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1. SEMI-SIMPLICIAL COMPLEXES

In classical algebraic topology'one gtudies

simplicial complexes.: ﬁbwéver, modern developments have

sh@wn that these are inadequate, particularly for problems
in'homotopy theory. In recent years there has been a
tehdency to study the total singular complex of & space
(cf. example 2 belbw) ingtead of simplicial compleres; but
this method is also inconvenlent from the peint of view of
hométOpy. A more useful procedure geems to be the study
of abstract semi—simpliciél complexeé,,introdqced by
Eileénberg and Zilber [1], and of the sub-class consisting
- of semi-siﬁplicial cogpiexes satiszing the extension con-
dition of Kan (cf. definition 1.2 below).

Let 2% denote the set of non-negative integers.

‘Definition 1.1: A semi-simplicial domplex con-

sists of the followlng:

(1) A get X = U+ Xq s,

) Qes

where the Xq are disjoint sets (an element

of X, 1s called a q-simplex of X);

(1) functions ’bi : XQ+1 > Xq , 1 =0,...,q+1,

called face opgrators;

functions 530 Xg > Xgq o 1=0,000,0,

called degeneracy operators, satisfying the relatlons

D1 'aJ =,6j_18'1 1<,
18y T fjaf LK



355 = 85101 R
8 = s . = 1d t
0383 ,a,]+ls,] = ldentity

0185 = 83914 1> 3 +1

We shall usually denote & semi-simplicial complex by
its set X of simplexes.

A simplex xeXm_1 1s called degenerate 1f there exligsts

yeX.n and a degeneracj operator sj such that x = sjy ;3 other-

wise x 1s called non-degenerate.
Bxample 1: Recall that a simpliclal complex K 1s a set whose
elements are finite subsets of a given get K ,» subject to the
condition that if xeX and y 1s a non-empty subset of x, then’
yekK. A Sets with n+l elements are called n-simplexes, and ;he
get of n-gimplexes of _K is de_noted by K-n' . |

We now deffine a semi~-simplicial domplex ‘X(K) which
arises from X in a patural mammer. An n-simplex of X(X) 1is..
"'_'a. sequence (ao, .. .,an) of elements of K guch 'that.the set
ig an r-simplex of K for some { n. Define

!ao, cen ,anf'

%i(aoj- P ,&n) = (ao, .o ."ai_l,ai+1, . .o .,an),

si(ao, .. .,an) = (ao, .. "ai’ai’ai,-»l’ .. .,an').

Example 2: Let An denote the standard n-simplex, so that a
polnt of A is an (n+1)-tuple (tgy+++st,) of real numbers such
that 0 < ty S 1, 1'= 0,...,n, and Bt; = 1. Let A be a

t'opological space. A singular n-gimplex of A 1s a map¥

utA, —> A. Let S (A) be the set of singular n-simplex in

*by "map" we shall always mean a continuous function, provided
both the domain and image are topological spaces. '

-
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A, and set S(A) = U . S (A). Define
nez n .
0y ¢t Sp(A) —= 8 4 (A) (-

by ’bi u(to,ooo,.tn_i) = u(to,ooo,ti_l,o,ti,o-v.’tn_l),

and define
8y * S (A)-—) Sy (A) ‘

by 53 Wltgyeewsbyg) = ulbgeeeosby bty sty pre sty g )

It is easy to verify that S(A) 1s a semi-simplicial complex,

the total singular complex of the space A, [2].

In the examples we have ueen two ways in which semi-
gimplicial complexes arise; henceforth we shall consider abstract
seml-simplicial complexes. For problems in homotopy theory.it
is oonveriient, to restrict attentlon to semi-simpli_oia'l complexes

- satisfying the following condition:
Definition 1.2 - A semi- simplicial complex X 1s sald to satisfy(

-the extension condition if glven Xgs e .k,/1gck+1, S (:Xn such

that ’dixj = ”bj_1xi, 1< 3, 1] + k, then there exlsts xeX, .

such that 9,x = x;, 1 + k.  Such a complex will be called a

Kan complex.

Propogition 1.3: If A is & topologlical space,. then the total
‘singular complex S(._A) gatisfles the extenslon condition.
The proposition follows from the fact that the union

of n+1 faces of & is a retract of & thus a given map

n+1 . n+1?
defined on the union of the n+1 faces can always be extended to-

Ant”



Although 1t has long been realized that the total
gingular complex sat‘isfies the extension condltion, it was only
recently that D.M.Kan pointed out that the extension condition
ig sufficient for the definit'ion. of homotopy groups.

Definition 1.4:: Let ‘X be & semi-simplicial complex. A point
of X is a O-simplex, i.e. an element of Xy; and & path in X 1is
a 1-slmplex, i.e. an element of X1 . If x 1s a path in X,
then B x 1s the initial point or origin of x, and aox is the
i‘,:L_:gl_%l or terminal point of x.

Note that if A is a topological space, then a path
inAis amap u:A—> A, and therefore & path in  S(A). Further,
the initlal and final points of the path consldered as.an element
of S(A) are the same as when considered as the map u :‘A1 —> A,

Let X be a,Ka.n complex. The point aéX ig gaid

to be in.the same path component as the point béX 1f there

exists a path with initial point & and final point b.

Propogition 1.5: The relation "to be-1ln the seme path component "

is-an equlvalence relation.
Proof: (1) To show that the rela.ti‘on 1s symmetric, let x,
be a pa,th' from & to b, and let x, = sea. Now 613{2 =g =
0,508 = d X, Consequently there exists xeX, such that
9x =x4, L =1,2. Let xo=30x Then o x0=330x=
¥ X = dgX, aooa-—a,andaxo abox =d O, = ao"e‘

Therefore X0 Vis a path from b to a.




(11) To show. that the relation 1s transitive, let ( ”
Xy X0 be paths from a to b and b to c¢ respectively. N
Thendyx, = b =31x0. Let x be a 2-simplex such that

DX = X% = X,, and let x, ;'aix. Then x, 1s a path in

X from a to c,

(111) That the relation is reflexive 1s clear.

let ﬂb(X) denote the set of path components of X.
X 18 called connected if_ﬂb(X) hag only one element.

Definition 1.6: If X 1s & seml-simplicial complex, and

x*e XO, definefl(xg X*) asg follows:
1) 0 (X,x") = [ x|xeX,,, Qpx = 5§ x", My " Vpx = x"}

where 0 < 1y {n+ 1, k = 0,.00,m,

11) 94 ¢ 57h+1(X.,x*) A th(X:X*) 15 the function
. (
determined by’Bi+1 : Xn+2 — Xn*t’ 1=0,...,n +1

111) sy 10 (Xx%) > O, (X,x7) 1s the function

determined by 8441 ° Xn+1 — Xn+2’ i_= 0,...,n

- . *
iv) IL(X?X ) ééz* (X, 3)
"Theorem 1.7: If X 1s a sem1~simp1icial‘complex, and xﬁexo, then
1) N(X,x*) 15 a semlosimplcial complex
1i7 If X satlsfles the extenslon condition, then so

doeszll(x,k*).

The proof of this theorem is straightforward,
and will be left to the reader.



Proposition 1.8: If X 1s a Kan complex, and 'xz,xjé X,

are such that ’box5 =’30x2 , ’2)2:;5 é"c)ex,‘,, then there exlsts

X, & X, such that Opx; = $,3005%,,0X; = X,, Dpx; = X5
Proof': Let xg = 8,0p%,. Then Do = %, =0 ,X3s.
’aoxe_ =’alx0, and there exlsts xe X.3 such that

o x= % 141, Let x, =’B1x.. Then
Ppx; =g x = 2gRgx = DgIBeX, = 3202%, 5
DX, =DOx =20 x = d.x,, and

th_ation and_Conventlon: If X 1is a Semi-semplibial complex,
and x* 1s a point of X, 1let Ji(_)_(X,x*) = X, and let N (X,x*) =
NOX,x*)Y, 58' x*).,  The point 513 x'e N O(-X’X* ) (here s,
denotes the degeneracy operator in X) is the natural bage polnt

for HMX,x*).

Definition 1.9: If X is a Kan complex, and xf 1s & polnt of X,

define ﬂ'n (X-,x*) to be T"O(.Q.n (X,x*)).
Now T, (X,x) 1s the set we wish to meke into the
n-dimensions;l homotopy group of X. Therefore 1t remalns to

define a multiplication in lTn(-X,x*) for n > 0. However, to do
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this 1t 1s sufficlent to define & multipiioat,ion in zr-],(x,;if_;___.

n;
since T, (X,x") = [T, (N (X,x

0)) SO )-
‘Lot X be a Kan complex and x*e Xy+ - According to

the preceding proposition the_ré is & map of

Sy (X,x") xDg(X,x")—> Ty (NUX,x*)) defined as follows:
if x,ye;()o(‘x,x*)cx,. then-there exists
.weX, and Ze.QO(X,x*) gsuch that
QW = x’Z)w = ¥,9w =2, Let
[Z] denote the lmage of Z in My(SL(X,x™)).
Although % 1s not unique, [Z] 1s so, according
fo the preceding proposition.. We therefore denote
[Z] by x:y, and the desiréd map 1s glven by
(x,;g) —). XY .

Proposition 1.10: If X J?“,y en’O(X,x*), and fx,x‘

represent:-{

the sams elemert of ﬂ'o(.ﬂ.(x,x )), then Xy = xlvy

 Proof:: B8ince [x] = [x'1, there exists ze X2 such

tha.t DT = y%1 =Xx,%z = 8yx . By the ox-
tension condition, there exists an gsuch that

Bou =y, "a a = X, 9.8 = x'y, and there exists bex

such that Q,b = 50> ?:113 = a, ’051) =Z . Setting
¢ =" b, we have C
c-—’B'ab—-'b'ab:'asoy=Y:
thersefore ’610 =X +»y; but ’0‘1'0 =’aj'a2b=‘2)1’31b = ’318, = x{’y,
and the proposition follows.



Proposition 1.11: If X,¥,y! ey (X,xf),. and [yl = [y'l,
then x+y = Xeyt, '
Proof: By hypothesls there exist a,b,ze X2 guch that
08 = _y,’bea. = -x,'a1a = Xy
Jgb =¥ ,ob = x,9b = xy!’
0097 = soxo,”cl]z = y',?),az =y
Then by the extension condltion there exists
oe)(3 such that
Let d -—i‘b1c; then
0,0,¢ = '61’()30 :
’Ai.d . ’61?)10 = ’01?)20 = Ob = 3

Ii:
i

'Ded- '318. :

[

Therefore Xy = x-y!.

According to propositionst ._17.0, 111 there is a niap
To( DX, x")x T o(X,x*))—>  T(N(X,x") )
glven by [x] -'~'-fy,1 = Xy
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If X 1s a Kan complex, we shall denote by Fn(x,x*) the (=
it previously defined together with this multiplication. We

shall use Greek letters to demote the elements of T_(X,x*).

iigeorem 1,121 If X 41s a Kan complex, x*eXO, then Trn(X,x*)
15 & group for =n > 1.
Proof: Let &, B, ¥ €T (X,x") =To(N(xX,x*) ) =
TN (X,x*))). .
_have representatives Xx,y,z eﬂo(jfl_1'(x.,x*)) 'Cﬂ?"1 (X,x*)
1) Associativity: There exyst ao,al,afﬂgﬂ(x,x*)
such that uay = 2, Q8 = ¥, 98¢ = vz
3681,= 2,35&1 = Xy, 9,8, = (yx)z
Qo5 = V5085 = X, 98y = Xy
By the extension conditlon there exists
beil?"(x,x*) such that
b =28,,i =0,1,3. Bet .a,= b 'I'hen'
3022 =%t = 9P = A2 = ¥z

i

X

%%=9§@=3§¢=8&3 |
and therefore 31 a, = x{yz). But
x(y,2) = 9,8, = 3,9, =9,9;b = J,a, = (xy)z.
i1) A left identity is furnished by 8o%Xg 5 for
soxeﬂg"'1 (X,x*) has as faces Jpsyx = X,9,80% =
5031x = soxo,.’c}1 8pX = X
and hence (sox)x = X.
111) Left inverse:

By the extenslon condition there exists

ae ﬂ2"1 (X,x*) such that Jua = X,98 = 855X (
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then by definiton
(0,8)x = sp%,

go that ’aga is a left inverse for x.

In order to see the connection between the homotopy
groups of a Kan c_mhplex X and homotopy groups as classically
defined 1t 1s convenient to define SYH(X,x") directly, instead
of inductively. We therefore write down the expliclt definition
of M (X,x*) using elements of X, and face and degeneracy
operators of X.

.O-nq(X,x*) = {xlxeXn+q,
1 <n, and Oy .- 'Biqx = 537'%*}.  This definition is easily

n+q-1,#

Bix = 85 for

seen to colnclde with that originally glven. Now
..QPO(X,X*) = {x|x€Xn, fbix = sgnlx* for -1 { n, and

'Biox = sgh"x}-‘*f . Therefore an element of J')I_lo (X,x*) 1
an h—simplex of X all of whose faces are at the base point,
and an elemént of TT'n(X,X'*) 15 an equivalence class of such
si‘mpiexe‘si Two such simplexes x,x! are equivalent if there
n %

V = | = 1 7 o=
exists zeX . such that 9 .z =x,9 z=x', and'éiz 3

+1
for £ { n. PFuther, if x,x' are two n-simplexes all of whose
faces are at the base point, then [x'x'] 1s represented as
follows: By the extension condition there exists .z,e‘Xn+1
guch that ‘Dnﬂz. = x,’bn_1z = x', and 'biz = sgx* for 1 < n.

[x:x] is represented by d z.

Definition 1.13: If X,Y ave ‘semi—simp.licial coniplexes, then
f+X —>Y 1s a gemi-simplicial map 1f
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V) S &
2) £ =3f, alli, and
3)  s,f=fg ,alll.

We shall often denote leq by fq .

Definitlon 1.1k:. If X, Y are Kan complexes ;and f: X — X

is a se_mi—simpliéial map, then,rfor.every‘q. 2 0. £ 1nduces a

function
qu* L T (X,x*)~~> M (L, 20¢%) )
by . [x] [f x], for xe¢ ﬂq (X,x*).
Proposition 1.15: The function fq is a homomorphism for q > O.
‘The proof is evident from the definition. -
Proposition 1.16: Let A, B, C be Kan complexes

1) If £: A —>B, g :B —>C, are semi-simplicial (
maps , and a'e Ay, then

(ee)} = g1 ¢ M xet) —> T (GLenta) ).

" 11) If 1 1s the ldentity map of A, then lﬁ is the
identity aufo‘morphi_sm of TFQ(A ,e.*) v
Tt 1s convenlent to derive some of the relations
between the faces of a 5—simpre:>c. For the following five

propositions let X be a Kan complex, xeXo.

Proposition 1.17: Let Xy be %-simplex such that ‘ai'aJx5 = 50X, .

all i, j. Tet the faces of x
Then [al [c] = [bl.

3 be a, by c, sgx, in order.
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Proof: It 1s stralghtforward to check ‘that the

following four 3-simplexes satlsfy the extension

condition{

. o )
has faces dpx, = 85X, X, = b,33x1.= a, and is

1
then obtained by the extenslon condition. Set w =3 X,.

X

 x5 as glven
X), = 8.
Therefore there exists a b-simplex z such trat
1z = Xy, i2. Let X, =aez.
2., - - A = g2
oh’anE =W, 9%, = c,agxe = 85 X.
Therefore, by the rule for addition, [w] = [c]. But

Then Jnx, = ¢

from_'xl,we have [a]lw] = [bl; therefore [allc] = [b].

Propogition 1.18: Let x, be & 3-simplex such that

' . 2 <
3ian2 = 5%, all i, j. Let the faces of X, be a,sox,c,a, in
order. Then [cl[al = [d].

Proof: The following four 3-simplexeg satlsfy the

extensioh condition:

XO = Soa
— o — 2.
x; has faces Xy = 8,0,%, = 35x1 = 80X,

and is obtalned by extension. Let y =1)2x1

X, a3 glven

2
Therefore there exlsts a h-simplex z such that

2 = Xy, i$+3, Set Xy ='352
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— o2 - - -
Then.‘aox3 = sox,‘a1x5 =Y, 32x3 = 0,85x3 = d. Therefore

[dlly] = fec]. From x, and t.17 we have [y] = [a]”’ 1

. 1
Therefore [d] = [cllal.

ynosition 1.1

Let x) be a 3-simplex such that aiajxu =

.ox’@ILj”j' Let the faces of x, be a,b,c,d in order. Then

allbllal”'= [el. ,
ey _ four .
Prooi’: The followlng/3-simplexes satlsfy the extenslon
cohdition:
%o has faces 3,xy = d,xy = 80X, X = &, and 1s
obtained by extension.
set v = aOXQ . |
x, has faces.aox1 = v,31x1 = sox,33xd= b, and is
obtalned by extension.
set w ='32x1.
X, = 8,C
Xy, as glven.
Therefore there exists a L-simplex z guch that
“%iz = Xy ,143. Set Xy = 352.
By 1.18, [v] = [a], and’ [w] = [bllv]™' = [bllal™’.

r = 2 : A = =
Xy has faces 30x3 = sox,31x3 w,aéx5 _c,azx5 d.

Therefore [c¢] = [d]lw] = [dl(bllal .

Setting d = sgx in 1.19, x, then has faces
a,b,c,sgx, in order, and the relation\[b] = [b'][ab]_1
holds. But 1.17 applies to the simplex x), to give
the relation [c] = (a]~1[b]. Therefore, for
arbitrary [a] and [b], [blla]l”) = [al~1[b], or
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‘[a]lb] = [bllal, and T, 1s therefore abellan.
Since the higher hométépy groups were defined

by iteration, we have

Corollary 1.20: T..(X,x) is abelian for n > 2.
.n :

We shall henceforth write ﬂh add1t1ve1y for n 2 2.

Propogition 1.21: .- Let .zeX 1,q;2 2, be guch that

q+ . . .
(1) 'arz- = a,arﬂz =bh, O {_réq

(2)‘8iz = sgx, 141, r+1

(3) ;32 = sg“‘x, all j,k.

Then [a] = [bl.

Proof': . Iff r ='q, the proposltion follows firom

the definitlon of homotbpy classes. Suppose r< q;
then the following set of .q+1 (g+1) — simplexes

satisfles the extension condition:

¥y = s%+1x for1<{r and i1>r +3
Vpg1 = FpyqP

Ipig = 2

_yr+5 = Srb_

Then. there exists‘y€£XQ+2 such that Bix = ¥y iFp,
Vo= Bry‘ has faces 31Yr = 8%X, 1$r+1,r42;
?ﬂ_ﬂy = 8,-3,,,7 = b.
If we iterate this process q-r times we obtain a
(q+1)-simplex y' such that

3y =sgx, ,1<q, ' =8, ¥ =b.
Hence [a] = [b].
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:rop ogition 1.22: Let X be & Kan complex x€X. ‘Let

%I';:Z-exqﬂ’ q 2, be such that (1) ? 4% = 8, 31,2 = b, 31,4;12.' = ¢,
- where . 1£ r g_q, (2) éiz = sgx, iFr-1,r,7+1. (3) aj%kz% sQ’hc,
a1l j,k.
Then [b] = [c][al = {allc].
Proof: Hypothesls (3) 'iinplies that a,b,c represent
glements of Tl'q(X,x); and since thls group is abelian,
[cl[a] = [allc]. If r=.q,[b] = [clla] is just the
definition of the group operation. If I‘< q, then
the following set of g+1 (d+1)-simplexes satisfies
the extenslon condltion: |
Vg = sg—ﬂx for 1< r and 1Dr+ik
¥y = Sp,08
Vpyp hes faces O,y ., = 85%, 14r+1,r42,3, .y, ~=¢,
and 15 obtained by extension. Iet w = i1 Trso.

Tpez = &

Tppy = SpBe .
Then there exlsts 'y € Xy,p Such that aiyr-y, JiFret,

Yppq = Op,q¥ has faces 3y, 4 = sgx,_ 1<{r+1 or

L2743, Qi Tpeq = Wo Oppa¥ryy = PoysTiyq = 8-
By the previous proposition, [w] = [c].

It 1s easy to see-that by ilterating this process
g-r-1 times we obtain a (g+1)-simplex y' such that
aiY' = s%x: 1<q-1, q_1Y’ = w!,

qu' = b, aq+1y' = w"’
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TN

- and such that either [w'] = [a],[w"] = [c], or
[w!'] = [c],[w"] = [al.

In elther case [b‘] = [cllal = [allel.

Definition 1.23: A gemi-simplicial fiber space 1s a triple

(E, nB) where E,B are semi-simplicial complexes, and p:E-—> B
1is a semifsimpliciai map, satlsfylng the following condition:
1f XeBy, s YoreeosTmqsTippre e 2Ty € By 810 such - that,
b(yi) =3, x for Ik, and Biyj==aj_1 Y4+ for 1<, 1,5k,
then there _exists_'yeiEqu1 such that p(y) = x, and %y = ¥y
for 1fk. :

Iet b 'be & point of B, 'and let Fy
ég bli. Iet F=UF, , and defines 3 1 Fo > Fq to bo
the function induced by.'ai : EQ+1——~> Eq, and gy ¢ Fq——~> Fq+1

V=’!xlx>Eq;jp(X)_=

to be the functlon induced by sy : Eq~——> Eq+1 Now F 1s

a8 geml simplicial complex called the filbre over b.

Proposition 1.24: F 1is a Kan complex.

T

Proof:  Suppose xOf"’xkéi’xk+11';’xq+1e Fq

are such that dxy = 93-1*1 for 1<3,1,jHk.
Then p(xi) = sgb; and since (E,p,B) is 8 fibre

space, there exlsts xe¢E_ . such that p(x) =

. q+1
58+1b, and aix = Xy for 1f1. Since p(x) =
ég+1b, xe'Fq+1 which proves the proposition.
0. 2 ,

Now let (B,p,B) be & semi-simplicial fibre
space 1n which K and B are Kan complexes, and
lett F be the fibre over a polnt b of B. Let

a be a point of F, which we asgume to be non-empty,
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For q » 2 we define a homomorphism
4 ;
! ‘qu(B,b) —_— ]Tq_1 (F,&_)

as follows. Recall that an element o € q(B ,b)

1s represented by xe Bq gsuch that ai = 58'1b for

all 1 . Since. p 1s & fibre map, there exists

yeEq such that p(y) = x and 3,y = sgf‘é for 1> 0.
Then Y 1s contalned in Fq"l , and represénts an
element of ﬂ’q_1 (F,a). Suppose x'qu ‘also represents’
A . i‘hen there exlsts .z_qu+1 such that

¥z =-s‘8b, 1<{q, aqz = X, BqHz =x!, let y!eE'.Q

be such that p(y) = x' and 3,y = 83 'a for 1> 0 ..
Since p 18 a Tibre map, there exists weE . 8such.

th&"t p(w) = z, 3W“‘Soa, 0<1<q,’6w= ;3 w=y!,

q+1
Now p(dgw) = s3b + anaddgw = 33w = sg2s 1< a1,
Y1907 = ’Qoy, ’eq%w = 'Bo'y.' . Therefore [3ny] = [95y'1]
in Tl‘ (F a). ©Since In particular we may take x!' = x,
the element [’aoy]- 1s independent of both the cholce of
X .repregenting [x] and the cholce of vy We get

P vl '

We now show that ‘d# is a. homomor'phlsm. Let

4, pe Ta(B,b) have representatives x,Ax' respoctively.

let ze Bqu1 have faces
’aiz= sgb, 1<q-1, Sq,1z=x‘, 3q+1z = X,
Then '3 z represents ol+P let ve Eq be such

that p(v)~z,’aiv~soa 0<:L<q—1, and
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Biajv = s%"‘a for j = q-.14,'q,q+1, and 1>0,

Then '9,v € Fq, and

’aiadv = 33-18., 'for 1<{q- 2, 3 290\7 Qoaq_1v,
3q—130" = BOB V,B--?}Ov =3-03q+1v

Since 309 3 3 g ) aqﬂv represent

3*{3.{ ’_3#(0{4-{3 ) aﬂdyrespectively, from their-
relationship as faces of ‘aov 1t follows that

3#( olvs) = Ml DY iR
Theorem 1 253 Let (E,p,B) be & semi-glmplicial fibre space Iln

_which B Vand B are Kan complexes. Let beBO,, F the flbre
-over b, aeF'O ( we assume F non-empty). ILet 1 : F —> E
be the lncluslon map. Then the following sequenoe 13 exact:

-~>'n' (F,a) -~>TT (E,a) -———) ﬂ (B,b) ——-*>ﬂ' (F,a) —D ..

Proof: let x- represent ‘oLeTl“q(F,a). Then pix = sgb,
and congequently p# i“ 0. If x repregents
dxeTl’q(E,a), then 'Box = sq(-)- 'a  represents "a:“p#o( and
'B#p# = 0. Agaln, let x\ repi’QSth oteT[l(B,b).

Let 'ye€ Eq be such - that "aiy = sgﬂa, 0 < i, and p(y) =

Then 94y represents ot ; but as an element of
'_ (E,a), by proposition 1.21, [Jpyl = [J,;¥y] =

[sq la] = 0, and i+ = 0.

If x vrepresents o(eTE(F a) and 1 () =

a1 such that Ay = sga, 1 < a+1,

and ’aqHy = x. Therefore aip(y) = sgb, igq + 1,

then there exlsts ye¢E



and 3 Ip(y)] = o
Suppose that x repregsents J\errq(}E,a) such

_'that p#o(,= 0. Then we may agssume that x}e’qu,

and thus *ix1 =«

Finally suppose that x represents‘ieth(B;b)
such that‘é%x = 0. Then there exlsts yeEq such’
that p(y) = x,3;7 = 52 'a, 0 <1, and [3ny] =
‘[38"131 1n.T5f1(F,a). Therefore, since p 1s a
fibre msp, there exlsts ,yjeEé sﬁbh that p(y!') = x

andjaiy' o s%”‘a? all 1. Then p*[y‘]=?a(.
This completes: the prqgf of the theorem,
Proposition 1.é6: :Let.(E;b,B)'be a fibre spéce, piE —> B
be onto, xqu., and let yio. P AP Eq-q ,0 (~ 10< Y Ir < a,
be such that’Bi yib='31__131~ for s <1§,110,...,1 | + {0,...,qa},

and p(yhg 31 x; then there exists yeE' guch that pl(y) =

&Ddgi y’_‘yi,S"“Ooov,ro

Proof' If q-= 1, then the proposition follows
Immediately from the definition of fibre space.
Consequently suppose that the proposition is true
for q < n, and that q = n+1. If the set
{io,...,irf has g  elements, the result follows
1mmediately from the definition.of fibre space.

In this case r = q-1. Suppose then that the
proposition 18 true for r'ZIﬁ,HIS_q—T, and

that r =m-1>0. Iet te{0....,a] Dbe the least
integer such that t%iio,...,iri,. Define
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- Jy = 14 for 1s‘< t.let s' be the largest integer s

Jg =
for s' + 1< s {_ r+1 =m. We now wish to define

such that 1 < t. Define j_, 141= By and
11
¥ such that
ajsyt =9t_1yjs g _(_'-s-v', 33-51_3'1; =atyjs sl_>~st+_2.

The set {jO""’j_s‘ ’js’+2""'v'.’ jr+1§ has at most
(q-1) elements. Therefore, using the inductive
hypothesis, we may choose ¥y = y33'+1 su.ch that
fa'jsyt =347y, © < 81,95, _ Tt = Og¥yg 8282,
and p_(y)'=9tx. Now the set’
1dgs secesdpyq] hBs m elements; therefore by
inductive hypothesls there exists yeE such that
p(Y) = X, andaj Y=Yy, .8=0,...,r41. Then
p(y) = x, and? 1T T Ty 1= 0,

Propogition t.27: If (E,p,B) 1ls & fibre spaco, and p 1g

onto, then B 1s a Kan complex if and only if E 1s & Kan
complex . ,
Proof: Let E be a Kan complex; jand let
'vx‘o',...,'xk 1’xk+1"' ,ch be elements of Bq 7 such
thatd, x jwaj ~1%1 1<j, {j4k. Choose Yoek =
such that p(yo) = Xgs Choose 5(1.6Eq_1 such . that
1 .
manmer until Yore s s Vgeq 2 Teqr2e e .,yq have been
chosen such that; ‘aiyj = ’aj_lyi,i< I, 1,i%k, and
plyy) = x 1 + k, This procedure is possible

p(}ﬁ ) = x_ and 'Boyjr, = 'Boyo, and continue in this

by the preceding proposition. Now choose yeEC;
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such that 9y =y, for 1 %k, and let x = p(y).

" Then 9x = x; . for. 1 +k, and B ‘is a Kan complex

Now let B be a Kan complex, and let
Yore oo Ve sVjepr? .-.,yq be elements of E_q__1 -such
‘that 9y, = ;474 » 1<J, 1,j+k . Tet x; = b(y)
"and let Xx€B; be an element such that 9x = x;
for 14k. Since p - is a fibre map, there exisgts

yeEq such that p(y) = x and 9,y = y; for 14%k.

Therefore E 1s a Kan cumplex.

5

'Definition 1.28: let X be a semi-simplicial complex.

_‘,'If x,x'€ X, ; end n 1is & non—negative integer then x A x'

‘1 and on’ly if '81 31 Xx=3 . 91 x! for every iterated
1

face operator 9, . ..3 such that n+1= q .
1 1

Lemma 1.29: If x,x‘,x"qu » then

1) A 1s an equivalence relation

2) If x&x', then 31x~3 x', and
n n

3) If x~x', then six~six_'.

Definition 1.30: ILet X be & semi-simplicial complex.

Define a semli-gimplicial complex x{%) ag follows:
1) An element of -Xc(ln) 1s an equlvalence clags of

g-simplexes of X;'&_x'exq belng equiv.&lenf if

X'/I\le."
2) 3y xéfj?-—m) x(?l) 15 induced by d X,  -—>X and

‘ cw(n) oy p(n) 4 s
3). 841 Xy > Xq+1 is induced by sy : %, >3{q_1
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LeEX(OO) = X, and let pllg‘ ] X(n)*—-ﬁ X(k) be the nathré,l
map for n)k, where o >k, for every k. When there is

‘no danger of confusion, p? will be sbbreviated by p.

Theorem 1.31: If X 1s a Kan complex, then (X(n) lf:l X(k))

is a fibre space f‘or n » k, and X(n) is a Kan complex

Proof: We will first prove that x{®) ?{0 x(k)y

1s a fibre space. Suppose that xex(kc)l, and
'that ASRRRED (TS (IR qG.Xq _; @are such that
Yy =5.¥ys L, ik, 1< §, and plyy) =3x.
Now 1f q<k, then XY = Xy, snd ¥y = 9.
Therefore if we choose y = x, then yqu,Biy = Yy
and p(y} = X. Agsume therefore that q > k.

Since X is a Kan complex there exlsts yqu

such that 91y= vy for 14 k. PFurther any face
of dlmenslon {nofy is also a f"ace of gome
¥;+  Therefore p(y) = x, and p is a flbre map.
Now X((D) = X 13 a Kan complex, and pﬁo is a
fibre map. Therefore, x(k) 45 & Kan complex.
The fact that (X(T), 2 X)) 15 a ribre space
follows similar'ly, and the detalls will be left to
the reader. '

. The fibre spaces (X,p,X(n)) are closely
related to the construction '('I;!li) of Cartan and
Serre [2].

Notation: If X is a Kan complex, xeXO, let
Eh(X,x) denotes the fibre of p : X — X(n_1 ).
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The complex E (X ,x) 1s the n-th Eilenberg
subcomplex of* X based at  x. (31.

“Theorem 1.32. Let X be a Kan complex, xeX,, and

n+1(X,x) ————> X the natural inclusion map. Then

> ts (X(n),x) for q < n,

1) P : Thq(X,x)

2) TTQ(X(n),x) =0 for q> n,
.‘3) TTq(EnH(X,X),x) ———) (X, x) for q > n.
L) TI'(E (Xx)x)-O for q<n

n+1

Proof‘_: Notice that En 1

for q { n. This implies(k), and (4) implies (1)

(X,x), has & single element

since '(X,p,X(n))_ ls a fibre space with fibre ‘

B (Xox).
Let y represent e ’qu(X(n),x); then ’Biy = s%—1x for

all 1 . Now y 1s an equlvalence class of simplexes . zqu,
and the above condition on the faces of" y 1mplies that all
faces of dimension - r { n of =z are sgx. Therefore sgx is

in the class y, and k= 0, This proves (2), which implles (3), .
using the exact gequence of the flibre space.

Definition 1.33: If X 1is & Kan complex, let %= (x(+1)p x(n)y

The sequence ¥ = (?(, ,3{,, co X, ...) 19 defined to be the natural
Postnikov gystem of X. [4]. '

Theorem 1.3k, If X 1is a Kan complex, . 1s the natural Postnikov

system of X, x 15 & part of X, and 1f F(®*1) 45 the fibre over
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‘ in the fibre space ¥, then
Ty (F**1),x) =0 for q 4 n+i

T E) T, (xx),

n+1

The proof, which follows easily from the previqus theorems,

will be omitted.

?Dgiinition 1.35: If X 1is & comnected Kan complex,. n 1s

‘2&.positive integer, fﬂd(X,x) =0 for q+ n, and ﬂhﬁx3x):=775
‘then X will be called an Eilenberg-MacLane complex of type
(T,n).

Thus what we have shown 1s that, in some sense, any
_Kan complex X can be constructed from Eilenberg-Maclane complexes,
and that this is done by means of the natural Postnlkov gystem

of X.
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Chapter 1. 'Apgendix A,

In Chapter 1, no general definition was given of
homotopy between maps of'hone gemi-simplicigl complex into '
another;' The purpose of this appendix is to rectify that
situation, and further to prové after the mammer of Eilenberg-
Zilber ([1]), that every Kan complex is equivalent to a
minimgl éubcomplex.

Definition: If X and Y ar> seml-gimplicial complexes,-

the Carteslan nroduct of X and Y 1is the seml-simplicilal

complex X X Y glven by
1) (xxY) { (a b) | ae q,be Yq},

2) 1f (a,b) € (XXY),,, then D, (a,b) = (3;8,3;b)
for 1= 0,...,q+1, and

3) if (a;b)é('XXY)d‘, then ,si(a_,b? = (sia,sib)
fOl" 1= 0,00.-’qo‘.

Notation and Convention: Let »Aiqv denote the seml-simplicial

-complex defihed by the following:
1) an n-simpl’é;c :'is an (n+1 )-tuple’ (8.0;.«, e ,an) of Integers
a; such that 0{ay <L ay < 8y 11 (,...__<; ang_ a,
2'.) ’ai (ao,...,a ) = (8‘0""’3‘1-1’at+1”"’a ), and

3) si(ao, . erB ) (ao,...,ai 1’ai’ai’ai+1"' ,a ).

The semi-simplicia1 complex A 1s ,the_standard g—simplex,

and itself has a canonical element' of dimension d, namely
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(0,...,4). If X 1is any gemi-simplicial complex, and (-
xexq,

there is a unique semi-simplicial map f :-Aq —> X
guch that f‘(‘ (0,...,Q) ) = x. The_seini‘-simpiicial complex

A, will also be denoted by I.

Definition: 'If X, ¥ are seml-simpliclal complexes,

fg» £, ¢ X —> Y are homotopic if there ex;ats"F : XXI —> Y
such that for any simplex ¢ of X,

1) F(@x(0,...,0) ) = fo(a), and

2)  F(ex (1,..0,1) ) = £ (e)

The map F 1sg a homotopy from fy to f1. If A 1s a8

gubcomplex of X, and fylA = f1lA, then f, 1s sald to be

‘horiotopic to f

1 relative to A 1f there exlsts a homoto‘i)y

F from fo to- _-Jf‘1 sueh that F(ext) = fo(‘o‘) for ¢ € A

The subcomplex. A 1s a deformation retract of X, 1f the
1dentity map of X-——) X 1s homotoplc relative to. A .to a
mgp of ‘X 1into A.

.-Proposition'fh . Ir X and Y _:,a'r?eg‘ 's'_émi-simplicial‘ com-

plexes, then £os T, X —>Y are hOmQtpiq 1f and only if

there exist functions k; : X, — b defined for

_ q +1

1=20,...,4, and all g such that

1) ko = £y

2).%+1kq = fO’

%) Bil'cj :kj-1gi 1 < 3.

R R R

5) Bikj = kj?i—d for 1) j+1, i

6) s4k. =kj+’1si for 1< j, and

J

7) Sikj = kjsi_.] for 1 >-J-‘
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If A 1s a subcomplex of X, and folA = f1«'| A, then
.fo 1s homotopic to f1 relative to A 1f and only if
k() = fols;(@) ) for ¢e A,

Proof': Suppoge that F 1s g homdtopy connect-

ting fy and f Define ki( ) =

1

F(sy0 x 8 TRE FRRE- T ;..80(0,1)-) for

q
-Te X ,1=0,...,9. The verification that

q
the k;'s satisfy relation 1) - 7) 18 now a
routine matter. .

Suppoge that there exlst functlons 14:1
satis’fying 1) =7). Define
F(_’G’x Elq_’_1 .o .Si+1si_1 .o .80(0,1) ) = 3_i+1ki ( cf)

for €€ X,; 1 =0,...,9-1, F(ax s§(0) ) = f4(0)

qQ’
and F(ox sg(l-) ) = fl( o). Using relations
1) - 7), one gsees readlly that F 1s a gemi-

simpliclal map, and hence a homotpy from £, to f'1 .

Notation and Convention: For 1 =0,.. .,'q+1 » let
Al {0,000,a} —> {0,...,9+1 } be the function defined by

A = 1< 1, and
AL(3) = J+ Iy,

Simtlarly let %' : {0,..,q+1 | —> {0,...,a} be defined by
= J£1, end

nH(5) = g1 §5 1 ford=0,...,q.
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Further denote by ?Li : Aq - A q+1 the semli-gimplicial
map defined by the function a,i, and by 121 : Aq+1_> [_\-q
.the map defined by'vi.

We now wish to translate these definitlons into a
slightly different framework. In ordinary topology, if A
and B are gpaces, a map of A Into B 18 a point In the
functlon-space of maps of A 1Into B, and thls functlon-space
13 usually denoted by BA. Following an i1dea of A. Heller,
we shall now defline the seml-simpliclal analogue‘of a function-

gpace.

Definition: If X and ‘Y"arersemi-31mplic131 complexes, then

YX

18 the semi-gsimplicial complex defined as follows:
1) (YX)q 1s the set of seml-gsimplicial maps
f XIX'DQ —> Y, and
2) 1if £ : Xqu —> Y, then ¥f ‘.Xqu‘-1 —> Y
1s defined by
U= r(ixab), where 1 : X —>X 1s the identity map,
| | o | 1
and sf’:quﬁ1f~>Y 1smﬁhwdbx %f=f‘ﬂxq).

Now, as in the geometric cage, a homotopy between

between fo,f : X —> Y 18 Just a path 1in YJ{which starts

at the point ]fo and ends at the pgint f1. “Consequently,
for homotopy to be an equlvalence relatidn‘it would sufflce
for YX to be a Kan complex. (cf. definition of My in

Chapter 1).  This 1s indeed the case 6% Y ii a Kan com-
plex. The next few pages will therefore be devoted to the

proof of this theorem.
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"Definition: A (p.g) "shuffle" 1s a partition (m,v)

of the 'set E'O,..».,p+q—f | of ilntegers into two disjoint
sets such that My ( </"p and 'V_’(..-.. < Vy- The
(p,q) shuffle 13 determined by mor y.

The reagson for introducing (p,q)-shuffles is
the following: Ir T 15 a non—degenéfate ﬁ'?éimplex_of K,
Tlet ¥ denote the smallest subcomplex of X -containing = .
Thgn the non-degenerate (p+q)-simplexes of ’—rqu are of
the form

S, ve.8 X 8, «..8, (0,...,Q)
TSy A

where ()u,y) is a,.(p,q‘)-_—shuf'fla; and the set of. such simplgx
i1s thus in s natural 1_—-1”correspondence with the set of
(p,q)-shuffles.

Let 1€ | 0,_....,p+ql.- The (p,d) shuff;Le (/u,v) is
of type I relative to 1 1f either | -

1 1<pm, or

2) 1,11 € 11/1,.. Vg 1, or

3) 1 ="p+q, 1-1 =. Yy ‘
It is of type II relative to 1 1if olther

1) 1 <1/1-, or

2) i,i-1e 5/41,...,/441) }, or

3) 1= p-kq; i-1 = /Hp'
If the (p,q) shuffle (#,v) 1s not of type I or II relative
to 1, then 1t 1s said to be of type III relative to 1.



In this case max f/ﬁ., Y, t_(_ 1 < p+q and elther
1) te U“».,...,,upl and 1~1'e{‘v1,..., ’/q |, on

2) 1e§v1,...{vq} and 1-1({/»“,,,,,#13;,,

Now we wish to define a mnew shuffle (M,¥)

agsociasted with (x,7) and 1.

If (Mv) 18 of type I relative to 1, then (M,») 1s a
(p,q-1) shuffle. Tet k be the Integer such that Y =1
incase 1 or case 2, and let k =q 1in case 3, Let.- ”—[/‘] = 5
for' J <k, ¥y= vy, -1 for k< J<a-1 (A7) 1s the
corresponding (p,q-1) shuffle. There 1lg an integer r ,
called the Ln_r;l_@g of 1 1in (/w.,v)', guch that /—‘j = /‘jj

for 'j<_r, and Fj=ﬂj -1 for r {j<{ p.

If (m,¥) 13 of type II relative to i,_then' (F,_{)) is a
(p-1,q) shuffle. ILet k be the integer such that P =1
In case 1 or cagse 2, and let k = p 1n cagse 3. Ilet
/;Zj =My for § <k, /73 = My 71 for k< J<p-1; (pc,9)
13 the corresponding (p-1,q) _shuf'fle". There 18 an lnteger
r, called the index of 1 in (m,+) such that Zj = vy
for J<r, and 53 = 1/j~1 for r {J<aq.
If (p,v) 1s of type III relative to 1, then in
case 1, 1=}lr,1?1 =Vé. Lot Fj= .f'(j for j¥r, Fr: i-1,
and let (} ,¥) Dbe the corresponding (p,q) shuffle. In

case 1,1-1 =pt,, 1 = d/s. Let F,j =My for 3+ 1“,,31 =1,
and let (F ,¥V) be the corresponding (p,q) ghuffle.

Now the asgsociated shuffle (/7,7) of (’A,z)) relative
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to 1 1s defined for all (m,») and 1. However, we want
a gecond assoclated shuffle (4,%) relative to 1; it is to

be a (p+1,q) shuffle, defined as follows. If r 1s the
largest integer sucl? "tlvlat /“j<1v foxf‘ j<r, then My =My
for j<‘r_,</ur - 1, and mi= my_ 4+ for i>r. The
gecond index of 1 1n (/A,‘t/) is the 'Iimnber of v. such that

J.
Lok -

Definition: Iet X .and Y be semi-simpliclal complexes,
and F : X XAq —> Y aseml simplicial map. If - (/“"V) is
a (p,q) shuffle, define

Py | Kp ? Ipiq by

cee8,, 8 X 9, +..9, (0,...,0
v - /‘Lp /;(1 2 2

).
Yoo Y

Fo)® 78

Further defim
i . ’ D . i
‘F(/a',w' ) ¢ % 7 Ypeg-1

i .
b F a8 = . ¢ e &XS : )
J (/UL; ') S‘V’q'_1 ' 7/'1 /“'p /“'t]

where (m}o') is a (p,q-1) shuffle; and 1 = 0;:..,q.

(O, 0cu, i=1,141,...,4Q)

Proposition 2: If F:Xxb — Y 1is a seml simpliclal

map, then |

D Tt P Pt 18 U0w)
1s a (p,q) shuffle of type II relative to i, r 1is the index
of 1 in (wm,y), and (}7, v) 18 the assoclated shuffle of

(m,v) relatlve to 1,

2) ’Qi F if ()1,1/)

() =21 B (R, 7

15 a (p,q) shuffle of type ITI relative to 1, and
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(,A,'V) 1s the associa’ced shuf'fle of (/‘t, ?) relative to i,
= _ _, 1s t
3) 8y (f&’v) Fk)l’?) he .second, associated

shuffle of (/u,r) relative to ‘i', and r 1s the gecond

index of i in ()k,v-), and
’ o ) 1...14 ) C.
1{) giF(}l,‘V) = F(;{.,;}) if (f‘;”) is a (pJQ)
ghuffle of type I relative to 1, (F,V) 18 the assoclated
(p,q-1) shuffle, and r 1s the index of 1 1in (k,¥).

Further; a set {F( } of" funotions

Ma?) _ ,
indexed on the (p,q) shuffles for

F(,&,V) : Xp > X p+q
fixed q, ard satisfying conditions 1)-3) above, determins
a map F _:_XXQq —> Y.

The proof 1ls entirely similar to the proof of the
first proposition of this appendix, but move tedious. It

willl be omitted.

Theorem 3: If X 1s a seml-simpllcial complex, and Y

is a Kan complex, then ¥* 15 a Kan complex.
PO | X
Proof: Let Fosees F‘k 1’Fk+1’“"Fq€ (Y )q-1
“be such ‘that —‘]ij 3 1Fi,i<j,1,j={=l~:’.
Let ’F(,u,'y) 1
the (p,d-~1) shuffles determined by Fi for

‘be the functions indexed on

14k, We wish to produce a get of functions
F(ﬂ,v) s inﬁexed on the .(p,.q) ghuffles, and

satisfying relation 1)-4). Order the shuffls
as follows: an (r,q) shuffle precedes a (p,q)

ghuffle if r <{ p. A (p,q) shuffile
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(f"" v) oprecedes a (p,d) shuffle (/4:, z/*) if
e u¥ : *

My = MY for 1< j, and /"‘j<f‘j . The

first shuffle is a (0,q) shuffle, and thig

unique. Therefore, if a ¢ X, we mugt find
1 a
(0,...,q-1)
for 1 4 k; and we can do so gince Y 13 a

an element ber such that aib =_F

Kan complex. Define F(O )2 = b.

b LA ',q
Suppose now that F( 2 v) 1s defined for
b4

Cage 1: (M*, ¥*) 1s the first (p,q) shuffle;.

1'6' /fizi.‘] fOI" i=1,vno,p,1}é=i+p-1' This
ghuffle 1s of type III with respect to p, and (F,_;)
the associated (p,q) shuffle relatlve to p, 1s glven by
My = 1-1 for 1 < p, }Zp =D, ¥, = D1, ¥y=1+p-1 for

1 > 1. Therefore (m,¥) precedes (#, 7). Consequent-
1f a 1s non-degenerate we may use the extension condition

a 13 not specified. Therefore

to define F, x _,.&3 while 1f a 1s degensrate we may
(M, v*) .

condltion 3) of the proposition to make the definition.

Cage 2: For some integer 1, and for gome

,/*s——- 1. Now (p,+*) precedes (k, ), the associated

(p,q) shuffle relative to’ 1, and 911“(,(* %) 18 not
* J
gpecified. The proof for this case 1s then completed as

in case 1.
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Case 3: My =1+q-1, v} =1-1, k<q. In °
~ . o - WK .
this case we must have BKF(/**, ) F(/“’ 7 Where
(M,v) 1s assoclated with (/u*, v*) relative to k. But
Fk--— is undéfined; so that kF( % % is free, and

’ "(/")’V) )“,"V)
we may proceed as before.

If k { g, cases 1,2,3 are exhaustive. Therefore
1t remains to prove' the extension condition in casé k= q.

To do this we reorder the F by simply reversing

(m,v) '8 __
the ordering of the (p,q)-shuffles for each fixed p.

Now in the inductive step, /u’{ =1+q-1, 1/; = 1-1
1s the first case to be cOnside_red , and this may be c_arried
throug,h. The reverse of thé prévious case 2) 1s no_w,cvase 2)',
1,e. for some 1,r,s, ré {1,...,p1}, s_ié 1,000, }
,«’; = 1, V; == -i~1,- and we proceed as in . case 2. The last
case 1s now mf = 1-1, v,’i‘ = 1+p-1, and by the relations
we gee that ::)p+qF(/u*,1’*) 1s unspecifiled, and the proof

may be completed.
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If X is a seml simplicial complex, A 1s

a subcomplex of X, and Y 1s a Kan complex, then the map
S p ¢ Y > % given by p(f) = flAx Aq, where f:Xx Aq-4-> Y,
18 & fibre map. ‘

Proc;f_'_:. The proof of this .theorem 1g essentlally
the same as the proof of the -preceding theoremn.

Corollary 5: (Homotopy Extension Theorem) ILet (X,A) be a

gsemi-gimplicial pair, Y a Kan complex. ‘let f : X —> Y,-

cand. . let F : Ax I > Y be a homotopy such thaf
F(tx0y,...0,) )= f(7) for weA,, all r. Then there
exlsts a homotopy F:XxI—>Y which agrees with F on
Ax I and such that F(0 x (OO,..-.,OI,) = f(g) for ode Xi,,
all r. S

Now followlng Eilenberg and Zilber ([1]) we shall.
show the _exié.tence' of a minimal subcomplex of any Kan complex
whlch 18 equivalent to that Kan complex up to homotopy. We

first glve some _pi;'eliminary definitions and lemmas.

tion: If_ X 1s a seml-simpliclal complex, then

" Defilnit
X,ye Xq are ggmggj;_ygl_e_a- 1f x = ‘aiy' for 1 =0,...,q4. Now

x defines a unlque map X : Aq-——-) X, determined by x(0,...,q)
= X, and glmilarly for vy. The simplexes x and y are

said to be homotopic if x and y are homotopic rel A-q .

Lemma 6: If X 19 a Kan complex, then X 1s minimal if and
only if for each compatible palr x,yexq such that x 13

homotopic to y, we have Xx =y.
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Proof': Suppoge f'irst that X 1s minimgl, and

x,y e X, with x homotopic to y. Let k; : (Qq)r_">

q

X, 41 be functions satisfying the conditions of Proposition 1

generating -a homotopy from X to .y rel A "
We then have 'aoko(o, eensQ) = X,
K0, 0450) = kn(0,.00y1-2,1,...,q) = i’(so(o,...,i-e,i,...,q) )
=-8031‘_'1X =3150x for 1> 1.
Therefore ko(O,. ..,4) has the same faces, other than the first,
as does s,X. Since X 'Is minimal, we have therefore
'.311{1(0,000,(1) 2‘311{0(0,;-:,(1) :=‘3180X = X

By an inductive argument of this ngture 1t 1s easy to show that

31+1ki(0,...,-q) =x for all 1. Hence Xx = ‘aq+1

The converse is proved in a simlilar manner.

k,(0,...,q) = 7.

Lemms, 7: If_“ X ‘1s a semi-gimpliclal complex, X,ye Xq-, .and
x and y are compatible and degenerate, then x. = .y.
Proof: Let x= sz, y= snz'. ‘Then either

m=n, in whit:_h case Gmx =z and Qm'y = z' :meiies z =z,

or m ¥ n. In thls latter case suppose m<n. _wa

z = Qs 7= X = me =79 s.5" = 8,,9,%". Therefore

X = 81090 o ‘)mz' = shsm‘é_mZ', and }nx = sm’amz' . Since
z! =3ny = ’an = smamz', 7! = °~sm’amz' . Then Xx =
snsmgmz' = gz’ = y.

Now let X be a Kan complex, and define a new

seim-gimplicial complex M as follows. For each component
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of X choose a representative point. These are to be the
elements of MO Suppose now that M 18 1s defined with

" face operators for < n, so that Mr CX, and the face
opsrators agree. Consider the honiot-opy classes -of (n+1)-
simpléxes of X, each simplex having all 1ts_1 'f[aces in Mn. Wa
chooge one repfésentative from eac}; S‘ucl’:l class, always choosing
& degenerate representafive 1f suéh éxists; these are to be
'th'e olements of M

n:+1
ponding operators in X. Thus we obtain by induction & semi-

. 9y and 8y are induced by the corres-

simpliclal complex MCX which is clearly minimal. Wo now

define by induction a set of functions

lci'X o nﬂ,izo,;..,n |
for each diménsion n = 0,1,..., satisfylng the relations of
proposition 1, and such that ?Oko(:x') = X, :;M Il(x)e M_  for

xeX , and ky(x) = si(x? i’f. xé'Mn.

1) If xeXg, ko(x)‘is to be a path such that Jpkg = ..
X,d ko(x)e.Mo.

Further, 1if xeMO, we take ko(x) = so(x)

2) Suppose that. the functlons ki have been. defined for
X, for n{ r, satlsfylng the above conditions. Lst
xe)(r,+1 . If x 18 degemnerate, then ko(x) ig de-
fined by the relations, while 1f XeMrH we get
ko(x) ==, sO(x). Otherwise we must find an element

= ko(x) such that oy = x and ‘éiy = ko(ai_1x)
for 1> 1. We may choose such a y using the ex-

tension condition.



1A- 1h

3) Suppose further that k, : X —> X has been (-

r+1 r+2_
defined for 1< j. Then for x¢ X, +1 We must find
y = k.(x) guch that
aiy 4%X for 1 < j,‘é K . (x)— 3 j-1

j(X) = kjai_ﬂx for i>,]+1-. If x 1is degen-

(x), and
erat_e, define kj(x) using the relations. If xeM, .,
set kj(x) = sj_(x). Otherwise apply the extension
condition and choose kj(x) arblirarily, provided
JFr+t. It j = P41 , we must have the further condition

(x)e M, First choose vy =k _ (x) by the

91"—!-2 r+1 n+1
‘extension 'Qor;di_tion to satlsfy all the above conditions
except that on 3, .7. .

Then

'1‘
31 9psoKpp (XD = 35,191 Ky (x) =,k 4x)IeM, for 1lr+1;

13 palpat (XD = I P piq B (XD = 43,4 10, (%)
= dpiiPpiekp(X) = Fpp k(B ) €M,

Thus 9.,y has all its faces in M,, and there 1s therefors a
unique ze€ Mr-H which 1s compatible with and homotoplc to
’ar 4o Then by an ‘obvious modification of the hohlotopy exten-

sion theorem, -there _ex__ist_s vy'e X such that ‘aiy = ’aly , ilre2,

r+2
and )P+2y_' =z, - We finally def‘in§ k3:°+1(x) = y', This com-
pletes the induction.
Theoram 8: If X 1s a Kan complex,” then there exlsts a minimal

_...._.-_..n_.....

subcomplax M of X which 1s a deformatlon retract of X.

Further, if M! 1s another guch subcomplex, then M 1ig isomorphic
|

to M',
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Proof: The exlstence of M hag already been proved, so

suppose that M' 1s another such complex

et r*: X —> M, r' : X ;-—> M' be deformation retractions.
Then we have maps

!
- S X ——> M, and

1! r
M - > X > M

where 1 and 1' are incluslons.

The map lor 18 homotoplc to the’ identity map of X, and hence
‘r'oloro 'ortol' = 1. One verifles readily that the identity
is the only map of a .minimai complex into itseif which 1s homo~
topic to the 1oent1ty, and hence r'oloroi! .= 1,

Similarly roi' or'ol= 1, and hence r'ol 1s an lsomorphism.

Thilis completes the proof.

Reference

[1] 8. Eilenberg and J. A. Zilber, Semi—simplicial complexes
and singular homology, Annals of Math. 51 (1950),
pp. 499-513..
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Appendix 1 _B. Definition of Homotopy Groups
by Mappings of Spheres

W. Barcus

et A q denote the semi-gsimplicial complex on

“the standérd g-simplex; an r-simplex of A q 18 a. sequence
(Lpseeesip) with 015 <. {1, {4 the 1, being

the "vertices" of the slmplex. We shall also denotg the
complex A, by I.  Similarly, let Aq denote the
usual semi—simplicial complex on the boundary of "the standard

q-simplex, so that A is a subcomplex of A is

B gu1 ,
the analogue of a q- sphere , for semi-simplic;tal theory. Ilet
¥, denote the simplex (0,...,1-1,1+1,...,G+1) of A
and let ~aiaq+1 ‘denote the subcomplex of A

q+1’
conglsting

+1
of simplexes which do not comtain the vertex ;1. We may
embed Aq in t.\,q+1 as aq+1 A
Let X )e a Kan complex, x*eX,. It is clear

that TC q(X,x*) s thé gt hamotopy group of . X based at x ¥
as previously defined, way be considered as the set of
equivalence clas‘éies of"ma_ps1 h:( lxq‘, A'q) — (X,%*) ,
two maps h, k being equivalent ("simplicially homotopic")

1f there exists a map F: QO ——> X such that

q-+1
F(aj Tj_) = 'Sg x*, all 1,]; F(o‘i) . gx*’ 1q, g+ ;

F(U"q)"': h(O,---;Q)"," F(Tq,*_]) = k(0,...,q).

I_For any simplex ¥eX, let T denote the smallest gubcomplex
of X containing ¥ .
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let Tt q(X,X*.) denote the set whose elements

are the homotopy clagses’ rel(q+1) of maps
f:(l:\.Q+1’~.(q+1)) —> (X,x*), (gq+1) being the O-simplex

consisting of just the vertex Q+1 .

Lemma 1B.1: Any map g:( Aq+1,(q+1))—-> (X,x*) 1s
homotopic rel (q+1) to & map g:(dqﬂ,(qﬂ 1> (X,x™)

such that g (‘0'1) = sgx* for 1 < g+1.

Lemma 1B.2: Iet h,k: (Aq+1,(q+1)) *-*-*-}(Xx ) be maps
such that h(eqy) = k(v‘ ) = sox* 1 < q+1, and suppose that

hak 1ol (q+1) Then h~k -rel G‘OU... UG‘.

The proofs of the sbove two lemmas are stralght-
forward; one need only extend maps defined on subcomplexes of

A quI and Aqu IxI., Detalls will be omitted.

Lemma 1B,3: Iet h,k:(Aq,Aq)- ——> (X,x*). Then h~k
rel A, ‘if and only if h~k.

Proof: Suppose that h ~ k rel By under a
homotopy F:AqxI ——> X. The non-degenerate (q+1)-simplexes

of AqxI are

(O,unu,i 1 1 1 1+1,»..,Q)X(00,...,Oi, 1+1"..-,1 )-

q+1

a
for J+1,1 +1. Applylng lemma (1.21), from T, Wwe have

For each 1 akaj € Aq‘x I for all k, j, a.nd'aj'l!iez’\ x1I

' oIn the sense of Appendix 1A. Homotopy in this sense will

be denoted ~; 1n the simplicial sense, ¥ .
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k F|3,ty; from ¥, we have F|3,T,=FP T, 3 FI9,T ;
hence by the transitivity of 7, k4°F|3,T,. Proceeding
inductively, ,kfsv’F I 3q +1Tq

Conversely, let h-g k. Then we define

Fif xI —> X as follows. f, =F(Z,) 18 to have faces
Jgripg = B0 ..esq), ﬁq, q = k(0. sl aipq= sdx*, 1< a.

Tet Pi = F(14)="8,k(0,...,q),1 {q. F 18 then determined
and is a homotopy from h to k rel Aq

Define a function W :ﬂ('1 > ’?Fq‘ as followss.
¢ [§] 1s represented by the map h':( l.&q,ﬂ,(QH )) —> (X,x*)

determined by h'(vo‘i):__: sg x*,14 q+1; h'(U‘qH) = h(0,...,4).

Theorem 1B.%: ¢ 15 1-1.

A group structure 1is .therefore Induced in %q such.

that § 1s an isomorphism.

Proof of 1B.k: To shéw 'i:hat v 18 single—iralued R

suppose that. h~k Theil by (1B. 3), h~k rel Aq If the
homotopy iﬂ F; A x I ~—> X then F can be extended to

§
0K AQ+1 —_ X by setting F (w ) = 8, x* for any sim-

plex w'r of 1). XTI —quI F' 15 then a homotopy from

l] 1 to 'klv'
Define ¢: ﬁq—-—> m, by $ig] = [g), where

8”(5(1: l&q) —> (X,%*) 1s the restriction of the map

g of (1B,1). ¢ 1s single-valued by ZIB.z),(iB.B). It
1s clear that ¢¥ = ldentity, and by (1B.1) ¢ 1is onto.
Therefore ¢ 13 1~1, which proves (1B.4).
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Using the representation of the elements of Tr q

a8 homotopy clasgses of mapplngs of A it 1s easy to

q+1°?
1 .
define the isomorphism induced by a path ® in X from

Xg to x1: N

A4 : T (X,%) —_ ™, (Xx,).

Let fe'ﬂq(x,xo) have representative map fot(d 2 (@) —(X,x45).

q+
Define F': Aq_Hx I —> X by F(tx (OO, ...,QI,)) =
fo(t)y ‘_Ué(Aq-M .
extend by the homotopy extension theorem. Define
£ Aq+1,(q+1) )—> (X,x) by £,(T¥) = F(tx(10,--.,1r)‘);
then o(#} ="[f,]. That &, 1s an isomorphism follows by

), &1l r; F( (q+1,q+1)x (0,1) )=« ; . and

applying the homotopy extension theorem. The usual properties

of the induced isomorphism may also be demonstrated.

1) It 1s more convenlent to define this lsomorphlsm rather
than its inverse, as 1s usually done.



Chapter 1. Appendex C

In the preceding parts of chapter 1, a good deal
of elementary homotopy theory ‘has been developed, but some
gta._nda_rd and necessary propertiés have not yet been stated.
This section will first take up a few of these, and then

pass on to a proof of the Hurewlcz Theorem.

Theorem: If X,Y are Kan complexes, and f,g:X —> Y

are semi-simplicial maps homotopic relative to [x]- (the
subcomplex of X generated by X e Xg),. then

= é#? Ty (Xyx) — (Y, 1(x)).

Proof': The theorem follows immediately from the fact

that elements of TY'q(X,x) correspond to homotopy classes of
maps ¢>1(Aq, Aq)—"-—> (X,x) (see appendix B)};ﬁsince ‘f,g

are homotoplc relative to [x], fo¢, go¢: (Aq,dq) —> (¥, f(x)

are homotoplc.,

Definition: Two Kan complexes X and Y are sald to have
the same homotopy type 1f and only if there exist maps

f:X —>Y and g:Y > X such that fg 18 homotoplc to
‘the identity map of Y and gf 1s homotoplc to the identity

.map of X;

Propogition:: If X and Y are connscted minimal Kan.

complexes such that T (X,x) = rrq(Y,y') = 0 for g+n, and
¢:-r£(X,x)' —— I’Tn(Y',y) is a homomorphlsm, then there ig a
unique semi-gimplicial map f£:X ——> ¥ guch that
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=40 (X,x) —D LY.
Proof: Since X and Y are minimal they both have

exactly one simpiex in each dimension < n. Further there

is & natural 1:1 correspondence between T (X,x) and X,
and b"etWeen n(Y,y). ‘and rYn. Therefore f 1s defined and
15 unique in dimension < n. Suppose now that f 1s

yo—

defined in dimension < q, where q > n, and let ge Xiq+1 .
Then f(3J;6) 1s defined for i = 0,...,q+1, and thers 1s

8 unique element 7 of Y 1 such that 31t= f('aiq') for

aq
1=0,...,4. Set f(o)=1. Thus f 1s defined in-
ductively and satisfies the condition f = £9,. Suppose
that s,f = fs; in dimenslon < q (we may suppose that

q)pn);, and Te P Then Bjsif( T) =8, ’ajf(o’_,) =

53¢ F( 30 = £8y_3;0)= £( 35, ) = f(sy6 ) for
§< L, (o) = £(e) = £(8,0) = (a6 ), Yy, 8;F(T) =
f(g) = f_(_31+1510") = Biﬂf(siﬂ‘- )s BJSi_f(d”) = ﬂiaj;Tf( T) =

si‘f‘(aj_1c')h='f(si 93_1 o) = 'Dj fsg0) for J ) 141,

Consequently sif‘( v ) and f(si(r) hayve the same faces,
and since g+1>n, and “,'q+1 |
8,£(0 ). This last assertion completes the inductive step

(Y,y) = 0, we have fls,0 ) =

in the proof.

Corollary: If X and Y are connected minimal Kan com-
plexes such that Ué(X,,x) = TTq(Y,y) =0 for g+ n, and
‘(Tn(X,x) ::'nn(Y,y), then X and Y are lsomorphic.
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Theorem: If X and Y are connected minimal Kan complexes,
and f:X —> Y 1s a semi-gimplicial map such that
£*: X, x) B> W (Y,y) for all q, then £ 1s an iso-

morphism,

Proof: Let %P = (x(™1) p #7)) be the n'th term in
the natural Postnikov system of X, and Y™ = (Y(n+1 ),p',Y(n))
that for Y (Chapter i1, p. 23). Now it is evident that all
the terms in the Postnlkov gystem of a minimal complex are
minimal.,  Using the preceding corollary, we may make the
inductive hypothesis that £(2):x() — y(n) 4g gy

i somorphism. There is a commutative dlagram
x(n+1) p(m+1) > y(n+1)
1 P l p'
. n :
.xn f( ) > Y(n)

Suppose that «,rex(qn“”), and that £(0*1)(q) = £(2¥1) (4,
Then p'f(n+1 )-( e) = 'p'f(n+1 )(‘t‘), and p(e) = p(¢). There-
fore =1 1f q §_ n, Suppose we have proved that

p(nt1 )‘-(w')=f‘(nﬂ )(1:') implies @ =T

!

when dim ¢' =

dim ' < q. We then have 90 = aiz:., i=0,...,49, and

¢ = T unless g = n+i. If g = n+1' we recall that the
‘simplexes of dimension (n+1) with a giv'en boundary in a
minimal complex are in a natural 1":1 correspondence with Tr ..

Let [ol, [t] Dbe the element of .. corresponding to

1
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@ and ¢ vrespectively. Since f(¢) = £(z), by
naturality f*.{(r] = f‘n[t] ; sSince t* 15 an 1somorphism,
[0;] = [ﬂ, and hence ¢ is homotoplc to 2 . Since ¢ and
T are compatible.i,1A~11) and homotoplc, ¢ = ¢
\ The fact- that £B+1 ) is ontd"may be proved
similarly. It then follows that f 1s an isomorphism,
since X, = Xfln) for q < n.
Theorem: Iet X and Y be comnected Kan 6omplexes. Then
‘the following conditions are equivalent
1) X and Y have the same homotopy type,
2) . thére_ 1s a 'map 11X — Y such that
f*;rtq(x,x)‘ = > Ty({L,f(x)) for all q,

where XxeX,, and

.3) X and Y have lsomorphic minimal subcomplexes.

The proof ig stralghtforward, using the earller
theorems of the appendix and the fact that every Kan complex
has a minimal “subcomplex which is a deformation retract 46f the
original-compiex (1A-1k4 Theorem 8). ' _

The fact that 1)and 2)in the p_rec_e‘ding. theoreﬁ
are equivalent 1s in the topologlcal case a theorem of
J. H. C. Whitehead [1].

Corollary: If X 1s a comnected Kan complex, xeXO,
TTq(X,x) =0 for q<n, and E (X,x) 1s the n-th Eilenberg

subcomplex of X based at x, then the inclusion map
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ji’En(X’x) ———> X 1s a homotopy equivalence. [

Definitions and Notations: If X 1s a seml-simplicial

complex, then _Cn(X), the group of n-chaing of X, 1s the
free abelian group generated by the elements of Xn. C(X) =
e (X)) —> € (X)
be the homomorphism defined by 3dx = Zn” (-1 )i aix f'or

xeX, .- C(X), together with the endomorphism 9, 1is

gCn(X) is the chaln group of X. Iet 9:C

the chain complex of X. Let Zn(X) be the kernel of

9 :Cn(X) > Cn—1 (xX), _Bn(X? the image of 9 :Cn+1(x) —> Cn(X).
The group Zn(X) 1s the group of n—czclés_ of X, and Bn(X)

1s the group of n-dimensional boundaries of X. The endo-

morphism 9 of C(X) has the property that 39 = 0. There-
:

fore B, (X)CZ (X), and the n-dimensional homology group of X
ts H_ (X) = Z_(X)/B,(X). The homology group of X 1is

H(X) = 5 5 o By(X).

Theorem: If X and Y are semi-simpliclsal complexes, and
f,giX ————> Y are homotopic maps, then f, = g,:H (X) —> H(Y).

Proof': be functions determining a

Lot ky:X, — Yq+1'

homotopy between f and g (1A-2, proposition 2), and define
. — - q . ,._.41 : :
k.Cq(X) > Cq+1(Y5 by k(x) = S L=O( 1) ki(x) for
xexq. Now Jk(x) + kdx) = f£(x) - g(x), and the
result follows.
The preceding theorem is the usual statement that

homology i1s an invariant of homotopy type.
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If X 1s a Kan complex, then HO(X) = Z(ITO(X)),

‘the free abelian group gensrated by T\'O(X).

Proof': There is a natural map XO —— .ﬁo(X) s, which
; induces & homomorphism CO(X) —_— Z-(Tb-(X)). Clearly this
map is an epimorphism (homomorphism onto). Suppose that .

.'xexl 5 then Jyx and 9, X are in the same component of X,

5

go that the above epimorphism induces an epimorphism
¢1H0$X) ,
of Xo which represents Xx. Suppose that § also represents

~

> Z(My(X)).  For xeWy(X), let X be an element -

X, then there exilsts: ze X, such that Juz = X, 3z = ¥,
and fc}—%eBo(Xv). Consequently x —> X 1induces a8
homomorphism ¥ :Z(TI‘O(X)) > HO(X). Since ¢¢ and 94
are ﬁhe respective identities, ¢ 1is an isomorphism.

~

Definition: ILet X be a Kan complex, xeX,, and defins a
homomorphism -

b: T, (X, %)

> H (X,x) , for n>0
as follows?, A
Lot ole m,(X,x) have representative aeX  such

. n-i . . ,
48 = 85 x for 1=0,...,n. Now if n 18 odd, sa = 0,

while 1f n 1s even, 9Ja = sgﬁx. Therefore we may take
¢(«l) to have representative a 1if h 1s odd, and a.-sgx
if n 13 even, '

To show that ¢ 1is singlé-valued, suppose that

a'e X, also represents o . Then there exists weX, .
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guch that

n

dJw=a, 3 W=a', 3iw = sox for 1<n.

n-+1
Then _1f'— n 1is-even, ow = a~-a', while if n 1s odd,
oW = sgx - a+a'; and since ng is a boundary, 1n_ei.thér'
case &' 1s homologous to a.

To show that ¢ 18 homomorphism, suppose that

a,beX, Trepresent %, g €W, (X,x). There exlsts veX ..
guch that
’énﬂv = 8, ‘an_‘v = b, and Giv = szx for 1<{n-1,

and 'Jnv then represents A+ P If n 1s odd, $(d +F)
is represented by I v; but since dv = b= 3nv+a,.‘)nv 18
homologous to & +b, which represents ¢,(d) + (ﬁ( F ). Similar~

ly if n 1is evez}, ¢ ( d+P) is represented by' I,\nv -sg X;

n
0

which represents ¢(ol )+ -4)(/6 ).

and since dv = s . x~ Db +9nv— a, this 18 homologous to & +b,

Theorem (Poincaré): If X 1s a commected Kan complex
and xeX,, then $: m ( X,x) —> H, (X) induces an iso~
morphism ¢': T (X,x)/[w (X,x), M (X,x)].

Proof: We may assume that X = E1 (X,x). Then there is a
natursl map 7) zZ1(X) = Cl(X) — l'l;/[l't1,1'r1 1, and as
ngtural map n :Z1 (X) —> H1 (X). We thus haye a diagram

z,(X)

&

‘Ti (XJX)/[TF1(X:X)) ‘T}‘( X,x) 1

H, (X)
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and we know that: Tfl/ [_T(i, ™, ] —_— }11(X) is an
epimorﬁhism.

‘1P a€B (X), a =3b, beéX,, then a 1s represented by
90b~ 8113 -+32b » which 1s already O 1In T (X,x); hence
») (B1 (X)) =0, and 7) induces a homomorphlsm

yoH (X)) —> m/ [w,m . Clearly ¢'y' and ¥ )
are the respective identitles, and the result follows.

Definition: A Kan complex X 1s n-comnected 1f for

Theorem iHuréWicz): ‘Iet X be a Kan complex, XxeXj.
If X 1s (n-1) commected, n') 2, then Hy(X) =0 for

0<{q<n, and ¢ : Trn(X,x) ad > Hn(X).
The proof of this theorem is simllar to that of

the preceding theorem. Here it may be assumed that
X = En—1 (X,x) so that X has only one simplex in each
dimension < n.

Ref'erences

[1] Whitehead g H. C., Combinatorial homotopy, Bull.
’ American’Math-. Soc., 55(1949), 213-1#5.

[2] Poincaré, Henri,.Osuvres, (Paris, 1928), vol. 6, 142=293,

[31 Hurewicz, W., Beltrage zur Topologle der Deformationen
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521-8; 39(1936), 117-26, 215-2k,
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errats:
1A-7 1line 7, should be 1) Vj instead of 1> M j

1A-8 line 2, should start siF(“u,-u) = F(,.. %) S i-p

ﬂ:v
instead Of SiF(,K, v ) = F(F;;)



The geometric realization of a geml-simplicial complex

John Milnor

Corresponding to each (complete) gemi-simplicial com-~
plex KX, a topologlcal space |K| will be defined. This con-
gtruction will be different from thalt used by Glever [4] and
Hu [5] in that the degeneracy operations of 'K are used. This
difference ls important when dealing with pro@uct complexes.

If K and K' are countable 1t 1s shown that |KxK'|-
1s vanonically homeomorphlc to lK[le'|, It follows that 1if
K 1is a countable group complex then |K| 1s a topological group.
In particular [K(TT,n)| 1s an abelian group.

The'terminology for semi-simplicial complexes will
follow John Moore [7]. |

Ly

l. The defiinitlion
As standard n-simplex D take the set of all
. ne1 ) sétisfying O = t(')_<~t1 <_"'§tn+1 =1,
The face and degeneracy maps :An_1~—-—> b, and
8, : Anﬂ——-—)_ﬁn are deflned by
'ai(to,o;.,tn) = (to’...,ti’tl’..."tn)

(_n+2 )-tuples (to, .oyt

Si(tO"..’tﬂ'l-Q) = (to,oo ti’ti+2)""tn)

Let K = U1>0 Ky be a semi- simpllcial complex. Glving
K the discrete topology, form the topological sum
= (KO:(AO)+(KF(-A1 ) .+(Knxb.n- Ytoun,

These nores sponboned by Prioceton University under Alr Force
Contract No. AF 18(600) ~ 1494



Thus K 1s a disjoint union of open sets k;xB,. An

equivalence relation in K 18 generated by the relations

(3 Ko & )~ (lcfn’?ign~1 )

in® n-1.

'(Si;kh"'SnJ- )~ (kn-’sign ey
for 1=0,1,...,n. The identification space |K| = K/(~)
will be called the geometric realization of K. The eqxiivé‘},ence

¢lass of (Kﬁ,gﬁ)" will be .denoted by lkn,snl_.

Theorem 1. |K| is & CW—co'mpleic
having one mn-cell corresponding to each

non-degenerate n—-simpléx of K.
For the definition of CW-complex see Whitehead [8].

lemma 1.  Fvery simplex k €K, can
be expressed in one and only one way as
ki = Sjp"'sj}n—p where k:n-p 18 non-
degenerate and 0¢ jf ... K jp~§n._ The
1hd.Lc'e's Jx ‘which occur are precisely thdse

j for which Kk €s an-1

The proof is not difficult. See [3] 8.3. Similarly
it can be shown that every Sne A, can be written in exactly
one way asg 5}1 = 'Biq. . '3118n—q j'where Aégn-q is an interlior

<
polnt ( that 1s to<t,<{...{f 4,4) and 01 n.
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~ By a non-degenerate polnt of X will be meant a

point (.kn’gn) with kn non-degeneraite and Sn interior. .

lemua 2. Each (k,8 )€K 1s

——————

equlvalent to a unique non-degenerate point.

Define the map N: K —- K as follows. Given k

choose jl,...,jp, kn—p ag In lemma 1 and set

Ny, 8) = (i85 .0y Bn).
Define the dlscontinuous function § :K — K by choosing
i, ...1q,8n_q ‘as above and setting

‘Q(k:n’sl’l) = (311 cae aiqk_n’ Sn_q)

Now the composition AP : K —> K carries each poin‘L.'.. into
an equivalant, noﬁ—~degenerate point. It can be verlfied that
ir XNX' then AP(x) = /\S’(X'); which proves lemma 2.

Take as n-cells of [K| the images of the non-degenceate
gimplexes of K. By lemma 2 the interlors of these colls
partition [K|. Bince the remaining conditions for a CW-complex

are easily verified, this proves theorem 1.

Jdemma 3. A geml-simplical map
£:K —> K' 1induces a continuous mep

K| —> |K'|

In fact the map || defined by 'kn’snl —~> ’f(kh)’snl

is clearly well defined and continous.



- -

P_x,i_@g__@gg’m‘gl_e_ .of the geometric realization, let C
pe an ordered simplicial complex ‘with spacs |C|. (Seé [2]
pg. 56 and 67). From C we can define a semi~simp1icia1
complex K, where K, 1is the set of all (n+1)-tuples
(a.o, . ..,an) of vertices of C which (1) all lie in a commuon
simplex, and (2) satisfy aog_a1§ Y a . The operations
?;,84 are defined in the usual way.

Agsertion The spacs |[C| 1s homeomorphic to the
geometric reaﬁ‘zation [K|. In fact the point
l(a‘O’;"?'an);(tO"""’tn+1 )| of |K| correéponds to the point
of |C| whose .a-th barycentric- coordinate, a being a vertex of
C, is the sum, over all 1 for which a; =a, of ty ,-t;.

The proof 1s easlily glven.

2. Product complexes’
Iet KxK' be the carteé-iqzl product of two semi-
-
)n = KnXKn ). The pro-
jection maps ¢: KxK'—> K and ¢':Kx K' —>K' induce

simplicial complexes (that is (KxK'

maps |¢| and |p'| of the geomebric realizatlions. A map

B KxK'| —> [K[x|K'| 15 defined by 1 = |elx|¢'].
Theorem 2. 7 is a one-one map of

IKxK!'| onto |K|x|K'|[. If elther (a)
K and K' are countable, or (5) one of
the two CW-complexes |K|,|K'] 1is locally
finlte; then % 1s a homeomorphism.



The reutrictions (a) or (b) are necessary in order

o prove that IKL{IK I igs a CW-complex. For tha proof in
ass (b) sce [8] and For case (&) see [6].
Proof (Compare [2] pg.58). Ir x" 1is & point of
K X' '| with non-degenerats -répresentative (k x kn,g ) we will
fj_rst determine the Anon~devgenerate. fépresenta.t,ive of

]9[(3{") == 'I'k'n"gnl i Slnce 8}1 is an lnterior point of An,

thils representative has the form

. (1{,

= 8y J..8, K
0 ip 1, np
(Sse proof of lemma 2). Similarly 1 f1(x") is represented

by (l€' EEIRRRE 8) where K! = s. ...s;k' . The in-

n=q° " Jq ) "3 J1 n-q
duces 1,,( and '])’ must be distinct; for if 1y = j'6 for
‘some ol,/s then k S k' would be an element of SM(KH 1::K'n_1 ).

Hovvever* the point x" can be completely determined
by its 1lmage.
l —p)s "'Si Snl:)r'l(}l._q""]?oarsqun'.
In fact given any pa_ir (x,x")e]X|x|K'] define 7(x,x! JelKxK' )
as follows. Let (kva-,Sa) and. (k'b,Sb) be the non-degsherabe
repregentatives; wh'er'e_Sa‘* = (Lgseee s s 31; = (Ug, e,y ).

Iet O'= _wo< s <an+1 =1 be the distant numbers t, and ug

arranged in order. Set 8;1 = (Wg,eessWy ) Then if
/'“1<"‘"'</‘n~.'a. are the indices M such that Wepq 1S not one
0‘1" the t;, we havs 8:1 = s)(1 . 'Sf‘n-a 6, Similarly

&, = 5V1-~-51)n_b Sb' where the sots {H ) ‘and {Vj} arse

disjoint.



Now defilne

Flxx') = [(s g ‘B/“1k5»)x(sf’n—b' . ._sﬁkf)), .

Clearly
y ! = o‘o , = .
1ely(x,x") - ‘Isj‘n_a Sl lk,, » By Sﬂn-f”'
= ’k&’ 88,’ = X

L. 4 ' -
and | ¢ |37(x,x") = x', which proves that 4% 1is the identity
map of [K|x|K|. On the other hand , taking =x" as above we

have’l-;f (x") = Q(lkn__p,si _...si onl, Ikn~q’ﬂj .._.a.qué‘n,l)

l(si "'31 )x(sj, ), S o = ="

< 8 j n__q
To complete the proof it is only necessary to show
that 7 18 Qontinuous, However 1t 1s easily v‘erified that |
¥ 1s cOnt_'.inous on each product cell of VIK.I;,le' |. Since we
are assuming that this product 1s & CW%complex-, this complotes
the proof. |
An'imppr*ta,nt spec_ila.l' case 1s the following. Let I
‘denote the sem1~siﬁ1p'licia'1 complex consisting of & 1-simplex .

and 1ts faces and degensracles,

Corollary, A seml~-gimplicial

> K induces an ordinary
> K.

homotopy hiKxI

homotopy |K| x [0,1]

In fact the interval [0,1] may be identified with
[I|. The homotopy is now glven by the composition
' h
K] % [T] T (kT | )
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3. Product operatlons

_Now let K be a countable complex. Any semi-simplicial
map Pp: K x K —> K induges by lemma 3 and theorem 2 a con-
tindous. product

lply : IKix K| —> I[.
If there is an element eg in KO guch that- _sg ey 18 a two-sided
1dentit$r in each K , then it : follows that leo,‘é‘ol is a-two;
sided identity in |K[3 so that |K| is an H-space. If the
product operation p 18 asgsoclative or 'commut&tj.vé then 1£ ig -
easlly verifled that lpl"z—,~ 19 associative or coﬁnnutative.

Hence we have the following.

Theorem 3. If K 'is a countable
‘group complex (countable abelian group cc__;mplex Y,
then K| is a ﬁopolo’éicai group (abelian:
topological _group) .

Let K(T,n) denote the Ellenberg Maclane semi-simplicial

complex (see [11).:

Corcllary. If T is a countabls abelian
group, then for n) 0 the geometric realization
'K(ﬂ,n)l 18 an ab;eiian‘ topologlcal group.

Tt wlll be shown in the nex't'seétion that K (tr,n)l‘
'gctuai'ly iz a space with one non-vanishing homotppy group.

The above construction can also be applied to other



> X"

tween countable group complexes induces a pairing betwsen

sbraic operations. For example a pairing KxK'

eir realizations. If K is a semi-gimplicial complex of
-modules, where A 13 a d’iscr_et'e ring, then |K| 1is a

Lopologlcal A-module.

ehe
B

g
£
=
;rz'..
F

a

¥

k., The topology of |K].
For any space X let S(X) be the total singular

i?‘éomplex. For any seml-simplicial complex K a one-one .
> S(|K|) 1s defined by .

gemi-simplicial map 1 : K
1(k, ) (8) = lk,,8,1.
Let H,(K) denote homology with integer coefficients.

lepma 4. The inclusion K ——) S([K[)
induces an isomorphism H (K)~H, (8[K[)} of
homology groups. ‘

By the n-skeleton K™ of X 15 meant the sub-

complex consisting of all K,;,1< {n and their degeneracies.-
’I'hus lK(n)I s just the n-skeleton of , [K| considered as
a CW—complex‘. The filtration

' K('o)CK(i) C
glves rise to a spectral sequence - IE;qf; where E® 1s
the graded group correspondlng to Hy(K) under the induced

filtration; and
- Hp—i-q(K(p) fiod K(P'l ))'

It 1s easily verified that E;q =0 for g+ 0, and that
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-—h

00 1s the free abelian generated by the non-degenerate
%p-simblexes of K. From the first assertibnkitvfollows.that

(B = B = Hy(K).
On the other hand the filtration
sk cs(ry ¢ ...
gives rise to a spectral sequence IEE&I where E® ig
‘the graded group corresponding to H,(3(|K|) ). Since it 1s
oaslly verified that the induced map E%q-~——>vﬁgq isan
1somorphism, it follows that the rest of the spectral sequence
15 also mapped isomorphicly; which completes the ﬁron.
Now suppose that K Bsatisfies the Kan extension
condition, so that T, (K,kg) can be defined.

lemma 5. If K 1s a Kan complex then

the inclusion 1 induces an isomorphism of

M (k) onto M (SUIKI),1(kg) ) =, (K1, [k, S01)

Let .KL be the subcomplex consisting of all simplices
of K whose vertices aée all at ko.,.Then ni(K’kO) can be
*considéréd as a group with one gensrator for each element of
ﬁﬁ” and one relation.for each element of K.

The space IK'| 1s a CW-complex with one vertex. For
such a space the group T, 1s known to have one generator for
e&cﬁ‘edge and one relatibn for each face. Thus the homomorphism
TQ(K) ='"}(K') —-—>'n1(JK‘|) is an isomorphism.

Wo may assume that K 1s connected. Then 1t is

known (see f7] ) ‘that there is & seml-simplicilal
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osformation retraction r: Kx I—> K of K onto K'. By
i6 corollary to theorem 2 this proves that IK'| 15 a
formation retract of |K| which completes the proof.

Remark 1. From lemmas 4% and 5 i1t can be proved,

} Trn(K,ko) ""'_'> TTn (K| P) |‘K0180| )

are isomorphisms for all n.

j%ising a'relative Hurewicz theorem, that the homomorphl sms

" Remark 2. The space [K(W,n)| has n-th homotopy
igrou.p T, and other homotopy grouns trivial. This clearly
follows from the prec'e_é»ﬁing reniar'k. Alternatively the proof
given by Hu (Is1) ma'y‘—'be ugsed without essgential change.

Now let X be any t.opoliogical space.. - There 1s a

canonical {map

I8 —> X
defined by  J(Ik,8 1) = k_n(s L)

Theorem 4. The map J : [8(x)[— X

induces isomorphisms of the singular homology
and homotopy groups.

(This result is eggentially due to Glever [4]).

-

The map ] ‘induces & seml-~gimplicial msp I8 18 - 8(X).
bmap 1 in the opposlte direction _w_ds defined at the begin-
ning of this section. The cdmposition Jyls84X) — 3(X). 0
18 the identity map, Together with lemma % this implies that
Jy 1induces isomorphisms of the singular homology groups of
[8(x)| onts those of X, By lemmsa 5, tﬁe fundamental group
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,g elso mapped isomorphicly. - Using the relative Hurewlcz

3]

'}-heorem', this completes the _proof;

=¥
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Chapter II

Monoid Complexes and Production of

Semi-S‘implicial Complexes.

In this chapter we shall conslder special properties
‘an complexes which have a multiplicative structure, and shall
begin the considervation of the problem of constructing new

~gimpliclal complexes from such & complex.

A gemi-gimplicial complex I 1ls a monold

1) r'q is monoid with identity for qe Z%,
2) "9 Fqe T Fqr and 8y :\"‘q —> Tt

are homomorphisms which send identity elements into identity

elements.

We will denote by eq the identity of \"q.

f‘ is a group complex if (7 1s a monoild complex and
each r'q is a grgup. When~each ('q is abelian, [T will be called

an abellan monoid co}nplex, or an abelian group complex,as the case

may be. If =xe[., the inverse of x will be denoted by - X.

Let G be a topological group, and let [* be the

u,v _:Aq‘ —> G are singular

q-simplexes, define (u.v) :Aq —~—> G by (u.v)(to,.._.,tq) =
It is easlly verified that [ 1is a

Example 1:
total singular complex of G. If

u(to’ L ,tq) V(to, A0 : ,tq) .
group complex, and that [T is abelian if and only if G 1is abelian.



imple 23 Iet X Dbe a topological space. A path in X

200N
[

‘a, pair (f, r) where r 1s a non~negative real number, and
[0,r] ~—> X i3 a map ( [0,r] denotes the closed interval
mO tor). A lggg is a path (f,r) such that f(0) = ©(r).
ologlze the setkof all paths In X by using as a subbasls
or thé;topOIOgy the:sets W(C;V,U) defined as follows: .

1)' C 1is a égﬁpact subset Qf [0,1]

2) V. 1s an open subset of rY (the non-negative real nuwber),
4 3y U 1s an:oéen subsét of X

%) W (C,V,U) = [(£,%) | (£,r) 1s & path in X,

reVA,‘ f(xC)cuy,

‘Now 1et‘ xeX, and let _E(X;x) be the space of paths in X  which
5egin at x. Défine P EVE(i,xjr¥¥~>”X by p(f,r) 2= f(r) H

Then (E(X,x),p,X) 1s a fibre space in the sense of Serre [11.
l1.e. the éovering homotdpy theorem holds for finilte complexes.
The proof 1s the same as that of Serre, in:which normallzed paths

> X are used. Further the space E(X:x) 1s

1 [0,1]
contractible, and hag as fibre EZ(X,X),=the space.oflloops 1n; X

based at x. Define (f,r)(eg,s) = (h,r+s) whére

f(t) 0<t <
h(t) = { - . if (f:I‘)J(g;S)G'ﬂ-(X:X)-

gt-r) r{t{r+s
It 1s easlly verified that Jz(X,x) is a monoid with
identity, and that if [T 1is the total singular complex of SL(X,x),
then ™ is & monoild complex when multiplication ig defined as,in

the preceding examples by point-wise multiplicatlion of d-slmplexes.



If [ is & group complex, then [ 1s a Kan

Proof': To prove the proposition it suffices to show
that [ satisfies the extension condition.  Suppose

therefore thf.a.t XO’ ‘e "’X'_k‘-T’XkH‘ e ’Xq+1 € l"'q, and

BJ %Xy for 1< J, 1,34 k. We must find
an Xé€ f'('l+1 such that d,x = x; for 1+ k.

We first show that there exlsts ue Fq+1
‘such that Ju =x, for 1 < k. This is trivial if

k = 0; if k> 0 we ',define ufe rq+1 by inductlon bn
r: such that 'B.iur =% for 1< r., First let

u‘O = .-SOX.O»;' then ‘aouo =.Xg- Now 1f r <k-1"~,
set 'yr = r'+1( ('a L_ir')xrﬂﬁ), wftl= uryr'
Now by an easy calculation it follows that 3 = 8,4

for 1< r; and Brﬂy == (_am_1 q )XP_H, using the
fact that Biur = x4 for 1 _<_ r. Therefore we deduce
that dqu PR x; forir+1. Finally 1let
u = uk 1, and we have 31u =Xy, for 1 < k.

Now we shall show by induction on r that
there. existé an element x'e r'q 41 Such that 313{ = xi
for £ {k and for 1 > g-r+l. Forr =20 Ilet X

.Suppose x¥ 18 defined and rg q - k. Let
r+1 r r

r L]
z » 0 -1"+1 )Xq~r+1 ), X = X7 A simple
calculatlon shows that Bizr = o, 1if 1 { k and
- s =Ty | .
1> qr+1 and eq —pi1Z (Bq_m]x ") Xqopyqs It follows

that 9 x™! = x, for 1 (k and for 1> q-r. Fimally
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if we take for x the element x4k

s We have
X = x; for L4 k. Thus the proof of the theorem

1s complete,

Definltion 2.3 The monoid complex T' is & monoid complex

with homotopy if it is & Kan complex.

We shall denote ]Tq(f‘,e_o) by 1Tq(|").

Pr _Dositioﬁ FRY, If’ f‘ is a monoid complex with homotopy and

X,ye \"q are elements such that '31x = 'aiy for 1 =0,. .,q,

then [x1,I[yle Tl'q_.([‘), and -[x1lyl = I[xyl.

®q-1

Proof: Consider the element 2z = sqx =1
Now ’aiz = Og-1 foo 1 < g1, Qq_,1z =Y, aqz = XY,
and '3 1Z=%.  Inview of the definition of
addition in the homotopy groups, the regult is

proved.

Proposition 2.5: If ' 1is a monoid compiex with homotopy,
then T (") 1s abellen, , '

Proof: ‘Lot x,ye Y, Dbe such that Jx =Yy = ey,
1=0,1. TLet w= s4ys,X. Then f'aow =y,

Elw = VX, 3w = X, Therefore I[x]lyl = [yx1;
but [yx] = [y][x] by the preceding proposition,
and the proof is complete.

The two preceding propositions are the analogues of the
clagsical theorems that the group operations in the homotopy

groups of a topologlcal group comey from the group operation in
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and that 'the fundamental group of & topological group

yelian (cf. e.8- [2})
If "‘ is a gr'oup oomple:x » We wish to define the homotopy

pup of r in an alternative fashion.

:nition,_ezfi_ ir O is 8 group complex, define
' ~ a-1 .
() = fl ‘kernel 31 = q >\"_q_1: and

T = £, 1.
; V osltion 217 If (" is a group complex, then
| 1) 3y () Flg (M)
2) ?q+1.(ﬁq+1 (r‘)) .18 a normal subgroup of \"q ’
3) dmage 3y, ¢ Ty (M —> T, ) 18
contained in kernel ‘ac'l : ﬁ‘q( M —> ﬁq_i'.(r'). for q > 0.
Proof: Let xeﬂ;lﬂ(r‘). Now 3 3Q+1 'aq'aix =841

for 1 < q, and this implies 1) and 5).
Suppose zer(‘l;‘if conéider 8 %X sq

8ince 9y (sqzx 8 7) =y (542 ‘71 : = e, for 1<aq,

;Q

Therefore - s 2z x sqze 1'1’(1Jr1 (l") .

aq
Since Q ., ., (8 zx‘sqz) = ZBQHXZ_, 2) _follows.

q+1
The preceding proposition implies that T (f) 1s &
chain compiex (potvne?esﬁarily‘abelian) with respect to the
last face o{aerat_or._‘
Definition 2.8: If [ 1s a group complex, define
, (F) = Hq(ﬁ(r) ).
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Proposition 2.9: If [" 1s a group complex,
‘o, !
Ty () = (.
Proof: An elemer% of T!'q('r‘) 'is represented by

Xé f"q such that ‘aix for 1 =0,..., q.

e
Q-1
However, such an element X also represents an
element of. ‘_rr('l(_f‘). Suppose n{x] = [yle ﬂq(r‘).
Then there exlsts =ze Cast such that 94z = eq
for 1< q, 3

Z =X, 9 = Y. Now

% q+1® .

sgX ze Ty, ), and ’aqﬂ(s X -z) = Xy.

Therefore Ix1 = {yle ]Tq (M), and there is a

natural map of T-i'q(p) into .Trq' (M). Further

it 1s evident that this mep 1s onto, and 1t 1s a

“homomor'phism by proposition 2.%: Suppose now

that [x)] = Oéﬂq'(r'). ‘Then ﬁhere.exists

%€ ‘ﬁéﬂ(\") such that ‘Biz = o4 1< q and

9q+1z = X, This means that [x] = Oev (r),
and the proof 1s complete.

Proposition 2.10: A group complex '-F‘ i1s minimal 1f and -

only if ‘Bqﬂ i T +1(]") ——> ff (') 18 zero for 'E'L',LI’L q.

Proof': Suppose that [~ is minimal; “then 1f
T ey, 8nd9x =3y - for- 1‘*-:-'0’;'."".4';-‘-1}?
it follows that 'aq“x = 3q+_1y. Now 1if
X € frvqﬂ(r!), ‘then Ix = 4 Qieqﬂ for 1 _<_ a3
hence, since [ is minimal, aqH = Bq“eqﬂ = &g,
and ‘a q+1 1 —> lT () 1s zero,
o~
Suppose now that 3q+1‘ TTq+1 —_— Tl'q(r‘)‘-
is zero for all q, and that Xx,ye r‘q+1 are elements
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such that 9,x =9,;5 for 1 + k. Then

3x¥ =6y for 14k. If k=gq+, lot

z -xT, 1f k = q, let z = (s ‘axy)(yx H
while if k < 45 1et z = (8 'akxy) (Sq—TakyX ).
'Then‘Di = eq for i + q+1, and 3 1z —Ekxy
But zem b+ (M); therefore by hypothesis ‘a = &g
g0 that 'Dkx =39 Y, 8nd the proof is complete.
In order to defilne the explicit complexes K(ﬂ‘,n)
of Ellenberg-MacLane ([51,[4%3,[5]) 1t 18 con-
venlent to recall the definition.of the standard
alﬁernating cochain complex for the  g-simplex

A q with coefficients in the abelian group TV
rT.he. n-dimensional cochain group Cn(Aq; ™) 1is
the group of functions u defined on (n+1)-tuples.

(mg, e yi ) of integers such that 0< mog . .Smﬁ_{ m

{...{m°¢a with values in TU , such that
u(mo; mn) =0 if my = my , for some i<n.'

S Cn([_\.q,'rr)~—-—> Cn+1(Aq ) 1is defined by

SU(mo;-- 'mn+1 Zl?:'-z 1)Ju(moy . ,111']__1, ,]'*'1‘” ,Bh)-ﬂ

‘Then Zn(bq,‘n') ( the group of n-cocycles with.
, eoefficients in T ) 13 the kernel of.
§: 0Ney 3™ —> B M.
Notation: Tet A': [0,...,q] —> {0,...,q+1} be
defined by N:(j) = j for j< 1, and AL(§) = j+1
for § ) 1. Further, let*: {0,...,q+11—> (0,...,a
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F be defined by R1(j) = j for j <1, pt(i)= -1

il_ggg'inii:ion 2,11: If T 1s an abellan group, def'ine

Kq(T(,n) = Zn(vé('i;‘ﬂ); Further, define 9, : L (W,n) — Kq(TT,'n).’
by?’iu(lﬁo, oo ,Illn) = 'ﬁ(xi(mo), .o o',’é.(mn). ), and

5, Ky (Wn) —> 'K, (W,n) by

syulmg, . .o,m ) = alyt(mg), .o, 4 (m))

Let K(M,n) = Ulgl(TT,n)

Theorein 2.121 If T is .an abellan group , then

1) K(‘(T,n) 18 an abelian group complex,.

2) Ty(K(mMn)) =0 for q+n

3) W (K(m,n)) =T

L) X(iT,n) 1s minimal

Proof: The verification of u 1s routine, ga ﬁhat'
only 2),3) and &) will be verified. First notice ~that
Kq(‘n“,n) = 0 for q < n. Therefor-e,

ﬁ"q(K(TT,n)) =0 for q< n. Further since

ZB ,T0) = T, we have that Tl (K(TW,n)) =

Kn(n',ri) =T . Suppose now u e'f'rq(K(_TT,n)) and

q > n. Then u =0 ; i.e. u(mQ+1""’mn+1) = Q
whenever .(mo, . ..,mn) is a sequence of lntegers

such that 0 {my <...{ My < g-1. This

‘means u(mgy, . ..,mn) =0 unléss mg = 0. Therefore
we onl_y need consider sequences (O,m1 s .,mn) .

However, J;u = 0, or in other words
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u(0,m, +1,...,h;n+1-) = 0, but this implies that
u(0,m,,...,m ) = 0 unless m = {. Continulng
in this fasion we see that u(mo,;;;,mn) =0
unless m =1 for 1=0,...,n Then since
u is a cocydle, Su(O,..;,n+1)‘=

n+1 . ' ' .
5, 01000, uy 1, 41, mHT) = 05
thus u =0, and f’rq(r) =0 for q4mn. This
implies 2) and 3). Statement 4) follows from

Proposition 2.710, and the proof 1s complete.

Definition 2.1%: A _twigted Cartesian product is & triple

(F,B,E) such that
1) F,B, and E are semi-simplicial complexes,
2) Eq- = {(a,b)]a eF!q,bqu!, q 2_0,
3) if (a,,'b)eEqH, ? (a,b) = (9;8,94h) for 10,
L) 1f (a,b)e Eq,
> B 1is the map defined by

Si(a,b)-= (sy8,8;b), and

5) if p:E
b(a,b) = b, then p3; = aop:.
F 1is calléd the fibre of the twlsted Cartesian product,
B the base, anﬁ E the total complex, Usually, bubt not

always, the map p will be a flbre map.
E 1is the Cartesiasn product [6] of F and B if

(F,B,E) 13 & twlsted Carﬁesian‘product and ‘?O(a,b) = GQO&;be)

for (a,b)eE_ .., all q . In this case E 1s denoted by

q+1
FxB. Also, the elements of E 1n any twisted Carteslan
product will sometimes be written a x b.

If " 1is a monoid complex, and if ({,B,E) 1s a



§ted Cartesian product, then M acts on the left of E (

ding to the rule a'.(a,b) = (a'a,b) for a,akera,béBq.

6 twisted Cartesian product is said to be compatible with

s left action of if -’c)'o(a,.,b)f g2+ ley,,,b)  for
D)€ EQ+1. It will invariably be assumed that if & twisted
rteslan product has for fibre a monold complex [V, then the

ructure 15'00mpatible with the left action of [ .

jMamp__Hl" Iet A,B be topological gpaces, S(A) S(B)
;%he total singular complexes of A and B regpectively. IPt
AA)'B be the Cartesian product of A and B as topologlcal
%spaces, and let Pyt :AXB —_—> A,p2 :AX B —> B be the projections.
?Then P, induces 2 semi ~ simplicial map'Which we shall still
denote p,:3(AxB)—3 S(A), and p, induces p,:8(AxB) —> 8(B).
It is easy to verify that the map p ':18(AxB) —> S(A)xS(B)
‘defined by p'(y) = (p1(y),p2(y) ) is an.lﬂomorphism of semi-

51mp1L01al complexes..

Example 2:  Let E be the total space of a principal fibre
bundle witp fibre a topolégioql group G and base space B.
Assuﬁe thét .G‘ acts oh.thé left of E. Denote ‘the total
singular complexes of E,B, and G byAS(E),S(B), and S(G) res-
pe(?tivelyo ' Sinbe G acts on.the left of E, S(G) acts on the
left of S(E), Let ¢ :3(B) —) 3(E) be & pseudo-cross section,
$(3,)'=9,6 for 1>0, and $s, = 5,4 . Define
Y :3(G)x 3(B) ——> S(E) by Y(a,b) =a . &(b) - for
aeuS(G)q,beS(B)q. | Now ¢ 1is a 1:1'corresponQance, 1s



ompatible with 9, for 1 > 0, and with s, for all. 1i.
nsequently 1f S(E) 1is Ldentified with 8(@)xS(B), as a

et by means of Y we see that (8(G),3(B),8(E)) 1s a twisted
Gartesian product. In other words, to make the total singular
"complex of & principal fibre bundle into the total complex of a
twisted Cartesian product it suffices to choose a pseudo-

ross section, and this can be done for any fibre map.

iDefinition 2.1%:  If ' is & monoid complex, & twisted

Cartesian product ([",B,E) 1is sald to gatlsfy the condition (W)

1f..‘
1) By has one element, and

2) the map q> of Bq+1 into. Eq deflned

by <})(b) ='a'o(eqﬂ ,b) 1s & 1:1 correspondance.

Theorem 2,15:  If

1) r' are monold complexes,

2) £:0—>1' 18 a map of monoid complexes,

5)  ({(,B,E) and ((",B',E') are twisted Cartesian
_p;r*oducts , the latter satisfylng the condition
(W), then there is a unique map g:E —> E'

K such- that
4) g(e XB )Ce xB‘ and

5) gla,b) = f(&)~8(6q;~b.) for (a,b)eEq.

Proof': Suppose that we have such & map g. Denote

by &g the induced map of Ej into E;. Then



go(eo,b)e QOXB65 but B'(JI hag one element, so

that 8 1is uniquely determined. Let

S:E' o » :
Yy > LPINE Bq , denote. the inverse of ’30.

~-Sin‘ce 819y xB ‘ — o B , we have Bys1 (BqarsP) =
gqifqﬂ sb) = Sgy O(eq 41+P).  Consequently there
13_ at most one such map g; nut the above formulas
have defined a functlon g such that Je = 89,
and g(e xB )y C o Bq Tt remains to verify
‘thavut '31+1g = €93, and that =5;g = gs.‘y"
If be B]', we observe that
EIg(e1 ,b) = (a'o,‘b"), where b' 1s the unique
element of BC')' . Further ga.l(evb) = 8(60’911)) =
(eo,b’). Suppose now that ’éig = g?i for 1 ( Je
Then for be Bq_+2’ ’Bj+1g(eq+2,b) = JHSgBO(e b) = (
S 'ajg ao(e,b) = Sgaj’éo(e,-b) = 83 Jﬂ(e ,b) =
g3.:,.(e,b).
Now 3:

Jj+1
s 111 into; but since

% Bq—m—> Cqs1* q+1

aos = identity, S 1s equa.l to. 84. Therefore

sog(e:b) 803830(8,13) = SSgao(e b) = Sg(e b) =
Qoso(e,b) = gso(e,b).

Filnally, 94,1589:(e,b) = Ss,89,(e,b) =
Sg9;d, (e,b) by inductive hypothesis, and
S’gsi‘ao(e,b) = l+1(e b) == gsiﬂ(e b).

This completes the proof.

Corollary 2.16: If (7,B,E) and ({",A,D) are twlsted
Cartesian products satisfying the condition (W), and g:E —> D,
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: D —- > E are the maps of the preceding theorem, induced
by the. :L.dvent;t'ty‘ ma.p of r‘. ” then g'g and gg' ars the
;’fidentity maps of - E. and D.-

"x

We have now shown the essential uniqueness of twisted

zi0artesian pfodut:ts satlasfying the coﬁditio.n (W), but it remains
"to prove exlstence. This will be .done after the manner of

Maqléne 71,

.';[_)ef‘ inition 2.17: Let ' be & monoid éo}nplex.

Lot Wo(r) r‘o’ q+1(f') \"Q+1+ w_ (l") W (M) a set consisting

of one. element, and Wq+1(f') ~\" +W (f‘).,

" Now 111 W(Y‘) = U W (F) define

1) 9 (8. b) = Oa.b,"JT(a,b).: a, where aef},bel};

2) Jpla,b) = Q_Oa‘ b where »:-~('(T1l+1 ,bqu(r‘), for_‘ gy 0;

3) Qiﬂ(&,b) o ,'c)ib);

1) sg(a,b) = (48,0
r‘q_‘_z r‘q +1+W (r‘),

5) Si+1(& b) (Si+1a;sib)

Q+1,b), noting that Wy (M) =

Theorem 2.18: If U is a monolid complex, then ((‘,W((‘),W(F))

is a twisted Cartesian product satlsfying. the condition (W).
‘The proof of this theorem ls straightforward, and is
left( to the reader.
-We remark that the notation here is somewhat different
from that of [5], in that we conside;’ only semi-simpliclal
complexes and not FD complexes, and that. W corregponds to

the W of [5].
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If X 1s a Kan complex, and x 1s & polnt of X,

wag shown in chapter 1 that there 1s a fibre space

X,x),p,X) with fibre .Q.(X,x) such that

Ta(X;x) >1Tq_1(ﬂ( X,x),85(x) ) 1s an isomorphism
or "q’}f 0. Ir is & monoid_ cofiplex with homotopy, we
ha.iI always chéose thé bé;ée poiﬂi: :to be 8p€ f‘o, and we
hal'L denote E(I"',eo) by E(F),' and Q(P,eo) by ().
Suppose now that l" 15 a group complex such that
11'0([1) ={g="10. ‘Then E ([‘) “r‘q'+1’ and

0 ‘""“>D-(f') 1>k q(M ’”“‘)f‘ > 0 1is exact; but the
ghomomorphism 8g° P >|" Q1 1nduces & homomorphism

,'Pq —> Eq_ ') such that pu 1is the identity. - Therefore

. E (M) '1s a split extension of Fq bY .ﬂ.(l‘_‘)q. thls means
that we may identify the set E([’) with the set SUP)xD, |
the identif‘ica.tlon being compatible with the degeneracy operators
845
wer have the f'ollowing

and also_ with the face operators 9,,1 > 0. Consequently

Theorem 2.19: Ir( is a_ group compléx guch that ﬁ'o(r‘)- = 0,

then. (N(M),ME() ) 1s a twlsted Ca_r*f:es:tan product gatisfy-
ing the conditilon (W). _
Proof': We need only verify that the twisted
Carteslan product satisfies the condition (W).
We have, however, that \"O = ﬁ'o([“) has ons element.
Further if S:%® (I") _ Eq+1 () 1s the homomorphism
‘induced by ,SO'qu+1 >Pq+2’ then 3,5 1s the
ldentity; but the image of S 1s just the subgroup
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1denLified with eq x{"Q+1, and the result is
proved

By’the preceding thebrem'we have, therefore,
”that“iT is tn a natural 1:1 correspondence with
W(f}((ﬂv)- However [V 18 a group complex, and therefore
in general has more structure than W(SU(Y) ). | |
Suppose now that ' is a commutative monoid complex.
Then the multiplication map of U'x[" ——>["is & map of monold
complexes, This induces by the preceding theorem & map
W(rxr) —» W(P). "However -W(rx(") niay be identified in
a natural"mannerjwith W(r)xw(r). Now- Wd(r) = Cgtr -+
and the map W(P)xW(r) — W(r') 1s glven by
(g -+ s XQIX(Tgs oo 0sT0) D (XFgr-eeaXg¥g)e  Thus W(r) is.

a commutative monoid complex. Further, W(r) 1is also a com-
mutative monold complex, and as a monoid, Wﬁ(r)v= rh+uﬁh(r0.
Therefore if M 1is a commutative monoid complex, we shall
always.mean by W(r) and WKP) the commutaﬁive mqnoid complexes
whoge gtructure hasjjuﬁt been.describéd} Notice that 1f T -is
an abelian éroup complex, then W([") and W([) are abellan

group complexes.,

/ Now 1f [ 1s an abelian group complex and ﬂb(ro = 0,
then E (F) 18 the direct sum E (P) = 11 (m + My Further,
the map E(N) xE([") —> E({") glven by the multiplication 1s
just the map induced by SU{) xLUe) —> (M. Therefore, ln
this case we may identify E([) and W(N(r) ), and [ and
W(QL(r) ), not only as semi-simplicial complexes, but as abellan

group complexes.
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Theorem 2.20: If' ™ is a minimal abelian group. complex
guch that Ty(r =0 for q +n, and T () =1r, then
r 1s naturally i'sornorp.hio to K(T,n).

Proof': Since (L) 1s an abellan group complex,
WM ) 1s also; we may thus iterate the W

congtruction, setting W= W, W= W(Wn Y.,
Then since \"q =0 for q<{n,

=R ).
Now Q™M) 1s a minimal abelian group complex with
one homotopy group W in dimension O. Therefore if
we .prove the theorem for dimension O, it ﬁill follow

for dimension n by the above formula, since

K(T,n) = WAE(,0) ).

Suppose that n = 0. Then since T is minimal, ‘;
(g=1T, and ﬁq(ﬂ) =0 for q» 0. Further
() 1is minimal, and-qu(ﬂ(r‘) ) =0 for all q.
Therefore ,Q(r')q = 0 for all q. This ‘means that

if xer‘CH_1 ,’aox = 8y and ‘31-. ; .'aq+1x- = 8y, then

X = eq,+.1l
Y = x859, X, z = SOB.OX,, Then yz = X,y =

®q’ % "'3q+1y1 = Qg 0009 X) (913031 + 4 349%)
= (3.+» x)(’c) q X) = 3. Therefore y = O ?

. Suppose then that xefy, 1, and let

and x = z. In other wor'd.s ir X€ly 412 then

X = SOQOX, and therefore Do:r‘q+1—~—> Fq 18 an
isomorphism. Consequently |’_‘qo,v., T for all q
and the mappings T —> T induced by elther
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8y oOr ‘30 are the identity. However ’3130 1s

the identity, and thus the mapping Tr —> T in-
duce’detvjy 9, 1s the identity. Continuing in this
manner we See that the mappings T —>TT determined
by elther a‘i;:rq”_——e r‘q dr si:l"q —> [:‘q+1 are
the ldentity.. This proves the theorem,
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Chapter 2,. Appendix A
Ab_e_,lian group complexes.
Abelisn group complexes have very speclal

properties; we have already seen in the first part of this
chapter that there 1s a unique minimal abellan group complex

with the abellan group 1@  for its n-th _homotopy group,

and With all other homotopy groups zero. Es_séntially all

. other abelian group complexes are products of such cdmplexes.

This will be proved here only for minimal abelian group com-
plexes, but it will be proved later in studying cohomology

"operations that this is true in general.

Before dealing with minimal abeliqn gr?:sup com-

plexes, it will be convenient to @lear up a small polnt. In

chapter I,v.'a,ppeﬁdix C, 1t was shown that there was ;» up to
1somorphism, a unique minimal complex with a single non zero
hdmotopyrgrcup N  in dimension n. We know therefore that
such & complex 1s‘ 1somorphic as a semi-s‘implicial complex |
with the expliclt complex K(m,n ). We now gee that the
multiplication in K(tt, n) 1s determined by the fact that
1t has a single homotbpy group TT 1n dimension n, and that
1t 1is minimal.

Theorem: If X 1s a minimal complex, M an abelian
group, ne z*, and 'ﬂ‘q(X) = 0 f;)'r* a<n, TB(X) =1 ,
then there is a unique multiplication in X such that
X, = Tl'n(k-), and X li's_ a group COmp"le_x.

Proof: X-q has only one element 1f gq<n. Therefore
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multiplicatlon 1is determined in dimension k, where

. Suppose now that the multiplication 1s given in

for q S k, k> n, and we want to define a multiplication
n Xk+1.._. Tet x,yeXk+1 ; we want the product of x and '

‘1o be an element zeX, ,, such that z = Yx.dy, 1=0,..,k+l.
ere 1g a unique such 2z sgince -'l'rk+1(X) =0 and X 1is

_1nima1. Therefore, we define x.y = z. It 15 now easy

%o verify the group axioms using the uniqueness of z.

Now let us turn to t,he decomposition of minimal

%’abelian group complexes.

:Theorem If C 1is a minimal abellan group complex, then
'l"== X K (re nlr), n).

Proof': Since T° is minimal, we have r‘o = . rro( ).
Further recall that K (T,( (), 0) & T,(r), and that
under this isomorphism all face and degeneracy operators
.correspond to the ldentity homblhqrphism_. Now def'ine

U r‘ ——"-> K(ﬂﬂ( f‘), 0) by. . q)qv: rq s Kq(TTO(r') 5 0)
is the composite of 3%_:' r'q —_— f‘o » and

sd ¢ () = KolTolr), 0) —D Ky(Wefr, 0). ¢ isa
homomorphlsm, since 30 and 8, are such, and we need’
only show that it commutes with 3, and s;. We have
aiS ?q = 83“13% for 1<_q, and 3.%1“13%"1 ai = 5 'aq
for 1< q-1, so that §>q_1 9y x = ¢qx, 1<{q-1. Further
s%ﬂagqaq = s% 1313%—1 . Now since’ ' is minimal, 1if
x,x'e (", and Jx = 3% then Ix = Jx'. This means



wover that 3.x = 3.8 I x "=-'§o'x for xefy, and that
or X€ Ty, S%.’lagﬂéq;#‘é sg"-]a%'i;. "Hence we algo. have

g1 qu = Sqqux , and ¢ 15 a map of .éroup compléxes.
L Let A :K(T,(r),0) —> " be defined by

g?‘o‘Ko(Fo(F), 0)'==> T, 1is the ldentity, and

g

s

“,1q = S% aoag . It is easily verified that A 1s a map
‘of group complexes, and ¢$A 1s the identity. Consequently,
‘letting (' = kernel ¢ , we have = K(m,(y) )x r.

Now we are in a position to proceed by induction.
First, ﬁo( ) = 0. Therefore ' = W(Q([!') ~_) by
theorem 2.19. However, by what we have already proved
Q)= K(m,(QR),0)xQ", and r'=K(m(r), 1)xF (@)
since ITO(S?) = 0 (), and W(K(U"o( r,o)) =K('T!’1(F') y 1)
The remaining details of the induction will be left to the
reader, and the theorem 1s now considered proved.

Although We are not yet' reaay to prove that every
abelian group complex has the same homotopj tjpe 88 & pro-
duct of K(T,n) 's , we will prove & key fact. in this
proof, namely that for a,beliar_i group complexes. there 1s a

natural map of homology into homotopy.

Lenma.: Ir " 1s an abellan group com}{vlex N

o~ | _ a+ v(j)
X€ qu(f'): qu = eq_1, Y& l"q__ﬂ, and: 1};0( Bjy) = X
where «(j) = (-1 )J, then there exists zefT

Q+1 () such
that 3

Q-+ zZ = X.

‘ Q1 &
Proof: let y°=ys,9,¥ . Then rro(ajyo)ﬁ‘(i) -
. iU
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1
j=2
Suppose now that r < g, and we have"-“‘defined

xsoao( 3y Ty < xs 3% 3y 3, )= x.

v so that Biy eq for 1( r, 'an'd;f-f'}

Let - 'y._ tlos _y-sim&rhy_—- "It 1is not - dif‘ficult 'to verify

RE r<l1+'1 T

that 3,37 = e - for 1r+1, and, qﬁ 103 yrﬂ )<T(J) - x.
Lot 'z = (yUTL) - and-the result follows.

Definition: If ‘7' is an abelian group complex ’ def‘ine

| g o),
Qzl"q ~¢—->«[’q+1' by 9x = (BJX)

Define ﬂ'ﬁ () to be kernel J: > r‘q_ ._:_’w-mQQulofimage

Lot $:T(r) —> THr) bo the naturel map..

Proposgition: If T‘ 1s an abellan group complex, then

¢:ﬂq(r") > Ty (r’)

Proof': By the Ppreceding .lemma 9 is monomor'phi‘Sm. To
prove that ¢ 1s an epimorphism suppose that- xeﬁ

and jTT(ajx)“(J) q-1' Lot 59 = X9 3 x.
=0 . -
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Now T = T(a353% )7, e q-2 7
q ' =

q - _
(3, x )o’(j)’. .Consequently T (3.7% (3) .
L =0 ¥’

. _q-‘].’
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g+1
| T (s x)od) =
Notice that L 3(85%)

1 .
M a2, 1x¢(j) = sPpx = xy9.

| . o
herefore, [x] = [Sfoléfﬂ;1 (r‘)‘, and BOYO = €q-1.

ow prbceed induct'ively to find yq such that 'Siyq =
9q—1 i S_ q, and I[x] = [yq]. Then yq represents an
plement of TTq‘(‘ ), and the proof is complete.

_‘Theorem: If M is an abei_Lian grcip complex, then there
1s a map

A Hy(p) —> () Suc.ljl.thaft if peT () — Hy ()
is the natural map of homology into homotopy,then A ™ 1s
the ldentity.

Proof:  There is a natural map of cq(p) _— Fq which
sends r.x 1into x* for Xe Oy This gives rise to
a chain map of C(f) —> l"or a homoﬁmorphisﬁi

. 4 |
N*.:‘H(\’.‘ ) —> TW(r). We now have a commutative diagram

)‘\(

> Hy(r)

\L Ak

.t (m

‘ﬂq(r)

Letting A = ¢ 'a* | the proof 1is complete.

Errata: p. 10-7, Theorem (PoinCaré):

isomorphism ¢" T (X,x)/[T(X,x), T (X,x)] — H (X).




The construction FK-

John Milnor

§1,. Introduction

& ‘The reduced product construction of Ican James Is1.
lassigns to ‘each CW-complex & new CW-complex having the
éi same homotopy type S the loops in the suspenaion of the
,origlnal. This paper will describe e.n anelougous con-
: atruct;ion proceding from the category of semi-—simplicial
. complexes to the eategory of group complexes. : The proper-
_:-_i:ies of this. construction FK  are studied in §2.
A theorem of Peter Hilton [4] asserts that the
gpace of loops 1# & uixion '5141 iee "Sr , of sphereev 5p111;_,s‘
into an infinite direct product of loops spaces ef -spheres'.
In ‘§3 the ¢onstruction of FK 1s applied to prove g genere,l-
1zation (Theorem W) of Hilton's theorem in which the spheres
may be reple.ced by the euspeneigns of arbltrary connected
(.semi—simpliciel)'. complexes. ,
v‘ The author is indebted to many helpful discussions
with John Moore.
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§2. The construction.

It will be understood that with every semi-simplicial

mplex there 1s to be assoclated a specified baée poin.t._‘~
ILet K be a semi-simplicial complex with base point

B Denote S2b by b,. Let 'FKn_ denote the free

o 0 "o
%group generated by the elements of K ' with the single

_relation b =1. Lot the face and degeneracy operations

;yai,éi in FK = UFK, be tpeuﬁnique homBmorphisms which

?cérry the generators k, 1into 9;k., sik, reapéctiV61Y4

sThus eaéh complex 'K determines'a,Qroup complex FK.

| It will be shown thet FK -is a loop space for EK,

the sugpenslon of K. (Definitions will be given.presently.s
Alternatively'let FfKnCFK&I‘be the free monoiq

(=as§oci&tive semi-group witp'unit)_generated By Kn!'with'

the same relation b, =1-. ﬁ:Thethhe monoid complex F'K.

is also a loop space for EK. This construction is the

direct generalization.éf James' cbnstructiona (See'Lemﬁé W)
‘The suspension EK. of~the_éépiFsimplicial~comP10X X -

15 defined as follows. For each simplex k,, other than

bn,

of .simplexes of FK having dimensions n+1, n+2,... . In

addition there is to be a base point - (b,) and its degeneracles

of K there ls to be a sequence (Ekn), (sdEgn), (SoEkn)”“

(bn). The symbols (soEbn) will. be identified With (bn+1+1)‘

The face and degeneracy operations in FK are given by
Qj(Ekn) = (E aj-1kn) (320> 9)

Sj(Ekn) = (Esj_ikn) ' ij > 6)



o (Bk,) = (b)), 3, (k) = (by)

so(.Ek'_n) = ‘(.soEkn) .

The face and de‘geﬁe"racy operations on the remaining simplexes

i?fi(g(i)Ekn) = sé(Ekn) are now determined by the {dentities

st (3> 1)
a;jsci) =

el (3€140)

557 §-1 (3>
sy = 1 )
| gt (§ < 1),

It 1s not hard to show that this defines a semi-
gimplicial complex. The following lemma will justify
calling 1t the suspension of K. Recall that the suspension

of & topoiogiCal_‘space A with base point ‘& 1is the identi-

o
fication space of A X I obtaining by collapsing

(Axi)ukaox I) to & point.

Iemma 1. The geometric realization JEK | ﬁ
canonically homeomorphic to the suspensiori*b‘f‘ ’k!

(For the definition of realizatiofi see [6.] In
fact; the required homeomorphism 1g obﬁained by mapping. thg
point (lk,, 8,151-t)  of the sispension of |K|, where &



arycentric coordinat'es (£55+..,5,) 1into the point
9, 5n+1 € IEK|, where § n+q Das barycentric coordinates
r,tto, e v @ ,ttn) . . '

3 Next the space of loops on's semi-simplicial complex
411 be discussed.  If K satisfles the Kan extension

soation then QK can be defined &s in [7]. This

60

 jerinition has two disadvantages:
. (1) Many interesting complexes do not satisfy the

- gxtension conditlon. In'p’artiCul'ar EK does npt,
1

(2) There is no natural way (a.nd in some cases
no possible way) of dve_f'ining a gr;oup si;,r'ucture in .O.K

The following will be more cbnvenient. A 'gfoup com-
plex G, or more. generally a monoid "é’érbblex, will be.called a
Joop__space for K 1f there exlsts a (gemi-simpliclal)
pfinoipal pundle with base space K, fibre @, and with'borié
tractible total space T

(By & principal bundle 1s meant & projection p of
T onto K together with a left translation Gx T —> T
satisfyling -

(g 84 ) by = 8n-,(zg£l:tn)

where gn-th = tn 1f and on.1y ir -gn = 1nj and where

Bty = t:I'1 for some g, 1f and only 1if p(tn) = p(t;l).
A complex is called contractible if its geometric realization

is contractible. This is equivalent to re(iuiring that the
integral homology groups and the fuiidamgnfal group be trivial.)

' let X be the minmimal complex of the n-sphere, n>2. Then
1t can be shown that there is no group complex structire in

QK having the correct Pontrjagin ring.
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The ex_istence of such a loop space for any connected
‘complex K. has been shown in recent work of Kan, which
gemralizés the, present paper. The following Lemma 1is
?given to help justify the definition.

e

b Leomma, 2, If K gatisfies the extension condition,

and the group complex G 1s & loop space for K, then there
> G

The proof 15 based on the foilowing_easily proven fgct

_j:g; g_homotopy equivalence QK

(compare [7] p. 2-10): Every principal buxidle can be glven
the struq_tﬁre of a twlsted cartesian product. That 1s ons

can find a .one-one function
¥ :GxK '-'-'-’-*> T

sa‘ti_sfying'__‘aﬂ = 73 for 1>0 end my = s, for
all 1, where 9017 Ai_s glven by an expression of the form

L

A (Bnky) = nl(3pmy,) - (¥ky )5 3ky).

(For this assertion the fibre must be a monoid complex sé.tis-

fying the extension condition.) Thus the bundle is complete-
iy described by G and X together with the "twlsting function"
ik, G, where 7 satisfies the identitles |

SZE& = T B4 41 (1?_0 5: 3;110- o= tgi-&f i2 1,

Togkn = Ips (T T (9 = 29k,
- Now & map % QK ., > an"‘ ig defined by
Ty) = Tlky). From the definition of QK and the
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fabove identities it follows that 7T is a map. From the
ghomotopy sequence -of the bundle it is easily verified that T
induces isomorphisms of the homotopy groups, which proves
Lenma 2.
- To define a pfincipal bundle with fibre FK and
base space EK 1t is sufficlent to define twlsting functions
TEK ~—> FK, These wlll be given by

T(Bey) =k  wlsgBi,) = &, (1>o0).

* Theorem 1. FK 1s a loop gpace for EK. In
fact the twisted cartesian product {FK,EK, © | has a con-

‘tractible tdtal gpace.
It is easy to verify that 2 satlsfies the conditions

for a twisting function. Hence we have defined a twisted
cartesian produqt, and the'_rq?'fd're" a principal bundle. Let T
denote 1ty total space.. Noté that T may be identified

with FK % FK excopt that 9, 1is glven.by

%t (Bl ) "= (38 Ky g (b))

3 (g (55 Bk )) = (e, (s37 (@K, ) (1>,

It will first be shown that the homology groups of T
are trivial. This will be done by glving a contracting
homotopy 8 for the chain complex C(T).

Lomms, 3. let G be. the free group on generators

Xy Then the integral group ring ZG has_as basig




the elements 8%y ~8 s where g renges over

together with the element Te
The proof 15 not difficult. wa define S by

rules
8(1, (5,)) 3 oven)
e {(1nﬁl,gbn*1)) (n odd)
S[(gn kn)(b )) = (gn;(b ))]
n
= 20 (-0 [ sy, (55 E DT k) = (538, (b)) ]

=0
S(gy (837 B, ) - (8 (b)) 1.

= 0 1Iage (83E 30T, ) = (84 (B, )

where g,  ranges over all slements of the group Fth

It follows easily.from Lemma 3 that the elements
.for which S has been defined form & basls for Q(T), pro-~
viding that k ,k. _,. are restricted to elements other than
Dby Howéver the above rules reduce to the identity
0 =0 1f we substitute kné'bn_ or knrr = bnrr' .This
shows that 8 1s well defined.

The necessary ldentity Sd4‘dS = 1-£ , where
dx, = :Z:( -1yt X | and where 3 :0(T) —> C(T) is-
the augmentation (eZk&ﬁgo,b ) = 23d1(1o,bo)) can
now be verified by direct computation. Since this computa-
tlon is rather long 1t will not be-giVep he:e,

Protf that [T| .ﬁé_simpiY'dbnpectgd. A meximal
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tree in the CW-complex |T| will be chosen. Then n&(!TI)

TRy

zcan ‘be considered as the group with one. genergtor correspond-
iing to each 1~-simplex not in the tree, and one relation corres-
iponding to each 2—simplex.

:" As maximal tree take all 1-simplexes of the form
g(sogo,(Eko)). Then as generators of IQ(ITI) we hayve all
elements (gT,(Eko))'_such that g, 1s non-degensrate. The
_?elation. X = (82J<) ;(aox) where x = (s1g1 (s Eko))
asaerts that

= (81) (b1 ) )'

From the 2-simplex (sogI,(Ek1)) we obtain

(815 (E 3k, )) = (5,38, (BIk D)« lgky, (b))

‘ = (‘g1k1;(b]))'

Combining these two relations we have
(gy5(by)) = (gikys(Ry)),
from which 1t follows easily that

for all g,. In view of the first relation, this shows that
IT| 1is simply ponnected,fand-complefes the proof of theorem‘1{*

The’folléWing theorem éhows that~ FK 1is essentially' 
unique.
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Theorem 2. Any principal bundle over EK ygith ;

 any group complex G as fibre is induced from the above

bundle by & homomorphism FK ———> G.

Proof': We may assume that this bundle 1s & twlsted
cartesian product with twisting function 7 :(EK)nH —_— Gn .
_ 4] 7
Define the homomorphism T FK —> G by '%(kn) = *c(_Ekn).

Since t(b_n) = 'l’(Epn) = ’t'(so(bn)) = 1, this defines a

“homomorphism, It 1s eagy to verify that T commutes with the

face 1and degeneracy oper'a_tions_ , and induCes a map betwegn the

‘two twisted cartesian products.

Corollary. if G 1ls also_a_loop space for EK
then there is & homomorphism FK — > G inducing an iso-

._mdmhism"between the ’Pontrjlmn rings.

This follows easily using [7], IV Theorem B.
. Analogues of theorems 1 and 2 for the construction
F+=(K) can be proved using exactly the same formilas. The
follewing shows the relationship between F¥(K) and the cons-

gtruction of James. |

Lemms, 4. If X is countaple then the reéliz_ation '

JF*K| Ls_homeomorphic to the reduced product of |K|.

| 'Z'[n' fact the product (kn,,kl'lfk;'lf_,,.) —> kg ek 'k
maps Kx...xK into F'K.  Taking realizations we obtain

a map  3K|x...x]K| —> [F'K|. From these maps it 1s easy to
define a map of the:reduced product of 1K| into |F*K|, and

to show that 1t is a homeomorphism.
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§3. A theorem of Hilton

If A B are semi-simplicial complexes with base

b let AvB denote the subcomplex

points ao, o

Qj_’.f-Ax[b Tulag]X¥ B of AxB. 1let AX B denofe the com-

i:vplex obtained from Ax B by collapsing A v B to a polnt.

| The motation A(K) ‘w1l be used for the k-fold "collapsed
product” AX .. X A.

The free product G H of two group complexes 1s
defined by (G¥H), = G * B, There is c'_,ie‘a,rly_.a canoniéal'
1somorphism between the group complexes F(AvB) and FAXFB,

Lomma, 5. The complex F(AvB) is isomor‘nhic

(1 ggorigg group structure) to FAX F(B N (BXFA})) ,
In fact we will show that F(AvB) 15 a split

extension: -
I—> F(Bv (BXFA) —> F(AvB) —> FA—> I.

The collapsing map AwvB > A induces a homomorphism
¢! of F(AvB) onto FA.  Denote the kernel of c¢' by F!'.
> Av B induces a homomorphism

The 1nclusion A_
1U:FA > F(A v B). Since c'i' 1s the identity it
follows that F(AvB) 1s & split extension of joll by FA.

We will determine this kernel F} for some fixed
dimen_s’ion. n. let a, b, $ range over the n-simplexes
other than the base point of A, B, .a,nd "FA respectively.
Then F(AvB), 1s the free group lé.,bf‘ and F) 1is the
normal subgroup generated by the b. By the Réidemeister-
Schreler theorem (see [8]) F 1s freely generated by the
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'éménts w(el.)lr»w(a,)'1 where w(a) ranges over a.-ll_elemehts

the free group f(aj = FA .  Thus

F! = (b, ¢bo '},

SR

]

e

NoW getting [b,¢] = béb '¢ "'  and making a simple Tietze

jransformation (see for example [1]) we obtain

2

Fl'l = {b,[b,¢1.}.

' 1dentify’ [b,¢1 with the simplex bX¢ of BXF(A). Then
e can ldentify F! with F(Bv (BXFA)).  Since this
tdentiflication commutes with face and degeneracy operations,

this proves Lemma 5.

Leuma, 6. The .group coy_lplei F(BXFA) 1s lsomorphic

to |
F((BXA) v (BXAX FA)).

The inclusion A —> FA induces & homomorphism
F(B X A) —> F(B X FA).

A homomorphism
F(B X A X FA) — F(B X FA)

1s defined by

bXaX¢e —> (bXa)bX ¢a)'1'(b%¢ ).

(This is motivated by the group identity [[b,al,¢ ] =
[b,alb, $a17'b, ¢ 1).

Combind ng these we obtain & homomorphism

F(BX A) K 2F(B K A K FA) ——> F(B X FA)



¢h 15 asserted to be an isomorphism.
Using the same notatlon gas in lemma 5 and ldenti-

bXaX¢ with [[b,a],¢ ] 1t 1s evidently suffi-
t to prove the -following.

Lemma 7. In the free group f{a,b} the subgroup
ooy _generated by the elements I[b,¢] 1s also freely gener-—
e: [b,a] and [[b,al, 1.

The proof consists of a series of Tietze transforma-

Details will not be glven.
As a consequence of Lemma 6 we have?

Lemma 8. For each m the group complex F(B X FA)

FBX A) X F(B XA KA - xFEXA™) % pB % Ay 7).,

Proof by induction on- m. For m=1 this is
just Lemma 6 Glven thls agsertion flor the integer m.—i
it 18 only necessary to show thé.,t F(B))&A(m"”?&FA) is
isomorphic to F(BXAM)) ¢ F(BXAYXFA). But this rollows
immediately from Lemms 6 by substituting . B%A(mﬂ) in place
of B.-

Theorem 3. If A and B ai'e semi-gimplicial

complexes wit._h A commected, then there 1s an inclusion

homomoyphi sm

F(\/:.; B))’(A(i)) —~—> F(BXF(A))

which 18 a homotopy equivalence. .
: ' -, 00 1
Proof . Every element of F(\/i_1 B%A( ))




' .alre‘ady' Qonta.ined in

F(\/ii1 BxAL)) = F(B)KIA"’) X oo *F(B-X(A(m?’y

Hence by- Lemma 8 it may be uidentifl_ied‘with an .
"remainder'

ifor some m.
g
‘element of F(BXFA).

’;erm" B %A )X FA
From this it follows easlly that the above.

.Since. A is connected, the

has trivial homology groups in dimensions

g-:less than m.
inclusion 1nduces isomorphlsms of the homokopy groups. in all

;dimensions.
: ' ‘The complex B may be eliminated from

Remark .
and noting .the

?Theorem 3 by taking B ag the sphere . SO
;_fidentity KK =K.
Combining theorem 3 with Lemma, 5 we obtain the .

following
Corollary

homotomr equivalence

If A 1s connected then there is s

F(A) X F(\/ B)}&A(i)) C F(AvB).

This c’oroilary will be the ba.sis for the following.

be. _connected complexes.:

Theorem k4, Let A;,..0A,
hag_the same homobopy hype as_a weak .

Then iF(A1v e vA-I") ‘
infinite cartesian product T, F(A;) where esch A;;i>r,

hag the form

(ny,)

(111)% ves )XAr -\

The number of factors of a given form ig equsl to the Witt

wmber

umbexr



. ;1:1_4‘_.‘.‘

o)=L den/d)' :
‘:‘;4’(111: :nr) " %‘5 (YIRS (nr/d)'

‘ L

Proof, For n=1,2,3,... define complexes A,,
to be cauéa "basic products of welght n" as fOllOWS,.byj-
1ﬁduction on n. The glven complexes A,,...A,  are the
‘pastc products of welgnt 1.  Suppome thet

A1 s O’Ar’ .o -,Ad

are the basic products of weight 1ess than . To each
' : assume We have defined a number e(i)( i

whéfe ' Ve(1) = °-°==e(r) = 0. Then as basic products of
weight n take all expresgsions. AiX Aj where weight A +
eight A =3 n and e.(i_)g_ §< 1. Call these new complexes

A yyqres .,AP inany order. If A= AXA; define

e(h) = J. (For ij:_hi's disussion we must consider complexes such
as (AX B)XC anr‘;l" AX(BXC) to be disi;‘incj;'!_)l This c:dmpletes

‘the construction of the A;. |

-For ee.ch m Z 1 define

Ry= F(Vys m Ay)e
.e(h#)q<m
Thus R1 = F(A1v so VAI,).

Lemma 9. There ls a homotopy egulvalence
PAp) X Ryyy € Ry



Note that Rj ='-F(Am.\/' BY, ~"'ﬁhére. B =\/1(11>1131< Ah
" ' ’ ‘ - e(h)<m

he-coroilary to theorem 3 there _:is _:a homotopyf ‘equivalence

F(Am)XF(\/iz B)Xﬁi ))_ C F(A,v B)= Ry

gbituting in the definition of B and using the distributive

P

(AVB) % C = (A%C) v (BXC),
}he second factor of the first expression becomes
(1)
(\/1~0V I m<m ALK A ),

But (filling in parentheses correctly) this is just

F(th Ah) Ri1 »

which proves Lemmsg 9.
| Now it follows by induction that there 1s a homotopy

equlvalence

F(A )X F(Ay)x+++x F(A)X Ry o CR = F(Av o0 vA.).

m +1
This defines an inclusion of the weak infinite cartesian
product T‘;Z? F(Ai) into R1 . Since A1 seeesA, are con-
nected, 1t follows easlly that the "remainder terms" Ry

are k—connected where k —> ® ag mw—> o ., From this
1t follows that the above inclusion map Induces lgomorphisms
of the homotopy groups in all dimensions. This proves the

first. part of theorem 4.
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Iet ¢ (nj,..., ) denote the number of Ah
5 the form A(n1 ) X . ..)XA(nT) To compute these
rs consider the free lLie ring 'L .on generators ol CEERY o( .
Tegponding to each "basic-prx duct” Ay = = Ay X Aj define
ement ol = Ioli, o(j of L, for h= r+1,r4+2,... .
the elements o(h obtained in this way are exactly the
ard monomials of M. Hall [2] and P. Hall [3]. M.Hall has
ed that these elements form an additive basis for L.

| The number of'lineeriy independent’ elements of L’
: ich involVe edch of -the genefa,tors 'o(lﬂ; RRPR a-given
: "'_ber n1 yoo ,nr of times ha.s been computed by Witt [9]
’i- 'e'his formule. is the sane’ as that 1f- theOrem ¥, this. com-
pletes the proof,

In conclus_ion we mention one more interesting con~-

sequence of theorem 3. |

Theo_reni 5. If A is_cormected then the complex

EFA has_the_same homotopy Lype as \/1 AL,

The proof 1s based on the following lemmsg,, whioh

depends -on. Theorem 1. v

Lemma, 10. If A 1s connected, there 1s a
homot opy eg‘_uive,.legce |
EA C WRA .
In_,f_eot the inclusion is defilned by
4 | ‘ |
(soEan) _— sé (an’1-n—1 yoo ..,10). It _is' ‘ee,sily verified
that this 1s a map, and that 1t Induces a map of the twisted



gglan product T into the tWisted oaiitesian‘product w.
ce both total spaces are acyclic, »it follows from [71, IV"
em A that the homology groups of EA map isomorphicly
“to those of WFA. Since both spaces are simply connected s
‘13 completes the proof of Iemma 100 -

Now from Theorem 3 we have a homotopyr 'é_'quiv.a,lence

WF(\gjz A1)y ¢ wEA.

In view of Lemma 10, and the identity

E(AVB) EAVEB

21’thiscompletes the -prdof Lo
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Chapter 3. Acyclic Models

T S T T

I Q isa category and m a subset of the

e

iects o[’ ., we shall denote by a, the set of mappings
Q with domain in m;

Dofinitlon 3.1: The quadruple(@ ,®, « ,f ) will be called

ca,teporv with models 1if a, is 8 category, W a certain

ubget of the obgects of a s called the set of models, and
s, p are functions of am into itself‘ such that

0) o (1 (M) = p (1 (M)) 1(M), Mean;
T @) =,
2). o (/3 (1_1))'=,4.( &« (u)) = 1(M) where M = domain‘lg(u)
= range « (u).
3) p(fua)=§ (f f(u)) where £ 1s a mapping of . such
that domaln f = range u.
B) L (L u) = o((f/$ (u))o( (u), where f msans _the._.ﬂs'ame_'ae\
in 5),
where u e @M throughout.
Notlce that 3) implies /3([3 (0)) = (3‘(u') cand 1)
and 2) imply o« (L (u)) =« (u).

Aggumptlon: For the rest of this séction, (@ ,M,« ,IA )
1s a flxed category with models; 1t will usually be denoted
by . ; "object" will mean "objJect of @", and "mapping",

"mapping of A

1)The theory ofacylic models was Introduced by Eillenberg
and MacLane {11. The version given here 1s a part of [2].
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ition 3.2: For any object A, S('A) will denote the
f mappings u : M —> A with MeJL,such that &(u) = 1(M).
1on .3: For the rest of this paper, M. will denote

ed- conmutative ring with unit element; .%A the category
-modules and (\ -homomorphisms.

initiong 3.4 If K :&—) G, 13 a covariant functor,

u:M-—>A an element of T , we gshall denote by

M,u) the module K(M) with u added as an indexing

ji_nbol ;, theelements of K(M, ﬁ) will be denoted by (k, u),

re ke X(M); (k, u) + (k', u) = (k o+ kt, u), Nk, u) =

k, u) if Ae . We define the natural isomorphisms
1(u)

K (M) = K(M, u)

NEETES

1(uk = (k , u); Jjlu)k ,u) =k .

A )
We now define a new functor K : & —) %A as follows:
ﬁ(A) = ZueS(A) K(M, u) for any 0bject A.

K(£) | K(M,u) = 1(A (fu)) K (& (fa))j(u) for any
map f : A—> B; thug ﬁ(f‘) | K(M, u):X(M, u) —> -
K (M*, [ (fu)) where M' = domé,in B (fu); clearly
p(fu) € S(B), as required.

Next, we define a natural trahsformation of
functors [: ﬁ—-—) K by

.F‘K(A) | K.(M,‘ u) = K (u) j(u) for ‘any object A; the

necegsary naturality condition 1s eaglly verlfied.
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' 'I'he functor K 15 said to be representable if
here 1’ a natu:r'al transformation of functors

K —> X euch thet r‘K XK K—> K 13 the identity.

tatlons and Conventions 5, 5 I.et dgs denote the category
of differential A —modules and ‘admissible homomorphisms; in
?.f‘fother' words, an ObJeCt of‘ dg.,& is & pair (G , d,(}-) such
fithat G —~Zn20 ,G_n',__a d_irect.:sum of /\ -modules, dG- is &

A-endomorphiém ofv:(.‘}"-:éuch.vﬁhat dg dg = 0, d G'tn{ Gy
for n > 0 and dg GO = 0. A mapplng f : (G,'dG)—->
‘(F dF) of d%t\ is a l\—homomorphism fi:6G— F such
that dpf = fd,. Usually we shall denote (G, dg) simply
by G, énd dG’,, indiscriminately, by d. The elements of
G, will be called n-dimensional. For every object (G, d)

we defiine the k-gskeleton (Gk, d), 1tself an object of qu '
by setting 65 =G  for n<k and & =0 for n)k,

and using for d 'the__ nat_,ural re.stri_-ct_ion._ In the category
d%’,\ , homology 1s defined as usual; we write Z(G) =

kernel dgs B(G) = 1mage dqs. H(G) = 2(G)/ B(G),Zn(G) =
Z(G)N G, B(G) = B(®NG,, H,(G) = 2,(G)/By (G) so that

H(G) = n 2 o Hn(G) Note that H and Hn can be regard-
ed as covariant functors d%A_ —> %L ; the definition of
H(f), H (f) being evident. The natural transformation

Gy —> HO will be indiscriminately denoted by £

Defimition 3.6: If K : @ —» dgx 1s a covariant functor,
define. K* :q—> dtg,\_ by K™MA) = (K (A))? for any object
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~and KM(f) = K(f) | K(A) for any msp f : A —> B,
urther, define Kn A —. %A. by Kn(A) = (K(A))n,Kn(F) |
n(A) = K(F) | Kn(A). We say that K 1is representable 1if

0 1s representable for every n _>_ 0; this is the sawme as

i*saying that X 15 representable when regarded as a functor

) /N
' Notations 3.7: By M we denote the subcategory of & the

objects of which are those of W , and the maps all maps of
the type & (u), or compositions of such maps. ‘

Tet K, L : @ —> dn be two functors and
U: Kimt —> LIfit & natural transformation; then U deter-
mines a natural transformation G . K — /I:. by OIK(M , u) =
1(uw) U(M)'j(u)' ") (cf 1.4); s0 that O [ KM , u) K(M, u)
—> LM, u). If U 1is the restriction of ‘T : K —> L, i.e.
U=T1T la?c, we shall write U= T ; and in this case we have
Trg =1, T.

This last remark 1s applied, for a functor
K :@~> dga, to d-: K —> K; we thus obtain 4 : K —> K
such that d° = 0, d rI‘{ = g a_; and accordingly we can (and

K > d9n .

ghall) regard K as a functor A :
Definltion %.8: A covariant functor K :d— dgz\ will

be said to be a cyclic on models 1f there exist natural

trans f'omrm'att.‘Lons2 of functors.

1?:HOKIn%u>KOIa§\t, U: K M —> K |

1) Note that we use 1i(u), j(u) indiscriminately. In this
formula J(u) 1is related to K, 1(u) to L.

2) Here dg, 1is considered only as a category of A -modules;
1.e.J(M) 1is a homomorphism of A -modules, but does not pre-
gerve gradation nor commute with d.



following arer satisfied
d u0 =y - e
dql +U = 1 (K ['m‘) for n> 0

| UO-’Z' =0 '
ere L : K, ——~>H0K 18 the natural transformation.
tice that for Meyr , any eleﬁlent' heH‘d K (M) 1s of
""»h'e form &k where kéeX (‘M) Now, by the above
Ztlsk AN -duo)k— £k
so that condition (1) 1mplies |
(h) 27'= 1
:Iemma 3.9: If K Ov = d?A is acyclic on models, there

r““%rf .

G

.fare' hatural trensformations of functors )7 HOK —> KO’

L) K ——}K such thatUKn CKn+1 and, writing

= Ul K,
(1) duo - 1 -7¢
(2) AU+ Uy d= "1 if 0> 0
(3) Uo"} = 0
(%) £ = 1.

This 1s immediate from 1.8.

Notation 3.10: By 775—5 denote the éub-gategory of (L the

ob’jeot's 6f‘ which are all those of WY, and the mappings all
mappings having models as domain and range. ¢ and f¢ have
the game objécts,‘ bu{: ’m? ﬁas more mappings.
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'1;11"1: let K, L :@L—> dg,\be covarlant functors
5t T ¢ HoKlﬁft — HyL |7 be a natural transformation
inctors; let. K be representable and L acyclic on models.
here 1s a natural transformation of functors o : K—> L
hat O | (Kolizfr) 1nauées T; O will be called -"an’
fon of T, |

A ”~ ~
Proof: T induces T : HJK —— HjL. Since L

~ ~ A
1s acyclic, we have transformations U: L —) L,

~

A . .
7 : HjL —> L, satlsfying the conditions of

1.9. We define ¢ 5 : Ky —> L, by (])'O ==
fiq,T\‘ifK'Aand (D] : K, —> L, by ‘(D1'=
L Ug 9pdXe . (ef. 1.7).  Then d 0, =
SIS S A A A A A
arp Uy (Do dXK FLdUO (DOdXK

(‘Lu _72)%(17(1{ = g, 09 d%c =0l d e =

ANA

(1‘)0' .d-, since 2(])0d = 0; 1in fact ¢ Q)b d Iﬁf)é 0'.

For restricting evérythlng to the category W®

we have £0,d = ZFL:}‘T‘EZ(K a= (“}mﬁfl\i‘g?{K d =

Mg, Téxe a = T (i d = TergAgd = T€d = 0.
We proceed by induction: 1if (pk 1s defined,

“,FLOKE&' a%c; and

A

verify da)kﬂ = dr‘LUk(DkdXK

S0 is,q)k-, and we wrfLi_:eA(Dk'2L1

= rp a0, ax,
= g, O “O.k—1-a)®kde.
= PL E).k aXK

= (4, as required.
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’Further notice ._tha.t on ﬁ’we have
P AA" A AAA ~A
2.®O_f'§.f'L7,Tz7(- .~ r‘HLi'IT £ Xy = C TiXK
= Tr"H'KEX Tzr‘K%K-Ta,and so 0 1s

an extension. of T. RIVRRTRCNNRE

nition 3.12:  Iet” K, L : CL *——} dﬂt\ 'bé covariant
i"ct_o:c's and let 0, tD' K -——> 1, be natural t ransforma-
@ns. A homdtopz V' betWeenv_ngnd_ 0' 1s a natural
ansform'atizon of funcﬁbrs"_,"\{:_;_ ‘K..—_"‘"‘> L such that VK CIL .
1av +Vd =0 - 0", |

;fheorem 3.1%¢ If X, L:&—) d‘jl\ are covariant
ffqnctors, T : HK | W ~——> HyL [fif1s a natural transforma-
tion of functors, K ls representable and L acyclic on
models,. and if ¢, ¢' are extensions of T (cf. 1.7), then
there is a homotopy V between ¢ and 0'.

Proof: Since 0, .¢' are both extensions of T,
‘wo must have 2 (DO = g (DO @g . 'vWe' define
Vo= MpUg (mo 00) Kg
whére U,sz agalin are.‘the functors appropriate to L.
hen avy = [y d Ug(®y - Bp)ag
ry (1 =38) (B, - Byikg

i

= T, (8o~ 03)%y
q)o - ‘D'O .

I

as required. Now, we proceed inductively. ILet
Vo e ,Vk with all the necessary properties be



3-8

defined. Then, in particular
‘ . . ¥ ; . . B ’ . [}
M%qy%a1"va *d%ﬁ1fd%ﬂ

= (0, - 0} - av,)a

= Vk -1 dd=20
. A A~ _ At A - .
whence d(([)kH ®k+1 Vk d) = 0. Now we define
~ A'- ~ ~
Vyaq = PLUk+1 Dy = By ~ Ve DRy
Then
. . A A ~y A A
Wy =T 4 Ot (B = Oy Ve D X,
A’ —f\ "N
=T 0 =G &) Beyem By~ TRy
Lo Ay ~ ~
=L By = Oy ~ Ve DIXg
. 1 .
= ®k+1 B Qka'- Vie d

as required.
Combining 1.11 and 1.13 we get

T’ﬁ'eoremj Jh:  If K, L &—> dal\ are covarlant repres-

entable functors which are acyclic on models, and 1f T: HOKIm
- HyL [ 1is a natural-equivalence, then there is a

uique natural equivalence @, : HK ——)> HL such that
01 ( HK | M) = T,and such that ¢, 1is Induced by an ‘extension of T

Now let (L be the category of semi-simplicial com-~

Plexes and maps. The model objects are to be the seml-
simplicial complexes A,q (cf. appendfgx_lA), and « and /8 are
defined as follows, If u: Aq —-—> X, let x = u(O,...,q)e Xq.

If x 1s non-degenerate, defins «(u): Aq —> Aq to be



é'entity, and @ (u) = u: Aq —> X. Suppose that x 1is
erate; then x =. six'_. °"511y'~, where y 18 non-degénerate
1r> ces) 11 .
(1) Defijle @ (u): Aq-?r —> X' "to be the map deter-
mined by" p(u‘)(O-,..x.,q.—r) =y. Then
pa) (51 ..081 (0,..0,q-0) ) = x.
(2) Define w(u): Ay—> Ay to be the map deter-
mined by ol(u)(0;...,q) = S1pee.81, (0,...,q9-7).

easlly verified that & and F satisfy the axioms and

ta

¢ uniquely defined, so that (I 18 a category with models.

Let dg/ be the category of differential modules over

e integers (taking A as the ring of integers in 3.5). We

define functors C,Cy: (k—> d% as follows. Let Cq(X) be

the free abelian group having the elementsa of Xq as generators;
= :C —

anq get C(X) Z‘Cq(X).q The homomorphism 7 q+1 (X) >Cq§X)

is determined by 3Ix = = (-1 )fL X, X eX .. Let D (X) be

S q-+1 q
the free abelian group having the degenerate elements of Xq

as generators, and set Cq(X)N = Cq(X)/Dq(X-), C(X)N = ZCq(X)N.

Now ’c)(Dq(X) ) C Dq_1 (X); for
: i 11 141 s j
Vaix = 2 (~1)°:8.% + (~1¥J8,% + (~1) 9,X + & (10938, x
1% = 5 i1 181 914191 S 551
= T (-1)d 2 i
j<1( 1) 51_1 3:] X + j>i+1 Siaj_1 Xy,
Since the two middle terms are equal. Therefore 9 induces a

homomorphism 9 :Cq+1 Xy —> Cq(X)N'-» ) It follows in the

usual manner that _3.'3f= 0 1in both cases, which completuy the

definition of C and CN' C i3 cglled the chain functor,



e normalized chain functor.

Wo now wiéﬁ"tq show that C 'and Cy glve the same
ogy. -There 1is & natural transformation of functors

> Cy such that ¥ (X):C(X) — C(X)y 1s the pro-

on onto theb factor. group. In order to obtaln a homotopy

erge for §, we shall show that both C and Cy are

éeséntable e;nd _aéyclic bn models; ‘and shall then apply

hgorems 3.11 and 3.13, - |

To show that C  1s representable, we definé a natural
sformation ) : C -;> C as follows. Recall that Cq(X)

14 free abelian, and let xé X, bea generator. There 1s

ur A —>X such that . w(0,...,q9) = x. Let

be the domain of p(u). Then X (X)(x) =

(W)(0,+.,@), pu) ) € (C(8y 1), plu))C B(X). " Since

r‘xc = ldentity, C 1s representable. o

Now the homomorphism X(X):C(X) —> G(X) carries
D(X) into the subgroup generated by degenerate simplexes,
and hence induces a homomorphism X'(X):C(X)N — (C&)N) .
‘It is easy to verify that x' Oy —> (EN) is a natural trans-
formation of functors, and that (X' = identity, so that Cy
1s also repregentable. To show that C and CN- are -acyclic
on models, define
S:( Aq)r — (Dq)rﬂ by S(my, ...,mr)‘_-—— (0,mg, » ..,mr).
Then S has the properties
BOS(mO, ceomy) = (mg, o.,my)

g1+1S = Sai
Si+1s = S Si
5.9 = 8%

0
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X € (Aq)r,r>0. Then

41 . T+
% = -%: (-1)79;8x= x + T (1 )1331_1;:, so that
x +89% =x. If xe (Ag)y then I8x = x ~(0).

Now suppoge that h: AQ+1 _—> Aq is a map in the

A
gory M . Since h 1s a simpliclal map onto 4 _, we

ed only define 1t on the vertices, and it has the fo;lm
j) =(j for j<1 for some 1 { g. Then clearly
{ j=1 for § 5 1}
h=h 3. oince any map in V?L ig a compogsition of maps of
e form of h, B8 commutes with the maps of 7?1 .

We defline a naturfal_transformation of functors

. T 5 C|#, as follows. The homomorphism'

U(BG): C(B ) =—> C(Ay) 1Ls determined by

- U(Ag) (x) = 8(x) for xe Xpx#(0);U(h,) (0) = 0.

~The fact that S commutes with the maps of M 1mplies that
U 1s a natural transformation of functors.  Define

N+ B/ M

A

> Co/ M. as follows: HO(Aq) may be con-
sidered in a ndtural menner as a free group on the generator
(0), and 17(£§q) :_HO(Aq) —_— CO(Aq) 1s determined by
7(4\1)(0) = (0) GCO( Aq). '} 1s clearly a natural transfor-
mation of functors.

The conditions gatisfled by S insure that {J satisfles
the conditions of (3.8), and hence C 1s acyclic on models.

Since S carries degenerate simplexes into degenerate
simplexes, it induces a homomorphism’ S:Cr(Aq)N _— Cm]_(aq)N"

1

of modules; U (Aq) does mnot preserve gradation nor commute
with d. Cf. foothote on p. 3-k
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&‘he transformation (': CN/m —_— CN/m in which

) = 3:C(A )N———é C(A )N is a natural transformation
ﬁnctors. The conditions on S 1nsure that U' gatis-
's the conditions of (3.8), and hence Cy 1s also acyclic
';inédels . ILet H denote the homology functor obtained
m the chailn functor C, Hy that obtained from Cy.

§:C — .CN induces a natural sequlva-
once T+ H—> Hy.

 Broofi Holm. = (HN)Olm, ‘5o that in theorems (3.11) and
(5 13) we may take T to be the identity By 3. 11 we have

natural transformations of functors:
C ' CN

Y

which 1nduge the identity on HOIﬁL# (HN)O% The composition ¢¢ -

1s a natural transformation of C into itself which induces
the identity on Hyl #l ; therefore by (3.13), ¥¢ 1s
homotoplic to the identity transfomatior'l of C. OSimilarly
oy 18 homotopic to the identity transformation of Cy
Hence ¢ 1induces a natural equlvalence § ': H— Hy.

But by (3.13) & 1s homotopic to ¢ , and hence also induces

1 - : o
$ . This completes the proof of the theorem.

Consider the category . x @ , having as objects
pairs (K,L) of seml-simpliclal complexes, and as maps palrs



K,L) — (P,Q), where f:K - P,g:L -—> Q

aps . The models are to be pairs (Ai), Aq ) of models

. We give three methods for defining degeneracy

.x a , and thus turning 1t into a category with models.

u,V)=(Ap, Aq‘) —> (K,L) beramap in @ x a : -

(1) ("Tensor product"): d(u,v) = (ku, v); p(u,v) = ((Ju,pv).

(11) ("Cartesian product") «(u,v)=(1,1) plu,v) =(u,v),

unless p = q; in this case, let  u(0,...,p) =
a€k, v(0,...,p) =bel.. Then axb =
91p...94,(a’ x b'), where 1,2>...7>1, and a'xDb'
1s non-degenerate 1n KxL; furthermore, this de-
‘composltion is unlque. Define «{u,v) =

(T ): (8, ,8,) —> (B0 By 1), where

U=V 1is determined by T(0,...,p) =

81091, (0,...,p-r), and g (u,v) =
_(u',v'):__(Ap_r,Ap_r_) - (K,L), wf'lepe_
u' and v' are determined by u'(0,...,p-r) =
al, v'(0,.c.,p-1r) = bi_.

(111) If nelther of the'é,bove vsys";ems of degeneracy
is postulated, we assume that axa has no
degeneracy; i.e. «(u,v) = (1,1), p(u,v) = (u,v).

‘We wish to determine the relation between the

two functor; C%, lef taxqr ——) dg defined by
CN(K,L) = C(K)N® C(L)N

Cy (K, L) = C(KxL)y
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@
Oy
For, C(K)__N® C(L)N‘ 1s free abelian, and a typlcal generator
, TOT, Wh‘??é“l <rel%, zel
: Ap —> K,v: A q ———> L be the unique maps determined by

is repre"senta'ble using tensor product degeneracles.
are non-degenerate. Let

0,. sp) =0,v(0,...,q) = T. Define a natural transforms-

on of functors T : Cp —> UY by

~

gclearly X = identity, 80 that X 1s a representation.
5‘(2) C}l\é 1ls representable using Cartesian product

;;,};]egeneracies - C(K,L),N is a free abhelian group,. and & typical
fgenerator i1s a non-degenerate simplex ¢x ¢ , where

a~e K 5’ Lp Let u,w be the maps corresponding to
(T f respectlvely. Define a natural transformation of
functors 7 Cy —> c by XAK,L)(TxP) =

((0,+0e,P)x(0,.v.,p),(u, w))((C(A XD, )N,(u w)CC (K, L)

Then V"X = identity, so that A 1s a representation.

Q@ .
(3) Gy 1is acyclic on models, using either-system of*
degeneracy. Consider first the tensor degeneracies.
HO(C(AP)N@) C( Aq)N is an infinite cyclic group cyclic group,
for which we may take as generator the class of (0)® (0).
n Hy ®l’m 2 (C )olm 1s then defined by
RYATSYAPPR (0)®(0) ) = (0) ® (0) Recall that we defined
a contracting homotopy U':C(A ) —> C(A )N’ we may also
define a contracting 'hOmotopy U .C( Ap )N®C(Aq)N-—> C(Ap)N@JC(Aq)N

(LI ODTI=( (O i0) B(Oyur 1,0, (0,¥) €CIA WARC(A) (1, 7)) COR(E, L),



I

Ulrot) U'G@t + '72(0‘)@U'1‘: .

men 3U + U3 = '1-7n¢, and Uyp= 0. U comutes

A

with the homomorphisms induced by maps of W', and thus de-

fines a natural tranéfomiation of functors. Hence, by de-

finition (‘5_.78)., _C.f?

Using cartesian product degeneracles, the correspond-
. .

ing category M ‘13 a st,ibcat-egory‘of that obtained from tensor

1s acyclic on models.

product degeneracles; hence U commutes with the inducés

-homomorphiSms in thls cage also, and Cl‘? is again acyclic

on models.
() C}1\§ ié acyclic on models, using either system of

degeneracy. HO(C(A x A )N) is cyclic infinite, generated
by the class of ( (0)x(0) ), and 71{ HOC [~ >(CX]0| ’WL 1s
defined by 7X(A o ) ((O)x (0) )= ((O)x(O) ). Define
8, ( Apx Aq)r —> ( Apxaq)r-m by S ( (mg; .. .,mr)x(l.o. . .'er) ==
V(O,mo,....,mrv)x(O,ﬁo,...,p,r), S, 1nduces |
Ug:Cpl By X By dyy —> Cp g ( ALX Ay )y such that IpUx =
Uxdp for r21. Hemce JU_ + Ud= 1-% €& , and
UX)ZX = 0, Using tensor product degeneracies,. it is cleé,r
that U commutes with the homomorphlsms induced by maps

of M by the argument of the previous paragraph the same

holds true using Cartesian product dege_zneracies. Hence Cﬁ

Is acyclic on models in eilther cage,
Now, using tensor product degene;'acies go that Cl\?

ls representable, we apply theorem 3.11 with
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_OC%lﬁ —> HOCI)E | v the natural equivalence' defined
;T(Ap,Aq)((O)X (0)) = ((0)x (0)), to obtain a natural

a;sfor'mation of functors
; N X
v : C?} —> CN
Similarly, using Cartesian product degeneracies and
> HyCY IM defined by

equivalence T' :Hocﬁ | YL
Ap,Aq) ((0) x (0)) = ( (0) ® (0) ), we obtain a natural

Thus Vf 1s a natural transformgtion of the functor

N
egeneracles, then lefI is representable; and since VI 1in-

duces the transformation ' = 1 in HOCR{II}T/L » by theorem

into itgelf. If we use the system of Ca,rt'esian product

.5‘;3.13 there 1s a homotopy between W f and the 1dentity
transformation of Cl}é. The fact that such g homotopy 1s
(by definition) natural will be used in later proofs. By a
completely similar argument, using tensor product degeneraciles,
we gsee that f'v 1s homotopic to the ldentity translformation
of C%),' go that V and f are equivalences.

We now wish to find the explielt formulae for V¥
end f, as determined by (3.11). Throughout let u be
the map corresponding to ae kr’ v the map corresponding to
b€Lg. We first consider ©V .

Dimension 0: Let ackK,, b €L, Then
7(a@b) = T, T £ X(a@b) = [T £( (0)@(0), (u,v) )
= T, ((0)x(0), (uv))=axb.
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cage 1: Let aeK’: be non-degsnerate, and let

A;\A

I(axb) F U va( (0,1)@® (0), (u,v))

<:'>'

V(a®b)=Ty

U V((I)G(O) (0)®(0) (u,v))= (’LX(U)X(O) -(0)x(0), (u,V))
~f1 ((0 1)x(0 0) (u,v) )—axaob.

7 case 2: Let aéKO, and let beL be non degene,rate.
%Then in a similar fashion

J{(a®b) = _s-oaxb .

Dimension 2: case 1: let .EL(:K1 ,beL be non-degenerate.. Then

Wa®b) = VI Lapb)= XL&” ((31)®(0,1), (u,v))
= 1,0, 7 ((1)©.00,1)-(0) @ (0,1) — (0,1)®( 1) +(0,1 >®(°5’(‘1"’”.
= 00,01, 1)x(0,1)=(0,0)x( 0,1)~(0,1)%(1,1) +(0, )x(0,0), (wv) )
= ((0,1,1)x(0,0,1) =(0,0,1)%(0,1,1), (u,v) ) |
= saxsob soaxsb

Similarly we have
cagse 2: Iet a eK._O,be L, be non-degenerate. Then.
V(a@b)= 8,808 X b.
case 3: lLet ae€ K,,b €L, be non-degenerate. Then
V(a@b) = a X 8,84b.

The general formula, which we shall not prove, 1s the
following. If (M,7)1is a (p,q)-shuffle (cf.appendix 1A),. let
r(pm,v) be the sign of thelps?rmutatio.n (g5 e Lppr Yy .,-pq)
of the integers (0,1,...,p+q=1).

‘Then for ac¢ Kp,b éK(‘1 both non-degenerste,

L] = 2 m § 1/ . e 0 o 0 b

(3.16) 9v(a®b) (4177) (p )SVq 8y 8X S/~(1 B,
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the sum being taken over all (p,q)-shuffles.
We now consider f: C(Kx L)N — C(K)NQ;)C(L)N

Dimension 0: Ilet a eKO,béLO. Then, with the appropriute
‘meanings of the functors in this case,
f(axb) = PR TEx(axb) = MTE ((0)x(0),10,1)= F(O)B(0), (wv))=a@b
Dimension 1: Let axb (KxL), be rnon-degenerate. Then
flaxb)= \"Uf? X (axDb) —I’"Ufa ((0,1)x(0,0),(u,v))
= PUE((1)x () - =(0)x(0), (1w, v) = tU((1)@ (1)-(0)® (03, (u,v))
= T ( (0,1)001) « (0)®(Q,1),(u,v))
= 0 ( (0,1)®3,(0,1) + (3,(0,1))®(0,1), (u,v) )

= a®90b+(a1a)®b-

Dimensioh? ' Let ax D¢ (Kx L) be non~degenerate. Then
f(axb) r'Ufa ‘Xx(axb)wFUfa ((0,1,2)x(0,1,2),(u,v))
—\"Uf( (1,2)%(1,2)-(0, e)x(o 2)+(O 1)x(0,1),(u,v) )
= O, 2)@(2) +(1)(1,2)-(0, 2)®(2) (0)®(0,2)+(0,1)@(1)+
(0)®(0,1),(u,v))
M ( (0,1,2)® (2)+(0,13® (1,2) +( 0)8(0,1,2), (u,v))
= M((0,1, 2)®a (041,2)+3,(0,1,2)® 90,1, 2)492) (0,1,2)®(0,1,2).0 u,v))
a®98b + aea®30b+ 3231.8‘@b

I

I

The ‘general formula for f, which we shall not prove is the

~

following, where 3 denotes the last face operator in any
situation: let axbe(XKxL )p; then |
: ™~ , . |
G.17) f{axb) = 2.(9)1_&@ (Qo)p—lb.
1=0
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Note that thls 1s the formula for the Alexander-
“echHWhipney cup. product; it 1s not symmetric with respect
to permuting K and L. It is routine to verify that

e

(5 18) fv = identity

mua, %.19: V. 1s assoclative; i.e .~_.the following

diagram commutes, where the isomorphism 1s the natural one:

TSR

(C(K)NXC(L)\L)X C(M)N > C(KxL}® C(M)y {\

(KxLxM)N
C(K)y® (C(L)y®C (M) )BL5 ¢(K) ®C(LxM)N/
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Chapter IV Spectral Sequences:.

The theory of spectral sequences was intrqduced
by J. Leray [1]. Leray obtained spectral sequences from
differential filtered modulesf(see below). A more general
procedure of obtaiﬁng spectral sequences was 1ritroduced by
W. S. Magsey in his theory of exact coupies [e]. Yet |
another way of obtaining gpectral sequences was introduced
by -S. Eilenberg, and is expounded in his forthcoming book
with H. Cartan [3]. This method has the advantage that
there 1s both an inductive and a direct definition of the
term ET 1in the spectral séquence, and consequently will

be followed here.

Notation and Conventions: Let Z be the set ZU!{-w,w |..

order Z by - ®w<r< oo for recz.

Definition 4.1: Iet I be the category such that

1) objects of a,\ ‘are palrs (p,d) of elements of
Z wguch that p > q, and

2) a map In @Q 19 an assignment to an object (p,q)
in (1 another object (p',q') in Q& such that p' 2p,q'D q.

If o (p,a) —>(p',a') and i (p',q') —> (p",q")
are maps in (. we say that (o(,/B) i-s a couple if q = q',
p' = p", and q" = p (see [4], p. 314). In other words there

13 a correspondence between couples a_nd‘triples- (p,q,r) of
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%élements of ’:Z such that ""p ZQZ r, the correspondence

‘being that which assigns to the triple (p,q,r) the couple
(&,p), where o : (q,r) — (p,r), andpg:(p,r) —>(p,q).

Notation: Iet A be a commutative ring with unit. Denote
by -%l\ the category of A -modules and A -homomorphisms,
and by ¢ ' the categdrj of graded N -modules and graded
A -homomorphisms,

Definition h.2: A covariant J-functor on'thqcategory

with couples (I consists of a covariant functor H:.Qw}%x
together with a homomorphism 3("(’:3) :H(C) —> H(A) for
each couple (o(,p) in@, <« A—-> B, P:B———} C, satisfying
the following condition:

1) if

1s ‘a commutative diagram in @ , where '(o(,p) and (o, By)

are couples, then

H(C) (4p) > H(A)
S i H(Y, )
H(C, ) X, f) SH(A,)

1s a commutative diagram.
2) For every couple'(d,P) in &, L:A —> B, F:B—-—-}_C,



the sequence

, 2
oo (A ) B L (o) —<2B) s pa
15 exact.
Ir H: a_,_..._> %{ gatisfies 1) and 2) above,

and 1f in addition’ 3(&”5) n+1(c) —> H (A) for every
couple (o(,P): A >B > C, then H will be saild to be

>o,3

a graded covariant d-fupctor on @ ([41, p. 115).

Definition 4.3: Let M be a differential A-module.
A filtration on M 1s a set of submodules {F‘pl\flipE A

such that
/ 1) FMCE M,
2) AR MCEM, .
3) F._(DM = ()

If M 1s a graded.differentlal N-module, the
filtration will be assumed to be compatible with the gra-
datlion, 1.e. FpM = }:’h(FpM)nMn for ail pPe Z.

The module M together with its differential
operator and filtration is called a differentisl filtered

b -module, and 1f 1t 1s graded it is called a differential

graded filtered N -module.

Definition k.4k: ILet IM,FpM} be a differential filtered

A -module. If (p,q) 1s an object of @, let
H(p,q) = H(FM/FM), and 1f & :(p,q) — (p',q') 15 &
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map, let H(«):H(p,q) —> H(p',q')- be the natural map.

CIf ) :(p,r) —> (p,1), F.:(p,"’r) - (p,q) 1is-a couple in

s ,th‘en:there 1s an exact sequence

o—>F M/F'IM ' > F M/FI}\II —> FpM/FqM —> 0

_and a resulting exact sequence

. —> H(q,r) > Hp,r) —H(p,q) —-—> H(q,r) —>*"
let ’J(i p) ¢ tH(p, q) —-—-> H(q,r) be the homomrorphism denoted

by 9 in this exact sequence (Henceforth 3( o P) will be
e )
denoted merely by 3.)"
It 18 evident that the functor H just defined and

> H(g,r) form a covarlant

the homomorphismg 9 :H(p,q)
Q -functor on a , and that this functor is graded if M

189 graded. This‘covariant 2-functor 1s sald to be the one

assoclated with the differential filtered A -module MLF M

Definition 4.5: If H: A —> % 1s & covariant ‘a-functor,

define

Z; = Image H(p,p-r) - > H(p,p-1)

B;’ = Image 3 :H(p+r-1,p) — H(p,p-1)
for r,pe Z ,r>2., If H 1is graded define

ot _ -

%p,q = Tmage Hp q(p,p-r) > Hp4q(Psp=1)

ro_ o e .

BE = T80 Ty gy (BT 0] —— (i)
I’emma: LI ) ZPDZ£+1D 00 Z?:)Bmg -ODBg.F‘IDBan-- 3
arld . -‘ .ZI.' 4 1 Z (D r+1 o v 0

p,a° %p,q=" p,q=Pp,q= ' * DPp, ¢ By, qD

. The proof of this lemma is straightforward, and
will tbe: omltted,
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Definition b3 If H: Q ——3%(\ 1s a covariant

< ~functor, define Er Zr/BP for r,peZ r) 2.
Define E! = H(p,p- 1), and set " EY 2‘bEI' If H is
T r ' r
E .
graded, set Ep o= Zp,a/Bp,q +Bp = TqFp,q0 B = By fp g
'fErlI,>2 1s the spectral sequence of H. If H 1s the

povar“i—ant J-functor assoclated with a differential filtered
A -module !M,Fp,Ml, the spectral seqﬁence ‘will sometimes be
denoted by {ET(M)}. Further in this case ES(M) = FM/F_ M
and E°(M) =§:pE8(‘M).. o |

We now have spectral sequences defined, but we
have not as yet proved two of their basic. properties. First,
E™! should be the homology of ET with respect to some
differential operator. Second, 1f M 1s a flltered N -module,
EQM) should approximate H(M) 1in a certain sense. We
now proceed to define d":E' ——> E' so that E'F' will
be isomorphic to H(E").

Lemma : If p2q2rs then
H(p,q) ——> H(q,r) —=> H(r,s), and 3= 0.

Proof': This follows 1mmedié,te1y from the commutgtivity of

the following diagram

oo = B(p,1)—DH(p,q) == H(q,r) —> H(p,r) — -+
-
l el
H(r,s)

tth&t the horizontal sequence 1s exact.
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jefinition k.7:  Notice that the diagram

S H(p=1,p-r) —>H(p,p-r) —1> H(p,p=1) —> :+-

H(p-r,p-2r) —> H(p-r,p-r-1)
~ A

is commutative. Consequently there 1is a natural map

?P;z£'~——> Eg_r guch that };(z) 1s the equivalence class
of ‘aj-1ze H(p~-r,p-r-1). Further it follows from the

commutativity of the diagram

H(p+r-1,p) > H(p,p-1)

N

H( D> p-r)
\La
H(p-v;p-r-1)

and the fact that 39 = 0, that ¥ (B£ )= 0., Define
dr:Eg —_ Eg-r to be the homomorphism induced by
¥ :-z;j —_ E;'_I,. Further denote by d° the induced endo-

morphism of ET,

Proposition 4.8: d¥o a¥ = 0, and H(ET) 1is naturally

isomorphic with g,

Proof': The fact that d%od’ = 0 follows from the

(2

dlagram



H(p,p-r) > H(p,p-1)
3 2
H(p-r,p-er) ———— H(p-r,p-r-1)

\' .
H(p-2r,p-3r) . > H(p-er,p-2r-1) ,

and the fact that 39 = 0.
Further it follows from the dlagram

H(p,p-r-1) — H(p,p-r) > H(p,p=1)

l‘a
0 = H(p~r-1,p-r-1) —> H(p-r.p-r-1)
that the sedquence

o > B8 Lo w,

1s exact, or that the sequence

zll.j*‘ > H(ET) > 0
13 exact. ~ From the dlagram
H(p+r,p) ————> H(p+r,p+r—1)
E
H(p,p-r) H(p,p-1)
)
(p=r,p-r-1)

and the fact that 93= 0, it follows that .B§+1 _

kernel 211;” ———> H(ET), or that Eﬁ*"———’?—“’—«-——n{(EI’)
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as was to be prbved.

Notice that 1f H:Q

F]

> qf\ , then

r,nr r .
a7 By g 2 Bo-r,qur-1

Definition %.9: We define a filtration on H(oo, - m )

by setting F(H(o,-0) )= Tmage H(p, - ) —> H(w, - )

Propogition 4.10: EB(H’ (0, ~c0) ) 1s naturally lsomorphic

to ESJ for all 'peA’ZI .

Proof: Recall that 22°= Image H(p, 0 ) —> H (p,p-1),

Bgo = Image H(oo,p) 9 > H(p,p—'T ). Further the sequence

rese—> H(p~1,-®) —> H(p, -0 ) —> H(p,p-1) — -+

is exact, and Image H(p-1, -~ ®) —> H(ow, ~®) = F H1H(oo,-co).

p
Therefore there 1s a natural map Ego —_— ESH( 00, ~ @),
and thls map 1s clearly an epimorphism. However, it follows

f"rom 8 simlilar argument that it 1s a monomorphism, and the

result follows.

Proposition 4.11: Suppose that H: d— %['\ 1s a graded

covariant 9 -functor, and
1) H(p,q) =0 if p < 0, and
e) H (p,q) =0 if n<q, then

EIIJ' q is naturally lsomorphic with E(D‘q for r>sup {p,q+i}.
] - >t
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proof': Suppose that r D> sup {p,q+j]. .The horizontal

SR

“sbquence

Lol

SRS

H(p)p_1 )

S H(per, = @) — H(p, ~0) —— H(p,pr) —> *+-

18 exact, and H(p-r, -0 ) = 0, Therefore,

gL = g0,
P P

Further, the horizontal sequence in the disgram

Hp-lq (p,p-1)
R N\

H(p, ~@ )~H(p,p-r), and

v B el oopert) I}Hq,,, (prr=1,p) D H 44 (@0) DH, (0, prr-1)

15 exact, H (co,p+r-1) = 0 for n = p+q+2,p+q+l, and hence

Bl = B®

D,a 0,q" Then the proof 1s complete.

Definition: If H: —> %{‘ is a"graded. covariant

9~ functor, then H 1s regular If H(p,q) = 0.1if p <O,
and Hn(p’q) =0 1f n < 4; 1in other words if the hypotheses

of the preceding proposition are fulfilled.
If M, Fp M{. 1s a differential graded flltered
A - module, then IFpMI 18 a regular filtration if
1) FPM=O for p < 0, and
2 EM,
) Mp C pM

Notlce that this definition assures that the covarlant
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3- functor associated with M, E M| 1is regular. Almost
all of the filtration in which we ‘shall be interested have
this propefty.

We are now in a position to prove the exact
gequence theorem of Serre [5], which will be used extensive-

1y later in the notes.

Theorem 4,12: Suppose that H:{l— %'\ is &

‘regular covariant 3- functor, and that 1, Jj,r -are

positive integers with 1< j,r) 2. Suppose further
that 1f 1 {n < j then
1) (an,bn) and (cn,dn) are pairs of 1ntegers guch
that n=a, + b, =c +d,, and an< Cp 5

o o o
2)_' Ep’q—-o if p+g=n 1,p§an r, and

3) E;q =0 if p+q=mn, (p,a)§i(a,,b ),(c ,d )}
r = . ' ;
ll») Ep,q 0 1if P+ g n+1', pZ C'n+ 7.

Under these hypotheses there 13 an exact sequence

,E;‘j’bj —> Hy(w, =00) — Egj,dj — Egj__“bw»-——?.
ver —5 Egi’bi —> H(w, - ®) — Egi’di .

Proof': It follows immedlately from the hypotheses of

-the theorem that Eg‘:q =0 1if p+qg = n,

(p,q) ¢ i(ay b)), (e, ,d, ), where 1 {n{<j. From
this fact and proposition %.10, ‘with gradation considered,

1t follows that there 1ls an exact sequence



0 o 8 ,bn > H (c0, - ®) ? B ,d, — 0.

However 1t follows from 2) above that 1f n ) i, then elther

r = — oY @
a) r< 8 ™ By an’ Ecn’dn 1s the kernel of
g 8
as:E —> E
¢nsdn ? an-1sbp-1” T
b) rdc =g and E® = gY .
ooy Ey Cnsdy — Teppdy

Congequently there 1s an exact sequence

0~ B b~ (00, ~0)—> B g 5 58

8paqsPpay
However ES = EF , B8 . = E-
” n’dn Cnydpy * “8p.ysPp 1 Bpq by &
81 s b1 i1s the cokermel of -d cn,d , Ean~1’bn—1
in case a, or Eg by in case b, Thils follows from

n-12"n-1 _
2) and 4) 1in the hypotheses of the theorem. These facts

combine ‘to imply that there 1s an exact sequence

0 —> E;‘;, —> H (0, ~®) — Ecn,b —>

~8n-1sPpmg ? Hn_l( ) > n~129~
To complete the proof 1t 1s necessary only to-continue in

this mammer.

Definiton 4,13 If M,M' are filtqred N - modules,

‘then f:M —_— M' 1s filtration preéeryigg, or 1s a map
of filtered modules 1f f(FM)CFM' .for pe Z.

If f,g:M—>M' are maps of differential

filtered m_odulés, 8 Homotopy of degree g "between f,g
1y & A- homomorphisti D:M ——> M' such that



1) daD+Dd=f-g, amd
2) D(FM) cppjrslvi'.

If M and M' are graded, 1t will Be agsumed that
D(M,) CM . . |

Proposition 4.14: 1) 1f oM —> M g -8 map of
differential filtered A - modules, then f 1nduces

BT (M) —> BT (M)
& map of differential A -modules for r> 0, and further

[} : O P r f 3
1f M and M' are graded, then f-(Ep,q(M))C Ep,q(M ) ).

2) If f,g:M —> M' are maps of differential

filtered A- modules which are homotopic by a homotopy of -

degree 8, then ¥ = g" for rds.

Proof': The first' part of the propositlon is obvious,
and 1ts proof will be omitted.

To prove the second part, it suffices to show
that 1f D 1s a homotopy of degree s between f and g,
then D induces a homotopy “ D° between f9
and gs. If xe¢ FpM represents [x]é EE(_M), define
D¥[x] = [Dx]e E?HS(M’ ). It will be left to the reader
to verify that the definition is independent of the cholce
of representatives, and that d°D°® +D%g% = £9-g°,

The preceding definitlon and proposition could have

been extended to include maps of covariant 9~ functors on d .

However, to avoid complications we now abandon covariant
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9~ functors, and for the remainder of this chapter consider
only spectral sequences which arise from filtered.moduies.,
Before proceeding to the proof of some compﬁriaon

{;heorems ; we flrst study coefficient sequences.

Definition 4.15: If N 1s a differential graded A~ module,
and (} is 5 N\ - module, then gQN 1s the differential
graded A-module such that (G.&.N), G @, N, and

d(a@b) = a®db for aeG, beN,  The homology of ((%‘X’A._N
1s denoted by H(N; g).

If & 1s graded, then 4. ®@,N, is the submodule of
gradation (p,q) of the bigraded differential module %&,\N y
and "d(a®b) = (-1 Yapdb 1r aeQ,beN,.  Thus
(J—EJAN e ng,pm\ N. The elements of total degree (or
gradation)n in l}@t\ N are those of %Jrq:nqu@l\lq.

Definition 4.16: ILet f:M ——>M' be & map of differential

graded modules. The mapping cylinder of f 1s the
differential graded A~ module M" such that

"o ',
1) Mq-—Mq_1 +Mq+M y and

2) d(a,b,c) = (- da,db-a,dc +f(a) ).

Let 1:M ~—> M" be the map defined by.
1(b)= (0,5,0) JiM' —>M' the map defined by
jla,b,c) = £(b) + ¢, and A :M' --;> M" py a(e) = (0,0,c).
Let D:M" ,_;_> M" be defined by D(a,c,c) = (b,0,0).
If M,M' are filtered and f 1§ filtration

preserving, define FM" = F M+ FM + FM'.



Proposition %.17: Under the condlitions of the preceding
definition we have

1) f£=J1,

2) jA is the ldentity,

3) dD+ Dd = Aj - identity, and

L) 1f f is filtration preserving, D is a

homotopy of degreee 1.

Corollary: g H(M") ——> HM'), \Nand if £ 1s a map
of filtered modules, then J2:E2(M") > E5(M').

Definition 4.18 Iet N be a differential graded A- moduls,
f: @ —_— g—' a map of A- modules. Then fm1 :g,,mN ~>
G'®N. ILet M be the mapping cylinder of f®1. Then

M 1s thé mapping cylinder for N of the gogfficient

homomorphism f. Define

F}‘)M =@® qup N, + Q}m Z&gp Np + ,,Q‘® qupr

Further let A be the kermel of f, and C the cokernsl.

Note that the filtration leM_} induces a flltration
leM'l on M' = M/’"%@N.

Propogition 4.19: If in addition to the hypotheses of the

preceding definition N 1s a free N - module, then there

1s an exact sequence

co > B (NGA) D B (M') = B (N;0) =D H,(MA) ~> ...
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Proof: We have Eg’q(M'),= 0 if q+#+ 0,1, and
0 7 1 ) )
Ep,] = q@Np , Eg,o = ((”mep. By an easy calculation
' = t o T -
,Ep,l Ag® }L, Ep,, 6 Ce Np. The proposition now follows

from Theorem k.12,

L}

Collary:  If in addition H,(N) = A+ Hi(N), then
1) .HO(Ml) = 0 1mplles C = 0, and
2) HyM') =H M') =0 implies A=C= 0, and
f: ¢ f§€> G'.

Proof': The last term of the exact sequence of 4.19 are
o —> Hy(N;A) —> H (M') —> H, (N;0)

—> H_ (;A) —> Hy(M') ——> H(N;C)
Therefore if HO(M') = (), we have HO(N;C).= 0, and
since H (N) = A + Hy (N) 1t follows that C = O.. Now
1Ff C =0, H,(N;A) = H1(M') and the result follows.
It 1s not difficult to prove that 1f A 1s a
principal ideal domain, then the exact sequence of k.19
reduces to

Further, even in the general case, there is an exact

(M') —> H (N;C) —> 0

sequence
e By (N;0) —> H(N;g') —> Hy(M') —H,_ (N;G) —> -
since M' 13 the relative mapping éylinder of

GeN —> (3,'.691\1. If A=0, then 0 —) %—~>q) —> ¢ —> 0,
and HﬁﬂM')‘:'Hd(N;C). Thus the preceding exact sequence
reduces to the usual one coming from the exact sequence of

coefficients 0 —> g,-—-) (oz,' —> ¢ —> 0. Similarly
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if C=0, then H,_ (N;A) = ‘Hq(M' ), and our exact
gequence reduces to the usual one corresponding to the (-

exact sequence of coc(ficients. 0 — A—=> 3-—-—} g,' —> 0.,

Proposition 4,20: Iet f:M —> M' be a map of differential

filtered A- modules, and let M" denote the relative

mapping cylinder of f. Then there 1s an exact sequence

LN ) — 2 Fre——— 2 ’ —— 2 " ———— E2 M S—— LI I ]
> Eo(M) —> ES(M') —> E(M") — Bo_ (M)—— .-,

and further if f 1s a map of graded A- modules, there

are exact sequences
2 2 1y - )
o8 o M - E M — n ——— —— e
% Ep,q( ) % P:q( ) % EP,Q(M ) % Ep"l JQ,(M) 7

for each q.

Proof:  ILet M' be the mapplng cylinder of f. Then

there 1s an exact sequence

0 —> M i>N'r“‘~——j——>1v1"———>v0'.

Further there 1s a map A : M% ——> M Such that 7\1 is
the identity d‘efined by Ala,b,c) =Db. The map A 1is
only a map of N - modules, and 1s not compatible with 4.
However it induces a map A0 :EO(M:“) —_> EO(M), and for
this map we have %30 = dbao.' It now follows
easlly that there 1s an exact sequence |

0o —>E'M) 25 E'0) —> E'M) —> 0.
On passing to homology this gives rise to an exact sequence
HW’f?-/ES(M) —> M) — ES(M") —> ES_ (M)~ ...

NOWhl%OPJngthat E2(M¥) 13 naturally {gomorphic with
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E°(M') by 4.17 and k.14, the result follows.

We now wish to prove a comparison theorem for
gpectral sequences of differential graded A - modules.
Since the hypotheses of this theorem are vsomewhat complicated s
they will be listed first in a section of their own preceding

the theorem. *

Hypotheses of the theorem: Iet g:M —) M' be a map of

differential graded flltered \- modules , hiU —> U' a
map of graded A- modules, Z:N —> N' g map of differential
graded A - modules, and suppose that N,N' are free (\ - modules.

Finally, suppose there 1s glven a commutative dlagram

. ! .___g'____ { 1.
E'(M) )E(M)

[

A 7 YV OR\E

. ' g 1 ! !
where \P(Ep',q(M) ) C UqENp, ¥ (Ep’q(M )) CUq oN_,

such that ¢ and, ' are maps of differential A - modules,
and induce isomorphisms : '
y, :B2(M) = H(N;U) and 9, :E3(M') == H(N';U').

Under all the precedin_g hypo?:heses:, one has the
following two theorems:

Theorem A: If g, : H(M) —> H(M') is an isomorphism,
h:U —> U' 1s an isomorphism, and if Uo,f:-' N+ U'O, then
By :H(N) —> H(N') is an isomorphism.




Theorem B:  If g,:H(M) —> HM') isfaniisOmorphism,

B¢ H(N) — H(N') 1s an isomorphism, and H (N)= A+ Hy(N),
then h:U —> U' 1s an isomorphism.

Proof of Theorem A: We may as well assume that h 1is the

identity map. ILet M" be the mapping cylinder of g, M
the relative mapping cylinder. Further let N# be the

mepping cylinder of g, N' the relative. mapping cylinder.
Since Ep(M’) (M) + E (M)r+Eb(M'), We now have a
commutative diagr&m
0 —>E'M) —> E'MY) —> E'M") —5 o
Uy R

' s |
0 —> ToN —> U ¥ —> veN' —> 0

of differential modules such that the horizontal iines are

exact. Pagsing to homology, we have the commutative
diagram
s —s It M —— s e
> B ) —> B2 ) —> B2 ") —> B (M) —
r e 'l' -
v \V4 -V

—_— . —_ by ", —_ . _— e
> H (N;U,) —> B 00 ) —> B (F'0g) —> B (U ) —>

with exact horizontal 1ines.  Therefors, by the 5 -lemna,
we have Ep q(M") = H (N";U,). Now since g,:H(M) - H(M')
2
we have H(M") = 0, and hence Ego q(M'f-") = 0 for all p,d.
. s ‘

Assume. that Hp(N") = 0 for p< Do+ This means that
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Hp(N ; Uq) 0 for p<p0, or that Ep’q(M ) =0 for

T, o2 2 :
. : B —_—
p < Po 2H0W3V9P a: Dos 0 D Epo—r,r-l and therefore
= m =1 : . b —
we have Epo;o Epo’o 0, or HbO(N,UO) 0. Now since

0

U.= N+ Ug this means that Hb (N") = 0, and proceeding
| ; 0
inductively we have Hﬁ(N') = 0 for all p. Then because

N" was the relative mapping cylinder of g:N — Nﬂ g;:H(N)—%}IKN5

18 an lsomorphism.
The basls for the preceding argument may be found
by making a diagram for E (M") by plotting E at the

p,q -
point (p,q) 1in the first quadrant of the plane.

R o
ka Ep—r,q+r~1

a” AT
Er T + Ep: q

r
B, 0

Now in this diagram a¥ is represented by an arrow golng

up and to the left. In the preceding argument the assertion
t 2 1"

that H (N') = 0 for p<{p, meant that | B qM =0

for p < Py, or that only O groups appear in the shaded
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portion of the diagram

W

o

po‘?1 po

Congider now. Ego’o : 1t sits on the horizontal axls, and

. therefore contains no boundaries. Further since a® slopes
up and to the ideft, 1t 1s mapped into zero. In other words
we have the well-known.prindiple thatﬂa gpectral sequence

with E®= 0 identically has no corners.

Proof of Theorem B:  In this case we may assume that B

1s the identity. Iet M* pe the mapping cyliﬁder of g, M"
the relatlve mapping cylinder, and lep N" be the mapping
cylinder of h®1:U®N—~§Iﬂ®N; .WaﬂwnSMMamlmﬂwe
that EZ(M") ~H(N"), and rocall that N" 1is just the
mapplng cylinder associated with a coefficient homomorphism
which we have already studled (4%.19 and the corollary to %.19).
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Let _Aq be the kernel of h.Uq > Uy » and let Cq

be the cokernel. Now since g, :H(M) —> HM') 1is an

1somorphism, HM") = 0, and Ego q(M") 0. Therefore
b

oM") = 05 but E2 oM") = H (N;C_).  Therefore C, = O.
'Now we also have E (M 'y = H (N; A ) = f;rom the corollary
to %.19. Tbereffore A0 = (, Suppose now that Aq = Cq =0
for g < qy- Then Hp (N") = 0 for gX{ dgs OF

1 _ T . r M" —
p,q(M y=0 for qX{ SPe his means that Ep,q( ) =0

for q< gy ry2. Consider Er 4 It consists
. 0,q0 :

entirely of dr cycles for r>2, and since
r, ol . r
av: B r,qytl-r 7 B 0,4q ’

2 - J® ' 2 ,
foreE,qo Eo,qo 0. However, E,q H(N C } and

this means that C. = O. Now consilder EI’ .
QQ ’qO

1t congists entirely of a® cycles for rp»2, and contalns
=EP, =
1,4, 1,d0 O, but

E? = H (N;A ) » and therefore A_ = 0. Proceeding
1:Q0 qO

by induction we_ have Aq = Cq = 0 for all g, so that

h: Uy ~ )U' 1s an isomorphism for all q. Thus the

it contains no boundaries. There-

Again

no boundaries. Therefore E2

proof 1s complete
The i1dea of the preceding proof‘ 1s agsin that there

can be no "corners" in a spectral sequence with E®= 0.

' For Ep q =0 for q (< q, means there are only 0 - groups
J
in the shaded region
a" |

EP
P \\\\N 1;Q0
E O
0,49 \ 4
r
EP d .
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A vefsion of theorem A 1involving only spectral
sequences was proved by Borel, and by Serre, but is un--
published. However, theorem A as it stands willl guffice
for what we need here. For completeness we now state

a well known theorem of Leray.

Theorem C: If h: U —> U' 4g an 1somorphism, and
By :H(N) —> H(N') 1is an isomorphism, then
g, tH(M) — H(M') 1is an isomorphism.

This theorem may be proved by the usual procedure
of observing that since gRE® (M) —> EP(M') 1s an.
isomorphism, gg:EO(H(M) ) — EQHM') ) 1is also an
1so.morphism;



Chapter V

DGA_Algebras and_the Construction of Cartan

We shall now prepare to make Cartan's calculation
of Hq(X) , where X. 1is an Ellenberg-Maclane space; i.e.
TTq(X) = 0 for q % n, T (X) = T . A number of prelimi-
nary notlons are necessary before we can actually do this,
and we shall present these in a manner similar to that of
[11. In thé courge of thils work we shall obtaln a special
case of a theorem of Borel [2] which 1s useful in the study

of the topology of Lie groups.

Conventiong: In this chapter A will denote a fixed com-
mutetive ring with unit. If N and N' are graded

N - modules, N =Z}n ZONn’ N'“:'Z'nzol\li1 , then N®, N!
18 the graded A -module such that (N®,N' ), =
TrrgepVo® N'y.  If N,N' are differential graded
A- modules , then N®, N' 18 a differential graded

N - module with

d(x@y) = dx®@y+ (~1)F x@dy

For xe NP,‘,yeN' .
Definitions: A graded [\ -algebra 1s a pair (A,d)
where A 18 a graded A -module, and (b:AQbAA —> A

13 a homomorphism of graded A - modules such that 1f we
denote ¢(x® y) by x.y, then (x.y) z = (x.y)-z.
If', in addition to the preceding, A 13 a
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differeritial graded N~ module, and ¢ 1is a homomorphi:am
of differential graded [\ - modules, then (A,$) .1s a

differential graded N - algebprs.
Usually either a graded [\ - algebra or a

differentlial graded N -algebra will be denoted merely by
the symbol for 1ts underlying module .

’I’hé graded N - algebra A has a unlt if there
exlsts an element 1¢ AO guch that t1.x = x+1 = X for

xe¢ A, and 1t 1s gnti-commutative If x.y = (-1)rsy-x for

Xe Ar,y €A .
The ring M 1tself wlll be considered as either
‘1) & . M~ module, |
2) a graded N-module N such that Nn = 0
for n» 0, and Ny=N
3) a differential graded N - module with d = O,
k) a graded N\ - algebra, or
5) a differential graded N - algebra.

If A,A' are (differential ) graded [\ -algebrasg,
then A@AA' 1s the (differential) gra'ded £\~ algebra such
that (x@y)(x'®@y') = (-1) ¥ xx'® yy' for x'éhAp,y € Ag.

Notice that 1f A 1s a graded N\ -algebra, then
the multiplication ¢ :A@A —-> A 18 a homomorphism of
graded A- algebras if and only if A 18 antl-commutative.

Definitions: An gugmentation of a (differential) graded

A- module N 18 a homomorphism ¢ :N —> N of (differential)



‘graded N -modules. A DGA-module 1s a differential
graded (\ -module N together with an auguentation

>N .
If N,N' are DGA-modules, then N®N' 1is a

£ :N

DGA-module with ¢ (ne@n') = ¢(n)¢(n').

An gugmentation of a (differential) graded
> N\ of (differential)

A-algebra A is a homomorphism ¢ :A
graded A algebras with unit. Note that this implies that
£ vis an epimorphiém. A DGA-algebra 18 a differential
>N .

graded A '-algebra together with an augmentation ¢ :A

- Example 1: Llet X be a semi-simplicial complex. Then

C(X)y® A 1s in a natural way a DGA-module. It already
has a dirfferentlial operator and a gradation, so 1t suffices
to define an augmentation. This 1s done by setting € = O
on positive dimensional elements, and €(x ®N) = A for

xéxo, NeN .

Example 2: It was polnted out.in Chapter IIT  that if

X,X',X'" are seml~gimpliclal complexes, then the . dlagram

()@ C(X )@ C(X" Iy > COXx XYy @(C(X" )y
~ ?}C(Xx}{‘xx" N

C(X)y ® (C (X ) @Cx" )20, C(K)y®C(X'x X))

1ls commutative.
This means that if [ 1s a monold complex, and

a multiplication is defined in C(F)N by the diagram
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C(My®C(My ——> C(rxp)y — Gy

where C(Cx()y — C(r)y 18 the homomorphism induced
by the multiplication in [ , then C(r‘)N 1s a differ-
ential graded algebra over the ring of integers. Further
it 1s not difficult to gee that the unit of r‘o glves rise
to a unit in the algebra C(F)N. Consequent ly C(r‘)NcX)I\
18 in a natural way a DGA-algebra. Finally if (" 1s com-

mutative we have a commutative dlagram
C(My ® C(ry —> C(exry
R s C(ry
C(My ® O(My ——> C(rxmy —

where T(x®y) = (-1 yTs

y®x for y of dim 8, xof dim r,
and T' 1s the map induced by the map of " x [ into
1tself which interchanges factors. Therefore, 1f  1is

comnutative, then C({‘)N i1s an anti-commutative DGA-algebra.

Exauple 3.: If A 1s a DGA-algebra, then H,(A) ='2Hn(A)
1s a DGA-algebra with d 1dentically zero.

Definition: If A 1s a DGA-algebra, then a graded _

augmented (left) A-module 1s a graded augmented module M

and a homomorphism ¢ : A®A_M > M _of graded augmented
modules such that if we write ¢é(a®m) = a.m for
aeA,meM, then a-:(a'sm) = (aa')m for a,a'e A, and

T-m = mn.
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M 1s a DGA-module over A 1f, in addition to the

preceding, ¢ 1s a homomorphism of DGA-modules.

Qef‘in_itiog: If A,A' are DGA-algebras and f:A —> A'
is a DGA homomorphism, M & DGA-module on A, and M' g

DGA-module on A', then g:M —> M' 1is a DGA-homcmorphism

compatible with f  1f the dlagram

AgM ——F B8 -r>A'T\M'
M S —>  M!

1s a commutative dlagram of maps of DGA~modules.

Definltiont: If A 1s a DGA-algebra, then & construction
on A consists of
1) © a filtered DGA-module M on A such that 1f
me_EpM, ae€Ah, then anm(-.FpM
2) a DGA-module N, .
3) & homomorphism of DGA modules ptM —> N
which is compatible with g :A —> A , and

4) & homomorphism of graded augmented left A-modules

V :Agp N —> M subject to the followlng conditions:

‘a) pev(1®n) =n,
¢) 1if Fr(AQAN) = E q g_I‘A @, N

Vs then
V(F(A®, X)) CFM, and
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d) VO:EO(AQA N) > _EO(M) 15 & homomorphism of
DGA-modules such that v:E'(A@, N) —~> E'(M).

A construction on A will be denoted by
(A, N, M).

Definition: A construction (A,N,M) 15 free 1if

vV :A@N '_T—> M 1s an isomorphism of filtered A -modules,
and N 15 a free N -module. In this case we will fre-
quéntly ddentify A®@N and M asg N -modules. Note,
however, that the differential operator in M 1is not
necessarily the natural one of A®N; 1in fact it 1s usually-

twlgted,

Definition: A DGA module M 1is acyelic if € :M — A
induces an isomorphism €\ cH(M) —> A , or in other

E>A

d
L A o — » o0 d
words 1f —_— M > Moy ™ ~—> My
i1s an exact sequence,

A construction (A,N,M) is &cycllic if M 1sg

acyclic,

Theorem 1: Let '(A,N,M) be a free construction,
(A',N',M') an acyclic construction, and  f:A —> A!
a DGA homomorphism. Under these conditions there

exlsts a DGA homomorphism  g:M > M! which 1s com-
patible with f, If g' 18 another such homomprphlsm,

then there 1s a homotopy D:M ~——> M! such that
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dD+Dd=g-g', and Da.m= (-1)F £f(a)Dm for
a € Ar‘ Further if the filtration on M is regular
then g 1s filtration preserving, and D 18 a homotopy

of degree 1.

Proof: Let C, be a basis for N; over A .
qu this proof, identify x € Ci with 1 8XeM, Now if
xeCo, define g(x) to be any element of M(') such that
¢ g(x) = ¢(x). If ye A@NQ then y may be written
uniquely as Zaj ® x; where x,¢ C, and gly) 1is

J J
defined to be Zf(aj) g(x4).

For xeC1, we have dx € A® N and i

0
£(dx) = 0. Therefore g(dx) 1s defined and ¢g(dx) =

o

il

Define g(x) to be some element of M% such that dg(x)
g(dx). Now 1f ye A®N,, y =Zaj ® X, where xy e C,
and we define g(y) to be Zf(aj) g(xj).

Suppose now that g 1s defined on

A®2q<qu=FI,_1M. For xeCr;s we have
dx ¢ Fr-lM’ g(dx) 1s defined and dg(’dx) = 0. Therefore
we may define g(x) to be any element of M‘r such that
dg(x) = g(dx). Consequently the exlstence of g 1is
proved,

Iet g' be another map campatible with f.
Then for x€Cy, eg(x) = £(x) = ¢g'(x), and
s(g(x) -gt(x) )= o. Define Dx "to be any element of
M; guch that adDx = g(x) -g'(x). Now extend D to
FM by de'fining Da® x = (-1)'f(a)Dx | for xeA,.
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Suppose that D 1s defined on ‘Fr-—1 M. Then

for xeC .We.he'we dxe F,, .M, g(x)-g'(x)-Ddx 1s a

r?
cyclle belonging to M! , and we define Dx to be ‘any
element of MI',Jrl such that dDx = g(x) -g'(x) - Ddx.

Notice that g(1 ® Nr) C,FI,M' 1f M!' has s
regular filtration (i.e. M} CFM'), and then
g(A®@ Nr) C FI,M', gince for xeA', meFIM' we have
X-me FI,M'. The same reasoning shows that DFPM C Fr_+1M"

or that D 13 of degree 1.

Definitons: If (A,N,M) and (A',N',M') are constructions,
a map of the first into the second consists of a DGA

homomorphism f:A—> A' together with s filtration pre--
serving DGA homomorphism g:M —> M' which 15 compatible
with f; Under the preceding conditions the map of con-
structions will be sald to be compatible with f. Further,
gince g 1s flltration preserving, g Iinduces

gP:Er(M) —_— EF(M'), Now consider /A as an H(A) module
by defining x.a = %. £(a) for xe/\ , a<H(A). Similarly
consider /\. as an H('A') module, ' Then N =A®H(A)El (M),
and N' = A® H(A! )E1 (M'), and therq 1s a DGA homomorphism
g : N —> N' induced by g1, or.by g.

Theorem 1 : Iet (A,N,M) be a free construction, (A',N',M')

an acyclic construction with a regular filtration, and
f:A
(A,N,M) into (A',N',M') compatible with f., Further the

> A' & DGA homomorphism. Then there is & map of

induced homomorphism 'éx-.:H(N ) —> H(N') 1s independent of
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the cholce of such a msp.

Proof: The first part of this theorem is just
a restatement of Theorem 1. To prove .the last part s'uppose
g,g':M ——> M'" are compatible with f. iet D be a
homotopy between g and g' satisfying the conditions of
Theorem 1, and define D:N —> N' by Dx = pDx for
Xe Cr where Cr 1s & basls for I\I11 as in Theorem 1, and

> N! 1s the projection map of the construction

p:M!
(A',N',M')., One verifies easily that dD + Dd =‘E - g',

Theorem 2: Buppose that (A,N,M) and (A',N',M') are
constructions, f:A —> A' and g:M——> M' are DGA

homomorphisms which determine a mep of constructions, and
N,N' are free N\ -modules. Under these conditions if
> H(A') 18 an isomorphism and g :HM) — H(M!')

fxiﬂ(ﬁ)
18 an isomorphism, then Tg'x:H(N) ——> H(N') 1s also an
1 somorphism.

The preceding theorem is almost a special case of
Theorem A of chapter &,  The difference is that we have
not asgumed that the 1somorphism H(A)@N '--—><E1(M) is
compatible with differential operators. This, however,
is the case if Hy(A) = A , With H (A) = A , the
> Nq 1s an isomorphism, and therefore the

S, 1
map p.Eq’Q :
differentlial operator d!' 1s of the correct form on
Zqul X Now as & left H(A) module,. E! (M) = HHA)® N,

’ N .
and dY(x ®y)= (-1 1B Xrvqr (1@y) = (-1 Xx (1 p ay) =

(-1 )dim ¥ x ®dy, and we see that in this case the
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differential operator is just the usua.i one in H(A) @ N.
We will now indicate the changes necessary in the
proof of Theorem A to prove the gbove theorem without fhe
agsumption that HO(A) = N\ . Iet M" Dbe the relative
mapping cylinder of g:M ——> M', and N" the relative
mapping cyllnder of gE:N —-—> N', It‘isveasily geen that
E‘(M") = H(A) @ N", and to use fhe game proof as before we
need to know that Eé, (M") =0 for ¢q S_p Implies that
E;),q(M") = ¢ fo; all d.
et N = HO(A) ® N". We haye a differential
operator in N*  induced py d'. Further
E'(M") = H(A)®HO(A-) N, 1et G bo any right H,(A)
module, and define. H(N ; G) to be H(G®H (A) N ). Now
B2 (M") = B (WS H (A) ), and N' = Ay () N'. There-
fore to prove the theorem it suffices to show that
Hq(N*;H (A)) =0 for q<:1> implies that Hd(N#;G) = 0 for
q {p for any right H,(A) module G, However, the fact
that B (W;H (A) ) = 0 for a{p implies that Hy vhE) =
for q g_p where F 1s any_free -HO(A) module. . Suppose
now that ¢ —> R —> F —> G —)> 0 1s an exact sequence
of right HO(A) modules. Then since N# 1s a free
vHO(A) module (this follows since N" 1s a free A -module),
the sequence

0o —>R® HO(A)N** —> F mHo(A)N#.H>- G @HO(A)N** —> 0

15 exact, and there 1s a resulting exact sequence

+++=> Hy(N;R) —> H,(I;F) = Hy(N;G) —> Hy_ (NGR) — -

.
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Consequehtly for F free we have Hq(N;G) c:Hq_Q(N;R)
for q € p, and by induction this implies the desired
result.

Having given some properties of constructions,
we shall now show how they arise. We shall first prove
that any twisted Cartesian product (1 ,B,E) (Definition 2.13)
glves rise to a construction, provided is a monoid com-

plex. To do this_some'preliminary definitions are needed.

Definitions: If (T ,B,E) 1is a twlsted Cartesian product,

let V":C(rON © C(B)y —> C(E)y be the composition of the
natural map V :CSV)N ® C(.'B)N —> C(T'X B)N' of the
Eilenberg-Zilber Theorem (Chapter 3, p. 17) and the identi-
fication of - C(E)N and C(1x B)N as groups. We shall

say that a slmplex o€ E 18 of filtration p 1f 1its
projection 1lies 1n the p-skeleton of B, 1.e. may be written
as 811---81rt' where te¢B 13 a simplex of dimension
less than or equal to p. Define FpC(E)N to be thg sub-
group generated by simplexes of filtration p. Further
when [T 18 a monold complex considerl C(E)N -ag g left

C(r’)N module by using the diagram
v
CMy R>C(E)NA-——~> C(rx By — C(E)N
all maps belng the natural ones.

Propogition: If T 1s a monoid complex, and

(7,B,E) 15 a twisted Cartesian product, .then
(C(F)N,C(B)N,C(E)N) is a construction with a regular
filtration.
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Proof': All statements which need to be \ferifi_ed.'
follow at once except the assertlon that |
V:C(My ® C(B)y > C(E)y commutes with d° and
induces an isomorphism ¥':H(C(Iy) ® C(B)y —> E'(C(E)y).

We shall prove this by showing that EO(C(E)N) = E°(C(rx B )N),
that this identification is compatible with d°, and that

the proposition is true for a Carteslan product.

First identify E and "x B as sets. Then we
have to consider '31(0' XT) where @ x T 1is of filtra-
tion p. If 1> 0 it does not matter whether we mean
the 1-th f'acé opefator in E or M xB by 31 . Ir
1 = 0 we still have the relation Bc(q"x T)= ?OQ'. 30(1)(1: ).
The fact that ¢ x ¢  is of filtration p means. that
T = sio.;'.sirt' where <T'e¢ B has dimension less than
or equal to p. If 7' has dimension less than p, then

T xT represents the zero'element in C(E)N. Thersefore
agsume that dimension (T') = p. | Now 30(1 XT) =
30(.} X ‘510... .sir'c ') = Sosio...sir(} x7')., Assuming, as
we may, that 1.5 .+.p 1,, 1t follpws that the element
30(.1 X)) = 510;1 "'Sir.-l 90(1 xth .is of filtration (p-1.)

]

unless 11"

Sy _ieee8 _. (1 x¢), and this formula is independent
1,1 Loy =1

0. In this case 30(1 X )=

of whether we mean the 0'th face operator of E or 'x B

by 9, Thus, we have shown that E°(C(E)y) = E°(C(x B)y).
It therefore remains to show that

§UE(C(My) ® C(B)y —> EN(C(MxB)y) 1s an Lsomorphlsm.

To show this, recall that we have defined 8 map
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£:0(r'xB )y —> C(I)y ® C(B)y (Chapter 3) such that
£fv  1s the identity! and ¢f 1s homotopic to the
identity. Since f 1s filtration preserving, f' 5'

1s the identity, and to prove the propos;tion.we need only
show that ¢'f' 1s the identity. For this it suffices
to know that the homotopy of f with the ldentity 1s of
degree 0. However, this 1is indeed the case, for the
homotopy 1s natural.

The following comments may help to clarify the last
aséertion. The fact that the homotapy:1ls natural means
that 1f £:X —> X' and g:¥ —> ¥' are maps of semi-
simplicial complexes, then the hémétppy commutes with the
7 C(X' x ¥')g. However,

induced map of C(X x Y)y
any simplex of a Carteslan product X X Y 1s the image of
a simplex of Aprq for some p and ¢, and every
gimplex of ‘Ap or zxq can be obtained by applylng face
and degeneracy operations to the basic slimplex. Therefore
the fact that the homotopy 1s natural means that 1t may be
éxpressed by using fare and degeneracy operations. HoWever,
from the very definition.of the filtration on the chains of
a. Carteslan product or a twilsted Cartésian.product product

1t 1s evident that the filtration can not be raised by
applying face and degeneracy operations.

Definition: A construction (A,N,M) satisfles

the condition B' 1if

1 In Chapter 3 it only stated that fv 18 homotoplc
to the identity. However, one verifies easlly that it is
actually equal to the identity.
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1) €Ny =D A, end

2) xezq(M) and ¢(x) = 0 imply that there
exlsts a unique ye 9(1 ® Nq_ﬂ) such that 'dy = X.

The construction satisfies the condition B 1if it

satisfies the condition B' and is free..

Theorem 3: If (A.N,M) 1s a free construction,
(A',N',M'") 18 a construction satisfylng the condition B',

and. f:A > A'  1s a DGA homomorphlsm, then there is a

unique map of (A,N,M) into (A',N',M') such that v(1 @ N)
maps into V(1 ® N').

One we note that the condition. B! ‘implies that
the construét_ion is acyclic ». the proof of this theorem is
entirely similar to the proof of Theorem 1, except that at
each gtage where a cholce had to be made in the proof of
the earlier theo_rem, there is now avallable a unique element

of V(1.®N') satlafying the required conditions..

Theorem 4: If A 1s a DGA algebra, and kernel
€ 1A >N\ i3 a free  N-module, there exists a con-

struction (A,N,M) satisfying the condition -B., Further if

(A,N',M'") 1s another such construction, then there is a
unique isomorphism of (A,N,M) with (A,N',M') which maps
9(1 ® N) into 9(1 @ N!').
The uniqueness is clear from the preceding theorem.

It remains to prove existence. This will be done in two
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different ways. The first way is .perhaps more intuitive,
but 13 valid only 1f A 1s a principal ideal domain.

First proof of existence_a: We .assume now that N\
1s a principal ideal domain. Recall that over a princlpal

ldeal domain any submodule of a free module is free.

Therefore A = kernmel & :A ——> A 1is automatically free.
Proceeding with the construction, let NO =A
. - ' N\
My=Ay@ Ny — Ay, let N =K, M =A o8N, +A;a@N,
and define d:1 @ I\I1 —_— A‘o, to be the natural map.
'Suppose that N_ and M_ arve defined for ¢ {r

q q
g0 a8 to satlsfy the condition. B, We have

My= Zj,4q A @ Njo  Dofine Ny, = kernel d:M, _ Ml.’"-f’
and M, = S, 4 n, A ®N;.  Further defins .
da:1 ® Nr+1 — Mr to be the ryatural map. It 1s now
evident- that (.A,N,M) 1s a construction satisfying the
condition B. )

Second_proof of exlstence: Again let A denote
k:érnei £ :A > N\ . Define B'?(A) = I\ , and for
n> 0o, B™A) to be the tensor product of A with itself

n-times, and denote an element of BY(A) by [al,.'..,an].
Define a new gradation in B™(A) by setting dimension
;008 )1 =n+ T d; where dy = dimension a.
Define B(A) tobe = B™(A), and B(A) to be A @ B(A).
The object now is to place a differential operator in

B(A) so that (A,B(A), B(A) )1is a construction satisfying
the condition B,
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Denote A ® B™(A) by Bn(A) and denote an element
of this module by a[a1,...,a l.  Define s:B(A) —> B(A). '
by setting s(a[a1,...,a 1) = [a e(a), 1,...,a;n]. We
want 8 to be a contracting homptopy for B(A)}, 1,e.
we want the relation  ds + sd =1 - ¢ to hold, where 1
1s thé identity map.  Since B(A) 1s to be a left
A-—module we shall have the relatibn d(a.x) = (da). X+ (-.1..)‘( a.dx,
where o = dimension a. Therefore i suffices to define
d on B(A) On BO(A), d 15.29.1'0. -On §1 ‘(A,) defirié
dla;l=a, € A®B,(A).  Assume that d is defined on
B® (A) for »<n, suchthat d:B° (A) —> BY(A). A’
typleal element of B2*1(a) may be written as
| 1. Defihn'e d[a1 e "Ef'n+1 1 =

[3'1 yeres8n4

a [&2,;-.,&

]l = sa {9‘2""’8'n+1

n+1] - sda1 [3'2""’ n+1]' Then -dd[a1,...,an+1] =
dallae,.. 8011 -c;lsda.1 [32’_"" N1 1, and assuming by in-
duction that ds + sd = 1L - € this last expression is zero.
Consequently d 1s defined, and a% = ’

To show: that this consbruction satisftes the
condltion B, suppose thai: X € B(A)b and €(x) = 0;
‘then x = d[x]. Su‘ppose that we also have x = dy,
where ye€ E-(A.); then y = s(z) where £(z) = 0, and
d([x‘] -g(%)) = ds(x-z) = 0. However, .(x-z) =
de(x-z) + gd(x-z) =0, and x = Z, 80 that y = [x].
Now suppose that x€ B(A)q, q >' 0', apd that dx =.0.

We have Xx = dsx, where gx¢€ B(a), and 1f X = dy



5-17

where yeB(A) 'tl'len y = sg, and ds'(‘x-z) = 0., This
means that x-z = sd(x~z), s(x~z).= ssq(x-z) = 0, and
cOnéequently"y = gz = 8X, The proof of the theorem
is now eomplete.
In nelther of the preceding proofs have we shown
how to obtaln the differential operator in N in the
-copstruction (A,N,M)._- The coﬁstruc.tion, however, 1s free,
so that N = A® , M, and the differential operator in

N 1is the natural induced ons.

Proposition: Let 7 be a monoid complex, and let

(A,N,M) .be the constructlon arising 'fq:'()ni’. the twisted
Cartesian product (U ,W(r),W(r) ). Then (A,N,M) satisfies
- the condition B'. |

Proof': _WO' ‘has one element (cf‘.def‘inition 2.17),
and consequently ¢ tAG®N, —> M, "1s an isomorphism.
Further if S 1is the contracting homotopy for W([)

used 1in the proof of 2.15, then S ' satlsfles the identity
'SQmSOS, and S:wq > Tqat X W_qﬂ 18 ._on‘to.. . Consequently,
denoting by S +the Induced contracting homotopy on M, we.
have S:M —> V (1 ® N), 82=0, ‘and.S:f\\lI —“‘;—>V(1®f¢)
19 ‘an epimorphism (recall the.t if € 1is a DGA module, then

¢ = kernel & :C —> N ). Suppose, therefore that if

x € M, 1s such that £(x) = 0 for q=. 0, oy dx = 0

for q < 0, then x = d3x,. If x = ay, .Wher'e ye v(1N),
then y = Sz for some deM, and d S(x~ z).= 0. -Con-
gsequently x-z = Sd(x-z), S(x—z) 0, .a.md_ y = Sx. This

proves the desired result.
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Definition: let (A,N,M) and - (A',N',M!') be con-
structions. Consider (A ® A',NON', MQM') Define

V:ADA'®NBN' —> MBM'. by y(a®a' ®nen') =

(-1 )d,'s v (ax'nj.m v(atxn'): where ‘o = dimension a'

and 8 = dimension n. Suppose that M @ M'! 1s provided
wlth the usual filtration, 1.e. Fp(M M) =

"Zr +85=p FrM mF M, and the usual differential opera’gor.
Consider M @ M' as a left A @ A' module by defining
(a®a')mom')=(-1)7 amoam' where o= dimenﬁion

a.,' and .¥ = dimension mn.

Propogition: - If (A,N,M) and (A',N',M')" are constructions
whose underlying modules are free over N .then
(A® A',N @ N' »M ® M') 1s a construétion whose underlying
modules are free over N\ . If‘ in addition "

1) (A,N,M) and (A', N' ,M'") are free, then
(A®A',N® N',M ®M!) 1is free, and

e) 1f (A,N,M) agnd (A',N',M) are acyclic, then
(A® A',N ® N',M QOM'.) is acyclic,

The proof of thls propositiori follows immediately
from the definitons. |

Corollary: If A,A' are DGA algebras such that ﬁ,ﬁ'
are f‘fee as N -modules, and (A ® A',N,M) 1s an acyclic
congtruction such that the underljizig modules are free over
A , then- H(B(A) ® B(A")) ~H(N).  Ir H(B(A')) 1is a
free N -module, then H(B(A))® H(B(A')) « H(N).



5-19.

_________Notation' Let E(x,n) denote the 'eX'beriof algebre over (ﬁ

!\ with one gene;zator X of’ dimension n. In other words

E(x,n) = 0 for q # 0 SN E(x,n) | with basis element
1, the unit of E(x,n), and E(x,n)n. ~ A ,' with bas,is
element - X. In the algebra 362 = 0,

Lot P(y,n) denote the divided Dolvnomial ring

wilth basic element y 1Iin dimension n. In other words

P(y,r%')q = 0 unless q 1s of the ‘forl_n kn for some

non-negative integer k., P(y,n)kn:g N with basis element

Vi yo 1 1s the unlt of the aigebra. -ff(y,n), ‘ ¥y =¥

and. the product in the algebra 18 defined by = | I )Yi_,.J .
Notice that for n odd', both E(x n) a.nd ’

'f”(y,n+1 ) are a;nti-commutative._ Yor each n we define

a free acyclic cohstruction ' (E(x,n)',?"(y?'n+1 ),M) as {

follows: since the construction 15 free

V :E(x,n) ® P(y,n+1) —N—-—> M, and we will assume that

1s the ldentity map as far as modules. are concerned, Do-

fine d(1 B yk+1) = X B Y, d(x ® yk») '-'='.o. Now - M 13 an .

algebrs with an additive base [x @ yk,1 ) yk} Further

d((1 ® yy)(1 ® y4)) = a1 ® y;33;) =-d(( Ij)(1®yi+3) =

(:L j) X ® Vi4g-1 and 4d(1 @ yi)(1 myj) + (1 @yi)dﬁ ® yj) =

(x® Y5 1 )(1 ® yj) + 1oy Nxo yj_1) =

(71 1137 ™ +'~(:LI.J.—1 )) X @ Vy,qaq = (i‘_{'j) x @ yi+j-—1 .

These celc_ulations show that d 1s an an’ei—derivation

on the algebra M. Moreover, it 1s ¢lear that the ‘algebra

M ‘is scyclic. Tts structure is described by the diagram (|
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T 2(nt) 3(e1)
?(Y)n'ﬂ).

Combining the results of the calculation just made, the com- -
parison 'theorem for constructions, a.ndlthe previotls' pro-
position concerning GOnSi;ruétibns 6Vep tensor products, we
-obtain the following result.  Suppose that

(E(x1 ST IR th(xk,nk), N,M) 1s an acyclicv const;.jr*uctmn-
with N and M free A-x :oduI‘Le's. Suppoge further that.
nl 1s odd for 1= 1,,..,K, In thls case :'

H(N) = 'f"(y1 sDy 1 )@ .-. o B ?(yk,nkﬂ ). This result '1“.-1 quite

&{reak, but we have & much stx'"on'gexf result due to A, Borel [2].

-Theor’e;g:' ' Suppose that (A;N,M) 1s an acyclic éqnstruption
such that the underlying A -modules are free, and that
H(A) r.«.r]it(x,,n1 1®... '®'E(Xk'nk)" where n:L 18 odd, for

1% 1,,..,k. In this case H(N)= ?(yI,n1+1 ®.. .Qf(yk,nkﬂ').
_ { N

Proof': It 1§ sufficient to prove “this theorem for the con-
struction (A,B(A),B(A)). In other words itis sufficlent

to prgvé that H(B(A))= 1'5J(y'1,n1 + 1 )‘3.""';‘3’:1;(%'51{* 1 ). To "
do this we Shall look &t a spectral seqﬁeﬁbe ,for B‘(A)..;
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As usual lot A = kernel '€ :A —> N
and recall that if we define B X(A) =A® ... ® A, the
tensor product being taken k~times, then
ﬂMwﬁwB%M+,u+EKMH“.. IanM)tm
‘dimension of & typical element [51,...,31{] 15 S Ly + k,
where di 1s the dimension of 8y .

Def'ine FP(B(A)) = .Z k'sp’ﬁ"k(p.). Then '
EYB(A)) = N+ HA)+ ...~ HA ® ... ®R)+...  with the
appropriate conventions céncerning dimensions. ﬂbw if
f(A) 1s a fres A -module, then H(A ® ... ® R).=
#A) ® ... ®B(A), ama E/(BA)).='BH(A)). Further 1t
18 not difffcult to verify that in this case EZ(B(A)) =
H(B(H(A))). waeyer, we have more déba avallable. 1Wé
have agssumed that H(A) efE(xf;nT) ® v0s B E(xk,nk).E:Con— (
sequently by our earlier remark H(B(H(A))) =
?Kyr,ni +1)® ... ® ?(yk,hk4f1). This means thaf the total
“degree or dimension of every'élement pf' EQ(EKA)) is even,
and therefore that E-(B(A)) = E® (B(A)).  We then have
Flym +1) @ hon © Pxen #1) = B (B(A)) = EO(HB(A)).
Since E°(H(B(A))) 1s a free N -module we now see that
H(B(A)) = ?(yvn1 +1) 9 ... ® T”'(yk,nk:hl ), “whioch 18 ths
desired result.  Note that this last isomorphism is not

natural.
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Errats_to Chapter IV

p.h-2 line 9: read “"functor H:A'—T—> g“‘, instead of

"functor H:L —) Aol

p.h~1o'1ine 5: read "theorem of Serre [5]" 1instead. of

(1]

[2]

[31
[4]

(5]

"theorem of Serre [ ]."
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