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FRECHET MANIFOLDS AS DIFFEOLOGIC SPACES 

M.V.Losik 

In recent years numerous generalizations of the concept of a manifold have evolved. 

The concept of Souriau diffeologic space (see [9] and ([10]) seems to be the most general 

among these. In [3], there was given a scheme which enables to define various concepts of 

differential geometry for a wide generalization of the notion of a structure on. manifold. 

For diffeologic spaces, which -- are called sets with smooth structure, such a scheme gives a 

possibility to introduce the concepts of a tangent bundle, of vector and tensor fields, of 

a differential form, etc. 

In the present article we consider a natural diffeologic structure of a C -manifold 

modeled on Fréchet space (a manifold of that kind is called a Fréchet manifold [7]). We 

demonstrate that the diffeologic morphism between Fréchet manifolds is a morphism between 

manifolds, and the diffeology of Fréchet manifold M determines uniquely its manifold 

structure. In addition, we find the tangent bundle of diffeologic space M, tensor and 

exterior degrees of this bundle. This enables us to define tensor fields and differential 

forms on Fréchet manifold in a manner similar to the case of finite-=dimensional manifolds. 

Finally, this gives the possibility to include the theory (see the review of the theory in 

[81)of regular Fréchet-Lie groups (this theory contains, in particular, the theory of all 

the classical primitive infinite-dimensional groups of diffeomorphisms of closed mani- 

folds) into the theory of Souriau diffeologic groups. Henceforth we suppose all the mani- 

folds, their smooth mappings, vector and tensor fields, etc. to be differentiable of class 

C®. In the article we use the concept of an integral of a function with values in Fréchet 

space along a segment of the real line; we apply also the properties of these integrals 

(see [2] and [7]). 

§ 1. Diffeologic spaces 

Let us recall basic notions of the theory of diffeologic spaces (see [3], [9] and 

[10]), restricting our consideration to the class C”. 

Let us denote by S the category, whose all objects are open sets in the spaces R® 

(n=0,1,...), and whose morphisms are arbitrary smooth mappings. For an arbitrary set Z we 

denote by S(Z) the set of all the mappings of the sets UeObs into Z, and by a(f) we mean 

the domain of definition of the mapping feS(Z). 

Definition 1. A subset & of the set S(Z) ‘is called a diffeology if it satisfies the 

following properties: , 

1) any constant mapping from S(Z) is in. &; 

2) if fed, VeObS, geHom(V,a(f)), then foged; 

3) if feS(Z) and (U;} is an open covering of a(f) such that f|, is in & for all the 

i, then fed. 

A set Z, being endowed with a diffeology &, is «called a diffeologic space or, 

briefly, d-space. 

Definition 2. Let (Z,%) (i=1,2) be d-spaces. A mapping h:Z —Z, is called a diffeo- 

logic morphism, or a d-morphism, if for any fed, we have ho fed,. | 

Thus, d-spaces form a category D. Let us give several examples of d-spaces. 
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Example 1. If X is a finite-dimensional manifold, the set of all the smooth mappings 

contained by S(X) is a diffeology on X. Any smooth mapping between finite dimensional 

manifolds is a d-morphism. | 
Example 2. Let E be a Fréchet space, i.e., a metrizable complete linear space whose 

topology is determined by a countable system of seminorms. If W is an open subset of E 

(or, in general, Fréchet manifold M, see [7]), then the set of all the smooth mappings 

which are in S(W) (in S(M), respectively) is the diffeclogy &(W) (®(M), respectively) on W 

(M). 

Let $ and 9, be diffeologies on a set Z. We say that ¢, is weaker than ®, if co, 

It is clear that any set of mappings of a family of finite-dimensional manifolds (or even 

of d-spaces) into Z generates a diffeology on Z; namely, the weakest diffeology among all 

the diffeologies, for which all the mappings of this set are being d-morphisms. 

For d-space (Z,®) let us define the category C(®), whose set of objects is &, and, 

for f:f,€9, by a morphism between f ; and f, let us understand the mapping geHom. .such 

that J=f,°g. We obtain the covariant functor I +:C(®)—>S, setting [I o()=a(f) and I +(9)=g, 

where g:f —f, (f,f.f,€®). . 

Now let F be a covariant (contravariant) functor between S and the small category of 

sets Set. We extend F on the category D, by setting F(Z,)=limFeol, for d-space (2,9) 
— 

(F(Z,%)=1imFe1,, respectively) and by defining naturally values of F on d-morphisms, in 
—— 

accordance with the definitions of the direct limit and of the inverse one. It is clear 

that the morphisms of functors between S and Set can be easily extended to morphisms of 

corresponding functors between D and Set. 

In particular, when F is a covariant functor between S and the category of . finite 

dimensional manifolds, we shall use the construction pointed above by clearing off the 

structure of manifold. Then for a d-space (Z,9) the set of natural mappings Fel (f)— 

—F(2,%) =limFeI, (fed) generates a diffeology on F(Z,9). For example, in the capacity of 
— ) 

F we can take functors which send UeObS to the total space of tangent bundle -TU, or to its 

p-th tensor degree TPU, or to its p-th exterior degree APTU, etc. The natural projections 

TU—U, TPU—U and APTU—U induce d-morphisms T(Z,0)~—2Z, TP(Z,$)—>Z and APT(Z,0)—Z, call 

them projections, which determine the corresponding diffeologic bundles. Notice that, in 

contrast to the case of manifolds, the fibres of these bundles, in general, do not obtain 

a structure of a linear space. A point & of a fibre T(Z,§) at a point zeZ is called a 

tangent vector at Zz. 

If we take as F the covariant functor T, (QP), which sends UeObS to the linear space 

of tensor fields of type (0,p) (differential p~forms) on U, then for the d-space (Z,®) we 

obtain the set =< p(Z:®) (QP(Z,9)). Due to definition of the inverse limit, these sets are 

linear spaces, and their points are called tensor fields of type (0,p) or, respectively, 

differential p—~forims on (Z,9). 

> -.It is. ‘clear... that exterior differential and its main properties can be extended to 
differential p—forms on (Z,9). 

§ 2. The tangent bundle of an Fréchet space, 

its tensor and exterior degree 

Let E be a Fréchet space whose topology is determined by a countable system of semi- 

norms | i" (n=1,2,...). We can always set that |x| =|]. (n=1,2,...), this is assumed in 
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the sequel. Being W an open subset in E, it have been demonstrated in §1, that there is a 

natural diffeclogy ®(W) on W such that for W=E it is compatible with the linear structure 

on E. 

Let us prove the following simple generalization of Hain’s lemma (see [6]). 

LEMMA 1. If {x} is a sequence of points of the space E with |x| =O(exp(-2™) for 

n—», then there is a smooth mapping f:R—E such that F(A-2"")=x_ and f(1)=0. 

Proof. We select a C®-function 6:R—R “which satisfies the following conditions: 6(1)= 

=) when t<0, and 6(t)=1 when t»1. We set t =1-27" and define the function st tt 1— 

—[0,1] by the equality s (t)=2"(t-t ) (n=1,2,..). The desired mapping f is defined in 
the following manner: 

xy if t<0; 

f(t) = | Bos (t)x +(1-fos (1))x__, if t _ Stst; 

0, if t>1. 

It is clear that f(t )=x and f is a smooth mapping at the intervals t<0 and t>0. One 

can see easily that. for- te[t ,t] and for each p there holds Fake] =0(2P"exp(-2™)) 

for n—w». By induction, it follows that f (P)(0) does exist, being equal to zero. 

From Lemma 1 we obtain easily the following consequences. 

Corollary 1. Let W be an open set of Fréchet space E,, M be a Fréchet manifold 

modeled on a Fréchet space E, and g:W—M be a d-morphism. Then g is a continuous mapping. 
Corollary 2. If on a linear space E there are given two structures of Fréchet space, 

which determine the same diffeology, then these structures are the same; i.e.,, the topo- 

logy of Fréchet space is determined uniquely by the diffeology of this space. oC 

Let us denote by L, the algebraic p-th tensor degree of a linear space L Assume 

fed(W), and let U=a(f) be an open set of R"™ Let also fr)R—L be the p-th tensor 

degree of the derivative f’(x) of the mapping f at the point xeU. We consider the mapping 

3 TPU=UXR —WXE , given by the condition f(x, )=( f(x), f(x) )), where xeU and § eR”. 

It is easy to see that all the f p (fe®(W)) are morphisms between the vector bundles of 

class C®, which are compatible with morphisms of the category C(®(W)). 

THEOREM 1. The set WxE and the set of mappings rf (fed(W)) determine TP(W,5(W)). 

Proof. It is sufficient to show that the canonical mapping iT? (W,e(W))—>WxE being 

such that for any fe®(W) we have that fomie fe p’ where f, p TPU—THW, (0), is a natural 

mapping determined by the direct limT?oI,, is bijective. 
—_ 

- i i i i : . 
Let ¢, L 618-85 €E where §)senn§ EE. It is clear that §,€L,; where L is the 

subspace of E generated by the vectors Epennk (i=1,...,m). Selecting a basis of L, we 

identify L with the space RY, where N=dimL. The inclusion LcE ‘determines a linear mapping 

fRN>E.- If. xeW.--and : 7. is:the-.translation_of E onto a. -vector~ x, ‘then_g=t of is an affine, 

mapping between RY and E. I is clear, that we may identify ¢, with a point & in such a’ 

fibre of a bundle TPRM at a point 0, and 9,(0,8 )=(x,§ p)- It follows that the ‘mapping i 

is surjective. There occurs the following lemma. | | Co | 

LEMMA 2. Let fed(W), let U=a(f) be a neighborhood of zero in R®, £(0)=0 and f’(0)=0. 

Then there exists a mapping b between U and the space of symmetric bilinear forms on RrR™ 
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with values in E, such that for any vector a,,a,eR" the function b(x)(a,,a,) (xeU) is a 

smooth function on U with values in E and f(x)=b(x)(x,x) (xeU). 

Indeed, we can take 
1 pl 

| ds sf” (stx)dt 
0 Yo 

as b(x). 

Now let eTP(W,5(W)). It is clear that there exists a mapping fe®(W) such that U=a(f) 

is a neighborhood of zero in R", and there exists a tensor ¢{ “eR” such that f_ (0:8 "I=L. 

Consider the linear mapping f’(0):R"—E and the affine mapping a=t 10°F ’ (0):R"—E, where 

Tx) is the shift of £E on a vector f(x). We obviously have f,€0,5")=a (0,57). By applying 

Lemma 2 to the mapping f-a, we obtain that f(x)=a(x)+b(x)(x,x) (xeU). Let e, (i=l,..,n) 

be the standard basis of R". Then b(x)(x,x)= Y b(x)(e ex x, where x, are the coor- 
1€i , j&n 

dinates of x. Take the mapping g:U xRN—E, where N-UatL) which is given by the equality 

g(x,x;, J=a(x)+ Y b(x)(e,e)x,., where x, =x. are the coordinates in RY, and take the 
J 1si, jen ES “J 

mappings h ,h;U—UxRY, which are set by the conditions h (x)=(x,0) and hy(x)=(x,x x), 

where x, are the coordinates of xeU. Evidently, geh =a and geoh,=f. One can see easily that 

a, p08 ’)=f, because the images of the tensor {’ at the point OeU with respect to h, and 

h, coincide. This implies the injectivity of LR 

Now let again fe®(W), «a(f)=U, and £7, (X):APRP—APE be the p-th exterior degree of the 

mapping f’(x) at a point xeU and f APTU=UxAPR"—SWxAPE be given by the condition f (x,n Re 

=(£(x),f" (X)(n )) (xeU, 7 eAPR™. 
In a manner similar to the Theorem 1 we prove 

THEOREM 2. The set WxAPE and the set of mappings f’ (fed(W)) determine APT(W,5(W)). 

Thus, in contrast to arbitrary d-space, the tangent bundle of d-space (W,®(W)), the 

tensor and exterior degrees of this tangent bundle are vector bundles. It is also clear 

that for fibres of these bundles there are determined the tensor and exterior products, 

which have the routine properties.. 

THEOREM 3. The diffeology of the tangent bundle T(W,8(W))=WxE coincides with the 

diffeology ®(WxE) on the open set WxE of the Fréchet space EXE. 

Proof. It is sufficient to show that the diffeology ®(WxE) is weaker than the diffeo— 

logy of d-space T(W,d(W)). 

Let fed®(WxE) and U=a(f). Consider a mapping g of the class C* between a neighborhood 

of subset {0}xU in RxU and W, which are given by the equality g(t, x)=f (x)+t f(x) (ter, 

xelU), where f =p ef, f*p,of and p,p, are the projections of WxE onto the factors W and 

E. respectively. If STU, then piogu(G@Pod) Ni, _Proda((@fh)pe fi DEH): 
Let us determine a smooth mapping s:U—T(RxU) by the condition s(0)=((g3),,0 x) ‘where xel 

and 0_ is the zero of TU. Then P|°9,°5=f, and Py°dy°s=f, i.e., gyos=f, this means that if 

belongs to the diffeology of T(W,o(W)). 

From Theorems 1 and 2 and from Corollary 2 (see §1) it follows that fibres of the 
bundle TW have a structure of Fréchet space, which is isomorphic to. the structure :. of 

Fréchet space E. 
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§ 3. Morphisms- between open sets of Fréchet space 

Let E, (i=1,2) be a Fréchet space, W be an open set of E, and f:W—E, be a d-morphism 

between (W,®(W)) and (E,®&(E,)). For any p=1,2,.. we consider the mapping f WXEF—E,, 

which is defined as follows: 
2 J. d d 

fp (Ry peesh ) {a-as=retsihoss h,} oo 

Pp $)Zeer=5,=0 

where xelW, hyy....h EE, SpaeesS ER; we set fo=r 

LEMMA 3. The mapping f, is a d-morphism and for any fixed x the function fo (6hy, 

h) is a symmetric continuous p-linear form on E| with values in E,. 

Proof. It is clear that fo is a d-morphism, which is symmetric with respect to the 

variables hysesh The continuity of fF (xhysesh p) follows from the theorem 1, and p- 

linearity follows from the definition of Sf, 

From Lemma 3 it follows that the statement "f is a d-morphism" is equivalent to the 

statement "f satisfies the weakest definition among the definitions of C~ differentiabi- 

lity of mapping between open sets in Fréchet space” (see, for example, [4]), and, by this 

definition, the p-th derivative DPf is determined by the equality DPf(x)(h,...,h o = 

=f JRE NOR po) (xeW, hyseersh €E)). This definition of  C”-differentiability is claimed 

in literature to be equivalent to all other definitions of differentiability in Fréchet 

spaces; however, the explicit proof is not presented anywhere. Therefore, we shall prove 

that the definition of differentiability implies so-called "b-differentiability” of class 
C®, which has implied all the others (cf. [8]-[10]). 

Let us denote by L (E\,E;) the space of all symmetric continuous p-linear forms on E, 

with values in E, and by FP - the mapping between W and L (E,E,), given by the condi- 

: (p) - tion f (x)(Ryseersh ) f(xhheesh ) (xeW, hs... EE). 

LEMMA 4. If £P(x)=0 (x,&W), then there exists a d-morphism g:(-e,e)xEP*' SE, 

where € is a positive number such that f p(XgttRA sesh o" tg(t,h,h,,..., h) (Jt] < e, 

h,hy;....h EE). 

Proof. By integrating the equality 

FoF x gsthh sh) = {gg fxHsts thes hits h)} - 
P P 0 p pp Sg=-=5 ,=0 

=tf pe1¢XgtStRRR eR), 

1 
we obtain that f(xgtth,hy,...oh )=t J Jon xgtsthpR nh): Now we have only to set 

1 
g(t,h, hypeessh)= | f pe1{Xgtsthhh yesh dds and to notice that g is a d-morphism. 

0 

On L (E|,E,) let. us ‘consider the topology of uniform convergence on bounded _ sets. 

Then there occurs dg | 
LEMMA 5. The mapping fP:W—L (EE) is continuous for any fed(W). 

Proof. Let x,eW and a mapping k:W-—E, be determined by -the equality k(x) = f(x) - 

-f (p "(x,)(h,...,h), where h=x-x,. It is clear that RP (x,)=0 and, ‘according: to Lemma 4, 

there exists g such that k p(X thy, eh )=tg(t IR. he). 

Applying Theorem 1 to g, we obtain that for any positive integer n there exist posi- 
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tive numbers M, 0=d(n)<l and a positive integer a(n)>»n, all such that for 1th hl, 

Ry iyo 15 my < 6 the inequality holds latt.hhy, hk) |, < M_. Assume (Ld - 

2 ’ : . ee . . =|] y=e=lr l gny=1 and |t]<8% Then for &’°>0, which satisfies the inequality |[t]< 

<8’ 8<8%, we have 
|k (xg¥thohy yesh) | = (87)7P| Rk (xg+th, 8" hy,” RO) = 

2 \* -]1 ’ ’ ’ /’ , \"- ~1 =~ [t][(8)P|g(t/8",8"h,8" hypers8” RO) <M [(87)7F 

Tending 8° to J, we obtain 
’ , -p-1 | 2 (xg+h" YRyseersh J | <M [R70 67P7, 

where h’ =th. | 

Let B be a bounded set in EY. Then there exists a sequence of positive numbers C_ 

(n=1,2,...) such that for any (hye. )EB the inequalities LARA hold for all i and 
n. Consequently, 

(p) ’, p -p~1 ’ 

for all h,.,h, which satisfy the inequalities |h| ..,C_.,; hence, the continuity of 

RP) follows, therefore f {P) is continuous at the point X,- 

THEOREM 4. If E, is a Fréchet space (i=1,2), W is an open set of E, and f:W—E, is a 

d-morphism, then f is a b-differentiable mapping of class C”. 

The proof follows easily from Lemma § by induction on p, because the canonical mapp- 

ing L(E,E)—>L(E,L (E,E)) is continuous and the continuous weak b-differentiabi- 

lity implies the b-differentiability (see {1]). 

Notice that for Banach spaces this Theorem had been proved in [6]. 

§ 4. Fréchet manifolds 

By Fréchet manifolds we mean a C” manifold modeled on Fréchet space, which is defined 

in the standard manner by means of any definition of differentiability, because all of 

them are equivalent, as it has been demonstrated in §3. 

THEOREM 5. If M, (i=1,2) is a Fréchet manifold modeled on’ Fréchet space E; and 

J:M—M, is-a d-morphism, then f is a smooth mapping between manifolds. 

Proof. Assume xeM, and let U, be an open neighborhood of the point .x and let kR:U JE, 

be the coordinate mapping of the manifold M,. Following Theorem 1, the mapping fok[" 

k (U PM, is continuous and, therefore, for the coordinate mapping R,:U,—E, of the mani- 

fold M,, which is set in a neighborhood U, of f (x), there exists an -open neighborhood U of 

x, which is lying in U ;» such that AU el, Now it sufficess to prove that the mapping 

kyo f ok, being restricted on U, is smooth; this fact follows from Theorem 5, being this 

mapping a d-morphism between the open set R (U)cE, and E,. 

Coroliary. 1. A ‘structufe of Fréchet manifold on M is uniquely - determined by its -dif~ 
feology. | 

Indeed, if there are two structures of Fréchet manifolds on the set M , ‘which deter- 

mine ‘the same diffeology, then, according to Theorem 5, the identical mapping of M is: a 
diffeomorphism of these structures. ) oo 

Let us demonstrate how the diffeology ®(W) .determines coordinate mappings on M. Let" 

RU —W (aed), where Ww, is an open set of Fréchet space, A is a family of coordinate: 
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mappings of the atlas on M. The topology on M is uniquely reconstructed as the strongest 

topology among all the topologies with all the d-morphisms between open sets of E and M 

being continuous, as soon as h_ =k! (aed) are d-morphisms as mappings between W _ and M. 

Let U be an open set of M. Let us define a diffeology ®(U) on U as a set of mappings. 

fed(M) such that f(a(f))cU. Then a homeomorphism k of U with an open set W of E is a coor- 

dinate mapping if and only if it is a d~isomorphism of (U,®(U)) with (W,d(W)). 

Using Theorems 1-3 we obtain the following consequence: 

Corollary 2. If M is a Fréchet manifold modeled on E, the tangent bundle TM is the 

tangent bundle of M as d-space, whose diffeology coincides with the diffeology of TM as. 

Fréchet manifold. The algebraic p-th tensor degree and the algebraic p-th exterior degree 

of the vector bundle TM are the p-th tensor degree TP(M,5(M)) and the p-th exterior degree 

APT(M,®(M)) of TM as a d-space. | 

Notice that, in accordance with the general definition of tensor field of type (0,p) 

(of differential p-form) on d-space, on Fréchet manifold this object is defined by d-mor- 

phism between TP(M,®(M)) (APT(M,®(M))) and R, which is linear on fibres of this bundle. 

One can define an arbitrary tensor field of type (q,p) on M as a d-morphism between 

TP(M,®(M)) and TI(M,®(M)), which maps linearly a fibre of the bundle TP(M,®(M)) at any 

point xeM into a fibre of the bundle TI9(M,d(M)) at the same point. Even for Banach mani- 

folds the definition of an arbitrary tensor field of type (q,p) is apparently new, and our 

definition of a tensor field of type (0,p) or of a differential p-form is formally weaker, 

than the customary definition. 
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