‘l/ e’—-}laf_ However, the accuracy condition (1) for the reproduction £ of the input pro-
h=20
cess £ takes the form —t
M(g"’ ) _Em ® )z€x2=62~62=8z _ Z akz >0,

LE Y

where (£(1), E(1)) are a stationary normal pair of processes. The nonanticipatory message

rate has been obtained in the top row of the inequality (6), and the bottom row of (6) is

obtainod by substituting in the top row of (6) the value of £{T)()) from (25) for f(A) and
-1

#r=g? — Elaf for €2, since the random variable E(T)(t) is decomposable into the sum of the

e O

random variable £(t) — E€T)(t).
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SAMPLE ESTIMATE OF THE ENTROPY OF A RANDOM VECTOR

L. F. Kozachenko and N. N. Leonenko UDC 621.391.1:519.27

We establish conditions for asymptotic unbiasedness and consistency of a simple
estimator of the unknown entropy of an absolutely continuous random vector from
a sample of independent observations.

Let R™ be the m-dimensional Euclidean space with the metric

m ‘ ' ‘I,
p(x, Ty) = {Z(Ixm‘rzw )2} s

j=t

where xj = (xi(1), ..., xi(m)) € RM, § =1, 2, and m 2 1. Consider the ball v(y, r) = {x¢
R™: p(x, y) < r} of volume ]

lo(y, r)|=rme.(m), ci(m)=a""/T (m/2+1).

Assume that the random vector has an unknown probability demsity f(x), x € Ry. Our
problem is to estimate, from the independent observations ¥X;, ..., XN, N 2 2, of the vector
£, its entropy
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The functional (1) is usually estimated by replacing f(x) and the corresponding distri-
bution function with their empirical counterparts. This approach has been applied, in parti-
cular, in [1-3], where the history of the subject is surveyed. However, the consistency con-
ditions of such estimators are highly restrictive [1, 3], while the methods of [2] are quite
difficult to apply to estimators of the functional (1). This suggests that we should look
for "simple" estimators of the functional (1). In this paper, we investigate one such simple
estimator (1), which has been proposed in [4] on the basis of Dobrushin's ideas [5]. Note
that (4] offers no mathematical propositions concerning the entropy estimator (2) defined

below. In [6], as in [4], the entropy estimator is used in tests for normality of a random
vector.

From the sample X;, ..., XN, N 2 2, compute pji = min {p(Xi, Xj), je& {1, 2, ..., NN\

{i}} and let §3='{IIP1} . Weestimate the entropy (1) by

Hy=mlnp+1n ¢,(m)+ln y+in (N-1), (2)

where Iny = ¢, is the Euler constant (c, = 0.5772), i.e., 7==exp{—-je‘ﬂntdt}.

4

We now state two main theorems.

THEQOREM 1. Form some € > 0, let

{1t @1 (@) dz < oo, (3)
Rm

§ § e i@ @ydedy < o. (4)
R™ R™

Then 1lim MHN = H.

THEQOREM 2. For some £ > 0, let

{10/ @ @) de < o, (s)
Rm

\ §tne @y @@ dedy < oo e
R™ R™

Then HN for N » = is a consistent estimator of H.

Before proceeding to prove Theorem 1, recall Lebesgue's theorem.

THEOREM 3 [7]. If f(x) e L;(RM), then for almost all x € R™ and any sequences of open
balls v(x, rk), of radius rx - 0,

1
lim——— | fw)dy=i(). )

[ iv($,n)]

v{x,rx)

Proof of Theorem 1. Represent HN in the form

N
HN=”%f§:§u

;h?re ti = 1?{DimY(N — 1)c;(m)} are identically distributed random variables. Then MHN =
aﬁé §°r any i € {1, ..., N}. Let rN(u) = {u/lc;(m)y(N = 1)]}*/™, u & R}, Then for y € R
>

>

oy, rv(u)) |={u/[y(N—-1)}}~0.
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Using the definition of conditional probabilities and Theorem 3, we obtain for almost all x

for N » =, N
Py =P {exp (5 <u| Xemeh =1-P () (60,73 (1)) )} =

j=1
ji

—i-(1- | sway)" ~1—expi=rix)un).

vix,rx(u))

We will show that for almost all x,

(8)

lim M{%:|Xi=z}=-In{(). (9)

No>w

Remark 1. In (9) and below, the expression "for almost all x'" implies that the corre-

sponding propositions hold for almost all x € R™ with respect to the probability measure in-

duced by the density f(x).

Let £N,x be a random variable with the distribution function FN,x(u) and £x a random
variable with the distribution function Fx(u) = 1 — exp {—f(x)u/y} [see (8)]. Since for
f(x) > 0,

£

Ming, =j. Inuexp{—f(x)u/y} [f(x)/*{]du=5 In{ty/f(z)}e "'dt=

0

=]ny— In/(x)—i-j Inte~"dt=—In f(x),

and MInEN,x = M{InCi|Xi = x}, then (9) holds if for almost all x
lim M In &y ,=ME.. (1

We will show that for some € > 0 and C > 0, we have M]lnEN,x|1+E < C for x € RM such that
f(x) > 0, (7) holds at the point x, and

§ njel 17 dF o (uy <o %

Remark 2. The conditions (7), (11) and the condition f(x) > 0 are satisfied simultan
eously for almost all x € R® with respect to the probability measure induced by the density

£(x).
Indeed, the condition (7) and f(x) > 0 are satisfied for almost all x, the condition
(11) is satisfied for almost all x since

_" [In)uf |'**dF, (u)=M|ln E.]'"",

and
M| Tn Ea/lyey ()] P =M Inp (2, 7= { [Ino @ 9) [ ) dy.

.
}{nl

Note that the relationship
{ o nirmay <=
Rm
for almost all x follows from (4). In the sequel, we will need
LEMMA 1. Let F(u) be a distribution function. For a 2z 1 we have

j (Inu)*dF(u)<<eo a

0)

1)

2)
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if and only if

5 (Inu)*~*u='(1—F(u))du<oo, (13)
1
Here
f (lnu)"dF(u)=a§ (Inuw)*~‘u~' (1—F (u))du. (14)
1 1
The proof of Lemma 1 is quite standard are therefore omitted.
Let us now examine M|lnEN,x|'€ for some € > 0 and x such that f£(x) > 0 and (7), (11)
hold:
t
Miin ng,|‘+'=j |lna}'** dFy . (u) jlln u|tte dFN"(u)+j (Inu)'**dFy .(u). (15)
[ 4 ° 1
By Lemma 1,

[ tnwy+ dFy ) =(+e) | (nuyut(1=Fy(2))du=

(16)
INZT
=(1+¢) j (Inu)'u='(1—Fy.(u))du (1+¢€) _’. (Inu)u~'(1=Fy . (u))du=1,(N)+I,(N).
N1
Let us estimate the two integrals separately:
I,(N)y=(1+¢) j (lnu)‘u"( 1-— j f(z)dz)N_ dus<
/N1 rix,ra{u))
(17)

S(H—e)(i— 5 f(z)dz)N_zf(lnu)'u“(%- 5 f(z)dz)du

v(x,ry(-/TV—)) IN-1 ol{x,ry{u))

. N—1 .
Since if_—)- 5 f(z)dz—f(z) for N » =, then for § > 0 such that f(x) — § > 0 and suffi-

u(x'r_\-(/?r)

ciently large N,

N-2 flz)— N_2 N—
(1mv(x_r{(/Tr>f(Z)dz ) S(i—yg—-‘—i:) exp{ - (?Na)i(; 9)) (18)
Now, .
j (lnu)‘u"(i— j‘ f(z)dz)du
NS olx,ry{u))
[ § + T tmew-)yuq—raw) < S,
svﬁ(ln(m’—i))e+c,[1n(1v—1)]!j (1—Fu(u))u"du+
+C, j(ln u)u~ (1—-F,(u))du,
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where C¢ > 0. The integrals

%

S (lnw)u='(1—F, (u))du, 5 (1—Fz(u))u~'du
1 1

converge by (11) and Lemma 1. Therefore, (19), (18), (17) imply that I,(N) » 0 for N -+ .

Now,

YN

L (N)=(1+¢) j(]nu)'u“(l—— § j(z)dz)x-’ du<

i,y (u))

<(1+8)j(lnu)‘u"exp{—(l\f—i) 5 f(z)dz}du,

v(x,rx(u))

Since for u < vN we have rN(u) < rN(VN — 1) + 0 for N » =, then noting that (7) is satisfied
for x when N is sufficiently large, we obtain for all u < vN — 1 simultaneously

§ rmaalEt L
vlx, ratu)) ~ lv—i
Therefore, for sufficiently large N,
/N1
z)—8
IL(N)<s(1+e) j (lnu)'u”exp{— j(.: u}dué
1

o . —6
<(1+e)_§l (In u)'u"exp{—ﬂ )~ u}du<oo.

t

Noting that I,(N) - 0, the last relationship and (16) imply that for N » = there exists a
constant C; such that for all sufficiently large N,
§ anuyear, . w<c.

1

(20)

Now,
1
j. [In uft+e dF . (u)
[

=(t+e) j(-—ln u)‘*‘ll'l(l—( 1— j j(:)dz)‘v“l)du.

vlx, rylul)

By (7), for sufficiently large N, for all z and some § > 0 we have

[ +6— u} 0

(1— j f(z)dz )S~[>exp{—

vlx,ry(u))

Therefore, for sufficiently large N,
1

5 [Inu|'* dF s (u)<
4

f(x)+6
Y

<(1+e) j(—ln u)'u*'(l —exp{~ u}) du < oo,
The last inequality, combined with (20), shows that there exists a constant C, such that for
all N [see (15)]

Miln &y, «|1**<C..



The last inequality leads (see [8, p. 290, d]) to (10) and hence (9).

To complete the proof
of Theorem 1, it suffices to show that for N » «=,

ML= S M (G| Xi=2) [(z) dr—> S (—Inf(2)) ] (<) dor.

Hm

(21)

Rm
By Fatou's lemma and condition (3), we have

lim sup § IM G X = 1) [ (@) dr <
N—~oo

Rnl
< \ | Lim sup M (3 X =) [ (2)dx = \ T f (@)1 (@) dz < 2o
U -~ F;m

Hence follows (21) (see [9, p. 176]).

Proof of Theorem 2. We omit the proof of the passages to the limit, since it is quite
cumbersome and virtually identical to that in Theorem 1. Clearly,

DHy = [ZDC;'F Zcov(g,, ) ]/N2=

N (22)
=DL/N+2 E cov(f..C,) /N

i<

From (8), as in the proof in Theorem 1, we obtain

hm“{g l‘x =y}= Sln u e\p{ f(‘l;)u}]iy) d

= 5 (Int+lny—Inf(y))’e ' di=c, +1n? f(y),

where

Cy = j ln® te="dt — In ¥,

]

Then using Theorem 1, we obtain

lim {D¢,}=c,+1,—H*, (23)

N—x

where

= S f(2)(ln f (2))? da.
Rm
Note that for normal density f(x), I, — H2 = m/2. Substituting (23) in (22), we see that

for N » =, the first term in (22) goes to zero. To complete the proof, it remains to show
that for N > » and { = j,

cov (§i &)= VIQC;—(MC)"*O (24)
For i # j; u, w € R*; x, vy € R®, we have
Plet<u,e<w|X=z, X;=y}=1—P{minp(y, X,) Zrs(w)} -
ko)

—P{min p(z, X,) =ry(u)} +P{minp(z, X,) =ry(u), minp(y. Xu)=rx(w)}.

LE A Rl k]

(25)

As before, for N » =

P{mipp(z, Xo)=rs(u)} = exp{—f(z)u/y}, (26)
P{minp(y, Xs) =rxy(w)} > exp{~f(y) w/}.

ke ]
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The last term in (25) is equal to

P{ N [X&v(am(u))u:z(y,r.v(w))]}=[1— J f<Z>dZ] - (27)

hope i 5% sl e Uy, rx(0)

For N » » we have rN(u) » 0, rN(w) > 0. Therefore, by the separation theorem, there exists
N, > 0 such that v(x, rN(u)) n v(y, rN(w)) = ¢ for N > Ng, and so for N » = (11) implies

P{ min p{(z, Xi) 2ry (u), min p (¥, X =ry(w)}—~

ki Rae) (28)
— exp{— (uf (z) Twf(y))/1}.
Substituting (26)-(28) in (25), we obtain
lim P{e"<u, e<w|X,=z, X;=y}=1-— exp{—uf(z)/1}—
N=>oo
— exp{~wf(y)/1}+ exp{—(uf (z) +wf(¥))/1}.
The last relationship gives
lim M{8 | Xi=x, X,)=y}= J j lnuln wX
BIEDE 00
Xe—u!(x)/'re—wf(v)/T[f_(ﬂ.f_(y_) ]du dw=1nf(x)In f(y).
T
Then
lim Mgz, = S f@)f () lnf (o) Inf(y)dzdy. (29)
N—oo ™M gm
The right-hand side of (29) coincides with lim(Mgi)2?. Thus, (24) holds.
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