con- 

sidered in a ndtural manner as a free group on the generator 

(0), and MBq) Hy (Bg) — Colby) 1s determined by 

1408, y(0) = (0) € Cy AYR ‘1s clearly a natural transfor- 

mation of functors. 

The conditions gatisfied by S insure that {J satisfles 

the conditions of (3.8), and hence C 1s acyclic on models. 

Since S carries degenerate simplexes into degenerate 

simplexes, it induces a homomorphism 8:0,(4 4 )y — Crag (Bd yy 5 

of modules; U (Ag) does not preserve gradation nor commute 

with d. Cf. footnote on p. 3-4 .



8 
- ' mo > ~ 0d the transformation {': Cy/M —2> Cyx/M in which 

tA) = 8:0(n Y)y—> C(BA,)y 1s a natural transformation 
i 4 d | 
~ of functors. ~The conditions on 5 Insure that (J! satls- 

is the conditions of (3.8), and hence Cy 1s also acyclic 

_on/models . Let H denote the homology functor obtained 

row the chain functor C, Hy that obtained from Cy. 

Theorem 3.15 ¢ ¢:C —> Cx induces a natural equlva- 

gence “§':H— Hy. 

proofs Hpl# = (Hy)glm, so that in theorems (3.11) and 

(3.13) we may take T to be the identity. By 3.11 we have 
natural transformations of functors: | 

9 
C Cy 

) < | \ 4 

which induce the identity on Hylii= (Hy),M. The composition ¢¢ - 

is a natural transformation of C into itself which’ induces 

the identity on Hyl MM ; therefore by (3.13), ¥¢ 1s 
homotopic to the identity transformation of C. Similarly 

Oy 19 homotoplc to the ldentity transformation of Cy 
1 

Hence ¢ induces a natural equlvalence $ : H — Hy 

But by (3.13) & 1s homotopic to ¢ , and hence also induces 

! - ) . TL 

$ . This completes the proof of the theorem. 

Consider the category A x @ , having as objects 

pairs (K,L) of semi-simpliclal complexes, and as maps palrs



sD) —> (P,Q), where £iK ——> P,gil — Q 
oe. The models are to be pairs (8, By ) of models 

oa . We give three methods for defining degeneracy 

ox a , and thus turning 1t into a category wlth models. 

DL (Lv)idg, Ag) —> (K,L) be'amsp in @ x a | 

(1) ("Tensor product”): (u,v) = (du, Lv); p(u,v) = (Bu, pv). 

Lo (11) ("Cartesian product") «(u,v)=(1,1) plu,v) =( u,v), 

unless p = q; in this case, let u(0,...,p) = 

3 a€kK, v(0,...,p) = bel. Then axb = 

Sh .91, (a' x b'), where 1,)... >i, and a'x b' 

_ 1s non-degenerate In KxL; furthermore, this de- 

- composition 1g unique. Define «{u,v) = 

co (@,7): (8, ,8,) —> (8, 5, A), where 
= u=7v is determined by UT(0,...,p) = 

: 51 .+.81.(0,...,p-r), and (u,v) = 
at,v')i(a, pn App) > (K,L), where 

u' and v' are determined by u'(0,...,p-r) = 

al, v'(0,...,p 1) = b!. 

(111) If neither of the above Aystems of degeneracy 

is postulated, we assume that Q x a has no 

degeneracy; i.e. L{u,v) = (1,1), (u,v) = (u,v). 

We wish to determine the relation between the 

two functors 2, Cy + Axa: ——» dg defined by 

cK, 1) = CK) ® C(L)y 

- Cy (K, L) = C(KxL)y



0 c® 1s representable using tensor product degeneracies. 

oz For, C(K)y® C(L)y 1s free abelian, and a typlcal generator 

3 TT, where @ €K, , tel, are non-degenerate. Let 

55 —> K,v: A q —_— IL be the unique maps determined by 

(0, . sp) =F, v(0,...,4) =T. Define a natural transforma- 

ion of functors . : Cx ed ford by - 

x (K, 1300) =((0,00e;p) 8(-0,.0.,q), (u,v) € (CLA, IRC (A) (1,7) CCK, L) 

Clearly MX = identity, ‘80 that X 1s a representation. 

(2 Cy 1s representable using Cartesian product 

degeneracies : C(K, Ly is a free abelian. group, and a typical 

generator 1s a non-degenerate simplex ¢x  , where 

oe Ky Selby. Let u,w be the maps corresponding to 

0, f regpectively. Define a natural transformation of 

functors 1: Cx —_— cx by X(K,L)(oxP) = R 

((0,+ea,p)x(0,.0.,p),(u,w)) € (C( DX Bon , (u,w)) C c (K, L) 

Then VX = identity, so that ZX 1s a representation. 

(3) cS 1s acyclic on models, using either system of’ 

degeneracy. Consider first the tensor degeneracies. 

Ho(C(B yy ® CCB GIy 1s an infinite cyclic group cyclic group, 

for which we may take as generator the clags of (0)® (0). 

h iH 0% |, —> (cy )o IM is then defined by 

NAD) (0)®(0) ) = (0) ® (0). Recall that we defined 

a contracting homotopy U' CD Gy — CDG) ys we may also 

define a contracting homotopy U :C( BIg ®C(A Dy —> OD, y®CB yy
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by 
Ue ot) = Ue @1T + nee) Ut ‘ 

Then ADU + U3 = .]1 - he , and Un = (QO, U commutes 

with the homomorphisms induced by maps of WM , and thus de- 

fines a natural transformation of functors. Hence, by de- 

finition (3.8), 02 1s acyclic on nodes. 

Using cartesian product degeneracles, the correspond- 

ing category MM 19 a subcategory of that obtained from tensor 

product degeneracies; hence U commutes with the induces 

~ homomorphisms in this case also, and ons 1s again acyclic 

on modely, Co 

(4) oe is acyclic on models, using either system of 

degeneracy. Hy (CCA x By )y) Is cyclic infinite, generated 

by the class of ( (0)x (0) ), and Ne HoCx IM—>(CX) | MM Ls 

defined by 7,(A_, & ) ((0)x (0))= ((0)x(0)). Define 

8 (BL XA), ~> (BoxA) 0 by SC (mgse em )x(Lye..,) = 
(0,mq,...,m,) X (0,£5,000,8). 5, induces | 

Ug Cpl Dp x Bg dy => Copy ( Ax Ag yy such that Ip Ux = 

Ugdp for r21. Hence JU_+ UJd= 1-% ¢_, and 

Ux" x = 0, Using tensor product degeneracies, it 1s clear 

that U x commutes with the homomorphisms induced by maps 

of Mm ; by the argument of the previous paragraph, the same 

holds true using Cartesian product degeneracies. Hence Cy 

1s acyclic on models in elther case. | 

Now, using tensor product degeneracies so that od 

1s representable, we apply theorem 3.11 with



elk —) Hy RD the natural equivalence defined 

T6800) (0)) = ((0)x (0)), to obtain a natural 
| ansformation of functors 

- Similarly, using Cartesian product degeneracies and 

ne equivalence T' tH Cy |W —— HCY | m defined by 

J. ((0) x (0)) = ( (0) ® (0) ), we obtain a natural 

{ransformation of functors 

Thus Vf 1s a natural transformation of the functor 

o into itself. If we use the system of Cartesian product 

degeneracies, then Cy is representable; and since VI 1in- 

{duces the transformation TT = 1 in H, Cy Im , by theorem 

5.1% there is a homotopy between Wf and the identity 

‘transformation of Cy» The fact that such a homotopy 1s 

(by definition) natural will be used ln later proofs. By a 

completely similar argument, using tensor product degeneracles, 

we see that fv is homotopic to the identity transformation 

of c®, so that VV and f are equivalences. 

We now wish to find the explicit formulae for V 

end f, as determined by (3.11). Throughout let u be 

the map corresponding to ae Ko. v the map corresponding to 

b€ Lg. We first consider VV . 

Dimension 0: Let a€k,, b€L,. Then 

7(a@b) = Pn. T £X(a@b) = [,7,T £( (0)(0), (u,v) ) 
= Ty ((0)x(0), (u,v)) =a xb.



[Dimension : cage 1: let aek, be non-degenerate, and let 

~ V(a8D)=T 7 IUaxp)=T WU vI( (0,1)® (0), (u,v)) 

- ="T U V((1 (0-0) (0), (u,v))=0 AL ( (1)x( 0) =(0)x (0), (u,v) ) 

- = ((0,1)% (0,0),(u,v) ) = ax 3b. 
: cage 2: Let a€k,, and let b € L, be non degenerate. 

Then in a similar fashion 

3 J(a®b) = 8558 Xb . 

Dimension 2: case 1: ‘Let ace K,,be L, be non-degenerate... Then 

Via &® b) = CU, V Pp A(a@b)= MU 9 P, ( (G1 ) (0,1), (u,v) ) 

= UV ((1)®.(0,1)-(0) @ (0,1) ~(0,1)®( 1) +(0,1)@(0) u,v) 

= {TU ((1,1)%(0,1)=(0,0)x( 0,1)=(0,1)x(1,1) +(0,)x (0, 0), (u,v) ) 
| 

= (0,1,1)x(0,0,1)—=(0,0,1)x(0,1,1),(u,v)) 

= 5,8 X SPN ~ fa xX 3,b. 

Similarly we have 

cage 2: Let a eK,,be L, be non-degenerate. Then. 

V(ia®b)= 5.848 X b. 

case 3: Let a€K,,bel, be non-degenerate. Then 

7 (a®b) = a X 8,34b. 

The general formula, which we shall not prove, 1s the 

following. If (M,7)is a (p,q)-shuffle (cf.appendix 1A), let 

r(m,v) be the sign of the permutation (tgs 0 Mp Vy +3 Yq) 

of the integers (0,1,...,p+q—- 1). 

Then for ac K,sD ¢X, both non-degenerate, 

16 = ZT (m,V)8, ... coop Db | (3.16) 9Q(a®@b) (p57) (ps By, Sp BX My VAL ’
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the sum being taken over all (p,q)-shuffles. 

We now consider ff: C(Kx L)y —> C(K)y ® ClLly 

Dlimengion O: Let a €K,, bel. Then, with the appropriate 

‘meanings of the functors in this case, 
AAA N ANA | 

f'(axb) = Pn TEX(axb )= THT ((0)x(0)iu,v)= r0)®(0),(u,v))=adb 

Dimension 1: Let axb (KxL), be non-degenerate. Then 

flaxb)= PUL X_ (axb) =rUFI ((0,1)x0,0),(u,v)) 
= PUE((1) x (1) =(0)x(0), (1, v) = tT((N@ (1)-(0)® (03, (u,v) 

= U ( (0,100(1) « (0)@(0,1),(u,v) ) 

= © ( (0,1)®3(0,1) + (3,(0,1))®(0,1), (u,v) ) 

= a®dgb+ (0,2)®Db. 

Dimension 2: Let axbé¢(KxL), be non-degenerate. Then 

£(axb)=r0f3 % (axb)=r0r3_((0,1,2)x(0,1,2),(1,v)) 

=PUF((1,2)%(1,2)-(0,2)x(0,2) + (0,1)x(0,1), (u,v) ) 
= NU( (1,2)@(2) +(1)@(1,2)-(0,2)@(2)~ (0)®(0,2) +(0,1 )(1 )+ 

oo (0)®(0,1), (u,v) 

= 1 ((0,1,2)®(2)+(0,1)® (1,2) +( 0)B(0,1,2), (u,v)) 

= 1((0,1,2)@35(0,1,2)+ (0; 2)8340,1,2 13.3. (0,1,2)R(0,1,2J u,v) ) 

= a®¥b + Pa®@d bt 323 30D. 

The ‘general formula for f, which we shall not prove is the 

following, where 3 denotes the last face operator in any 

situation: let axbe(KxL) ; then | 
| p | 

(3.17) flaxb) = Z (3) eo (3g) pb.



= Note that this 1s the formula for the Alexander- 

| Cech-iint toy cup product; it 1s not symmetric with respect 

wo permuting K and L. It is routine to verify that 

a8) f¢ = d1ldentlty 
ee 

Lemma 3,19: V. 18 associative; i.e. the following 

diagram commutes, where the i1gomorphism 1s the natural one: 

(CE) CL) x CM) TRL C(KxL}®@C(M)y 
9 MN N N N J, 

] ~| C(Kx LxM)y 
CK) ® (C(L)y®C (M)y) BT C(K) ®C(Lx My T 
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The theory of spectral sequences was Introduced 

by J. Leray [1]. Leray obtained spectral sequences from 

differential filtered modules (see below). A more general 

procedure of obtaining spectral sequences was introduced by 

W. S. Massey in his theory of exact couples [2]. Yet | 

another way of obtaining spectral sequences was introduced 

by 3. Eilenberg, and 13 expounded in his forthcoming book 

with H. Cartan [3]. This method has the advantage that 

there is both an inductive and a direct definition of the 

term ET in the spectral sequence , and consequently will 

be followed here. : 

Notation and Conventions: let Z be the set ZU {-w,w |. 

Order Z by =- ® <r< oo for re2Z. 

Definition 4.1: let (I be the category such that 

1) objects of a are pairs (p,q) of elements of 

7 guch that p > dq, and 

2) a map In (@Q 1s an assignment to an object (p,q) 

in AQ another ob ject (p',q') in QQ such that p! 2b, a'> dq. 

If «: (p,q) —>(p',q") and p: (p',q') —> (p",q") 

are maps in ( we say that («,p) 1 8 couple if ~q = q', 

p' = p", and q" = p (see [4], p. 11k). In other words there 

ls a correspondence between couples and triples (p,4,r) of



‘olements of Zz. such that Dp > q pr, the correspondence 

‘peing that which assigns to the triple (p,q,r) the couple 

(&, pg), where 4: (q,r) —> (p,r), am g:(p,r) —(p,d). 

Notation: Let NA be a commutative ring with unit. Denote 

by Ga the category of A -modules and ‘A -homomorphisms, 

ard by ¢. ' the category of graded NA -modules and graded 

A -homomorphi sms. 

Definition 4.2: A covariant J -functor on the category 

with couples (§ consists of a covariant functor H:Q—) Un 

together with a homomorphism 9a £) :H(C) —> H(A) for | 
' J) 

each couple (d, 4) ind, « A —-> B, p:B—> C, satisfying 

the following condition: 

1) if 

A258 F500 

A SEN B TEN C 
(AEs HE 

1s a commutative diagram in (@ , where ( od, B) and (5 Bi) 

are couples, then 
N 

H(C) ——22PLs5 pa) 
EEA 3 HY, ) 

4, fi) H(C. ) J— SH (A, ) 

1s a commutative dlagram, 

2) For every couple (dp) in A, d:A—> B, p:B—>C,



Er 

. the sequence 

: Ad, p) 
Cee HES) Spy BB spo) —ELS BA) —— + 

is exact. 

as He a —> ZN satisfies 1) and 2) above, 

gnd 1f in addition Nat, p y Hp (C) — H (A) for every 

couple (dd, B) : A—>B —> C, then H will be sald to be 

a graded covariant d-functor on @ ([41, p. 115). 

Definition 4.3: Let M be a differential A-module. 

A filtration on M 1s a set of submodules FMI A 

such that 

1) FM CE, + 1M 

2 IPM CFM : ) d D no 

3) BE oM = 0 

b) FM = 

If M 1s a graded differential NM-module, the 

filtration will be assumed to be compatible with the gra- 

dation, i.e. FM = (FMM for all pe Z. 

The module M together with its differential 

operator and filtration is called a differentigl filtered 

BD -module, and if 1t is graded it is called a differential 

graded filtered NM -module. | 

Definition 4.4: Let IM, FM] be a differential filtered 

NA -module. If (p,q) 19 an object of A, let 

H(p,q) = HF M/F M), and 1f & :(p,q) — (p',q') 1s a



: map, let H(A) :H(p,q) —> H(p' ,2') be the natural map. 

If o (p,r) —> (p,r), pilp,r) — > (p,q) 1s a couple in 

a then. there 13 an exact sequence 

0 —> F M/F M ——> F_ M/F M —> FM/FM — 0 

and a resulting exact sequence | 

trt — H(q,r) —— H(p,r) ———>H(p,q) ~>> H(q,r) —>""". 
let 73 (&,p) H(p,q) — H(q,r) be the homomorphism denoted 

by 9 in this exact sequence (Henceforth 3 a, p) will be 

denoted merely by 3.) 

‘It 1s evident that the functor H just defined and 

the homomorphisms 9 :H(p,q) —> H(q,r) form & covariant 

? ~functor on A , and that this functor is graded if M 

1.9 graded. This covariant 2-functor 1s sald to be the one 

assoclated with the differential filtered A-module MFM}. 

Definition k.5: If H: @ —>@ 1s a covariant J-functor, 

define 

Z, = Image H(p,p-r) —> H(p,p-1) 

By = Image 9 :H{(p+r-1,p) 7 H(p,p-1) 

for r,pe Z,r) 2, If H 1s graded, define 

Z5 q = Image BH (p,p-r) —> H (p,p-1) 

BY 4 = Tmage Hq (p+r=1,p) —> Ho vq(Pspmt ) 

Lemma : “oe Allan +++ DZFPOBYD ++ DBT DBI D0 , 

TS DIES PHD + HE 
. The proof of this lemma is stralghtforward, and



Definition 4.6: If H: A—->@, 1s a covariant 
? ~functor, define E = ZB for T,peZ, r) 2. 

Define ES Hip, p 1), and set | E pp If is 

graded, set ~~ b,d p,q’ p,q’ Bp 2g p,q’ E Zp,dp,q 

RL FE 1s the spectral sequence of H. If H 1s the 

covariant J-functor assoclated with a differential filtered 

A -module IM, FM , the spectral sequence will sometimes be 

denoted by {EY(M)}. Further in this case EJ (M) = F M/F, _.M, 
o 3 

= 2. EO(M). © and E(M) HER). oo | 

We now have gpectral sequences defined, but we 

have not as yet proved two of their basic properties. First, 

E'*! should be the homology of EF with respect to some 

differential operator. Second, if M 1s a filtered A-module, 

ERM) should approximate H(M) in a certain sense. We 

now proceed to define ar :m" — ET 50 that ET'1 wily 

be isomorphic to H(E). 

Lemma, : If p>q2r»s then 
| BE | 

H(p,q) ==> H(q,r) —=> H(r,s), and 33= 0. 

Proof: This follows immediately from the commutgtivity of 

the following dlagram 

cor => Hp, r)—>H(p,q) — H(q,r) —> H(p,r) — ++. 
9 = 

l ° 
H{r,s) 

and the fact that the horizontal sequence 18 exact.



| h-6 - 

| Dorinttion h.T : Notice that the diagram 

¢ ...-——> H(p-1,p-r) —>H(p,p-r) —5 H(p,p=1) —> --- 

BE | 
3 ; H{p-r,p-2r) — H(p-r,p-r-1) 

1g commutative. Consequently there is a natural map 

Wizl — Ep such that Y(z) 1s the equivalence class 

of di ze H(p~-r,p-r-1). Further 1t follows from the 

commutativity of the diagram 

J 
H(p+r-1,p) = H(p,p-1) 

H(p,p-r) 

b 
H(p-r;p-1r-1 ) 

and the fact that 39 = 0, that 3 (B} )= 0. Define 

qr iE —_— Ep to be the homomorphism lnduced by 

¥ $7 —_—> Ep Further denote by dad" the induced endo- 

morphism of ET, 

Proposition 4.8: dfo af = 0, and H(EY) 41s naturally 

isomorphic with E'*'!, 

Proof: The fact that df oad’ = 0 follows from the 

diagram



b= 

H(p,p-r) ——> H(p,p-1) 

H(p-r,p-2r) ———> H(p-r,p-r~1) 

PT 
. | 

H(p-2r,p-3r) —) H(p-2r,p-2r-1) , 

and the fact that 39 = 0. 

Further it follows from the dlagram 

H(p,p-r-1) — H(p,p-r) — H(p,p-1) 

? 
0 = H(p-r-1,p-r-1) —> H(p-r.p-r-1) 

that the sequence 

0 > zT +l > r gr > r 

oe p By Be EE 

1s exact, or that the sequence 

Zz"! — H(EY) ———> 0 

18 exact. =~ From the diagram 

H(p+r,p) ————> H(p+r,p+r-1) 

H(p,p-r) ———) H(p,p-1) T= 

(p-r,p-r-1) 

and the fact that 99= 0, it follows that BY = 

kernel 72" ———> H(ET), or that BT ~~ SH(ET)
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as was to be proved. 

| Notice that if H: A—> N , then 

rr. wl. 

Ti Epq TT Forget 

Definition 4.9: We define a flltration on H(oo, -~®) 

by setting F(H (o,-m) ) = Image H(p,-®) —> H{w, ~-®) 

Proposition k.10; E(H (0, ~c0) ) is naturally isomorphic 

to EB for all pe? . 

Proof: Recall that Z3= Image H(p, ~0 ) —> H (p,p-1), 

By = Image H(oo,p) 2 H(p,p-1 ). Further the sequence 

ree o—— H(p-1,-00) — H(p, ~0) — H(p,p-1) — ***° 

is exact, and Image H(p-1, - ®) —> Ho, ~®) = Fg Hoo, -®). 

Therefore there is a natural map EE) —> Ej H( 00, = ®@ ), 

and this map 1s clearly an epimorphism, However, 1t follows 

from a similar argument that it 1s a monomorphism, and the 

result follows. Ce 

Proposition h.171: Suppose that H: dd —> ay 1s a graded 

covariant J -functor, and 

1) H(p,q) = 0 if p < 0, and 

2) H (p,q) = 0 if n<q, then 

E] q 18 naturally lsomorphic with ED for r> sup {p,q+1}. 
’ : 2



" 

= oof’: Suppose that r > sup ip,q+1}. The horizontal 

“sequence 

oo o—>H(p-r, ~m) —> H(p, ~ 00) —> H(p,p~r) —> **° 

18 exact, and H(p-r, - 00) = QO, Therefore ’ 

H(p, ~0 )~H(p,p-r), and 27 = 237. 

Further, the horizontal sequence in the diagram 

Hog (p,p-1) 

VN 
er Heed a0; P +1 ) => iq (p+r-1,p) 2H, q+ (9p) Hug at w,p+r~1) 

15 exact, H (00,p+r-1) = 0 for n = p+q+2,p+q+1, and hence 

ro _a® By q By q° Then the proof 1s complete. 

Definition: If H: —> 2A 1s a graded covariant 

9- functor, then H 1s regular if H(p,q) = 0.1if p< 0, 

and H (p,q) = 0 if n< q; 1in other words if the hypotheses 

of the preceding proposition are fulfilled. 

Ir M, E, M{. 1s a differential graded filtered 

NA - module, then IF, M] 1s a regular filtration if 

1) FM = 0 for p< 0, and 

2) M FEM, 
) Pp ¢ Pp 

Notlce that thls definition assures that the covariant
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3 - functor associated with [M, F, Ml is regular. Almost 

all of the filtration in which we shall be interested have 

this property. 

We are now in a position to prove the exact 

sequence theorem of Serre [5], which will be used extensive- 

ly later in the notes. | 

Theorem 4,12: Suppose that H:(L—— % 13 8 

regular covariant 3- functor, and that i, j,r ‘are 

positive integers with 1< j,r 2 suppose further 

that 1f 1 {n <j then 

1) (a,b) and (c,d) are pairs of integers such 

that n=a, +b =c +d, , and a, < Cp » 
or oo oo | 

2). By q=0 if p+ta=n t, pLa,-r, and 

r 3 | 
3) Eq 0 if p+ d= 1n, (p,a)§l(ap,by), (c,d) 

I) Ey q=09 if p+q=n+1, P2 Cpt Ts 

Under these hypotheses there 1s an exact sequence 

E] —> Hw, ~0) — RB. —> ET nt 
aj,py — 2 Hil m0) TD Boga; ? Paggsby 7 
09 reve— gr ———, oe — ® 

7 84,04 ) Hy (oo, ®) ) ey ,d4 

Proof: It follows immediately from the hypotheses of 

the theorem that ES = 0 1f p+qg = n, 
»d ) 

(p,q) ¢ (a,b), (c,d), where 1 < n < J From 

this fact and proposition 4.10, with gradation considered, 

1t follows that there 1s an exact sequence
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mee mens @ r—t—— -— —cro——— 200 0 —> EP 1 D> Hy, m0) —D EP 0, 

However 1t follows from 2) above that 1f n » 1, then elther 

¥ = a 0 ® a) rs CQ Bye an: Ee bd is the kernel of 

a%:g’ ——> EJ 
Cps9n ? Bp-1,bp-1” 0 
a ol _ oP 

bp) roe, Bp-q and Bo ,d, = Bo pdy ‘ 

Congequently there 1s an exact sequence 

0 —> Eg) yp —> H (0, ~0)— E, d,—> Ej y 
nen °n’"n nq 2 Pp 

However : ES = EF , ES = ET 
| °n“n Cnsdp 81 7Pn— An-1 sPpq and 

EX 1s the cokermel of d":ES —> BE? 
8n-1sPp~y 7 Cn»dp ? 8n~1sPn-1 

in case a, or ES. b in case b., This follows from 
) . “n=12"n-1 B | 
2) and 4) in the hypotheses of the theorem. These facts 

combine ‘to imply that there is an exact sequence 

0 —>E®  —>H(o0,~0) —>E . —> 7 E:T 7 Hytoos 7 Cnybp 7 

ETF —~——— (®, — co) ———> EP . 
~8n-15Pne ? ney (2; 2 Bent, 

To complete the proof 1t 1s necessary only to- continue in 

this manner. 

Definiton h,13: If M,M' gre filtered A - modules, 

‘then f:M —> M' 1s filtration preserving, or is a map 

of filtered modules if f(FM)CFM!' for pe Z. 

If f,g:M—=>M' are maps of differential 

f1ltered modules , 8 Homotopy of degree sg “between f,g 

ig & A - homomorphism DM — M' such that
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1) dD+Dd=Ff-g, ard 

2) D(F M) CF gM . 

If M and M' are graded, 1t will be assumed that 

DM) CM_ 

Proposition 4.1L: 1) If £:M —> M' is a map of 

differential filtered A - modules, then f 1nduces 

PEM) — EFM") 

a map of differential A -modules for r>0, and further 
PUT pa J  JRNPRPL I 

if M and M are graded, then FEE, (MC Es,qtM )). 

2) If f,g:M — M' are maps of differential 

filtered A- modules which are homotopic by a homotopy of 

degree 8, then r= gf for rds. 

Proof: The first part of the proposition is obvious, 

and its proof will be omitted. 

To prove the second part, it suffices to show 

that 1f  D is a homotopy of degree s between f and g, 

then D induces a homotopy “ D® between £3 

and gY. If xe FM represents [x] é& E (M), define 

D¥[x] = [Dx]e Bp, (M° ). It will be left to the reader 

to verify that the definition is independent of the cholce 

of representatives, and that a“p® + D%% = £9-g8, 

The preceding definition and proposition could have 

been extended to include maps of covariant 9- functors on d . 

However, to avoid complications we now abandon covariant
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9~ functors, and for the remainder of this chapter consider 

only spectral sequences which arise from filtered modules. 

Before proceeding to the proof of some comparison 

theorems, we first study coefficient sequences. 

Definition 4.15: If N 1s a differential graded A~- module, 

and 9 1s a AN - module, then gen is the differential 

graded N -module such that (F-@, N) £ qe, , and 

d(a@b) = a®db for aeG, beN, The homology of Gon N 

1s denoted by H(N; aq). | 

If ¢ 1s graded, then Gn is the submodule of 

gradation (p,q) of the bigraded differential module 48 XN y 

and dab) = (-1)Pamdb ir aeQ ,beN. Thus 

Go N = =, Gp N. The elements of total degree (or 

gradation)n in Q® N are those of Zorg =nFp® Ng: 

Definition 4.16: let f£:M ———>M' be & map of differential 

graded modules. The mapping cylinder of £ 1s the 

differential graded A- module M" such that 
co N 

2) d(a,b,c) = (-da,db-a,dc + f(a) ). 

Let 1:M ——> M" be the map defined by. 

1(b)= (0,b,0) jim" —_— M' the map defined by 

jla,b,c) = £(b) + ¢, and A :M' —>M" by An(c) = (0,0,c). 

Let D:M" —> M" be defined by D(a,c,c) = (b,0,0). 

If M,M' are filtered and f 13 filtration 
1 : _— 

preserving, define FM = Fim M + FM + FM ‘
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Proposition 4.17: Under the conditions of the preceding 

definition we have 

1) f= 31, 

2) JA is the identity, 

3) dD + Dd = Aj - identity, and 

y) 1f ff 1s filtratlon preserving, D is a 

homotopy of degreee 1. 

Corollary: J 1 H(M") ——> H(M'), | om if f 1s a map 

of filtered modules, then jZ:ES(M") ——> E°(M'). 

Definition 4.18 let N be a differential graded N~ module, 

f: a — Gg a map of A- modules. Then fm1 GaN — 

aq g N. let M De the mapping cylinder of f®1. Then 

M 1s the mapping cylinder for N of the coefficient 
homomorphism f£. Define 

. : 1 

FM =@G® Zp Np + GRZ (pM + @@2Z(pT 

Further let A be the kernel of ff, and C the cokernsl. 

Note that the filtration FM induces a flltration 

FM ' = MIO® N. { Ml on M MjgeN 

Proposition 4.19: If in addition to the hypotheses of the 

preceding definition N 1s a free WN - module, then there 

is an exact sequence 

cor HL (GA) —D HM") =D BNC) —> Ho, (GA) — ...
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Proof : We have EJ (M') = O if q+ 0,1, and 

E) | = Gon, s ED o = GoN,. By an easy calculation 

Ey = AQ Ny» Ey = CQ N,. The proposition now follows 

from Theorem 4.12, 

Collary: If in addition H,(N) = N+ Hy(N), then 

1) HM) = 0 implies C = 0, and 

2) H (M') = H. (M') = 0 implies A= C= 0, and 

f: ¢ => gq. 

Proof: The last term of the exact sequence of k.19 are 

ver => H (N;A) —> H (M') —> H, (N;C) 

—> H_, (N;A) —> Hy(M') —==> Hy(N;C) 

Therefore if H (M') = 0, we have H_(N;C) = 0, and 

since H,(N) =A + Hy, (N) it follows that C = O.. Now 

if C=0, Hy (N;A) —> H,(M') and the result follows. 

It 1s not difficult to prove that if A 1s a 

principal ldeal domain, then the exact sequence of 4.19 

reduces to 

0 —> Hy(N;A) —> Hy, (M') —> H (N;C) —> 0 

Further, even in the general case, there 1s an exact 

sequence | 

ceo Hy (W;q) — Hy (N;G") — Hy(M') DH (NG) —D> oe 

since M' 1s the relative mapping éylinder of 

goaN —> Q ®N. If A= 0, then 0 —> G—> Q —> ¢ —> 0, 

and H, (M y = Hy (N ;C). Thus the preceding exact sequence 

reduces to the usual one coming from the exact sequence of 

coefficients 0 — q— 0 —> CC —> 0, Similarly



k=16 

if C= 0, then Hy-q (NGA) ~~ H, (M ), and our exact 

gequence reduces to the usual one corresponding to the (- 

exact sequence of coc (ficlents. 0 — A—> 4—> a —> 0, 

Proposition 4.20: Let f£:M —> M' be a map of differential 

filtered N- modules, and let M" denote the relative 

mapping cylinder of f. Then there 1s an exact sequence 

ss 6 0 ha 2 Yee 2 ' —— 2 n r—t—— Be M ———— s 00 > EM) > BE (M ) —> EM ) > Eo (MM) ; 

and further if f 13 a map of graded A- modules, there 

are exact gequences 

2 2 oy oD . ie) 
os o FT——8 M _ iN M — u ——— —— se 0 

? Fp, gM) m2 Hp MT) = Bp (MT) = Ep MD) — 
for each q. 

Proof: Let M' be the mapping cylinder of f. Then Co 
| 

there 1s an exact sequence | 

RY ; 0 —> M ——> MF ——5 Mu" —> 0. 

Further there is a map A: M' —5> M such that aX 1s 
the identity defined by Aa(a,b,c) =b. The map A is 

only a map of N - modules, and 1s not compatible with 4d. 

However 1t induces a map AD : BOM™) Em E%(M), and for 

this map we have a°d% = a%a® It now follows 

eaglly that there 1g an exact sequence 

0 —> E'"(M) => E'(*") —> B'M") —> 0. 
On passing to homology this gives rise to an exact sequence 

0 oo — ae ——— 2 t 2 1" ’ 2 EM) — E2(M") ——> BEM") —> E> (M)— 

Now poping. that E®(M") 1s naturally isomorphic with
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E°(M') by 4.17 and 4.1%, the result follows. 

We now wish to prove a comparison theorem for 

spectral sequences of differential graded A - modules. 

olnce the hypotheses of this theorem ars ‘somewhat complicated, 

they will be listed first in a section of thelr own preceding 

the theorem. | 

Hypotheses. of the theorem: Iet g:M ——> M' be a map of 

differential graded filtered A- modules, h:U —> U' a 

map of graded A- modules, E:N —> N' 4 map of differential 

graded A~- modules, and suppose that N,N' are free N - modules. 

Finally, suppose there 1s glven a commutative dlagram 

EY (M) —— 8’ > E'(MY) 

| y | 
hx g 

Ug, Nm U'g, N' 

where WE, o(M) ) C Ug ®N, , Y (EB) LM") ) CT, ®N, 

guch that -¢ and gp’ are maps of differential A - modules p 

and induce isomorphisms 

§, :E2(M) 25 H(N;U) and ¥,:E2(M') == H(N';U'). 

Under all the preceding hypotheses , one has the 

following two theorems: 

Theorem A: If g,: HM) —> HM) 1g an lsomorphism, 

h:U —> U' 1s an isomorphism, and if Uy = N+ u, then 

g,:H(N) —> H(N') is an isomorphism,
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Theorem B: | If g,:HM) —> HM) 1s an 1somorphism, 

gE: H(N) —> H(N') is an isomorphism, and H(N) = A+ HY(N), 

then h:U —> U' 1s an isomorphism. 

Proof of Theorem A: We may as well assume that h 1s the 

identity map. Let M" be the mapping cylinder of g, M' 
the relative mapping cylinder. Further let N be the 

mapping cylinder of gE, N' the relative mapping cylinder. 

Since E_(M') = E!_ (M) + B\(M) + BA(M'), we now have a 

commutative dlagram; | 

0 —> E'(M) —> BE") —> E'M") — 0 

A CN \ \/ Vo, | 
0 —> UN —> Ug IY —> UeN' —> 0 

of differential modules such that the horizontal lines are 

exact. Passing to homology, we have the commutative 

diagram 

2 D 3k 2 " 2 — ——as tram M — M — s 8 a 

> Bp, gM) == Bp qT) 2 Bp qT) =D Bp gM) 

A 
\/ \Vs V4 -V 

—_— 1 : —_ Ak, oe LI NH UJ) —D oss > HL (NU) — Ho (N50) > H (NU) ~D Hy (NU) — 

with exact horizontal lines. Therefore , by the 5 -lemma, 

we have E gM) =H (N30). Now since g, : H(M) = H(M') , | 

we have HM") = (0, and hence EM") = 0 for all p,d. 
| , 

Assume. that BH (N" ) = 0 for p< py. This means that
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: n" 2 " : - U — — H (N ; a’ 0 for 0 < Po or nat By oM ) = 0 for 
v LL | 

2 _ nm WT 4 
we have Ep 0 Bs 0 0, or Hy (NU) 0. Now since 

Ug = N+ U, this means that H, (N") = 0, and proceeding 
: 0 

inductively we have H (WF ) = 0 for all p. Then because 

N' was the relative mapping cylinder of g:N — N, g, :H(N)— HN) 

1s an lsomorphlsm. 

The basls for the preceding argument may be found 

by making a diagram for EFM") by plotting E, q - at the 
2 

point (p,q) in the first quadrant of the plane. 

RC 
+ Esp » Q+1r—1 

ON 

r J 

0,9 +o P.q 

EX | 
p,0 

Now in this dlagram ar is represented by an arrow golng 

up and to the left. In the preceding argument the assertion 

that H (N") = 0 for p<{p. meant that E> (M")} = 0 
0 0  bsQ 

for p< P,» or that only O groups appear in the shaded
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portion of the diagram 

No 

Py1 Pg 

Congider now. E, 0 : 1t sits on the horizontal axls, and 
0’ | | | 

. therefore contains no boundaries. Further since d® slopes 

up and to the deft, 1t 1s mapped into zero. In other words 

we have the well-known principle that a spectral sequence 

with EP= 0 identically has no corners. 

Proof of. Theorem B: In this case we may asgume that § 

1s the ldentity. let mit be the mapping cylinder of g,M" 

the relative mapping cylinder, and let N' be the mapping 

cylinder of h@1:Ug@N —> U'@N. We then show as before 

that E(M") ~ H(N"), and recall that N" 1s just the 

mapping cylinder aggoclated with a coefficient homomorphism 

which we have already studied (4.19 and the corollary to 4.19).
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oo . ! Let Aq be the kernel of h:U, a Ug and let Cq 

be the cokernel. Now since gy :H(M) —> H(M') is an 

isomorphism, HM") = 0, and EDM") = 0. Therefore 
) J 

2 MY Ae. 2 "yo . _- 
Ey oM ) 0; but Ey, 0M ) = H (N;C.). Therefore Co = 0, 

"Now we also have E- o(M") = H (N; A, ) = 0 from the corollary 5 | 

to 4.19. Therefore A, = 0. Suppose now that Aq == Cq =0 

for q< dy. Then Hy oF) = 0 for gq< dos OF 

2 n Nn h 
E = . T M) = p,qM ) for q< dq his means that Ey 4 Y = 0 

for q< q., r>2. Consider ET . It consists 
07 ~ 4 0,40 

entirely of ar cycles for rv >2, and since 

r, ob EN _ a": Br, q 41-0 > 0,4, , it contains no boundaries. There 

Re | — . 89) — . H Ee vem : .. ] . 

fore 0,4, Eo,q, 0 owever, 0,4 H (N; Cag? and 

this means that CC, = 0. Now consider EY . Again 
do 1,90 

it conglists entirely of ar cycles for rp 2, and contains 

no boundaries. Therefore E- = EP = 0; but 
1,40 1,49 

EY, q, = Ho(Mihg ) » and therefore faq = 0, Proceeding 

by induction we have Ay = Cq = 0 for all gq, so that 

h : Uy —> Ug is an isomorphism for all q. Thus the 

proof is complete. 

The idea of the preceding proof is again that there 

can be no "corners" in a spectral sequence with E®= 0. 

For E q°- 0 for gq< 4d, means there are only 0 - groups 
) 

in the shaded region 

a'&| . 
E 

r PRE 
BE, ¢ 

»Uo AT 

ET 

or ee
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A version of theorem A 1nvolving only spectral 

sequences was proved by Borel, and by Serre, but is un-- 

published. However, theorem A as it stands will sufflce 

for what we need here. For completeness we now state 

8 well known theorem of Leray. 

Theorem C: If h: U —> U' 1g an 1 somorphism, and 

gy: H(N) —> H(N') is an isomorphism, then 

gy :H(M) —> H(M') is an lsomorphism. 

This theorem may be proved by the usual procedure 

of observing that since g PEP (M) —> E® MY is an. 

isomorphism, gQ:EC(H(M) )—> E%(HM') ) 1s also an 

isomorphism.



Chapter V 

DGA Algebras and the Construction of Cartan 

We shall now prepare to make Cartan's calculation 

of Hy (X), where X. 1s an Eilenberg-Maclane space; i.e. 

T,X) =0 for q+#mn, TM (X)=T . A number of prelimi- 

nary notions are necessary before we can actually do this, 

and we shall present these in a manner similar to that of 

[11]. In the course of this work we shall obtain a special 

¢age of a theorem of Borel [2] which 1s useful in the study 

of the topology of Iie groups. 

Conventions: In this chapter A will denote a fixed com- 

mutative ring with unit. If N and N' are graded 
ul . 

N - modules, N =3% > 0 Ny N ZnyoMn , then N@®, N' 

1s the graded AN -module such that (N@,N ) = 

Lipp g=ni'r YN N' ‘ If N,N' are differential graded 

A- modules, then N®p N' 1s a differential graded 

N- module with 

d(x@y) = d&x@ y+ (-1 Tx Q4dy 

for Xe N_, yeN' . 

Definitions: A graded [\ -algebra 1s a pair (A,¢) 

where A 1s a graded A -module, and ¢:AQ,A — A 

1s a homomorphism of graded A - modules such that 1f we 

denote ¢{(x® yv) by x.y, then (x.y) z = (x.y)-z. 

If', in addition to the preceding, A 18 =&



5-2 

differential graded AN - module, and ¢ 1s a homomorphl sm 

of differential graded [\ - modules, then (A,¢) 1s a 

differential graded N - algebra. 

Usually either a graded [\ - algebra or a 

differential graded N -algebra will be denoted merely by 

the symbol for 1ts underlying module . 

The graded [- algebra A has a unlit if there 

exlsts an element 1€ Aq guch that 1X = x+.1 = xX for 

xe A, and 1t is anti-commitative If x.y = (-1)¥°y.x for 

X € Apr¥ €Ay. 

The ring f\ itself wlll be considered as either 

1) a. N~ module, | 

2) a graded N- module N such that N, =0 

for np 0, and Ny = NM 

3) a differential graded NA - module with d = 0, 

k) a graded A - algebra, or 

5) a differential graded N- algebra. 

Ir AA’ are (differential) graded [\ -algebras, 

then AQ A’ 13 the (differential) eraded f\ ~ algebra guch 

that (x@y)(x'®@y') = (~1 Yi xx'®@ yy! for x'eAn,y¢ Ag. 

Notice that 1f A 1s a graded NN -algebra, then 

the multiplication ¢ :AgA —> A 1s a homomorphism of 

graded A- algebras if and only if A 18 antli-commutatlve. 

Definitions: An pugmentation of a (differential) graded 

A- module N 1s a homomorphism ¢ :N —> A of (differential)
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‘graded 0 -modules. A DGA-module 1s a differential 

graded (\ -module N together with an sugnentation 

EN —>N 

If N,N are DGA-modules, then N®N' is a 

DGA-module with ¢ (nen!) = ¢(n)g(n'). 

An augmentation of a (differential) graded 

A-algebra A ig a homomorphism ¢ :A ——> AN of (differential) 

graded A algebras. with unit. Note that this implies that 

£€ 1s an epLmorphl sm. A DGA-glgebra 1s a differential 

graded A-algebra together with an augmentation ¢ :A —) AN . 

Example 1: let X be a semi-simplicial complex. Then 

C(X)y® A 1s in a natural way a DGA-module. Tt already 

has a differential operator and a gradation, so 1t suffices 

to define an augmentation. This 1s done by setting £€ = 0 

on positive dimensional elsments, and ¢(x®N) = A for 

xeX, NeN . 

Example 2: It was pointed out.in Chapter III that if 

X,X',X" are seml-simpliclal complexes , then the .dlagram 

(G(X) ® CX Jp) ® CCX" Dy “> CX X XN) @(C(X" Dy ~ . 

hag . C(XxX'xX Wn 

C(X)y ® (C(X' J @C(X" J) C(X)y®C(X'x xX" WW 

ls commutative. y 

This means that if 1s a monoid complex, and 

a multiplication is defined in C(F)y by the diagram.



5-4 

C(M® Cry ——> C(rxp)y —> O(r) N N My Un 

where COOxM)y —> C{C)y 18 the homomorphism induced 

by the multiplication in [* , then C(My 1s a differ- 

ential graded algebra over the ring of Integers. Further 

it 1s not difficult to see that the unit of Uo gives rise 

to a unit in the algebra CM ye Consequently C(r)y@A 

18 in a natural way a DGA-algebra. Finally if { 1s com- 

mutative we have a commutative dlagram 
. 

CiMy © Cry — Clexo)y ~~ 

t IRs [7 C(M)y 
v 7 

C(My © CM — C{rxmy 

where T(x®y) = (-1 7 y® x for y of dlm s, x of dim r, 

and T' 1s the map Induced by the map of ' x [ Into 

itself which interchanges factors. Therefore, 1f ( 13 

commutative, then C{My 1s an anti-commutative DGA-algebra. 

Example 3: If A 1s a DGA-algebra, then Hy(A) =SH (A) 

1s a DGA-algebra with 4d 1dentlcally zero. 

Definition: If A 1s a DGA-algebra, then a graded _ 

augmented (left) A-module 1s a graded augmented module M 

and a homomorphism ¢ : AQ,M —> M of graded augmented 

modules such that if we write ¢(a®@m) = a.m for 

ae A,meM, then a-:(a'm) = (aa')m for a,a'e A, and 

1-m = mn.



M 1s a DGA-module over A if, in addition to the = 

preceding, ¢ 1s a homomorphism of DGA-modules. 

of inl t10 : If A,A' are DGA-algebras and f:A —> A' 

41s a DGA homomorphism, M & DGA-module on A, and M' g 

DGA-module on A', then gM ——> M' 1s a DGA-homomorphlsm 

compatible with f if the diagram | 

A ®M — tee 

\ J g 
M —_———— 

1s a commutative diagram of maps of DGA~modules. 

Definition? If A 1s a DGA-algebra, then a construction 

on A consists of 

1) © a filtered DGA-module M on A such that if 

me FM, a€A, then ame FM 

2) a DGA-module N, 3 

3) a homomorphism of DGA modules p:M —> N 

which is compatible with ¢ :A —> N , and 

4) a homomorphism of graded augmented left A -modules 

V Ap N —)> M subject to the following conditions: 

a) pe(1@n) =n, 

b) pF .M C 2 {r N. R ‘ 

c) If F (A@uN)=% q (rh ®\ N,, then 

V(F(A®, N)) CEM, and
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P: 0 0 
d) :E"(A®y N) ——> E"(M) 1s a homomorphism of 

DGA-modules such that v:EN(A®, N) ~~ B'(M), 

A construction on A willl be denoted by 

(A, N, M). 

Definition: A construction (A,N,M) 1s free if 

V :A@N ——> M 1g an isomorphism of filtered A -modules, 

and N 1s a free AN -moduls. In thls case we will fre- 

quently ddentify AQ@N and M as AN -modules. Note, 

however, that the differential operator in M 1s not 

necessarily the natural one of A®N; in fact it 1s usually: 

twisted. 

Definition: A DCA module M 1s acyclic if £ :M —> A 

induces an isomorphism Ex CH(M) —> A , Or in other 
d 

RR. — — ,.. 4 _E wordg 1f > M_ > M_, > —_ Mg > A 

1s an exact sequence, 

A construction (A,N,M) is acyclic if M is 

acyclic, 

Theorem 1: Let (A,N,M) be a free construction, 

(A',N',M!') an acycllc construction, and f:A —) A! 

a DGA homomorphism, Under these conditions there 

exists a DGA homomorphism g:M ——> M! which 1s com- 

patible with f, If g!' 18 another such homomorphism, 

then there 1s a homotopy D:M ———> M! such that



5-7 

dD + Dd=g-g', and Da.m = (-1 7 f(a)Dm for 

ae A. Further if the filtration on M is regular 

then g 1s filtration preserving, and D 1s a homotopy 

of degree [I 

Proof : Let C, be a basis for N, over NA . 

For this proof, identify x € C; with 1 @8XeM. Now if 

xeC,, define g(x) to be any element of M¢ such that 

¢ g(x) = ¢(x). If ve A@N, then y may be written 

uniquely as Zia, ® x; where x,¢€ OC, and gly) is 

defined to be 2 flay) g (x4). 

For x € C, 5 we have dxe A® N, and 

¢ (dx) = 0. Therefore g(dx) is defined and ¢g(dx) = 0. 

Define g(x) to be some element of MJ guch that dg(x) = 

g(dx). Now if ye A®N,, y =2lay ® xy where Xe C, 

and we define g(y) to be Zi flay) g (x4). 

Suppose now that g 1s defined on 

ARZ (nN =F, M. For xe Cri we have 

dx e FM, g(dx) 1s defined and dg(dx) = 0, Therefore 

we may define g(x) to be any element of M', such that 

dg(x) = g(dx). Consequently the exlstence of g 1g 

proved, 

let g' be another map compatible with f. 

Then for x€C,, eg(x) = €(x) = ¢g'(x), and 

s(g(x) ~g' (x) ) = o. Define Dx to be any element of 

Mi such that dDx = g(x) -g'(x). Now extend D to 

FM by defining Da ® x = (-1)fla)Dx | for xeA,.
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Suppose that D is defined on Frog M. Then 

for xe C., 5 we have dxe FM, g(x) - g'(x) = Dax is a 

cycle belonging to M! , and we define Dx to be ‘any 

element of Ml such that dDx = g(x) -g'(x) - Ddx. 

Notice that g(1 ® N.,) CFM if M' has sg 

regular filtration (1.0. M C FM"), and then 

g(A@ N,) C F M!', since for x€A', meF M' we have 

X-me FM, The same reasoning shows that DF M C FM 

or that D 1s of degree 1. 

Definitons: If (A,N,M) and (A',N',M') are constructions, 

a map of the first into the second consists of a DGA - 

homomorphi sm f:A—> A together with gs filtration pre-- 

Serving ‘DGA homomorphism  g:M —> M! which is compatible 

with £, Under the preceding conditions the map of con- 

structions will be sald to be compatible with f. Further, 

glnce g 1s flltration preserving, g Induces 

eT EX (M) — EF(M!), Now consider I. as an H(A) module 

by defining x.8 = X. ¢ (a) for xe /\ , ae H(A). Similarly 

consider AN. as an H(A!) module, Then N =A @g 5B’ (M), 

end N' = A® H(A? JE! (M'), and there is a DGA homomorphism 

g:N —> N' induced by g' or.by g. 

Theorem 1: Iet (A,N,M) be a free congtruction, (A',N',M!) 

an acyclic construction with a regular filtration, and 

f:tA ——> A! a DGA homomorphism. Then there is a map of 

(A,N,M) into (A',N',M') compatible with f. Further the 

induced homomorphism g, H(N) —> H(N') 1s independent of



5-9 

the cholce of such a map. 

Proof: The first part of this theorem is. just 

a restatement of Theorem 1. To prove the last part SUPPOSE 

g,g':M ——> M! are compatible with £f. Lot D be a 

homotopy between g and g' satisfying the conditions of 

Theorem 1, and define D:N —> N' by Dx = pDx for 

xe C, where C,, 1s a basis for N., as ln Theorem 1, and 

p:M! ——> N' 1s the projection map of the construction 

(A',N',M'). One verifies easily that dD + Dd = g - g'. 

Theorem 2: Suppose that (A,N,M) and (A',N',M') are 

constructions, f:A —> A' and g:M——>M' are DGA 

homomorphisms which determine a map of constructions, and 

N,N' are free /\ -modules. Under these conditions if 

£ H(A) ———> H(A') 18 an isomorphism and g, :H(M) —> H(M') 

1s an isomorphism, then g, :H(N) ——> H(N') 1s also an 

isomorphism. 

The preceding theorem 1s almost a special case of 

Theorem A of chapter Li, The difference is that we have 

not agsumed that the 1somorphlsm A(A)@N —> EV (M) is 

compatible with differential operators. This, however, 

1s the case if H(A) = AN With H(A) = A , the 

map PE 4 — Ng 13 an isomorphism, and therefore the 

differential operator d!' 1s of the correct form on 

Z Eq, or Now as a left H(A) module, E' (M) = HIA)® N, 

and d(x ®y) = (-N)T Exar (roy) = (-) Fx (19 dy) = 
(~1 ydim x © dy, and we see that in thls case the
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differential operator ls just the usual one in H(A) @ N. 

We will now indicate the changes necessary in the 

proof of Theorem A to prove the above theorem without the 

assumption that H(A) = A . Let M" be the relative 

mapping cylinder of g:M —> M', and N" the relative 

mapping cylinder of E:N —> N', It is easlly seen that 

E' (M") = H(A) ® N", and to use the ggme proof as before we 

need to know that Ey, o(M") = 0 for gq < Pp lmplies that 

EL oO ) = 0 for all q. 

let N° = H,(A) ® N". We have a differential 

operator in N* Induced by al, Further 

E'(M") = H(A) ®g (K) nt. et @ be any right H(A) 

module, and define HN; G) to be H(G®q (A) i). Now 

Ey q(M") = H (NH (A) ), and N" = Noga) N. There- 

fore to prove the theorem it suffices to show that 

H, (NH (A) = 0 for al p implies that H, (130) = 0 for 

q {p for any right Hy(A) module G. However, the fact 

that H (WH (A) )=o0 for q<p implies that H, (WHF) ~ 0 

for q {p where F 1s any free H (A) module. Suppose 

now that 0 —> R—> F —) G —)> 0 1s an exact sequence 

of right H(A) modules. Then since Nt 18 a free 

H(A) module (this follows since N" 1s a free AN -module), 

the sequence 

0 —> R ® (A) —> F ® (aN G © (a) —> 0 

18 exact, and there is a resulting exact sequence 

r= Hy (NR) — Hy (GF) —) H (N;G) — Hy, (NR) — «=r
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Consequently for F free we have Hy (N;G) a Lo (N;R) 

for q <p, and by induction this implies the desired 

result. 

| Having given some properties of constructions, 

we shall now show how they arise. We shall first prove 

that any twisted Cartesian product (17 ,B,E) (Definition 2.13) 

glves rise to a construction, provided 1s a monoid com- 

plex. To do this some preliminary definitions are needed. 

Definitiong: If (7 ,B,E) is a twisted Cartesian product, 

let V Cy © C(B)y —_> C(E)y be the composition of the 

natural map V :C(7)y © C(B)y — C(T'X B yy of the 

Eilenberg-Zilber Theorem (Chapter 3, p. 17) and the identi- 

fication of - C(E)y and C(T'x B)y as groups. We shall 

gay that a simplex o€ E 1g of filtration p 1if 1ts 

projection lies in the p-skeleton of B, 1.e. may be wrltten 

as 91, reo 8yT where Te¢B 1s a slmplex of dimension 

less than or equal to p. Define FC Ey to be the sub- 

group generated by simplexes of filtration p. Further 

when [7 1s a monoid complex consider C(E)y -a8 a left 

C(My module by using the dlagram 

C(I) © CE) ——> C(T'x Bly —> C(E)y 

all maps belng the natural ones. 

Proposition: If V' is a monoid complex, and 

(7,B,E) 1s a twisted Cartesian product, then 

(C(1)y, C(B)y, C(E)y) 1s a construction with a regular 

filtration.



5-12 

Proof: All statements which need to be verified. 

follow at once except the assertion that 

V:C(My ® C(B)y — C(E)y commutes with d° and 

Induces an isomorphism VHC) ® C(B)y —_> E (C(E)y). 

We shall prove this by showing that E°(C(E)y) = E°(C(rx B I)» 

that this identification is compatible with d°, and that 

the proposition is true for a Cartesian product. 

First identify E and "x B as sets. Then we 

heave to conslder 94 (0 XT) where @ xXx T is of filtra- 

tion np. If 15> 0 it does not matter whether we mean 

the 1-th face operator in E or "xB by 3, . If 

i = 0. we still have the relation (TXT) = 2,0. 9,(1x1T). 

The fact that ¢ x © is of filtration p means that 

T = 8140081, T where T'é&¢ B has dimension less than 

or equal to bp. If 7' has dimension less than p, then 

T x T represents the zero element in C(E)y. Therefore 

assume that dimension (T!') = p. | Now 3,01 XT) = 

3,01 x 8+ 8g T 1) = PIPRERLIINS x7')., Assuming, as 

we may, that 1,2 vos) 1., 1t follows that the element 

NE xp) = Th RRL T 9,(1 xt) 1s of filtration (p-1.) 

unless 1, = 0. ‘In this case 91 x 2) = 

51 4-1 oo By i» (1 x ©), and thls formulas is Independent 

of whether we mean the 0'th face operator of KE or Tx B 

by 3,. Thus, we have shown that E°(C(E)y) = E°(C(1'x B)y)- 

It therefore remains to show that 

7 1:H(C(My) ® C(B)y —> E' (C(x B)y) is an isomorphism. 

To show this, recall that we have defined a map
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£:0(rxB)y —> C(I") ® C(B)y (Chapter 3) such that 

fv 1s the identity! and 9¢f 1s homotopic to the 

ldentity. Since f 1s filtration preserving, f' 2 

1s the ldentity, and to prove the proposition we need only 

show that ¢'f'!' 1s the identity. For this it suffices 

to know that the homotopy of ff with the ldentity is of 

degree 0. However, this is indeed the case, for the 

homotopy 1s natural. 

The following comments may help to clarify the last 

assertion. The fact that the homotopy 1s natural means 

that if f£:X —> X' and g:¥ —> ¥' are maps of seml- 

simplicial complexes, then the homotopy commutes wlth the 

induced map of C(X x Yig —> C(X' x Y)y However, 

any simplex of a Cartesian product XXY 1s the image of 

a simplex of Ag, x Dy for some p and q, and every 

gimplex of A, or A q can be obtained by applylng face 

and degeneracy operations to the basic simplex. Therefore 

the fact that the homotopy 1s natural means that it may be 

expressed by using fare and degeneracy operations. However, 

from the very definition of the filtration on the chains of 

a Cartesian product or a twisted Cartesian product product 

it 1s evident that the filtration can not be raised by 

applying face and degeneracy operations. 

Definition: A construction (A,N,M) satlisfles 

the condition B' if 

1 In Chapter 3 it only stated that fv is homotopic 
to the 1ldentity., However, one verifies easily that it is 
actually equal to the identity.
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1) €Ng ==> A, and 

2) xeZ,M) and £(x) = 0 imply that there 

exlsts a unique ye 9Y(1 © Nye? such that dy = x. 

The construction satisfies the condition B if it 

gatisfiles the condition B' and is free. | 

Theorem 3: If (A.N,M) 1s a free construction, 

(A',N',M'") 1s a construction satisfying the condition BY, 

and. fiA — A' 1s a DGA homomorphism, then there is a 

und que map of (A,N,M) into (A!',N',M!') guch that v(1 @ N) 

maps into V(1 ® N'). 

One we note that the condition B' ‘implies that 

the construction is acyclic, the proof of this theorem is 

entirely similar to the proof of Theorem 1, except that at 

each stage where a cholce had to be made in the proof of 

the earlier theorem, there is now available a unique element 

of v1 ®N') | satisfying the required conditions. . 

Theorem 4: If A 1s a DGA algebra, and kernel 
£€:A—>N 1s a free N-module, there exists a con- 

struction (A,N,M) satisfying the condition -B. Further if 

(A,N',M!'") 1s another such construction, then there 13 a 

unique isomorphism of (A,N,M) with (A,N',M') which maps 

9(1 ® N) into v(1 @ N'), 

The uniqueness 1s clear from the preceding theorem. 

It remains to prove existence. This will be done in two
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different ways. The first way 1s perhaps more intultive, 

but is valid only if FA 1s a principal ldeal domain. 

First proof of exlstence: We assume now that N\ 

1s a principal ideal domain. | Recall that over a principal 

1deal domain any submodule of a free module is free. 

Therefore A = kernel &¢ :A ———> A 18 automatically free. 

Proceeding with the construction, let XN =A 

Mg = Ay ® Ny — Ay, let N =R, M =A oN, +A @XN, 
and define d:1 ® N, —> A, to be the natural map. 

Suppose that Ny and Mq are defined for a < r 

50 a8 to satisfy the condition. B. We have 

My= Zj,jq Ap ® Nj. Define Ny , = kernel d:M, —>M,_., 

and My, = S,,i_ py AL ©Nj. Further define . 
d:1 ® No — M., to be the natural map. It 1s now 

evident- that (A,N,M) is & construction satisfying the 

condition B. 

Second proof of exlstence: Again let A denote 

kernel ¢:A———> \ . Define 5 (A) = A » and for 

n > 0, BRA) to be the tensor product of A with itself 

n-times, and denote an element of BA) by (a,c. an] 

Define a nsw gradation in BE (A) by setting dimension 

a,, 0058) =n + 2d; where d, = dimension ay. 

Define B(A) tobe = B™ (A), and B(A) to be A @ B(A),. 

The object now 1s to place a dlfferential operator in 

B(A) so that (A,B(A), B(A) )1s a construction satisfying 

the condition B, 5
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| Denote A ® B™ (A) by BA) and denote an element 

of this module by ala, ,...,a,] . Define g:B(A) —> B(A) | 

by setting s(ala, yeeesanl) = [a- ea), 8yseee,8,1, We 

want 8 to be a contracting homotopy for B(A), 1,e. 

we want the relation ds + sd = 1-¢ to hold, where 1 

1s thé identity map. Since B(A) 1s to be a left 

A-module we shall have the relation d(a.x) = (da). X + (-1)° g.dx, 

Whore A = dimension a. Therefore 1% suffices to define 

d on B(A). on B, (A), d 1s zero. On. B. (A) define 

dla;,] =a, € A® B, (A). Assume that a is defined on 

B® (A) for » <n, such that d:B” (A) —> BY(A). A 
typileal element of gon (A) may be written ag 

ICHPRPRPL I sa lag, os NPE Define dla see sly, 1 = 

a, la,, 'o SL. | sda, la, .. PL: 1. Then ddla, 90028 ] = 

da,la,, vorsBpq] ~ deda, lay, .. ©2811 }, and assuming by in- 

duction that ds + sd = 1'- € thls last expression 1s zero. 

Consequently d 1s defined, and 4° = o, | 

To show’ that this construction satisfies the 

condition B, suppose that X € B(A), and €(x) = 0; 

then x = dx]. Suppose that we also have Xx = dy, 

where y€ B(A); then y = 8(z) where £(z) = 0, and 

a( [x] -8(g)) = ds(x-z) = 0. However, .(x-z) = 

de(x-z) + sd(x-z) = 0, and x.= z, so that y= [x]. 

Now suppose that xe B(A)qs a > 0, and that dx =.0. 

We have x = dsx, where  gxe€ B(A), and 1f x = dy
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where ve€ B(A) ‘then y = gz, and ds(x-z) = 0, This 

means that x~z = sd(x-z), 8(x~z) = ssd(x-z) = 0, and 

consequently Ly = 87 = 8X, The proof of the theorem 

1s now complete. 

In neither of the preceding proofs have we shown 

how to obtaln the differential operator in N in the 

- construction (A,N,M). The construction, however, 1s free, 

so that N= A® , M, and the differential operator in 

N 1s the natural trduced one. 

Proposition: Let 7" be a monoid complex, and let 

(A,N,M) .be the construction arising. from the twisted 

Cartesian product (UC SW(O)LW(r) )e Then (A,N,M) gatisfies 

the condition B'. | Co 

Proof: W, has one element (cf.definition 2.17), 

and consequent 1y \V) A RN, —> M, ‘1s an isomorphism. 

Further if S is the contracting homotopy for W([) 

used in the Proof of 2.15, then BS BN satlsfles the 1dentity 

8% = 845, and Sil, —_> Yq py Woe 1s onto. Consequently, 

denoting by S the Induced contracting homotopy on M, we. 

have S:M —> V(1©N), S°=o, and sll — v(1oN) 

1s ‘an epimorphism (recall that if € 1g a DGA module , then 

C = kernel & :C —> N ). Suppose, therefore that if 

X € M, 1s such that £(x) = 0 for q=.0, or dx = 0 

for q { 0, then x = dSx. If. x = dy, where ye V(1®N), 

then y = Sz for some de M, and a 8(x-2) = 0. -Con-~ 

sequently x ~-2z = 'Sd(x-z), S(x-z) = 0, and y = 8x. This 

proves the desired result. ’
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Definition: let (A,N,M) and - (A',N',M') be con- 

structions, Consider (A ® Al N®N! MM! ). Define 

V:A®A'® NBN’ —> M@M!'. by v(aga' nn’) = 

(-1 Xa v4 (2x1) ® vi(atxn'): where "of = dimension a! 

and 8 = dimension n. Suppose that M @ M! 1s provided 

wlth the usual filtration, l.e. Fp (M © M) = 

Zo pg=p FMOFM', and the usual differential operator. 

Consider M @ M! as a left A @ A' module by defining 

(a®a')(m®m') = (~1 *T a.m ® am’ where d= dimension 

a, and FF = dimension mn. 

Propogition: If (A,N,M) and (AV,N',M') are constructions 

whose underlying modules are free over AN then | 

(A® A',N ® N',M ®M') 1s a construction whose underlying 

modules are free over NA . If in addition i 

© 1) (A,N,M) and (A',N',M') are free, then 

(A®A',N®@N',M © M') 1s free, and 

2) 1f (A,N,M) and (A',N',M) are acyclic, then 

(A®A',N® N',M © M!') is acyclic. 

The proof of this proposition f'ollows immediately 

from the definitons. | 

Corollary: If A,A' are DGA algebras such that AA 

are free as MN -modules, and (A ® A',N,M) 1s an acyclic 

congtruction such that the underlying modules are free over 

A , then: H(B(A) ® B(A')) ~H(N)., Ir H(B(A')) isa 
free N -module, then H(B(A) ) ® H(B(A' ) ) =z H(N),
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Notation: Let E(x,n) denote the exterior algebra, over | ( 

N with one generator Xx of dimension n. In other words. 

E(x,n)y = 0 Por! q # 0,1; E(x,n), a2 \ with. basis element 

1, the unit of E(x,n); and E(x,n), ~~ A , with basis | 

element . X. In the algebra *2 = 0. | 

Let P(y,n) denote the divided polynomial ring 

with basic element y in dimension n. In other words 

P(y,n), = 0 unless ¢q is of the form kn for some 

non-negative integer k, P(y,n),,, ~ AN with basls element 

ies Jo = 1 1s the unit of the algebra Fly,n), yy = Ys. 

and. the product, in tho algebra 1s defined by yyy = (Yr, . 
Notice that for 'n odd', both E(x,n) and | 

P(y,n+1 ) are anti-commutative. N For each n We define 

a free acyclic construction (E(x,n),P(y,n+ ),M) a. ( 

follows: since the construction 1g f'rée 

V :E(x,n) ® P(y,n+1) RAEN MM, and we wlll assume that yy 

is the ldentity map ag far as modules are concerned. De- 

fine d(1 ® Yip ) =X ®Y, dx © Tie) =o, Now M "18 an . 

algebra with an additive .base [x ® jy ,1 © ¥.}. Further 

A ® 31 ® 35) = a1 © wy7y) =a ey) = 
i) x @ yy, am al ey) Sy) + (1©3)d0 6 yy) 
(x@y;_ M1 ®y) + Oy x®Yy)= 

(AY) wy xe yy = MD) x ey, 
Thege calculations show that d 1s an anti-derivation 

on the algebra M. Moreover, it is clear that the ‘algebra 
M 1s acyclic, Its structure 1s described by the diagram Cy



5-20 

n RX ~ 

E(x,n) 
od 

(n:+1) Co2(nt) 7 3(ne1) 
P(y,n+1) 

Combining the results of the calculation just made, the com- 

parison ‘theorem for constructions, and the previous pro- 

position. concerning constructions over tensor products , We 

-obtain the following result. Suppose that 

(B(x, STL IR. ® B(x, mn), N,M) is an acyclic construction 

with N and M frees A ~modules, suppose further that. 

ny is odd for 1i=1,, ok, In thls cage | 

H(N) a Ply, $1 +1)Q,.. © Pym +1 ). This result ig quite 

week, but we have a much stronger result due to A. Borel [2]. 

Theorem: Suppose that “(A,N,M) 1g an acyclic construction 

such that the underlying A -modules are free , and that 

H(A) = B(x, ,n, 19... ®.B(x),n.), where ny 18 odd, for 

1 =1,,..,K. In this case H(N)=~ P(y, >, +1 )®. ®@ Ply, 041). 
N { — 

Proof: It 18 suffliclent to prove “this theorem for the con- 

struction (A,B(A) ,B(A)). In other words 1tils sufficlent 

to prove that H(B(A))= P(y, mn, +1)® coo ® By, + 1), To 

do this we shall look at & spectral sequence for B(A).:
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As ugual let A= kernel ~& :A —> no, | 

and recall that 1f we define B Ka) =A® ...® A, the 

tensor product being taken k-times, then 
B(A) = N+ BTA) + ... + BEA)... ., In B KA) the 

‘dimension of a typical element la, yo eos8y] 13 2 Ly + Kk, 

where oly 1s the dimension of 8y 

Define F(B(A)) = pa Kc (pP (A): Then 

EY(B(A)) = N+ H(R)+ ...~H(A® ... ®A)+... with the 

appropriate conventions concerning dimensions. Now if 

H(A) 1s a free AN -module, then H(A © «ve ® A). of 

H(A) ® ... ® H(A), ‘and E'(B(A)) = B(H(A)). Further 1t 

is not difficult to verify that in this case EZ(B(A)) = 
H(B(H(A))). However, we have more data avallable. We 

have agsumed that H(A) ~ E(x mn) ® i. Q E(x sn). ‘Con- ( 

sequently by our earller remark H(B(H(A))) =. | 

P(y,,m, +1) ® +... ® (ym + 1 ).. This means that the total 

degrees or dimension of every element of EZ (B(A)) 1s even, 

and therefore that EZ(B(A)) = E® (B(A)). We then have 
CBy,m +1) ® 4. © Pym +1) = EP (B(A)) = E°(HB(A)). 
Since E°(H(B(A))) 1s a free NAN -module we now see that 

H(B(A)) = P(y, mn, +1) ® ... © (yom +1 ), “whioch 1s ths 

desired result. Note that this last isomorphism is not 

natural, 
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Errats to Chapter IV 

p.h-2 line 9: read "functor H:A —~—> Un v instead of 

"functor Hf ——) As" 

p.4=10 line 5: read "theorem of Serre [5]" instead. of 

"theorem of Serre [ J." g 
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