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PREFACE 

The present collection of articles is part of a trend 

towards use of topos theory in "basic" mathematics, in particular 

in geometry including differential geometry, but also in element- 

ary analysis and algebra. 

As such, the collection can be seen as work on the points 

one and two in the three-point program outlined in the article 

"Categorical Dynamics" by Lawvere, which is included as the first 

article in the collection. The lectures, of which this article is 

a summary, date back to 1967 and have deeply influenced the subject. 

Thus the articles all "do" basic mathematics in toposes, 

or in some specific topos, but hopefylly it will be apparent that 

they do that as part of a program, whose aim is not just to "do", 

but to guide the learning development and use of mathematics. 

It is appropriate here to give some historical remarks on 

how and when the remaining articles in the present volume were 

collected. 

In the period May 10-24, 1978, an arrangement* took place at 

the Mathematics Institute at Aarhus, with the title 

OPEN HOUSE ON 

TOPOS THEORETIC METHODS 

IN GEOMETRY AND ANALYSIS 

*partially supported by the Danish Natural Science Research Council
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The idea was to have a work session on the specific program 

mentioned but at the same time to provide an open forum for talks 

or discussions on mathematical and category theoretical topics 

in general. I used this meeting to make proposals to some of the 

speakers (namely those whose contributions I deemed were inside 

the specific program) to print reports on their talks in a quick 

informal way - together with some other, previously unpublished, 

but relevant material. 

This is what is being done here (except for the quickness). 

Some authors needed longer time than others for having their 

contributions ready, so that I had to postpone the deadline 

several times; for which I apologize to the contributors who 

obeyed the first or second dead-line. 

It is clear from the foregoing that the present collection 

is not a "Proceedings of the Open House Arrangement”, but that, 

on the other hand, the collection to a large extent is an off- 

spring of the Open House. 

A brief report of the Open House is included as item 10. 

I shall attempt to give a few comments on the contents and 

mutual relationship between the articles. The numbers refer to 

the "table of contents" above. 

In 1., the whole program of synthethic differential geometry 

and categorical dynamics, is presented (as well as, implicitely, 

the importance of topos theory). The articles 6. and 7. are con- 

tributions to development of differential geometry on such an 

axiomatic or synthetic basis, whereas the articles 2. and 4. are 

concerned with the question of models for these axioms. These 

papers contain two different proofs of the affirmative answer to 

a question I raised in Nov. 1977 in the "Peripatetic Seminar on



-iv~ 

Sheaves and Logic", namely whether the generic ring for an 

e-stable coherent theory of rings would provide a model for 

synthetic differential geometry. The notion of e-stability was 

introduced in 5. in an attempt to understand those coherent ring 

theoretic properties that seem to be relevant to both real-number- 

objects in spatial toposes, like in 8., and to line-type rings 

in synthetic differential geomety. The study of both these kinds 

of rings leads to the study of real-algebraic geometry, which 

even in the set-case is not too well understood. The article 3. 

is a contribution towards that, using sheaf theoretic methods. 

Finally, 8. and 9. deal with complex numbers and complex analysis 

in toposes: in 8. the problem of how to adjoin a square root of 

-1 to a field object in a topos is solved by means of Artin 

glueing; in 9, the notion of complex structure on a ("classical") 

manifold is studied using the internal language of the topos it 

defines, and two distinguished real-number objects therein. 

The articles were available in their present form (except 

for minor revisions) at the following dates: 1.: May 79, 2.: Aug.78, 

3.: Aug.78, 4.: Feb.79, 5.: June 77, 5b.: March 78, 6.: Oct.78, 

7.: Dec.77, 8.: Aug.78, 9.: May 78. 

Anders Kock



CATEGCRICAL DYUVAMICS 

F. William Lawvere 

[ The following is intended as a summary of some lectures which I gave at 

several places in 1967. In these lectures, I offered some preliminary calcu- 

lations in support of a program to (3) axiomatize the foundations of continuum 

mechanics in the spirit of Walter Noll on the basis of (2) a direct axiomatiza- 

tion of the essence of differential topology using results and methods of the 

French work in algebraic geometry (some of which 1 had learned from Gabriel); 

hut I further maintained that this requires (1) axiomatic study of categories 

of smooth sets, similar to the topos of Grothendieck, since the most natural 

form of (2) is incompatible with "usual" set theory. Now, since my jolnt werk with 

Tierney in 1969-1970, several conferences, many articles, and even one published 

book (by Johnstone) have been devoted to carrying out part (1) of this program. 

Mennwhile, a serious start on part (2) by Wraith and Kock has been followed by 

neveral further contributions, and in particular Dubuc in August 1978 explicitly 

demonstrated the consistency of part (2) by construccing a category in which 

ordinary differential topology is fully embedded but which morecver, satisfies 

the set-theoretically outragious axioms suggested by algebraic geometry. Work 

on (2) is far from complete (for example, it now seems that an approach in this 

npirit to differential forms involves still further divergence from "usual" 

vet -theoretical logic). However, the growth of confidence in the program en- 

penndered by these developments has also led to a growth of interest in the origin 

wl! the program itself. I am taking advantage of this current interest to pub- 

ltsh this summary, along with the observation that seriously taking ug part (3) 

ou! the program will surely lead in particular te further illumination of parts
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(1) and (2). Of course, the framework of "ordinary" set-theory has not succeeded 

to prevent Noll's own work from advancing; two fundamental works from the early 

1970's are included in his selected papers published by Springer. My main 

external sources for the following summary have been page 937 of volume 14 

of the Notices of the AMS and especially notes taken by Saunders MacLane on 

May 19, 1967 at Chicago and on November 25, 1967 at Urbana, which he very 

kindly sent to me in summer 1978. Some remarks based on more recent develop- 

ments have been inserted into the summary between brackets [ ].]
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I hope that categorical methods can te used ‘to give 

Nn simple axiomatic basis for parts of mathematics which arose 

from physics (particle mechanics, fluid mechanics, differential 

r,cometry, harmonic analysis, etc). Some physicists and engineers 

scem in effect to have the insight that geometrical and physical 

constructions can be performed, with almost as much freedom as 

sets can be defined in naive set theory, without ever leaving the 

realm of smooth objects and smooth maps. But usual mathematical 

models, such as the category of smooth manifolds, on the one: hand 

presuppose a long intricate purely mathematical construction 

(there does not seem to te an intrinsic description of that cate- 

ory which could reasonably be taken as a "simple" starting point) 

nnd on the other hand are poor in regard to closure properties 

since even something so fundamental (for calculus of variations 

rtc) as the smooth space of smooth maps between two smooth spaces 

115 ambiguous and difficult, and pullbacks in general don't exist.
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fas I emphasized in my 1971 - 72 Aarhus lectures, not only the 

function space but also the smooth space of smooth subspaces 

and the smooth space of representations of a given smooth group 

"should" have clear meanings according to such insight | But 

rather than scoffing at insight (which some seemed to have con- 

sidered the only healthy public response in recent decades) we 

can try to axiomatically express what some aspects of it might 

mean precisely and also to construct mathematically acceptable 

models of such axioms, in the hope ultimately of actually 

clarifying the learning, development, and use of these branches 

of mathematics. From 1966 Oberwolfach lectures by M. Demazure 

and P. Gabriel I learned some facts and methods which seem 

important both for the axiomatics and for the construction of 

models, essentially the Cartier-Grothendieck functorial approach 

to algebraic groups F since published in Springer Lecture Notes 

# 151 (1970) and a 1969 North-Holland book by Dema zure-Gabrie lf 

Consider a category % in which we have a given ring: 

object R . About 8 we will assume that it has a terminal object 

1, pullbacks, and for each X —I> Y, a right adjoint 

(4) Ye —— 1 TO 

to the functor f£* of pulling tack along f. This implies that 

each % /x has an internal hom right adjoint to product over X, 

denoted by exponentiation. { Thus % is what came to be called, 

after the work of Penon, a locally cartesian-closed category. } 

(Later we will need one construction which is most easily guaranteed
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Ly assuming % has countable coproducts and coequalizers) Oi jects 

of % are to be thought of as smooth spaces, and morphisms X —>R 

are to be thought of as quantities smoothly varying over X. Note 

that for example - < Hom, (A,B) for two R-modules has a well-defined 

meaning as a subobject of BA. R-modules are to te thought of as 

vector spaces (with a smooth structure) even thoughwe do not 

assume R 1s a fleld. The geometric origin of R is roughly as follows. 

In x there are Euclidean spaces Ey Ep, Ey whose structure (=basic 

yeometric constructions) are given by morphisms of Jo. In particular 

there are abelian subgroups 

V, = Trans (E) C En 

of translations and hence rings 

R = Hom (V» vo). Pp 

R= Ry is commutative %Yecause of two facts: £, 1s one - dimensional, 

nnd every homomorphism Vy _—> vy is a homothety because it, like 

rvery nin in *, , 1s smooth. Of course from analytic geoneiry we 

ow essentially now to use cartesian products to construct co- 

ordinatized models of Es imagining in inverted fashion that we 

start with the datum R. 

The second axiom will permit an intrinsic theory o 

differentiation to be developed. We assume given a subobject De R 

which contains the zero quantity 1 ——s R and which is to te 

thought of as the space of first-order infinitesimal quantities.
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For any object X, the object xP will be thought of as the 

tangent bundle of X, with projection XP —>X induced by 1 Lp, 

and for any morphism X —L5 y in % , £2 will ve thought of as 

the derivative of f. Thus a tangent vector D _5 x to X is at 

the point 1 2 5p —X of X, and the derivative £P of f 

takes any tangent vector D Nyx at a point x to the tangent 

vector D w+) X L>y at the point fx. The functoriality of 

exponentiation ( )D is thus essentially the chain rule for 

differentiation. To prove 1). the Leibniz rule (for differentiation 

of variable quantities) as well as that 2) there are precisely the 

right amount of tangent vectors for R and related spaces, we assume 

our second axiom): We need thzt D is closed under the action of the 

multiplicative monoid R, and that the composites 

(a) Dv—>R pd R 

are equal, where ()° denotes the squaring map from the ring structure 

of R and O denotes the constantly 0 map R — 1 —OSR, and we 

also need that there is an isomarphism ’ 

(b) RP R x R 

In fact, we may as well define D by requiring that (a2) be an 

equalizer, . and assume (b). b However, as Massimc Galuzzi and 

Gian-Carlo Meloni calculated in July 1978, (a) follows from (b) 

if we assume that 5 € R and interpret (bl)yas in the meantime 

had been done in several papers by Anders Kock, to mean that the 

canonical morphism RD «— R xR is invertible Y. Though there 

are many morphisms R ——) R (there are at least alli the polynomials), 

upon restricting to D they all tecome linear; but on the other hand 

D is large enough so that distinct linear |
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(i.e. affine) maps R — R have distinct restrictions D 3 R. 

de need category theory for this axiom, since it seems no such ring 

could exist in classical set theory { as was proved in considerable 

generality by calculations in the mid-70's by Kock, Schanuel, and 

Lawvered. The condition (b) 1s not restricted to "line-like" R, since 

it follows that for any R-module V 

* * * 
(V yD =V xV 

canonically, since 

Hom, (V,R)"= Hom, (V,R") = Homg (V,RxR) = V'x vo 

llowever, many vector spaces are not dual modules and it is less clear 

how to compute their tangent bundles. but it is trivial that for any 

X, Y in % 

X 
(Y%yD = (YP) 

showing how "easy" the smooth structure ofinfinite-dimensional objects 

re- 
really is. Using (b) we can define the zradient of any varizable 

quantity X Lf Mr to te the composite 

D ~ 
XX £5 RP¥rxr > Rr 

where fr 1s the other projection, the one not corresponding to 

the map induced by 1 Ls D. Also the interpretation of targent 

vectors as distributions ("of compact support") is given by the 

morphism D X 
£7 eu Homg (R 4 R) 

corresponding to
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D X D “xg — 3? Typ, 

Note that differentiation is itself a smooth map 

xD) ry 

as is the pre-gradient 

where Homg denotes morphisms which are homogeneous with respect 

to the action of the multiplicative monoid R. This monoid 

acts on Dy, hence on xP. On the other hand, additbn of tangent vectors 

xP x x’ £5 x” 

only exists under the assumption on X, that the functor x) takes 

certain non-pushout squares of D=like objects into products in 

%/x f essentially what is called "condition E" in SGA3 as I 

noticed in April 1979 }. On. the other hand, since C”maps which 

are everywhere defined on a vector space and homogeneous of degree 1 

are automatically additive, we may expect that 

Homy (V,V') Cs Homg® (V,V') 

has a strong tendency to be an isomorphism in our £ , and that in 

particular 

Hom? (RP, R) 

may serve as a reasonable surrogate for 

D 
Hom (X'y R x X) 

R xX to
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even when xP is not acditive over X.(Here we imagine that Hom has 

been given some rational definition using the rich supply of 

additive relations induced by those not-necessarily-pullback squares 

of multiple tangents over X). 

Larter reading Kock's oXpOSEs on Synthetic Differential 

Geometry from the Benabou Seminar Jan. 1979) The natural extension of 

the axiom (b) itself to multiple and higher tangents seems to be to 

consider the cate, ory J of all commutative R-algetras W in % with 

the following properties 

W = R®H 

H ¥ RK as R-modules, some kt N 

H—H equal for some p€ N 
OY 

and to define 

D(W) = Alggp(W,R). 

4nd then require that the natural map 

Wo gD (+) 

into the double dual te an isomorphism for all W in 9S. This implies 

‘rain the same statement for any dual vector space 

Vu Ns yyPh) 
R ¥ PL 

Homg (V,W) | 

Wwe define a vector field on an otject X in % to be any 

section v of X— X, and a morrvhism of vector fields X,v —>X',v' 

to be any f in *% such that
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D 
xP —L yx 

1 i 
X —_— ! T X 

is commutative. We thus get a category vect, (X). Because our tangent 

Concept is representable by a single generic object D, the notion 

of vector field can be equivalently: ‘expressed in the simpler form 

XxD —¥_ 5x 

with a corresponding form of the notion of morphism 

X EN xX! 

fr fe 
XxD—F557 X' xD 

shen convenient, the notion of vector field can be equivalently expTresse 

in a third way: C= 
Vv X 

D WP X 

AN ra 

1 X 

.The object R carries a canonical vector field (essentially 

the derivative of the identity) so that for any path R —= X, 

its derivative can be composed with it to yiéld a path of tangent 

vectors.
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The notion of vector field is usually taken to be the basic 

notion of "differentiable dynamical system", in infinitesimal form. 

The corresponding integrated form, is a flow or action of the additive 

group Rj; in the continuous case the study of such is called "topological 

dynamics". The narrow meaning of the term "categorical dynamics" is 

thus analogous to the use of "cat" as a variatle which can take values 

like cat=top, cat = diff, cat = PL, etc., i.e. the study of 3% -flows, 

where % denotes a pair % sR satisfying our two axioms and where a 

flow is a pair X, X xR _ X in % satisfying the usuzl axioms 

xe® = x 

xet1tts = (xe ‘lye b2 

where this use of the symbol e 1s solely for notational harmony. 

A morphism f of flows satisfies 

f(xe®) = (rx)el. 

Thus we have a category Flowg %) of ¥-dynamical objects. 

Now since D& R, every flow X x R —=) X restricts to a 

vector field X xD —>5X by considering only those time-lapses 

infinitesimally close to 0, yielding a functor 

Flowp (¥) — Ll Svect (X) 

which preserves underlying space. The problem of integrating a system 

of ordinary differential equations could thus be viewed as having two 

parts, namely applying an adjoint to the functor ( ) and then 

studying to what extent the underlying space has teen changed by such 

"integration". Actually the above functor has two adjoints, which 

might fancifully be called the "upper and lower integrals of a vector 

field". The right adjoint can be seen to exist without further ado as
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Hom (R,X) 

the subspace (of the space of all complete paths R ——=X) 

concisting of morphisms from the canénical vector field on R to 

;1ven one v on X, or briefly the subspace consisting of solution 

“Urves for the infinitesimal flow v. This solution space carries 

a r=wyural flow, induced by translations on R itself, whose correspon- 

tryz infinitesimal flow is mapped morphically back to X,v by the 

evaluation at O 

Hom, (R,X).. 

le 
X 

willie. to every solution curve assigns its underlying initial-value at 

7. The properties of injectivity or surjectivity of € express 

znac "ly the uniqueness or existence theorem for the initial-value 

rr¢ibiem for the ODE system determined by v. 

To calculate the left adjoint 

Vect —_— rR ® grr Flog 6) 
D 

wo] )°, we need the existence of coequalizers 

XxDxR — > XxR—> XR 
RR D 

h 
Tone? 

t 

wire we have written xe! = v(x,h) and where of course R acts on 

Lead R by <x,$e" =Cx,s + t). To compute X GOR in a particular
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case is more difficult, as it depends not only on detailed knowledge 

of v but also on detailed knowledge of coequalizers ink . An 

approximation to such a computation may be useful along the 

following lines. Let x R be as arpropriate for algebraic or 

analytic geometry over a field of characteristic 0 (see below) 

and suppose X = spec{A) for a commutative algebra A. Then a vector 

field on X can be identified with a derivation d, (Leitniz. rule) on 

A since elements of A are identified with morphisms X £5 R 

and we can always form 
D - 

x vv yx? ££ JrR’Yrxr JT sm 
_— 

df 

Now define (in sets § ) 

_ Judo [arn- 1% A {een Hs o av (£)=o 

in terms of iterates of d_, a subalgebra of A, for which a flow 

on spec (A) can be explicitly defined by 

Ay — af td 

Nk n 
f NAAN da, (f) n 

—_— t 
[ n ! 

Then there is a unique morphism of flows such that the following 

diagram of morphisms of vector fields commutes 

X —> x®R 

Ig 

| 
\ 

V DN 
spec (Ay) 

Note that A is filtered into quantities invariant under the 
v
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flow "on X", quantities whose time dependence is linear along the 

flow, etc. The value of such approximation seems limited, however. 

If we also have countable coproducts in ¥, then the two 

"integrals" for ( )* can be viewed as special cases of the very 

general adjoints Hom (R,-) y ( ZR associated to a homomorphism 

S —> R of any two monoids in% . For we can define 

el = J. D"/n! 
n=2=0 

the free commutative monoid on the object D, where ( )7/n!.- denotes 

the orbit space for the natural action of the symmetric group, and 

find a natural homomorphism el —> 'R induced by the inclusion 

D CC R, and whose image is the ideal of R generated by D, consisting 

of all sums of elements of square O. If S 1s defined as the quotient 

of e’ modulo the congruence relation determined ty the condition that 

1 —23 D be congruent to the neutral element of el, then Ps —> R 

and we have 

R ( ) nN ot 

provided D is so small that every vector field in also satisfies 

infinitesimal commutativity 

XxDxD —T XP Ny vv D Ng 

X > X 
tv 7 

XxDxD ——>X xD v 
Vv XD 

However, if it turns out that the latter is a special condition on X
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and/or v (i.e. does not follow from the identity axiom for vector- 

fields by itself) then one should consider its companion condition of 

infinitesimal invertibility 

<v, bp 
X xD Cody x xp XxLLyy np __v og 

and even consider strengthening the concept of vector field by adding 

the following still stronger axiom of infinitesimal associativity to the 

definition: 

X x(+ 
X xD — X xD 

1 Y, 

> X 
A 

XxDxD——XxD 
v xD 

Here D, is the infinitesimal neightorhood of the diagonal in D x D 

defined by the pullback with multiplication 

D) — 1 

(LL 
DxD—m 

whose importance here is that it is equally well defined ty the pullback, 

D, ¢—> D xD 
\ 
‘ 

(+) + 

Vv 
D ~———> BR 

since we assume 5 € R. (“ven if the above additional laws are added 

to the definition of S, it is not clear whether S —> R becomes 

monic). 

Vector fields are Just the simplest kind of models of a
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differential-algekraic theory, where the latter refers to a concept 

more general than algebraic theories im x% , whose arities are natural 

numbers, but significantly less general than general monads ( = triples) 

in x, whose arities are arbitrary objects, namely we consider theories 

in XK whose arities and co-arities are objects like D { i.e. more 

generally DB(4) for aif } where in general an operation of arity A 

ard co-arity C on X means a map C x . — = X. The hope would be that 

nore refined theorems as to coequilizers, ete. could be proved for 

such limited theories than could be true for arbitrary monads in X. Thus 

for example in ordimary algebraic theories we can dez2l with commutative 

algebras X with an additional unary operation f satisfying 

fix; + x,) = £(x;) ~ £(%,), but only with differential-algebraic theories 

as modeled in sych of does it become "algebraic" to require also f' =f 

where ( )' is the intrinsic derivative for the underlying object of X 

(preceeded by x SE. Ih XxX = xD and followed by X= X xX Foxy . 

Bven ordinary "atstr-ct" algebraic theories, e.g. groups or Lie algebras, 

when extended naturally to"trivial™ differential-algetraic theories, 

may hzve non-trivial morphisms of differential-algebraic theories 

tetween them. 

As is well known, if G is 2 model of an algebraic theory 

in a category with exponentiation and if I is 2n object then ct is 

a model of the same theory, 2nd morecver maps I' = 1 induce 

homomorphisms al — ct’ . For example if G is a monoid then the 

projection cP —>G is a homomorphism of monoids (of groups if G is 

a group) znd the kermel of that homomorphism is Lie(G). For example, 

Lie(XX) = Vect(X), the otject whose elements are all the vector fields 

on X, which ¥s thus seen to always carry an "addition" (maybeggonmutative:
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even for the X which are so bad that addition on xP in % /x does 

not exist; of course, if addition of tangent vectors does exist 

then the Eckmann-Hilton Lemma shows that the "addition" must be 

commutative since it must agree with addition ty naturality. Since 

Lie is functorial for monoid homomorphisms, an associative action 

of G on a space X induces an "infinitesimal action" 

X x Lie(G) x D — 3X 

of Lie(G) on vector fields on X. What is explicitly the monoid M 

obtained by dividing tre free monoid generated by Lie(G) x D by 

all relations which are true in all actions induced from a global 

G-action? It is again clear in principle that there are left and 

right "integration" adjoints. 

Now the functor 

or(%) Lies Ji (¥%) 
is itself representable, in fact by the S previously diszcussed. 

However we don't know exactly what Lie) is; with respect to which 

doctrine of theories should the costructure of S be computed - partial 

differential-algebraic theories? } 1n the first circulated article 

following the synthetic aporoach sui;gested in the lectures here 

summarized, Gavin Wraith in the early 70's showed how the pullback 

conditions on multiple tangents of G neededto get the Lie-algetra’ 

structure on Lie(G) could be expressed and used in the axiomatic 

setting } For any definite interpretation of Lio. P) general prin- 

ciples say that Lie will have a left adjoint, and hence in particular 

for each ce cr) a co-ad junction homomorphism s ——> G, whose 

kernel and cokernel are further definite groups which could be 

called ;(G) and ,(G)....But whatever may te the complications
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which may lurk in "arbitrary" group objects, the above definitions 

and axioms are sufficient to calculate explicitly in % the Lie 

algebra of classical algetraic groups, e.g. 

Lie(GL(n)) = R, with commutator 

Lie(S0(3)) = v3 with cross p roduct. 

fF osee not only the writings of Demazure and Gabriel but also 

J.P. Serre's Benjamin book on Lie groups and Lie algetras.(1965) } 

The physical study of a dynamical system involves not 

only a state space X equipped with a dynamical vector field, but 

actually a more specific construction of such in terms of simpler 

objects. Frequently there is a space Q of configurations and a 

given map X —5Q expressing that each state has an underlying 

configuration, but in general must involve more. For particle mechanic 

rigid body mechanics, and hydrodynamics one can define 

x =qP 

but this actually amounts to the very restrictive hypdthesis that the 

restonse of the material depends only on the infinitesimal history 

of its motion, where motions are intercreted to mean paths 

R —45Q in configuration space. In the "simple" cases just 

mentioned, the analysis of the required vector field on X is often 

associated with the study of a "Lagrangian" 

Lx ——>R 

which induces a functional 

QR _ gR*R 

called "action" by applying to
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Roamony pg ¥ gl a v0 ox Lo op 
~~ 7 

Ta 
the integration process 

AS x R 

Eom (ayy s £(£)61) 

A possible (physically motivated) addition to our two axioms 

would be the existence of the morphism J , but it is not clear what 

condition on it would be both desirable and possible. kone of the 

desirable ones would be 

a+ h 

| f(t)dt = £(a)n 
a 

for any h such that h° = 0. This would seem to yield an z2lgebtraic 

proof of the fundamental theorem of calculus, in conjurction with 

the additivity of S in each of its two kinds of argunent. | 

But more funcamertally, even if the rzther =ztstract Lagrangian 

1s useful, its construction anc the construction of the vector fi-1ld 

on states in a particular case involves the knowlecdze of forces 

and more varticularly of an analysis of fcrces into three kinds; 

inertial, external, and intern2l mutual response. Such an analysis 

depencs in turn on a more specific construction of the configuration 

space Q, which (even when X is more general than by is usually 

realized as a given subspace 

Q SEP 

{oor "placements" 3 vhere E = Eq is the Zctual spire 2nd where B 

is the space of "particles" of the miterial body in guestion.
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In particle mechanics, B is a finite discrete set, but in continuum 

mechanics it is usually a three-dimensional manifold } aithougn in 

the theory of rods, cords, plates, and shells, B is perhaps a lower- 

dimensional object for which the fibers of BD ——> B are nonetheless 

three dimensional ¥ One of the motivations for the axiomatic theory 

of % ,R 1s to give simple expression to the old idea that the theory 

of the infinite-dimensional Q with dim(E)>0 should be in some respects 

"Just like" the particle case t which was also a motivation for K.T. 

Chen's Urbana (1976?) notes on the calculus of variations, in which a 

category with some properties in common to our % is independently 

constructed E . 

A reasonatle condition on 

Q SEP 

would be that Q is mapped into itself ty the induced action of the - 

group of rigid motions of E. The group G(B,Q3) of all those invertible 

endomorphisms of E which map Q into Q might thus serve as a crude 

measure of the distinction between very rigid bodies (G minimal) and 

rarefied gases (G maximal); however a more serious measure of the 

distinction of the kinds of material B is made of should involve 

infinitesimal symmetry of the internal mutual response functional, 

not discussed here. 

When the simple definition of state space suffices, we have 

x =q° € EH = EHF = & x nF 

where gD = Ex V with V = Vy, the translation vector space of the 

affine space E = E3eand hence 

X = P &Q X ve
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where V° is the space of veloclty finldés on B. Tnertial forces, momentur 

and kinetic energy involve not only velocity fields and a metric on 

V for their computation, but also a further given structure of a 

mass distribution on the body. Using the total mass of the body as unit 

so that the mass of parts can te measured in terms of pure quantities 

R, such distribution can be considered as an R-linear morphism 

R° _m_.R 

which preserves constants and which is positive. { But what is the 

best way to account axiomatically for positivity? Do the elements 

of D support a rotion of positivity or not? Unpublished lecture 

of André Joyal at Columbia University, December 1975 on "real 

algerraic geometry" gives some indications.} Integration with 

respect to m can then te applied to functions with values in convex 

sets such as E, yielding in particular a "center of mass" map 

Q —>E. 

The mass distribution and the metric on E are the main ingredients 

in the analysis of one kind of external force and internal mutual 

response, namely gravitation. For more cetzils on more subtle 

internal mutual response which material hodies may have, see papers 

of Walter Noll in the Archive of Rational Mechanics and Analysis, 

late 1950s kK and especially Noll's Selected P>pers published by 

Springer 1974+ 3 the main physical and mathematical ideas of which 

can hopefully be expressed in categories like our x . 

An important virtue of the categorical axiomatics we have 

indicated is that if there 1s one model % then there are immediately 

infinitely many otter interesting and useful models for the whole 

theory, in fact at least two classes of such. If G is any group
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object in % (e.g. the Galilean or Lorentz group??) then the category 

%,C of G-actions and equivariant morphims is again a model for our 

axioms if we interpret R to mean R with trivial action. Also if M 

is any ("parameter") object in % then the category % /m of objects 

over M is also again a model for our axioms, interpreting R as R x Mg 

theory of dynamical systems in XM is the theory of families of 

dynamical systems in 9% parameterized by M as in bifurcation theory, 

see Marsden BAMS vol. 84, Nov. 1978 }. {It was, as briefly indicated in 

paper for the Eilenberg volume, qualitative and unpublished consider- 

ations of the kind just mention~d, as much or more than published 

problems of independence, etc. in abstrsct set theory and logic, 

which were an important impetus toward the 1969 -70 Lawvere-Tierney 

development of essentially algebraic axioms for topos theory .}
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Now we consicer three general categorical constructions which 

are useful in showing the existence of models for our axioms as well 

as for suggesting possible stronger axioms. All our models % are 

subgenerated by the algebraic theory A whose n-ary operations are 

by definition 

A (RR) = % (R",R) 

where by "subgenerate'" we mean (strongly) generated by the full sub- 

category C of y determined by those objects X which occur as 

equalizers 

X — > R" —= RM 

Thus conversely we can construct such % by starting with a suitable 

algebraic theory A and ccnsidering the category cP of finitely 

presented A-algebras, i.e. those that occur as coequalizers of finitely 

generated free A-algebras in the category £lg(A) = Lex(C,9) tr 

A-algebras. Then eis to be sought as a full subcategory of &= 

whose inclusion has a left-exact left adjoint, for then tharks to 

work of Giraud and Verdier in 5G.4, we can conclude that the category 

* , called a "topos" will satisfy our first axiom on the existence 

of T[ and in fact have further useful exactness properties. As a matter 

of fact, the basic duality between algetra and geomctry is just the 

restriction of an adjoint pair called "conjugacy" by Isbell: 

(G8)? —— cf” 

J J 
Lex(¢.$)°" sh(c,5) 

| oe, unction 

alg (a)°P algebra %X = "Geom(n)” 
spec
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wnere both conjugates are defined by the same formula 

conj( )(C) = Nat(-,C) 

where the C on the right denotes the representable functor of the 

appropriate variance, and Nat refers to natural transformations 

of functors of the same variance. Thus 

(function algetra of X)(C) = ¥ (X,C) 

and 

spec (4) (c®P) = alga) (a,c®P). 

Those A © Alg(A) which are inverse limits of finitely-presented 

A-algebras will satisfy | 

A = function algetra of ‘spec (A). 

There is still the choice of which subtopos Lor SCF is more 

appropriate but note that the conditions ® ce¥% ¥ ana spec (a) 

¢% for all A€Alg(A) Fare equivalent and provide a minimum 

restriction on this choice. 

In order to satisfy the second axiom, we define 

Rel © G7 

to te the underlying set functor on cP Alga), or equivalently 

the functor represented by the free A-algebra on one generator. Thus 

the spectrum of any algebra in oa is a space form CE C and any 

object: xe% is determined by a discrete fibration (C/X 

over C whose fiters consist of all figures in X of a given form 

(possibly singular figures) and whose morphisms are "incidence re- 

lations" between such figures. but X also determines, by mapping 

into R,RZ, in general into all the equalizers C —S RR" —R" in , 

a discrete op-fibration X/C over C whose objects are all variable 

quantities on X satisfying various given equations, and whose
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morphisms are A-algebraic operations on such quantities. The 

requirement that R be a commutative ring in x% will te met if 

the theory A contains the algebraic theory of commutative rings as a 

suttheory, and then DE C will re forced to be the spectrum of the 

A-algebra ottained by dividing the free A-21gekra on one generator 

t by the A-congruence relation generated ty the one relation £2 = 0, 

i.e. 
oD 

pe < cL ’ 

is the covariant set-valued functor on the category C°¥ of algebras 

which assignsto each algebra cPe cP its subset of elements of 

square 0. Since the full inclusion 

c€¥%ext” 
preserves products and whatever exponentials may exist (for any 

small category C), in order to verify our second axiom for TY , 

namely 

R&R xx 

it suffices to know that ( yD right adjoint to ( ) x D the 

free or "tensor -rocuct In sle( a), exists in C ar¢ thet Ur2 axis 

nolds there. In the case of 21pelrsic geometry, where A consists 

only of polynomials with coefficients in some ground field k, this 

is indeed the case, in fact any algetra which is firite-dimensioral 

as a k-vector space can be appliec¢ as an exponent in ilg as 

and D = spec(k[dl), where k[d]l = k[t]l/2 Ts two-dimensional. But 

it should te possible to take 4 as the algebraic theory of all 

real- analytic functions or of all C* real functions of n variables. 

Fin 1978 Eduardo Dubuc succeeded in constructing an % satisfying 

both of our two axioms and containing as a full subcategory
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the category of all real C°° manifolds; the extent to which it 

is generated by ( the dual of y the category of all finitely = 

presented C*-algebras is still unclear to me at this writing} 

There should be many algebraic theories A intermediate between 

only polynomials as operations and all C“ functions as operations, 

perhaps satisfying some suitzble closure conditions, in particular 

the A generated by cos, sin, exp,€ | Anders Kock has studied the 

closure condition that with each f (x ,t) in A. there is also con- 

tained in A the unique continuous f,(x,t,h) such that f(x t +h) = 

f(x) + f,(xy%,h).h. for all real x, t,h., The inverse of this con- 

dition would also seem interesting 1. 

£ some feel that a geometrical catecory Ko should not recuire a 

category as kig as C to gererzte it, nor should it satisfy the topos 

exactness condition that monic epics are isomorphisms, but rather - 

should be generated (weakly) more nearly by points in a narrow sense. 

If 

BC c CX 

are categories where D (weakly) generztes Cy CO ¢gerierates % y and 

x is complete cartesian clcsed, then the full subcatezory Ug or % 

weakly generated by O , can te cdefired fo consist of all Y such 

that for any distinct C —3 Y with C in Cg, there is E — C, 

with E ef such that E—C — are different. Ye is closed 

under inverse limits and x -subot jects, so is eni-reflective 

in % . Ir rset Ug is ciosed under exporcontistion ard contains 

C as a full subcategory, *s well as leing weakly gererztecd by LJ . 

The interest of this erersl corstruction for us is thot an anproprizte 

Nullstellensatz for A would tell us th t the dual of the 

srecial category LS or finite dimensional algebras
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defined e=srlier, 

* 2,0 NW rar 

actually coes weakly gererate (C. 3irce 2 CYpC% are full, Ys is 

more nearly a geometrical category than other cartesian closed 
LP 

categories generated (strongly) ty LD such as « As pointed 

out in my 1972 Aarhus lectures, such categories as the latter retain 

only the formal aspects of the iroups, spaces, etc from ¥} 

For any category C having finite products and split idempotents, an 

e cop | Cc . . 
object C &) = is representable iff the functor ( )~ has a right ajoint 

cE ET 
J TO) 

c°P 
In fact for any Y in = we have for any S in C 

Y (S) = rat(s®,y) 
C ’ 

and in particular if s“€ ¢ for all S & C then 

Y.(s) = v(s®y, 

20P 
A subtopos X of S= will te closed under ( eo provided 

( )© preserves coverings. F Several people have recently poirted 

out that the foregoirg is true (in the models) for C = D(%), 71S 5 

Thus for example we have the rule 

D 

X ——DY 
X — YY, 

In particular if Y = R we fird that there is a subobject Lof Ry 

defined ty the condition that



- 98 - 

the two induced actions of the multiplicetive monoid of R agree. 

Then the gradient of a map X —— R can be interpreted not only as 

an element of 

+ D (x°) 
Homg (X™,R)CC. R 

but also as a map 

X — L&R. 

In fact, there 1s a canonical map R —45 Ry which factors through 

L, and the gradient of any x sr can be computed as the composite 

grad(f) = df 

Something like this feature exists also in the cartesian-closed 

category constructed by K.T. Chen in BAMS vol. 83, September 1G77, 

even though the objects D and L dc not exist since his category is 

weakly generated by 1 _}
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GF THe THeNRY OF 27765 15 OF LINE TYyPLD, 

Marie-Frangoise Coste and Michel Coste 

Anders Kock introduced in [5] the notion of ang -stanle 

theory:1let T be a geometric extension of the theory of 

(commutative and unitary) rings,G its generic model;T is said 

to be £ -stable when G[£] (the ring of dual numbers over G) 

is again a model of T.If “T is given by axinms involving 

at most denumerable dis junctions,T is & -stenle iff for anv 

model A of T in the category of sets Ale] is anAain a model of T 

(this is due to a general result of fiakkai and .eyes [2]). 

The theories of local rinas and of strictlv henselian 

local rings are € -stahle [5] and it is proved in [3] 

that their neneric models are of line type.In this paper 

we generalise this result.The proofs in [3] rely on the 

fact that the Zariski topology (for local rings) and “he &tale 

topology (for strictly henselian leccal rings) are suicanonical. 

In general the topology associated to the extersiorn T is not 

subcanonical.The idea of our proof is to construct first a site 

with a subcanonical topology which allows us to use the same 

methods than in the particular cases above. 

This work is actually a joint work with Anders KBck:his 

letters have led us to madifv completely our original proof 

which gave the result only in the coherent case.He pointed nut 

to us that the main fact is that G[f] is classified by a 

geometric morphism which has (-)° (where D is the object of 

infinitesimals of G) as énverse imaqge.We follow in the second 

part his proof of this fact. 

-29-~
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Gonzalo Reyes has a different proof of the same result [4]. 

Actually our proof gives a slightly more general result but 

up to now we don't see any application of this further gene- 

rality . The reading of his proof has influenced the presentation 

of ours . 

I) Standard extensions 

In the following L_ is a language , T_ a lim-theory [4] and T 

a geometric (finitary or infinitary) extension of Ts both in Ls . 

a) It is well known that to the extension T of Ls corresponds a 

Grothendieck topology € on the category FPMadT °F (where FPtodT 

is the category of finitely presented models of T,) : see for 

instance [&] or [4] chapter IV . 

Definition : T is a standard extension of Lis when € is sub- 

canonical (i.e. every representable presheaf is 

a sheaf for %) . 

There is a syntactical characterization of this situation 

( M1, 1v.3.2.) : 

Proposition 1 : T is a standard extension of Ts iff both fol- 

lowing conditions are satisfied : 

i) every sequent Ph — av CRD where $ 

and ¢ are conjunctions of atomic formulas and 

- Pp =D —=® —) -D . - 

Px, , L(x,2) £5 Vv = Z which is a theorem 

of T is a theorem of Ts . 

< s . - . co. 
ii) every geometric formula ®(X,y) which is in 

> 
T a functional relation Xi (i.e. 

- od nr > —_ —» . . 
®x, 7) , ®(2,2) = y =-z ) with domain a 

conjunction of atomic formulas ® (x) (i.e,
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7x, VT) = DR) ) is equivalent in T to a 
—-) D5 > =D - ] 

Formula Jt Y(x,y,t) where Y¥ is a conjunction 

of atomic formulas and 

- Soy =D - =D > -—T> - 

Y(x,7, 8) , 9,7, = t =u . 
0 

bh) In the case where T is nnt a standard extension of Tq , 18 

there a lim-theory 7, between T_ and T such that T is a standard 
0 

extension of T, ? The answer is "ves , but possibly with a 

change of language" : 

Proposition 2 : There exist a language L, containing Lg and 

having the same sorts of variables , a lim-theory 
Ee 

LI and a geometric extension T' of T, both in L, 

such that : 

i) T, is an extension of LIS , 

ii) T' is an extension of T which is equivalent 

to T ; brecisely , the canonical geometric mor- 

phism from the classifying topos for T' to the 

classifying topos for T is an equivalence . 

i111) T' is a standard extension of T, . 

0 0 n 
Proof : Let Ls be Lg and T- be T . Suppose that Lg and 

T" have already been constructed with Lo extension of Ls and 

T" a geometric theorv in Lo extension of T and equivalent to T . 

Lo? is constructed in the following way : 

For any geometric formula (xX, 7) of Lo which is in T" a 

functional relation X=>y with domain a conjunction of 

. n : n . ~ > 
atomic formulas of L 4 , add to Lg, a new predicate Ro (xv) . 

ph+1 ig T" plus the axioms Ro (X,¥) F—, OX, . T+ 

is equivalent to T" , hence to T . 

Let L, =U Le and T' =U T" . No rew sort of variables
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has been added , and T' is nf course eagivalent to T ,. Let T, 

Co . . . : ' 
be the Jlim-theory in L, with axioms all the theorems of T 

like Xe) b— iv Pz.) where $ and ¥ are conjunctions 

of atomic formulas of L, and gx,V) , $(xX,2) = v = 7. 

Ts is an extension of Le and by proposition 1 T' is a standard 

extension of Ts . NB 

Let € be a topos . 

Corollary 1 : Let U be the restriction functor from Mod(T,,%) 

E Mod (T_,€) . U is faithful 

Proof : Clear , since Ls has no more sort of variables than Ls . = 

Corollary 2 : Let A be a model of T in € . It may canonically 

be considered as a model A' of T' , Then for any 

model C of T, in ® the applicatian 

Hom (A', LC) ————————s Hom (A, UC) 
1 0 

is bijective . 

Proof : Since A = UA' the application is injective by corol- 

lary 1 . Now let f : A———UC be a L-morphism . We have to 

show that it preserves the new predicates of L, . Let R(X) 

be one of these new predicates . It is equivalent in T' to a 

. ¢ > —-> - : 
geometric formula (x) of Lg , S0 we have {3 €e A! EE 

{% e A bo) . Since PH = R(X) we have 

-) - -) 

$ = R(X) and (xe C | RG] > 1% € uc | | . 
1 

50 since f preserves ¢ , Lt preserves also R . 8 

II) Generic models of @-stahle theories 

Lg , Tq A L, , Ta and T' are as in proposition 2 .
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na) Let er] he the classifying tones for T, . !le know tnat 

tli] = F Pid, oF . The reneric model G, of T is the inclusion 

FPModT, Cs ModT . 

¢(T] , the classifying topos for T , is equivalent to E[T'] 

so we may suppose it is the topos of sheaves on FPiodT , "7 for 

the subcanonical topology associated to the starmdard extension 

T' of 7, . lle have : 

gr = Et] S————=elr] . 

The generic model G' of T!' is aG , and the generic model 

G of T is UG' , that is euG, . Since G, and UG, are represented 

by models of T, and Ts in FPModT °F and the topology is sub- 

canonical we have 1iG' = G, and iG = UG, . 

b) Let I be a finite presentation in Lg (i.e. a finite set of 

generators fa,,...,a} together with a finite set of closed 

atomic formulas of L_ $8 @...., $3) with-parameters in 

841.+.,8_ . If A is a model of T_, (I,AR) will be 

fOcqpeenyx) €n™| GA con® GO) . Let [1] (resp. (1) be 

the model of Tq (resp. T,) of presentation I , If A is a model 

of Tq (resp. T,) A 1] (resp. ACD ) will denote the sum Ad (1) 

(resp. Al {I in the category of models of T_ (reson. 7) : 

this makes sense even if A lives in a topos which is not the 

topos of sets bv replacing [1] (resp. MH) bv the constant 

sheaf . We have the following isomorphisms : 

Hom, ([1].08) ~ Hom(1,(I1,8)) 
0 

Hom, (a (1] ,8) ¥ Hom (A,8) x Hom(1,(T,B)) 
o o- 

where A and B are models of T, , and 

Hom ({1),0) 22 Hom(1,(I,un)) 

Hom (G<17,0) ~ Hom (C.D) x Hom(1,(I,UD)) 

where C and D are models of 7, .
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c) We are going to prove the following result : 

Theorem 1 : If G[I] is a model of T , it is classified by a 

geometric morphism with (-y (1,6) : [1] ——€ [1] 

as inverse image . 

Lemma 1 : The functor (-y(I.UG,) : ¢(rJ——¢01] Preserves 

the'colimits , and it is the inverse image functor 

of a geometric morphism 5, . 

Proof : The presheaf (I,UG,) is represented by {D : For 

any P € FPModT, we have (I,UG,)(P) = (I,UP) = Hom ({1>,P) . 

So if X is any presheaf on FPMadT °F , 

x (TUB) oy Nat (Hom (p,-y, x TUG ~ Nat (Hom (P,-)x(I,UG,),X) 
1 9 

« Nat(Hom, (P,-)xHom, ({I),-),X) o Nat(Hom, (PLIY,-),X) 
L, L, L, 

v X(PLD)) 

(I,UG,) Co. 
This shows that (-) 1° preserves colimits , and we already 

know that it preserves limits since it is a right adjoint . 

Lemma 2 : Suppose [1] is a model of T , classified by § . 

Then the diagram 5 

1 

—_ e[1.] er) 
TT 
LT) ———— ¢(7] 

commutes (up to iso) . 

Proaf : lle have to show that gi and id classify isomorphic 

models of T, . We know that §.%6, (™ = 5,58 (py x G, (PEI) 

= P{1) : hence 8. 7a, x G,K17 and ad, "GC, x a(G,LI2) ar (a6, X 1p 

¥ G'CIy . Now é7aG, = 676" = (G[L])' (i.e. GLI] considered as 

a model of T') . cl1} has the same universal property that 

g' (1p : For any model A of T, in #7] we have :
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Hom, (c[1}',m ~ Hom (c[1],um) (by corollary 2) 
1 0 

& Hom, (G,YA) x Hom(1,(I,UA)) (cf §b) 
0 

Hom (G',A) x Hom(1,(I,UR)) (corollary 2) . 
1 

ho G11) and G1] are isomorphic . 

lemma 3 : With the hypothesis and notations of lemma 2 , 

| §* is (ye) . 

Proof : Let X be an object of %(T] . we have : 

§* x S*aix ~ ad ix = aCix (TUG) . Since uG, = iG (cf %a) 

. : i(1,0 (1,06 
we have (I,UG,) = i(I,G) and xx acix TB) ya ai (x LG), 

~ x (1G) i 

this completes the proof of the theorem . RR 

4) We suppose now that T ig the theory of rings . Let I be 

Lhe presentation given hy a generator € and the relation x = 0 . 

HN is G[¢] and (I,G) is D . The theorem 1 gives immediately: 

neorem 2 : If T is f-stable , G[¢] is classified by a ceo- 

metric morphism whith ok as inverse imane . 

In particular G is of line type (i.e. G[f] x 5%) 

and D is internally projective (i.e. (=)? preserves 

finite colimits [3]) . 

“ore generally let I_ be the presentatio® oiven by nenerators 

Eiveeer€ and the relations E, € = N for all couples (i,j) . 

61] is denoted by cle, e.g] and (1_,G) hy D(n) (cf [3]) . 

Following G. Reyes [4] we sav that T is 1-stable if for every n 

6&0 €] is a model of T . Ue have : 

Theorem 3 : If T is 1-gtable ST [SP is classified by a 

(n; . . 
| geometric morphism with (-H)orm) as inverse image
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(for all n) . In particular G is of line type , 

1-small objects (i.e. finite products of D(n)'s ) 

are internally projective , and G is infinitesimally 

linear (i.e. gP(n) is the n-fold pullback of cP 

over G 13) . 

Proof : The only point which is not obvious is the last 

remark , We have to use the fact that G[€,,-.-0€] is the n-fold 

pullback of G[£] over G (cf [3] p. 28) . 

REFERENCES 

("] : W. Coste , Localisation dans les catégories de modeles ; 

These , Université Paris-Nord . 

[2] : M, Makkai , G. E, Reyes , First order categorical logic ; 

Lecture Notes in Mathematics n° 611 , Springer . 

C1 : A, Kock , G, E, Reyes , Manifolds in formal differential 

geometry ; Aarhus Universitet Preprint Series 1976/77 n° 39 , 

(4] : G. E. Reyes : Subtoposes of the ring classifier . 

[5] :A.Kock : Formally real local rings and infinitesimal 

stability;preprint,Aarhus ,June 1Y77. 

EE 

[31 : to appcar in the Proceedings of the Durham Symposium on Appli- 

cations of Sheaf Theory to Algebra, Logic, and Geometry 

[4] : (with E. Dubuc) in this volume 

51 : in this volume 

(Ed.)



TLPCLGGIES FUT RCAL ALGeeRars Getic TARY 

ny harie-Frangcocico Caste 

ang i.ichel Lcste 

The following paper is a redaction ETT Lectures 

in the open house in tecpos theory in AZrhus in Gay 78. 

We want to thank all the participants and especially 

the organiser A.lkock.The very interesting discussions 

we had there have heen a great help for us. 

~}] =



-38-~ 

A)REAL ZARISKI TOPOLOGY 

Real ideals , i.e. those satisfying Xt I — x, € 1 

play an important role in real algebraic geometry,and have been used 

for the "real nullstellensatz" (Dubois,Risler,Efroymson). 

The main idea of this first part is to replace prime ideals 

by real prime ideals. 

In the case of a ring of polynomial functions on an algebraic 

variety in IR n ,real maximal ideals correspond exactly to real 

points of the variety. 

This leads to replace local rings by real local rings,obtained by 

localisation at real primes. 

We define the real analogues for the Zariski spectrum of a ring 

and its structural sheaf :they are just restrictions of the ordinary 

ones.Nevertheless a new problem arises :what rings are isomorphic to 

the. ring of global sections of their real Zariski spectrum? 

As G.Wraith suggested ,the proof we gave in Asrhus of the 

compactness of the real Zariski spectrum was very simplified 

by the study of real rings.Unfortunately this complicated proof will 

be necessary in part B) for the compactness of the real étale 

spectrum.
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I) Real ideal, real local ring,real ring 

Definition 1: I is a real ideal iff I is an ideal such 

| tha* ST Id) ¥Vi=1,...,n x; € I 

Example: 

1){cy is real in/R ,not inC . 

2)(X-a) is real in R[x] ,not (x41). 

3) The ideal generated by (X-1) and(Y-1) is real in 

R(x, v] /(xy-1) ,not the ideal generated by (X+Y). 

Ptoposition l:Let I be a real ideal then 1-{T . 

proof: 

V1 A P = {a a'€I for some neiN} 

Let n be the smallest integer such that a€ 1 

-If n is even 2 I:contradiction 
n+l 

-If n is odd LE I,a t ¢ 1, =n and n=1, 

Definition 2:A is a real local ring (formally real 

local ring in (1))iff A is local and its 

maximal ideal M, is real. 

Remark: 
1) Real local rings are models of the following fFinitary 

geometric theory: 

a) 0=1} 

b) FI vy xy=lv3dy' (1-x)y'=1 

c)for each n inN + =I (1+, 5 x2)y=1 

A ring is local iff a) and b) are verified (well known). 

If Mp is real 1 5 x3 cannot be inh, and hence is 

invertible.Conversely M is real.If not we can find 

(Kyveeesx ) such that x? beeoex EM and x; & Ma . 

x; 1s invertible (A is local) hence (3) eM, : 

contradiction. i=2 \ 1 

YR ring is real local iff it is local and its residue field 

is real (-1 is not a sum of squared.
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Proposition 2:Let I be a prime ideal.A, is a real 

Liocar ring iff I is real. 

proof :trivial. 

Proposition 3: Real ideal generated by an ideal (Risler) 

Les I be an ideal 

Let r= a3 neWdfy se oe0xp) a%exZe.. xe i 

#(1)={T1" is the smallest real ideal 

containing I. 

proof: 

-It is clear that every real ideal containing I contains R(I). 

-1'" is an ideal.The only thing to prove is that a€éI}b€l's)a-bel! 

We have a%exSa. 4xZ€l, buy Su. Lyle 

(a-0)°+ (a+b) 242 (xSe oo cexiey Soin ty2) € 1 hence a-be I’. 

qr is real.lLet ao+...+as be an element of {1': there exists m) 4 

and elements (Byyeensb,) such that (a%+...+a2)Meple abl 1 

so there exist elements CyveeesCy such’ that (a2"Pc2s.. +c I 

hence a efit. 

Proposition 4L:An ideal maximal among the real ideals 

L. prime. 

proof:Let I be maximal among the real ideals and such that 

xy€Il, x § I and vq I. 

R(I+Ax)=A,R(I+Ay)=A hence we can find (Xp peearx) and 

(yyreeery ) such that Lexa. oaxt € Tex, Layo. ay € I+Ay 
0 m 

hence (Lex +. ..ex2) (aya. ay DET hence 1 € R(I)=I:contradiction. 

Defipition 3:A ring is real (formally real in (1)) 

iff for every n¢W and every (Xqpeeenx) 

exe. 4x2 is invertible. 

Remark: The theory of real rings is a {im-theory (2). 

Proposition 5: In a real ring A the real ideal generated 

| by a proper ideal is a proper ideal.
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F-cof:Let us suppose that R(I)=A;1€ R(I) hence there exist 

2 2 . 
(xy aueuyx ) such that Lexy+oe atx € I,that is I=A. 

Proposition 6:A is a real ring iff its maximal ideals 

| are real. 

proof:Let ™ be a maximal ideal in A,R(M)="M_ by proposition 

5 hence ™M_ is real. 

Conversely LaxGe. oan’ cannot belong to a maximal ideal 

hence is invertible. 

Proposition 7: free real ring associated to a ring A . 

_ 2 2 n , 
2 = rede edd] ¥ nenV (Xy9eea,x JER 

is a multiplicative subset of A. 
1 . 

a (27] 1s a real ring and every ring- 

homomorphism between A and a real ring B 

-4 
factors by a(E7) . 

proof:lLet Sree sS be elements of 2 1 When we reduce 

X 5 2 X05 2 
14— Feed to the same denominator we find an 

1 n ot 
expression of the form — with 's and s' in Zz. 

-1 

It 1s clear that a(27)) has the required universal property. 

Proposition 8:free real ring with an element a of A inverted 

2n 2 2 n 
7. {2 FX Hoek x] V nvkx) sex DE A y 

is a multiplicative subset of A. 
- 

alg is a real ring and every ring 

homomorphism f from A to a real ring B 

-1 
with f(a) invertible factors by az) 

proof:as in proposition 7. 

Proposition 9:Let 5S be a multiplicative subset in A. 

) -1 
The application J} — A als )is a bijection 

of real prime ideals with no elements in S 

and real prime ideals in A (57). 

proof: no difficulties.
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-1 . Cs : 
Corollary:The application p— A AE 2) is a bijection 

-1 
[between real primes in A and in A (& 0) . 

-1 
proof :Real prime ideals in A have no elements in AZ}. 

Remark: 

Prime ideals in a real ring are not always real :.For example 

inlR Ix, v7) (x%4v?) is prime,not real and does not contain 

- ce -4 

elements of Z 1 .It defines a prime not real ideal inlR GET). 

II)Real Zariski spectrum of a ring. 

The real Zariski spectrum of a ring A is the following topo- 

logical space: 

-elements are real prime ideals 

-basic opens are of the form 0_={P |p real prime ideal agp} 

This topolegy is the restriction of the Zariski topology 

to real prime ideals. 

We note Specg, (A) the real Zariski spectrum of A. 

Let f:A «8 B be a ring homomorphism and Specg, (fF) 

. . -1 . 
be the application P ——3 Ff (p ) .Specg, (Ff) is a 

i S I S E continuous map from Specg, (8) to Spec, (A). 

Remark: 

- 
1)The elements of Spec, (IR iX}) are 

-points of J (prime ideals of the form (X-a)) 

-the{o) ideal (the generic point) 

2)The elements of Spec, (RR X,¥]/xv-1) are 

-real points of the hyperbola (prime ideals generated by 

(X-a) and(Y-b) with ab=l,a and b real numbers) 

-the generic point (the {0}yideal) .
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Proposition 1: Spec, (ACa™ 1) and D, are isomorphic 

| topological spaces. 

proof: cf I) proposition 9. 

-1 
Proposition 2: Specg, (A) and Spec, _.(A £71) are 

| isomorphic topological spaces. 

proof: ef I) corollary of proposition 9. 

Definition: The family (a, ). eq COVers Spec, (R) 

[ire a, = Specg,_ (A) . 

Proposition 3:Let A be a real ring.The family (a;)ic1 

[covers Spec(A) iff it covers Specp, (RA). 

proof:Let p be a prime ideal of A.It is contained in a maximal 

ideal of AM . MM is real (I),proposition 6) .So there exist 

a; which does not belong to M_ ,hence to Pin the family 

(85) 4¢1 . 

Theorem: The real Zariskil spectrum of a ring is a compact 

|topotagican space. 

proof :Proposition 2,proposition 3 and compactness of Spec(A). 

Corollary:For all a in AL, is compact. 

prcof:theorem and proposition 1. 

Remark: 

The condition "(ajseeesa) cavers Spec, (A) " is equivalent 

to "1 is a linear combination of a;,...,a_ in AL) which 

can be easily expressed by a denumerable disjunction of 

finitary geometric formulae of the theory of rings with 

parameters (ay,...,a).
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III)Structural sheaf of the real Zariski spectrum of a ring. 

Let Specg, (A) be tbe following sheaf an Specg, (AR): 

-the stalk at the real prime ideal p is Ap 

-a basis of open sets is given by the {2enq J x and s 

fixed in A and @ varying in 0} 

Tpecg, (A) is called the structural sheaf of the real 

Zariski spectrum of A,or simply the real Zariski spegtrum 

of A.It is just the restriction of the structural sheaf 

df the Zariski spectrum to Spec, (RA). 

Spec, (A) 1s in some sense "the best real local ring 

over A"; . 

rroposition:Let A be a ring and B a real local ring 

in the topos of sheaves over the topological 

space X.There a one-to-one correspondance 

between ring-homomorphisms f from A to 

{B) (the global sections of B) and the 

couples (Y,g) with ¥ continuous map from 

X to Specp, (A) and g local morphism 

« 
From ¢{r pecy, (A) to B. 

proof :The ring homomorphism f:A— (8B) defines for all x in X 

Fy:A=>B .8 is a real local ring and Fe factors through an 

unique Ap, with g real prime ideal.Define Y(x)=p .It is clear 
f(y) 

that y i i i ine gf ¥)== L a Yv 1s continuous. Mow define g ) F (5) for 5 ny (x). 

This gives us the required one-to-one correspondance. 

Remark: 

We shall have later a stronger version of this "spectrum- 

ul property! of J pec, (A).
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IV )Rkeal Zariski topos. 

We are going to define a Grothendieck topoloay on the dual 

of the category FPRings of finitely presented rings, 

called the real Zariski topology. 

Let us define first a Grothendieck pretopoloqy: 

covering families of A are of the form (A— ACa])) el 

with (ay) eq covering Spec, (A). 

- [a2 n} is a covering family 

-local character is trivial 

-stability under change of basis:given f:RAR— i if the family 

(a) ,1 COVETS Spec, (A) (by II) theorem,l may be supposed 

finite) the family (fla;)), covers spec,,,_ (8) by last 

remark in II). 

Now covering families for real Zariski topology are families 

of arrows of same source containing a family in the given 

pretopology. 

Remark: 

The Zariski topology is contained in the real Zariski topology. 

Definition:The real Zariski topos,RZar is the topos 

of sheaves for the real Zariski topology. 

This topos is coherent since Spec.,, (A) 

is for all A a compact topological space. 

Theorem: The real Zariski topos is the classifying 

| topos for real local rings. 

proof:It is sufficent to show that C is a real local ring 

iff Hom Log (= rE) tFPRINGs P—y Sets is continuous for 

the real Zariski topology.
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-Let C be real local and f:A—C be a ring homomorphism. 

me is real,hence Frhem) is a real prime ideal in A, 

Let (a3)5¢1 be a covering family for the real Zariski topology. 

There exists i_ such that From) does not contain a, . 
o 

~-1 . . 
f factors through Alay ) hence HOME 5 ngs (0 C) is continuous 

for the real Zariskl topology. 

-Conversely Hom(-,C) is continuous for the real Zariski 

topology hence for the Zariskil topology:C is a local ring. 

2 2.-1 Also E(x) eux] —_— Z[XysennnX JOaXTHo ax) ) 

is covering for the realZariski topology:a prime ideal in 

. 2 2 Cy 
Z[xyren0x] does not contain l+Xy+...+X Hom Rings ,C) 

being continuous for the real Zariski topology we have: 

Home: ngs CLL Xp vee eo X] C=tHomp Lo CZ [Xp aeenx] ,C) 

that is LexSe.. ex? always invertible in C.
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V)Back to the real Zarisk: spectrum. 

Une can find in (2) a general construction of spectra. 

Let us consider the following localisation triple: 

T= theory of rings 

T= theory of real local rings 

v = { (true,3 v xy=1)Y 

V-admissible morphisms are morphisms which reflect the fact 

of being invertible, that is ,between local rings, local 

morphisms.A localisation of a ring A for this triple 

is 3 localisation of A at a real prime ideal. 

The general construction of spectra gives in this case 

the sheaf YP pec (A) described in III). 
RZar 

lle have thus the universal property of spectra in the case 

of any Grothendieck topos: 

Proposition: Let Specp, (A) be the topos of sheaves 

over Spec, (A).Let & be a Grothendieck 

topos and B a real local ring in E . 

There is a one-to-one correspondance 

between rings-homomorphisms from A to 

F(E,B) and local morphisms of real- 

local-ringed-toposes from 

(Spec,, (R),F pec,, _(R)) to (g,8) 

(that is a geometric morphism yfrom€ to 

Specg,. (A) together with a local 

morphism from YPoecg, (A) to G).
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A_good algebraic approximation for the theory of 

real local rings? 

Let us give a description of pec, (RIX). 

The elialk at the maximal ideal (X-rt) is the real local 

ring of rational functions defined at r. 

The stalk at {0} is the real fiels [R(X), 

Global sections are rational functions defined at any 

real point,that is the ring RIE] or rational functions 

with denominators of the form:positive real+sum of sguares. 

This leads us to the following guestion: 

Is ales] alxays the ring of global sections of ¥ pec, (A)? 

which means:is the theory of resi. rings a good algebraic 

approximation of the theory of real local rings? that is to 

say :1is the theory of real local rings a standard extension 

of the theory of real rings? 

When we try to answer "yes" we are led to the following 

problem:show that Alto I~ ] 

Sl -1 olz 21m) 
A [2 2b 

push-out in the category of real rings is also a pull-back. 

It is easy to see that if the image of x is null in Ae 2] 

and in ale 2 ,X is null,But we are not able to prove 

that if two elements in Az] and AE] have same 

image in alg, la) they are coming from the same element inA. 

On the other hand the theory of real rings is rich encugh to 

be a candidate for dosed algebraic approximation of real local 

rings.Eor example the axiom X1CBp+eeotx Cc _=1-93 t (x4. ex2) t=1 

obviously true in the theory of real local rings is also 

true in the theory of real rings:
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i 2 2 . . 
If the ideal I generated by Xp+eea+X_ 1S different from A 

so is R(I) (I) proposition 5).The ideal generated by 

(xq0eensx ) is contained in R(I) hence is different from A. 

So that the question is still open.
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B) REAL ETALE TCPOLDGY 

We are here interested in the real analogue for 

etale topology . The etale topology is related to 

strictly henselian local rings . The corresponding 

real notion is the notion of real closed local rings 

( introduced by A. Kock in [1] ) i.e. for rings in 

sets henselian local rings with real closed residue 

fields . 

We are thus led to consider "localisations" of 

a ring A which are formally etale real closed local 

A-algebras , which correspond to prime real ideals B 

of A together with an order on the residue field kp) . 

The set of these couples , with a natural topology , 

is the real etale spectrum of the ring . 

When passing from Zariski topology to etale topology 

no new point is added ( in both cases they are prime 

ideals of the ring ) but in some sense automorphisms 

of the points are introduced ( they correspond to the. 

automorphisms of the separable closure of the residue 

field ) . In the real case new points are added ( since 

a residue field at a real prime may have several orders ) 

and no automorphism is introduced ( the real clasure 

of a real field has no automorphism ) . This suggests 

that the generic "localisation" of a ring A ought 

to be a sheaf over a topological space , precisely
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the real etale spectrum of A . We are able to prove 

that this is the case when A is the ring of polyncmial 

functions over a real algebraic curve . 

For all this we owe a great deal to Gavin uraith . 

Actually it is one of his letters which motivated 

our work an this subject : In this letter he intro- 

duced the etale real spectrum of a ring ( as its neneric 

"localisation" ) and indicated this ought to be a sheaf 

over a tosological space . He also remarked that the 

etale real spectrum of a ring of polyncmial functions 

over a real algebraic variety should contain the sheaf 

ot lash functions as a restriction to the variety with 

its euclidian topclogy , and this is certainly the 

most interesting aspect of real etale topsclogy . 

The results in section I concerning real closed 

local rings are not original . The property of facto- 

risation of a morphism into a real closed leccal rine 

was indicated to us by G. Yraith . It is citained 

here from results on separaktly closed morphisms . 

The "prime negideals" ( or rather their coaplementaries ) 

have also been considered by A. Joyal who is the first , 

we think , to have insisted on the interest of real 

closed local rings for real algebraic neometry .
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I) Real closed local rings 

a) These rings have been introduced by Anders Kock [1] 

under the name of separably real closed local rings . 

Definition 1 : Let A be a real local ring . A[i] = AX] 2,4 

is again a local ring - A is sald to be 

a real closed local ring when Afi] is 

separably closed =] ( or strictly hen- 

selian ) . - 

We know that the theory of separably closed local 

rings may be formulated as a finitary geometric theory 

in the language of rings ; this is due to Joyal and 

Wraith ( see (3) ) : Let P be an arbitrary monic poly- 

nomial of degree n . The elementary symetric functions 

of the Pp! (a) where STRERT are the virtual roots 

of P are polynomial expressions with coefficients in 

Z in the coefficients of P : these are the hyper dis- 

crimants HyveoooH of P ( the nth hyperdiscriminant is 

the usual discriminant ) . In the case where P is a 

polynomial over a separably closed field it has a 

simple root iff one of its hyperdiscrimimants is not 

zero , It follows that a separably closed local ring 

is a local ring which satisfy for each n)»1 the axioms 

dz ( H(P)oz = 1) = dy (PCY) =0 aA /... 

eee I CPYYIE = 1) 0) 

for i =1,...,n where P is the polynomial 

vo, x ¥" + ee. + x whith x,,...,x_ variables .
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50 we can formulate the theory of real closed local 

rings as a finitary geometric theory : 

Proposition 1 : The real closed local rings are the 

real local rings which satisfy the 

following axioms for each nl : 

3: (RCH (PI ZL(H (PI). 2 =1 =... 

coal yy [repeysiy) 0 A LPCysiy)) = 0 A Jens 
coud 6 CRP Cyriy DZ 4 IPryriy Zt = 1] 

for J = 1,e..,0 where 

Pp =v" ¢ Cxqrixt)VT + ee. + (x +ix!) ' 

XgveeosX a Xhyaoa,X] are variables 

and R and I denote respectively the 

Teal and imaginary part . 

R real closed local ring in a topos will of course 

be a model of this geometric theory . For an ordinary 

ring we have the following equivalences : 

Proposition 2 : Let A be a ring . The following are 

equivalent : 

1) A is a real closed local ring , 

2) A is a local nenselian ring and 

kn is real closed , 

3) A is a real local ring and every 

real local-etale A-algebra ( see [oe] ) 

is isomorphic to A . 

Proof 12 : Ka[i] = Kn [i] is separably closed so 

kn is real closed . We have to show that A is henselian .
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Let P be a monic polynomial of A [x] and suppose its 

image Pin k, [K] has a simple root a in ky, - Since 

Ai] is henselian a is the image of a root a+ib of 

P in Afi] . Since a-ib must also be a root of P and 

the lifting of a simple root is unique we have b = 0 ; 

this is what we wanted . 

2«1 : A is real local so Afi] is local . Since it 

is finite as an A-module , it is henselian . Kn is 

real closed so Kari] a4 k, [i] is separably closed . 

2#+3 : Let B be a real local-etale A-algebra . 

kg is real , and a separable extension of Kn , hence 

it is isomorphic to kp . Using the fact that AR is 

henselian iff every local-etale A-algebra with the 

same residue field is isomorphic to A , we have that 

B is isomorphic to A . 

3x2 : A is surely henselian ( use the equivalence 

mentioned above ) . If K is a real field which is a 

finite extension of Kn ys, KW 1s the residue field of 

some real local-etale A-algebra and hence is isomorphic 

to ka . This proves that Ka is real closed . ® 

b) Factorisation of a morphism into a real closed 

local ring 

We recall first some definitions and results of [5] . 

DEfinition 2 : A morphism of rings f : A—>B is 

separably closed when for every com- 

mutative diagram



-5 ie 

A—_ 

AN F 
TT 

where s : Am E is an etale A- 

algebra , there is an unigue 

u : £E —>A such that wus = 1d, 

and fu = t . A morphism of rinqgs 

f : A—>1td 1n an arbitrary topos € 

is separably closed when for every X 

in € Hom(X,A) —» Hom(X,3) is 

separably closed . __— 

In [5] this definition applies only to local morphisms 

between local rings . Actually we shall consider sepa- 

rably closed morphisms only between local rings . We 

have : 

Proposition 3 : Let B be a local ring . A morphism 

f : A—>8 1s separably closed 

iff A is local , f is a local morphism 

and for every monic polynomial IP in 

A [x] and every simple root b of P in 

83 ( P(b) =C and P'(b) invertible ) 

there exists a root ( necessarily 

unique and simple ) a of P in A such 

that f(a) = b . This holds also for 

rings in a topos , with the convenient 

internalisation .
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Proof : This is an easy consequence of the local 

structure of etale algebras ( see (5] ) . ® 

A typical example of separably closed morphism is 

the canonical morphism A —> kn where A is local 

henselian . The main fact about separably closed morphisms 

is the following factorisation property which in the 

case of the morphism from a local ring to its residue 

field reduces to the henselisation : 

Proposition & : A morphism of rings f : A —> 

has an initial factorisation 

A—38 sc —" 58 whith h separably 

closed , and this factorisation is 

functoriagl : If A 1 53 is a 

ed 
commutative square with f' separably 

closed , there is an unique morphism 

C —> A' making everything commute . 

The factorisation property holds also 

for morphisms of rings in arbitrary 

toposes and the factorisation is stable 

under inverse image of geometric mor- 

phisms . 

In the case of ordinary morphisms of rings , the 

factorisation is obtained by taking the filtered colimit 

of all factorisations A —»E ———> B where E is 

an etale A-algebra . Thus we have :
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Proposition 5 : The factorisation of a morphism 

f : A —— 83 is isomorphic to 

f ldg . . 
A —>»B8 ——>» 3 iff 8 is a formally 

etale AR-algebra ( i.e. a filtered 

calimit of etale A-algebras ) . In 

the case of rings in an araitrary topos 

the first property will serve as a 

definition of formally etale morphisms . 

So any morphism of rings admits an 

unique ( up to iso ) factorisation 

in a formally etale morphism followed 

by a separably closed morphism . 

The fact of being a resl closed local ring is re- 

flected by separably closed morphisms ( as the fact 

of being separably closed local ) : 

Proposition 6 : Let f : A ——> 3 be separably closed 

and H be real closed local . Then A 

is real closed local ( and f is a 

local morphism ). 

Proof ( see [5] ) : A and f are local by proposition 

3 . Consider the commutative square A —F 55 

Lb 
Kn is separably closed in Ko , and A —>k, is 

separably closed ( that is A is henselian ) . Hence 

A is real closed . Nn
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Corollary : A morphism f : A———>» B in a real closed 

local ring B has an unique ( up to iso ) 

factorisation A —32—% C —n 8 where 

C is real closed local , g is formally 

etale and h is separably closed ( remark 

by the way that any local morphism between 

real closed local rings is separably closed ) . 

In the following , a formally etale real closed 

local A-algebra will be called a "localisation" of A 

( with the " ) . 

Proposition 7 : The isomorphism classes of "localisations® 

of A are in bijective correspondance 

with the couples composed of a real 

prime ideal of A » 8 , - together with 

an order on the residue field kp) 

( the orders on fields we consider 

are all total ) . 

Proof : The factorisation of f : A ———>B with 

B real closed local may be obtained in the following 

way : Let x be t7 (m3) . p is real prime . The unique 

order on kg induces an order on k(@) . Let k(g) be 

the real closure of k(g) with respect to this order , 

and Ay —> Ag —> kg) the factorisation formally 

etale-separably closed of the composite 

Ag — k(p) —— k(@
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A 

Ne Ap — Ag — 

J | | 
k(p) — k(p) —>k, 

Ag is local henselian with residue field KC) . 

So it is real closed local and it is also a formally 

etale A-algebra . By the functoriality of the factori- 

sation there is an unique morphism Ay ——> B making 

everything commute , and it is separably closed . 

A —> Ag —> 8 is thus the wanted factorisation . 

We can now explicit the bijective correspondance mentioned 

in the proposition : 

- To a "localisation" f : A —— B corresponds 

the couple formed by [Es £7 (amy) and the order on 

k(y) induced by the order on kg . 

- To a couple (pr &) corresponds the "localisation" 

A —> B obtained by taking the factorisation formally 

etale-separably closed of the morphism A — k(n) 

where k(p) is the real closure of k (fp) with respect 

to the given order . 

Here is an example of such a "localisation" : Consider 

the ring RX] , and the real prime ideal (X) together 

with the unique order cn the residue field of ix] yy 

which is IR . The corresponding "localisation" is 

obtained by taking the factorisation formally etale- 

separably closed of RJ xy — [} since R is
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real closed . This is just the henselisation of CHP 

and it is known that it is the ring of germs of Nash 

( or algebraic ) functions at 0 , i.e. germs of real 

analytic functions f satisfying a relation P(x,f(x)) = GC 

with P a non constant polynomial ( see (5] ) 

II) The etale real spectrum of a ring 

a) We have just seen that the "localisations" of a 

ring A correspond to real prime ideals of A together 

with an order on the residue field . Suppose we are 

given a real prime ideal ¥ and an order on k(p) ; we 

have then a partition of A in three parts : the elements 

of A which become 0 in k(p) (i.e. g ) , those which 

become strictly positive and those which become strictly 

negative 

(De 

Proposition 1 and Definition 1 : Giving a real prime 

ideal pg of A together with an order on 

k(p) is equivalent to giving a subset I 

of A satisfying : 

1) 1 & I 

2) -x° € I - 

3) x € 1 Ay € 1 = x+y € I
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4) xy €1 &>» (x€ 1 A -y&I) Vv /... 

ceo/ (=x € 1 A vy & I) . 

The condition 4 may be reformulated as 

the conjunction of the following three 

conditions : 

4h) x1 A -x&1 =p xy & 1 

45) X€&€I pA ~v&1 => xy & 1 

41) xy&el = xe vyel . 

I is the set of elements which become 0 

in kp) pis In-1. 

A subset of A satisfying condi tions T 5a 4 

will be called a prime negideal of A . 

Proof : It is obvious that the set of elements which 

become £0 in k(g) satisfy conditions 1 to 4 . Suppose 

now we are given a prime negideal I<A . Let p be 

In-1I . Condition 3 gives XE AN y EP =H x+y Ep , 

condition 4} gives xXEP = xy Ep , condition 1 

gives 1&yp , condition 44 gives xy Ep = xCp v yEQ . 

Suppose we have x, Sax, rex PE . By conditions 2 

and 3 we have x, © € 1 , which by condition 4 implies 

Xx, € § . So p is a real prime ideal of A ; we shall say 

that p is associated to I . 

It is easy to check that there is an order an Alp 

the positive elements of which are the images of x&-1 . 

This is a total order since conditions 2 and 4 imply 

x€Il v-x€1I , and it induces an order on the field 

of fractions kf) . RB
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Remark : THe right thing to consider in the context 

of "localisation" ( from an intuitionistic or topos- 

theoretic point of view ) would be not the prime neg- 

ideal but its complementary ( just as the right thing 

to consider is not the prime ideal but its complementary ) . 

b) The topology of the real etale spectrum . 

Definition 2 : The real etale spectrum of a ring A 

( denoted by Spec, (A) ) is the set of 

its prime negideals with the topology 

given by the basis of open sets : 

Dara = {1 prime negideal of A a,el AsesA a €1 } . 

The name of real etale spectrum is justified by the 

fact that it is related to "localisations" of A which 

are real formally etale local A-algebras . Pa iia 

is the set of prime negideals such that in the corres- 

ponding ordered field Breer @y become strictly positive . 

SpecCq,¢ is obviously a contravariant functor from the 

category of rings to the category of topological spaces . 

Let us describe the real etale spectrum of R [X] . 

We have already seen that the real primes of R[x] 

are the real maximal ideals corresponding to the points 

of the real line and the ideal 0 which is the generic 

point of the real line . The residue field at real 

maximal ideals is R and there is no choice for the order 

on it : each real point determines a prime negideal .
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The residue field at 0 is IR (X] . To order it we have 

to introduce X somewhere in the real line ; the fol- 

lowing cases may occur : 

X = ~ oo 

A = a_ | 
for a in R 

A = a, 

AX = + Oo . 

For instance the set of strictly positive elements for 

the order determined by X = a_ is 

{F € IR x1 31¢50 Vx € Ja-€,a[ F(x) $0 1 . 

So the generic point of the real line has exploded in 

many points , each one corresponding to a "half branch" 

of the line centered at a real point ( aor at infinity ) . 

We can make the following picture of the real etale 

spectrum : 

A&A 

The open sets are generated by the intervals (a, .0_] 

( which is DY a, b-X ) or [- eeu] or +e] . 50 the 

real etale spectrum of IR [x] contains the real line 

with its usual topology ( this is a general fact for 

algebraic subsets of RY). 

It is easy to see that spec, (IR [X]) is compact . 

This 1s a general property : 

Proposition 2 : The real etale spectrum of 3 ring is 

| compact .
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Proof : Consider the language L which is the language 

of rings augmented by a unary relational symbol " . 

Consider all the sequents é 3s) ( where ¢ is a 

conjunction of atomic formulas of L and s is a term ) 

which are consequences of the theory T of rings-with-a- 

prime-negideal ( obtained by adding the four conditions 

of proposition 1 to the theory of rings ) . Let us call 

C this set of sequents . In C we have for instance the 

conditions 2 , 3 , 4}, bd but not 1 nor Ls . Consider 

now a ring A and a subset X of A, and let 3(X) be the 

closure of X for C ( i.e. the smallest J A containing 

X such that all the sequents of C are valid when J is 

interpreted by J . 

Lemma 1 : J(X) is the intersection of all prime negideals 

| of A containing X . 

Proof of the lemma ¢ First it is clear that this 

intersection contains J(X) . Suppose now that every prime 

negideal of A containing X contains a . Let f : A —> 1B 

be an A-algebra and I a prime negideal of B containing 

f(X) . Then I contains f(a) since Fen) must contain a . 

Consider now the realisation of L given by A and X 

( for the interpretation of TO). The preceding remark 

means that the positive diagram of this realisation 

( i.e. the set of closed atomic formulas of L with 

parameters in A which are true in this realisation ) 

and the theory T of rings-with-a-prime-negideal imply Ja) . 

By compacity we get a conjunction of atomic formulas
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of L By 1peensy 0x) such that By peenry sx) + T(x) 

is a consequence of T and there are bavesesd in A 

such that the realisation (A,X) of L satisfies 

@(b,,...,b,2) . By the construction of J(X) we have 

then a€Jd(X) . 4 

} uu | co . 
Lemma 2 : If Specy,. (A) = EX D. , there is a finite 

| a IY | subset Y of X such that Specg , (A) = ev D! . 

. — ' Proof of the lemma : Spec, (R) = Ro Dy means 

that there is no prime negideal of A containing X , 

which is equivalent to J(X) = A, or 1€J(X) . From 

the construction of J(X) it is clear that there is then 

a finite subset 'Y of X such that 1€J(X) . & . 

We are now in position to show that Spec; (A) is 

compact . Suppose we are given an open covering of 

Specp (A) ; we may always suppose this covering is 

composed of open sets of the basis : 

Spec (R) = Up . 
Ret i€1 1,000" %,n, -1 

This 1s equivalent to : 

j mT = J ' 
Vie Io ny Specq (A) = Moo! 

i,301) 

( where n, = {u,1,...,n.-1} ) . By lemma 2 for every j 

there is a finite I.el such that 

- _ Up 
Specge (A) = yor Da 

i i,j(1) 

The elements of ar Nn. which coincide with j on I. 
1€él 1 i 

corm con TT - 
orm an open neighbourhood vs of Jj in ier Ms which 

is compact . so there are Jqeeeesd such that 
m 

Tn, = Uv, . Let J te the union of the I. . 1el 1 k=1 Jy Jy
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J is finite and we have : 

Specpgy (A) = ies P8500 13 no ’ 

Remark : This proof is raher unsatisfactory . It would 

surely be nicer to have an actual description of the 

intersection of the prime negideals containing a given 

subset of a ring ( as there is such a description in 

the case of prime ideals ) . 

Proposition 3 : Every DJ as is compact . 
1 n 

Proof : Since the image of a compact set by a conti- 

nuous map 1s compact , this will result immediately 

of the following lemma : 

Lemma 3 : If agA , let AVE] be (alx1s,2_) (za) "] . 

It is an etale A-algebra . Dl Co... is 
1 n 

the image of Spec, (A(VE,,...,va ]) in 

Spec, (RA) . 

Proof of the lemma : Since Alva, ...,va_] is an 

etale A-algebra any "localisation" of this ring is a 

"localisation" of A ., Let I be a prime negideal of Aa . 

The "localisation" of A at I factors through | 

Alva... va] iff 8,y...,8_ become strictly positive 

in the ordered field associated to I , that is iff 

tla ia u



- 7 

IIT) The real etale spectrum of a field as a ringed 

space . 

Let k be a field . Specpgy (K) is just the set of 

orders which can be put on k . It is non empty iv7 

k is real . There is an obvious shea? to put on this 

topological space which we shall denote by Fpec,,, (1) : 

- If 0 is an order on k , the stalk of Spec, (kK) 

over 0 is rad , the real closure of k with respect 

to 0. — 

- Let « be an element of 7. « is algebrale over k 3 

let P be its irreducible polynomial . All roots of P 

are simple so we can build a Sturm sequence 

Pp =P, P,,..., P for P (see [7] ) . Let 

Baveee,8 be the leading coefficients of the P;'s 

and U be the set of orders on k giving to Bqreee08 

the same signs that @ . U is an open set of Spec, (K) . 

For every O0' in U , P has a constant number of real 

roots ( roots in ad ) which is given by Sturm's theorem . 

« is , say , the nth root of P in 9 for the order 

on © . For O'e U let od be the neh raoct of P in £9 . 

Oo! 

The sets { « sev) for V open set contained 

in U form a basis of open neighbourhoods of « for 

the topology on the sheaf Frec,,. (1) . 

pec, (0 has the following universal property : 

Proposition 1 : Let X be a topological space and & 

| a sheaf of rings over A such that each



68 ~ 

stalk is a real closed field . For 

every morphism g : k — r 5 

there is an unique couple (Y,f) where 

$Y: X — Specy, (kK) is continuous 

and f § Spec, (k) —— FF is a 

morphism of sheaves such that 

kK ———— [Yoec, (0) 
IN| 

F 

commutes . 

Proof : g induces g  : K —3 for xeX . The 

order on 3 induces an order f(x) on k of is continuous 

since for aek AGIP is the open subset of X over 

which the global section g(a) af Fis strictly positive , 

i.e. the value of the formula 3x Jt ( xt = 1 A «2 = g(a) ) . 

Since 5 is real closed there is an unique morphism 

fF 1 YO 5 and glueing together the f 's 

yields amorphism of sheaves f : Y* (frecy,, ()) — 5. a 

We shall come back later on the existence and the 

eventual universal property of a similar sheaf on the 

real etale spectrum of a ring .
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Iv) Real étale topolagy ) 

We are going to define a Grothendieck topology 

the real étale topology on the dual of the category 

of rings. 

Let us define first a pretcpology: 

f. 
the family (A —A is in Cov(A) iff for all i 

in I Foi A. is an &tale A-algebra and 

om (oPeeaey (Fy) m8peeny (1). 

- Jn — ny is in Cov(a) 

-lozal character is trivial 

-stability under change of basis: _— 

Let (A Ea) be a covering family and 

(3 Lagan) the family obtained by push-out under 

f:A—E. 

We must prove that it is a covering family: 

let J be a prime negideal in B.There exist an i and 

a prime negideal J. in As such that ritap=rt. 

le get three real closed fields « (3), K(F=1(3)), 

k(3.) which are respectively the residue fields 

of the "localisationsg" ByyAe=l ys Fy a, ;since ~eal 

closed fields admit amalgamation property(elimination 

of quantifiers and proposition page 63 ch.l3 in Sacks 

saturated mndel theory) there is a real closed field 

which makes the diagramm yay) 

(FTL) > I 

~~” 

commute.
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So we get a morphism h from Beh. to K.It is clear 

that at=n"Hx| xgol is a prime negideal in 30a such that 

5; (a=a. 

Now covering families for the real étale topology 

are families of arrows of same source containing a sub- 

family in Cov (A). 

Proposition l:the real etale topology contains 

the realZariski topology (and the Zariski 

topology). 

proof:Let (ayy...ra) he a covering family for 

real Zariski topology.Let I be a prime negideal of 

A such that the images of the a;'s are all in M, 
I 

maximal ideal of hi.The inverse image of My in A 

is then a real prime ideal containing all the a,’ 

contradiction, 

Remark: 

-real étale topology does not contain étale topology 

£ —GC is covering for real étale topology,not for 

real étale topology. 

-étale topology does not contain real #£tale topology: 

IR —) is covering for étale topology,not for real 

¢étale topology. 

Before going further we are going to state the 

following result concerning real closed local rings: 

Proposition 2:LetP be the formula with free 

var iables(Xy eee sX oYyreee,y J: 

13 x xMex x" Lex =D [eon 

co/ A Ft tnx" ene Dx xT ex) GM MTR ay Ds)
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There exist polynom. al expressions in (xy veeenXy 

Yr eeery ) EypyreeesByn vee Bgae aby cuca “hat 

. n. oe “ow 

Pm H&E WN Fy 0 (1) is true in the tnecry 
i=1 j=1 i 

of real closed local rings. (RO stands as an abbreviation 

for "the exist a simple square root cf fn": 

2 A Ix x=p A dt t.2a=1). 

~ , (., . vr 
proof (Cx) seers ee ey) Po Ge ray) 

. op NEM : . : 
is an open subset of IR Hence we can find the reguired 

Es; such that (1) is verified in real closed Fields 

from the theorem in anpendix 1. 

fow a real closed lccal ring being henselian over its 

residue field 

AEP (aj,...,3_,by,...,b ) iff 
F nm 1? 'n’71° 'm 

I = 3 6h. 5 
EP (Gya...,8 0B... ,B0) 

Also since we have only strict imnagualities 
n. 

A k LE. (= b E)YNGL iff Fo oan Eyg(apeeeeianibyae.ab, : 
i=1 J=1 

n, : 
I< E XW, Mn E. (a = , Bb J eo 0 b ) Yo . 

A \ / ij 71 n’ 1 SH 
i=l j=1 

50 (1) is also verified in real closed local rings. 

Remark: The proposition 2 tells us thai the 

existence of a simple root in a real closed ring 

can be expressed by a disjunction of conjaoncticns 

of strict inequalities concerning polynomial expressions 

in the coefficient of the polynomial.Bbut we have no 

effective way of calculating these expressions as we do 

for hyperdiscriminants in the case of strictly lccal 

henselian rings.
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Proposition 3: If f is an étale A-algebra 

| Spec, (F) is an open map. 

proof:Let us prove first that Im(Spec,, (f)) ig 

open.Since Spec, (A(a™1)) may be identified to the open 

Drv D!_ the only case to consider is A LT yarxdse [rrr] 

(because of the theorem of local structure of étale A- 

algebras) with P monic polynomial of degree n and R monic 

polynomial of degree m. 

We know that the formula Ix P(x)=0aF t.P'(x).R(x)=1 

is equivalent to = A £420 with 
i=l j=1 

E57 3(@reeer@abyyeeesb) , the a's and b's being 

the coefficients of P and R. 

Let u= J Dl Er .de are going to prove 
i=1 irr? in, 

U=Im(Spec, (fF). 

Let I be a prime negideal in U.In the real closed 

local ring Ay the image of P has a simple root d 

with R(K) invertible since the required inequalities 

are verified.Hence A—D A; extends to a morphism from 

A[X] /P [pr] to A; .The inverse image of the maximal 

negideal of A; is a prime negideal J in AL x]/p [pir] 

such that Spec, (F)(3)=I. 

Conversely let J be a prime negideal in ald/p[PrR™t]. 

AlXx) /pP [Prat], is a real closed local ring and a 

formally étale A-algebra:it is a "localisation" of AVAL. 

P has a simple root with R(x) invertible in A: 

the image of X.5o the coefficients of the images of P 

and R in As verify the required inequalities and I is in U.
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ow every D! being of the form Im(Spec,., (f)) 
Qyseeerdy Rot. 

(II)proposition 3) we are finished. 

"ronositinn 4: Zvery Finite family in MNovli) is 

cutalned by push-out from a Family 

in Sovin_) where 4 is a finitely 
0 0 ! 

presented rineo, 

proof:Let f:A—)B be étale .0y local structure of 

etale algebras Ib ,...00 covering for Zariski topnology 

| . cee—1 -1.r 0-1 
[ ] A / Ve such that Vida, ,P ,R, with B(b])%¥ Ata; )[x)/P, [FIR] ] 

The fact that (» —H. ); is in Cov(A) can be 
PAE 

expressed by a geometric formula of the theory of rings 

with parameters 2% and the coefficients of Pang RY. 

(For example to the covering family A Aa 1) 
AR 1 

) Aa”) 

we associate the formula aYUv=a)Cvb)lv-bdU , to 

A — ax) sp EE associate the formula 
n 

k i : . Ce 
x/ A EJ as in proposition 3). 
i=l j=1 

It is clear then that this situation is obtained 

fr om a similar situation in FPRings . 

ropositinn 5: Every family in ©ov(Nn) contains 

. Finite Family in Couv(D). 

proof :clear since SPEC. (N) is cnnpact and for all 

7 étale pec. (Ff) is open . 

vefinitinn:The topos of sheaves Tor the real “tale 

topology on Friinas is called “he real 

ov topos 2°, 

Pronnsition 5 gives us immediately the 

Theorem 1:The real @tale topos is coherent.
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Theorem 2:The real étale topos is the classifying 

| topos for real closed local rings. 

proof:We are going to prove that A is real closed 

CL op . . : | — A) :Fp! t local iff HOMps ngs ,A) :FPRings ~ — Sets is continuous 

for the real étale topolooy. 

i : : F ami : 
Consider (f, A— Aidier a covering family in 

FPRings"P and f:A —3B.The family g,:8— SQA. obtained 

by push-out under f is also coverine.50 the maximal 

ideal of A,which is real prime comes from a real prime 

ideal p of an As -bRAs), is real locale étale hence 

isomorphic to A (I proposition 2),this gives hy * A.A 

such h,t.=f . 
ii 

Conversely A is surely a real local ring.ue must see 

that Afi) is separably closed i.e. that axioms like 

2 2 . . 
ReH +ImH~ invertible/... 

.../F Ja db Re(P+iN)(a+ih)=0 A Im(P+iQ)(a+ih)=C/... 

ceo / A Re(P'+i0') (a+it) +Im(P'+in')(a+ib)? invertible 

with F=P+i( monic polynomial and H one of the 

hyperdiscriminants of F are verified. 

A —2A[X,v]/CRe(F (X+iYD, In(F(X+iV¥))) [Grex] ?)t] 

is étale since J Frixeiv)] © is the Jacobian of Ref and 

ImF with respect to X and VY. 

It is now easy to check that if we take 

Fe(Xeiv) Me (X, +1Y DD (xeiV) "he (xX _+1Y ) and 
1 1 n n 

A=Z[X VY heeaa X,Y ] [Rer?s1mi? “1 the morphism 

1s in this case covering for the real étale topology. 

The fact that HOME ngs (0 A) is continuous for the 

real étale topology gives then the result.
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a) We are given a ring A . Ue are now interested in 

giving a description of the generic "localisation® 

of A ( i.e. the generic real closed local formally 

etale A-algebra ) . Ue shall denote by Spec, (A) 

3 3 1 19 13 n" c ~ = . a + S this generic "localisation" and by Spec... ) tne topo 

where it lives . %ec, (A) has the Following universal 

property : 

Given a real closed local ring § in a topos £ and 

a morphism f from ( the constant sheaf ) A to 3 , 

there is an unique ( up to iso ) couple (¢,7) where 

Y is a geometric morphism from £ to Spec, (A) and 

f is a separably closed morphism from (Spec, (A) 

tc B such that the following diagram commutes : 

* 
—_— : A ¥ (3pec,, , (R)) 

Vv 
D r] 

Indeed the factorisation formally etale-separahbly 

closed of the morphism f : A ——>1 ives 

F : 
A —S —> B with C real closed local ( I b 

propositions 4 , 5 and 6 ) , Mow the"localisation" 

g : A —>( is classified by a geometric morphism 

4: E —— Spec, (A) such that $* (Ipec, (A) = C . 

Ypecy, (A) is thus a spectrum in the sense of 

Cole [11] . In the terminology of [2] , it is the
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spectrum associated to the localisation triple (Ring, V,") 

where : - Ring is the category of rings , 

- UV is the set of etale morphisms between 

finitely presented rings . 

- ¥ is the real etale topology on FPRing"F y 

the dual of the category of finitely presented 

rings . 

This triple satisfies the condition for being a 

localisation triple since the real etale topology is 

generated by families of etale morphisms . So the 

general results of [2] give a description of Spec, (A) : 

Proposition 1 : Speco. (RA) is the topos of sheaves 

over the dual of the category of etale 

R-algebras for the real etale topology 

and Specg, (A) is the sheaf associated 

to the presheaf given by the inclusion 

of the category of etale A-algebras in 

the category of rings . 

Froof : This is exactly the description of the 

spectrum in [2] ‘once we have remarked that : 

- by pushing out V under A we get the category of 

etale A-algebras ( cf [4] chapitre Y exercice p.55 ) , 

- by pushing out "€ under A we get the real ctale 

ti.pology ( cf IV proposition & ) . pg 

Remark : Specg_, (A) is a coherent topos since the 

real etale topology is generated by finite families .
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b) Is the real etale spectrum a sheaf over a topological 

space 7? 

If the answer is yes , Specg,, (A) is a sheaf over 

the real etale spectrum of A described in II ( this 

justifies the notation ) : 

Proposition 2 : If Specg, (R) is spatial it is the 

| topos of sheaves over Spec, (A) . 

Proof : Suppose Spec, (A) is the topos of sheaves 

over a topological space X . 5ince points of Spec, . (A) 

correspond to "localisations" of A , X and Spec, (A) 

have the same points , Cy the construction of Soeco, (A) 

the family of sets {a : A —> 3g "localisation" of A | 

g factors through s : A — € | indexed by the etale 

A-algebras s : A —> E 1s a basis for the topcleoy 

of X . Since s etale implies Specp,. (s) open ( IV 

proposition 3 ) and EIS is the imace of 

Speco, ( A —>AlVE,,...,v@ J) ( II lemma 3) the 

topology on X coincide with the topolcay on Spec, (A) . 8 

"ow we come to the guesticn itseli . Uz use the 

following result , proved in Appendix 2 : a coherent 

topos is spatial iff the category of its points is 

equivalent to an ordered set . The category of points 

of Specq, (A) is equivalent to the cateqory of "lccali- 

sations" of A , the morphisms being morphisms of fi- 

algebras . So the problem is reduced to the following 

one : Given any two prime negideals 7 and J of A ,
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show that there is at most one morphism of A- algebras 

from the "localisation" A to the "localisation" A . 

Remark that if there is a morphism of A-algebras 

from A: to Aj we have necessarily Jel since the 

fact of being strictly positive ( i.e. having an inver- 

tible square root ) is preserved by any morphism . 

It looks plausible that the ordered set of prime neg- 

ideals of A is equivalent to the dual of the category 

of "localisations" of A with morphisms of A-algebras . 

But all we have been able to prove is the following 

two results ( the first one. being rather obvious ) : 

Proposition 3 : If the prime negideals I and J have 

the same associated real prime ideal , 

there is a morphism of A-algebras from 

A: to Aj iff I = J and in this case 

there is no other morphism than the 

identity of Ag . 

Proof : Suppose InA-I = JdJAn-J =n and ff : Al —> AL 

is a morphigm. of A-algebras . Then f is a morphism of 

fp-algebras and since A and fq are local-ind-etale 

Ap -algebras f is local ( see [4] ) . Hence we have a 

commutative diagram : 

| 
kp) k(I) = | 

TTY,



ne 

Since k(I) and k(J) are real closures of k(g) we have 

I =.J and FT is the identity ( cf [7] ) . low 

4 Ay 

wl rT (I) is commutative and 
~~ __— 

I 

Ap — A; — k(I) is the factcrisatinn formally 

etale-separably closed of A —>» k(I) . This implies 

T = Ha . 

Proposition & : Let I be a prime negideal of A and §g 

its associated real prime ideal . 

Suppose k(g) is dense in k(I) ( for 

the arder ) . Then for any nrine neg- 

ideal J of A there is at m:st one 

morphism of A-algebras from At tc A . 

Proof : Let [) be the real prime ideal associated to G 

and f a morphism of A-algebras from Ay to Aq . It induces 

a morphism of A-alpebras g fron Ap <0 Rg 

_— A oo I’ 
A ’ |r — 4 

> Ay — A, 

We know that there is at most cone such morphism from A 

to A 

As is a filtered colimit of local-ctale Ap-algebras 

( cf [5] p.10 ) i.e. of Ag-algebras like (Ap (XT / 50 

where P is monic and no is a prime ideal not containing 

P!'! ; the image of X in Ay is a simple root of P . So
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it is sufficient to prove that there is only one way 

to send simple roots of monic polynomials in Ax] 

from As to A . 

Let P be the image of P in k(p)[X] and let x be 

the image in k(I) of a simple root « of P in A; . If 

k(p) is dense in k(I) we can surely find a and b in 

k(p) such that a«< «<b and that there is no other 

root of P in [a,b] . By the theorem of appendix 1 

the formula "there is a simple root of P in Ja,b[ and 

no other root of P in [a,p]" is equivalent in the theory 

of real closed fields to a disjunction of conjunctions 

of strict inequalities involving polynomial expressions 

over Z in a , b and the coefficients of [3 ; we shall 

denote this last formula by F(a,b,P) . 

Suppose now that there is an other morphism of A-algebras 

Fro: A; —> A, . We have f(a) = f'(a) = g(a) and 

f(b) = f'(b) = g(b) . Since f and f' both preserve 

strict inequalities we have in k(J) g(a) <7(x)¢ gb) 

and g(a) ¢ T(x) <alb) and also F(gCa),glby,glP)) . 

So there 1s only one root of g(P) between g(a) and q(b) 

and hence flx) = F'(x) . Since f(x) and f'(x) are 

two simple roots of P which have the same image in 

the residue field we must have f(x) = f'(¢) which 

is the wanted result . = 

Remark : There are ordered fields which are not 

dense in their real closure : Take R(X) with the
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order associated to X = +e . Its real closure contains 

VX and there is no rational function bestween VX and 

24% ( this example is borrowed from a paper by iiciienna 

"Mew facts about Hilbert's 17th problem" ) 

We can apply proposition 3 in the case where AN 

is a field k . Snecy, (kK) is then a sheaf on a topological 

space , and it is the one described 'in section III . 

c) There is another case where we can answer positively 

the question of 5b : 

Theorem 1 : Let M be an algebraic curve in R" and 

A the ring of polynomial functions on rh. 

Then nec, (A) is a sheaf over the topolo- 

gical space Spec, (A) . Ye have already 

seen that spec. (RA) contains as a sub- 

space I withthe topology induced by the 

usual one on WR . pec, (A) restricted 

to © is the sheaf of Mash functions on . 

Proof : There are two kinds of real prime ideals 

in A : 1) those which are generic points of irreducible 

real components of r , 

2) those which are real points of I, 

Consider now two prime neqgideals I and J of A with 

associated real primes ? and 9 - suppose that there 

is a morphism of A-algebras ff : Np —> A . Ue 

want to show that f is the only one . 

If y and q are of the same kind we must have \ 1,
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and then we can apply proposition 3 . If not B is of 

the second kind and § of the first kind . k(R) is 

surely dense in its real closure ince it is R ; 

so we can apply proposition 4 . 

The stalk of Spec, (A) at p when §@ is a real maximal 

ideal of A corresponding to a real point s of Mis 

the "localisation" of A at the prime negidecl over Pp 

i.e. the henselisation of the local ring of germs af 

polynomial functions on Mat s : this is the ring of 

germs of Nash functions on Mat s . This gives the 

last part of the theorem . . 

We can now give a description of the real etale 

spectrum of the real line as a ringed space : The 

topological space Spec, (RxD) has already been described 

in II a . We know already that the stalk of Spec, (ROAD 

at a real point of the line is the ring of germs of 

Wash functions at this point . Je have to look at 

the stalk at points of Spec, ( RX] like -¢0, a_ , a, 

Or +c. Let us consider for instance 0 : 

Proposition 5 : The stalk of foec, (RED at 0 

is the field 15 of perms of fash functions 

at the right of 0 , i.e. the filtered 

colimit of the rinns of lash functions 

defined on ]0,¢[ for £50 . 

Proof : KW is a field since a lash function which is 

not identically zero must be invertible on some 1c.€T.



=8 3 

¥ has an order : the strictly positive elements are 

germs f which are strictly positive on some Jo.,eC . 

kis then an ordered extension of I3(X) with the order 

dtermined hy X = C. . Jy definiticn of flash functions 

K is algebraic over R(X) . It remains to show that 

it is real closed . Let P= x" + F x" + 41 

be an irreducible rolynecmial of “x1 . Ye can construct 

its 5turm sequence Pg=F ) PaseeesP and Sturm's 

theorem gives us the number of roots of P in the real 

closure of K , say r . Consider now an interval 1c,eC 

where the leading coefficients of the B.'s have constant 

signs . For any x in T6,eC , x Fax" eae F(x) 

has r roots in IR , and the implicit function theorem 

yields the fact that , when x describes P,e[ , these 

T roots give us r Nash functions on 1u,¢f . This proves 

that ¥ is real closed , and that it is the real closure 

of R(X) for the considered order ( this ought tc be 

already known ) . B 

Remark : We can give another descripticn cof KW . Let 

R(X)* be the field of fractional power series , i.e. 

series in 7p for some positive inteqer p with a finite 

number of terms with negative exponents . ROOT is 

real closed since ET(X)* is aloebraicallv clcsed 

( [12] chapter IV theorem 3.1. ) . It contains R(X) , 

inducing on it the order determined by X = Cc, . So 

Kk may be identified with the field of fractional power 

series which are algebraic over R(X) .
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Since 0 is in the closure of {0.3 , we must 

have a morphism from the ring of germs of Nash Tunctions 

at 0 to K . This is clear since a germ at 0 determines 

a germ at the right of O . 

The ring of sections of $pec, ,( R(X]) over the 

open [a,b] is the ring of Nash functiaong over Ja, 

and in particular the ring of global sections 1s the 

ring of Nash functions on IR. 

We can give a similar description of the real etale 

spectrum of the ring of polynomial functions on the 

hyperbola : Let A be rx,v]/.2 2, . We may first 

check that the topological space Spec, (A) is just 

the union of two disjoint copies of Spec, RCx]) 

lower 

It is also true for the sheaves : Spec, (A) is the 

union of two disjoint copies of Foecy,,( RX): It 

is sufficient to seethat the projection of the hyperbola 

on the x-axis along the y-axis induces isomorphisms 

on the stalks of the sheaves :
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- Let s = (a,b) be a point on the hypertola . Alx-a,¥Y-b) 

is a local-etale R Kl, y-algebra with the same 

residue field , so they have the same henselisation 

- Consider now a point like 5 with s = (a,b) . 

The field of fractions of A with the order determined 

by (X,Y) = 5. is an ordered gzalgebraic exiensian 57 

RX] with the order determined by X = a_, hence 

the two fields have the same real closure . 

So , from the etale real point of view , a hynzrhola 

is just the union of two disjoint lines .
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Appendix 1 

This appendix is devoted to the proof of the 

following result : 

Theorem : Let ACK gs eeayx) be a formula of the language 

of ordered fields such that the set of 

(agyeeeya) in R" which satisfy 

Alas...) is open . Then there exist 

polynomial expressions Sram 

coer BEg greeny 0 in XqveeorXy with 
8) 

coefficients in Z such that ACK pean ox ) 

Dp m. 

is equivalent to WON Ey, 370) in 

the theory of real closed fields . 

Proof : The theory of real closed fields admits 

elimination of quantifiers , so we already know that 

AC reeeax) is equivalent to a quantifier free for- 

mula i.e. a boolean combination of strict inequalities . 

We have to reduce this boolean combination to a 

positive one , that is a disjunction of conjunctions 

of strict inequalities . 

Since the theory of real closed fields is complete 

it is sufficient to look at interpretations of these 

formulas in R . liow we have to prove essentially 

that a semi algebraic subset of R' which is open 

is a finite union of subsets given by a finite 

number of strict inequalities .
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This is a consequence of the "szparation lemma" 

of G. Efroymson [9] . Here is a ( slightly modified ) 

statement of this result : 

Let Pave sP be polynomials in RR grees Xo . 

The roots of Paseeey Pr divide up BR" into a disjoint 

union of connected subsets where each Py is either 

constantly zero or either constantly >0 or either 

constantly <C ( cf Theorem 2.1 in Dic] ) . This 

partition of RR" willbe called the partition associated 

to (Payee) . For instance the partition of R® 

associated to (X°-XZ+¥%, X+1) 

| 

(10) 

l 

| 

—- ee ee e—— eas c— = -_— — a —-— — 

| 

(-1,-%) | 
| 

| 

is composed of the two points (-1,¥2) and (-1,-\2) , 

the six bits of curves 

(1,2)  (-1-%) \, (42) (-1,.v7 ) 

| (-132) pe / 

1.2) 
(-4-V2) (4,3)
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and the six connected open subsets of the plane which 

can be seen on the picture . 

Separation Lemma : Let Paves Po be polynomials in 

ROX 0 een0X ] . There exist polynomials 

Prats ess oPg 1m R[X,s...,x_| such that if 

S and T are any bits of RR" which belong 

to the partition associated to (Pave PR) 

we have the following eguivalence : 

§S €adh(T) iff any sign condition ( >» 0 or 

<0 ) on the P. (i=1,¢.e.,q ) which holds 

on S holds on T . Moreover if ParesesP 

are in Z[XqyeoeaX] Prastree1Pg may also 

be chosen in Z(X,,....,X_] - 

We give now a proof which is simplified and which 

yields immediately the last part of this result . This 

is nevertheless essentially the proof of G. Efroymson . 

The proof is by induction on n : 

1°) n= 1 . Let Ps? ser Pq be all the derivatives 

at any order of the PareeesP . Then the property is . 

satisfied ( this is known as Thom's lemma ) : Let x 

and y be two points of R ( x<vy ) such that every 

sign condition satisfied at x 1s satisfied at vy . It 

is sufficient to show that P. (i=1,...,q ) cannot 

have a root on Ix, v] . aJuppose P. has a root on Ix, v] . 

If it is simple and the only one an [x,y] then 

( P. (x) 20 and P.(y) g0 ) or ( P. (x) <0 and P.(y) 20 )
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which is a contradiction . If the ront is not simple 

or if there are several roots on (x. v] there is a rcot 

of Pt on Ixuv] and we can repeat the argument : at 

the end we always get a contradiction . 

2°) From n-1 to n . 

Consider PaveeesP as polynomials in A with coef- 

ficients in R[X , ceo X _] . We may always suppose that 

the coefficient of the term of highest denree in A is 

a canstant in IR} : If it is not the case we may change 

the Xo axis by putting xq = Xt + a,x 

A= 1 - Ale * 8-17" 

An = Xn 

and it is always possible to find Brees 4 in J) 

such that the cohdition is satisfied by the polynomials 

in XP green Xt . 

Now let EE La be all the derivatives at any 

order of the Fyre easP withrespect to x . In the 

derivatives also the coefficient of the term of highest 

degree in Xx is a constant . Let APEREINALR be all the 

hyperresultants of all couples (Pyob 1€1i<r 1€iLr 

1 #3 with respect to the variable X_ + Ye must say 

what are these hyperresultants : 

if P is a menic polynomial in cone variable of degree 

d , the d hyperresultants of (P,J) are the elementary 

symetric functions of the Ady een, AK) where 

gree ey are the virtual roots of P . The hyperresultants
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are polynomials over Z in the coefficients of P and J . 

The ath hyperresultant is the ordinary resultant 

of P and § and when P'=] these hyperresultants are 

the hyperdiscriminants of P ( cf I a ) . The hyper- 

resultants of (P,Q) have the following property 

( P and Q are supposed in R{x] ) : Let i<d be the 

smallest integer such that for all j3>>1 the jen 

hyperresultant is zero . Then there are d-i roots 

of P in @© which are roots of 4 . 

Hpveoon Hy are polynomials in AqoeeesXo_y . From 

the induction hypothesis we get a finite set of 

polynomials PraqrePg in RIX yeeus Xo] containing 

Hyse..,H_ 8nd such that the partition of Rr" 

associated to Prerr=-o1Pqg has the separation property 

of the theorem . We are going to prove that the parti- 

tion of R" associated to PareeeiPy has also this 

property . 

The key to this fact is to remark that over any 

bit U of the partition of gp associated to 

Prats Py the real roots of Pyseee dP are given 

by continuous Functions YY: U——13 and that 

these functions do not intersect over U ( use the 

property of hyperresuliants mentioned above ) . 

tet WW: RB" —— RR" be the projection along 

the x axis . Let 5S and T be bits of the partition of 

R" associated to PaeesesPy . W(S) and WT) are then 

bits of the partition of BR" associated to Pre1re0Pg .
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Suppose 5 & adh(T) . Several cases may CCCur : 

a) If TM(S) & adh(W(T)) there is a sign condition 

on some Ps r<ig¢q which holds on S and not on T . 

B) If w(S) = M(T) and 5 & adh( (T)) we are 

reduced to the case n = 1 by looking at one fiber 

for TM; there is a sign condition on some P, 1£igr 

which holds on 5 and not on T . 

c) We are left with the case TS) 4 (TT) , 

TS) € adh(TM(T)) and § & adh(T) . In TW (WTI) T is 

bounded ( if it is ) by two roots ¥ and ¥ ( Y<¥) 

- or it is a root ¥Y - . We may choose s in § , s€ adh(T) 

t in T and a path in Rr" going from M(t) tc Wis) 

inside WT) excepted at Ws) . When we go from) tows) 

along I, Y and ¥ have limits $(TM(s)) and ¥W(s)) . 

Since sé& adh(T) SH ( the nt" coordinate of s ) must 

be outside [$(W(s)), Ms) , say s <¥ (Ms) ; 

we are led to a similar inequality when T is reduced 

to a root Y. Let Pp. be a polynomial of minimal degree 

amono those of PaseeesP which have Y as root ( with 

respect to X_ ) . We want tc show that either 

P.(s) # U0 and for all s' sufficiently near to s over 

TW(T) there is no root of Pols! vena! 0X) in [1 4x nf 

—Y 

I 

— eee 

ws) WT)
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9p or there is some derivative i which is not zero 
1 

ox 

at s and such that for every s' sufficiently near to s 

1 
over W(T) there is a simple root of J Pi in Jst ores nf 

1 
X 

and no other root on BERGEN . 9 n 

¢ . 

root of 9°Pr 

9X! 
5. 

S 

<= 

(Ss) I(T) 

In both cases there will surely be a sign condition 

satisfied at s and not on T . Now the proof of the result 

mentioned above 1s an easy consequence of the following 

fact : Ifp is a root of P over (TT) and xe (W(s)) is 

also a root of Ps with x _& @(M(s)) there is a root 

P. 
of © ij over W(T) , & , such that «<p and x Le (Ts) . 

2 X 
n 

This is so because the maximum of [PCs qvnnns_q0%) | 

on [x,» CWC) gives a root of (A where the sign of 
dX 

n 
P. : 

? jchanges and so this root must be the limit of a 
zr 

DAL 

2P . 
root & of j over I(T) . NR 

2X 
n
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Ye can now go back to the proof of our theorem . 

Let UR" he the set of (a,,...,a ) satisfying 

a quantifier free formula which is a boolean combination 

of things like P = 0 or P>»0 for P teloncging to a 

finite set PareeesP of polynomials of Z[Xyr ees X ] . 

The separation lemma gives Prager Poe ZR eau] 

such that the partition of Rr" assoclated to IE EREREL 

has the separation property . U is a finite unicn of 

bits of this partition : J = U 5. . 

i=1 
Suppose now U is an open set . Let C;be the conjunction 

of sign conditions which hold on Ss . The set cf 

(agyeeeya) satisfying w C, is U for if a bit 

T of the partition is contained in this set 

there is an 1 such that 5.C adh(T) which implies 

T€elU since U is open . 

This ends the proof of the theorem !
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Appendix 2 

Theorem : A coherent topos is spatial iff the category 

of its points is equivalent to an ordered 

set . 

The main idea of the proof and the following proposition 

1 were indicated by André Joyal . 

Let E be a coherent topos . £ is the classifying 

topos for some finitary geometric ( or coherent ) theory 

T . Let Ry be the logical category associated to T 

( see [8] ) . There is an equivalence between the 

category of models of T and the category ef logical 

functors from Rs; to the category of sets . Let 5(1) 

be the lattice of subobjects of the final object in Ry . 

S(1) as a category is a logical catecary and the inc- 

lusion I : 5(1) —> R: is a logical functor . 

By the construction of R. , S(1) is equivalent to 

the lattice of closed finitary geometric ( or coherent , 

or existential positive ) formulas of T with the preorder 

RB when A —>B is a theorem of T . In the following 

we shall identify these two lattices . 

A logical functor from S(1) to the category of sets 

factors necessarily through the lattice {0,1} and 

so may be identified with a prime filter on S(1) i.e. 

a subset F of 5(1) satisfying : 0 é F 1 &€F 

AvB eEFé6~~—— pA e&eF vB&aF , RAAB EF & AEF A Be F .
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The prime filter is the set of elements of S(1) 

which are sent on 1 by the logical functor . 

The inclusion I : 5(1) —— Ry induces then 

a functor I® from the category of models of T 

to the lattice of prime filters on S(C1) . If 

M is a model of T , 1%(M) is simply the prime 

filter of finitary geometric formulas satisfied 

by M . 

Proposition 1 : 1) For every prime filter F an 5(1) 

there exists a model # of T such 

that IX (MH) = F 

ii) For every model © of T and 

every prime filter F on 5(1) 

containing I1*(M) there exist a 

model WN of T and a homomorphism 

from M to N such that I*(N) = F . 

iii) If M and M' are two models 

of T such that IX(H) = I%(¢') 

there exist a third model N of T 

and homomorphisms MM —> NN and 

M' —2 I such that IX(N) = IX(M) . 

Proof : Let F be the set of negations of closed 

finitary geometric formulas which are not in F . 

We must show that T+ F + F has a model . If not 

there are A in F and B with 8 in F such that 

A —>B is a theorem of T , which is absurd .
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ii) Let D(M) be the set of closed atomic formulas 

with parameters in M which are satisfied by M . We 

have to show that T + F + F + D(M) has a model : 

the reasoning is the same that for 1 . 

iii) We have to show here that T + F + F + D(M) + D(M') 

has a model and we use the same reasoning . @ 

Proposition 2 : Suppose that there is at most one 

homomorphism between any two models of T . 

Let ff : M —> N be a homomorphism 

with I%(M) = 1™(N) . Then f is an 

isomorphism .. 

Proof : Let be any element of a model M of T . Since 

there is at most one homomorphism between two models 

of T , T + D(M) + D1), implies a, = a, ( DM), 

and DM), are two distinct copies of D(M) obtained by 

associating to each element b of M two distinct constants 

b, and b, ) . We can then find a finitarv geometric 

formula A(x) which is satisfied by a and such that 

A(x)A A(x') —> x = x' 1s a theorem of T ( we say that 

A is univalent.) . 

Consider now Ff : WM ——> [0 with I%(1) = 1%(n) . 

If r is a relational symbol of T and if in N we have 

r(f(a,),...,f(a )) , then in we have r(a yee. a) : 

Ue know that there are finitary geometric univalent 

formulas AgreeasA satisfied respectively by Buses 98 

in M . N satisfies the formula
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Ix... Ix [Fx hei da A Cx) A ce. An (x)] . 

This is a finitary geometric formula so it is also 

satisfied by {i , which implies that we have r(a yee.say) 

in M 

It remains to show that f is surjective . Let b 

be an element of N ; it satisfies a finitary geometric 

univalent formula 2 . In M the formula dx3(x) is also 

true . Let a be the element of 1 such that #9(z) . Then 

necessarily f(a) = hb . wn 

Proposition 3 : Suppose that there is at most cne 

homomorphism between any two models of T . 

Then I* is an equivalence of categcries . 

Proof : I~ is surjective on objects by proposi- 

tion 11 . It remains to show that it is full ( it is 

necessarily faithful ) . Suppose that we have FCG 

and M and N two models such that I%(M) = F and 

I*(N) = G . By proposition 1ii there exist a model 

M' such that IX(H') = G and a homomorphism from 

M to N' . By proposition 1iii there exist a model i" 

such that I®(N") = G and homomorphisms from } tc MN" 

and from ' to KN" . Hy proposition 2 these nomomorphisms 

are isomorphisms and so we get a homomorphism from 4 to { . ® 

flere is now the end of {the proof of the thecrem : 

dy Makkal and Reyes' conceptual completeness theorem 

( Theroem 7.1.8. p.204 in [8] ) since I* is an equivalence 

the classifying topos for T , i.e. E , is equivalent to
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the category of sheaves over S5(1) for the topology 

generated by the following covering families : 

A is covered by the (B,)5¢1 ( I finite and B;¢ 8 ) 

when A = Y B, . This topos is equivalent to the 

topos of sheaves over the following topological space : 

- The points are the prime filters on S5(i) i.e. in 

the case we consider isomorohism classes of models 

of T . 

- A basis of open sets is given by the sets 

A = {Flnrner} ( or {© | satisfies A 3 ) for 

A element of S5(1) ( i.e. closed finitary geometric 

formula of T ) .
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Subtoposes 04 the ning classifier 

E.J. Dubuc and G.E. Reyes* 

This paper is a corrected, simplified and extended version of a 

preprint with the same title written by the second author. It is divided 

in four sections. In §1 we give a (new) proof of the following theorem of 

M. Coste, M.F. Coste and A. Kock [1]: the generic model of an e-stable 

geometric theory of rings is of line type and (-)° commutes with colimits. 

In §2 we show that the Weil topos Sets" (described in [21]) is the classifying 

topos of the theory consisting of (all Loy’ geometric sequents true in all 

Weil algebras, and that this theory has a complete axiomatization given by 

the following two axioms: 

0=1=> | 

+4 => V (x-r)" = 0 
re 

nell 

We shall say that this theory is the Ls geometric theory of Weil 

algebras. In §3 we show that the theory of Archemedian real closed local 

R-algebras such that every element 1s either a unit or nilpotent 1s the 

Ls geometric theory of Weill algebras. We don't know yet the Lo theory 

of Weil algebras. We suspect it to be simply the theory of real closed local 

R-algebras. In §4 we extend the results of §1 to algebraic theories in 

general. 

We are grateful to M. Makkal who discovered a mistake in the preprint 

refered to above (cf. §2). We also acknowledge conversations with A. Joyal, 

A. Kock and R. Paré. 

* Research partially supported by a grant from the National Research Council 
of Canada.
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§1 Generic rings of line type and e-stability 

We shall be concerned with subtoposes of the ring classifier and, 

more generally, with subtoposes of the k-algebra classifier (for k a com- 

mutative ring with unit). Throught this paper, given any k-algebra A, we 

shall superline-it, writting A, to indicate the corresponding object in the 

dual category. 

Let k + I be a k-algebra of finite (linear) dimension n over k. For 
4 

any k-algebra k »~ A, we let A[I] = AQ I. Then A » A[I] is an algebraic 

functor (of degree n) (cf. §4) and it thus has a left adjoint A + A* such 

that kX;...X_] > kMX,...x 1] (cf. [5]1). It follows then that if A is fi- 

nitely presented, so is A*. Since clearly A[I] is also finitely presented, 

we have: 

Proposition 

The object I is exponentiable in the dual C of the category of 

finitely presented k-algebras. Furthermore, p = (-) 1 has a left adjoint 

q given by q(A) = A[I]. 

Remark 

A direct construction of this exponential is possible. For example, 

if A = k(x), ] divided by (Fg and I = k[e]l (the "dual numbers'), then 
= oF -1 — B 

= AX * = —_—) A A*, and A LX) (XT divided by (Fgo2 Y, 3X 8 

By definition, [A,p(k(t])] = [A[TI]1,k[t]] = [k[t],A[I]] = A[I]. That 

is, 1f U = [k[t],-] is the fortgetful functor cP NN Sets, and if we let 

Ufxl(a) = A[1], we have ULI] = [p(k(t]),-T
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Assume now that C is a site on the dual of the category of finitely presented 

k-algebras. Then, following [1] we say that C is I-stable if p is continuous. 

That is, there 1s a geometric endomorphism (P*,p,)» p* + p, = composition 

with p, and a commutative diagram: 

cE ¢ 
ep k[t] = p* € k(t] 

€ g’ 

¢cP* ¢ glI] = p*g 

Where 9 = # U = ¢ k[t] is the generic model, g[I] = defEP kel = #QULID, 

and # indicates the associate sheaf functor. 

Theorem 

Let C be a site in the dual of the category of finitely presented 

k-algebras. Then C is I-stable if and only if the exponentiation (-)et is 

n, 
the inverse image of an (essential) geometric endomorphism of C such that 

I g%" = gl11. 

Proof 

First notice that q is always continuous, and that given any sheaf 

Nv T IT -— — -— 

F in C and k-algebra A in C, ree) = FL (A) = F(AxI) = F(A). That is, 

(-)€! = q, (q, defined by composition with q). 

Then, if C is I-stable, that is, if p Is continuous, since q, 4 p,, 

it follows that p* = q, = (-y&L, On the other hand, if (-)&t is the inverse 

image of a geometric endomorphism (-)&1 = r* such that g[I] = rg, we have 

ep k[t] = r*¢ kt], which implies ep = r*c. Thus ep is continuous and thus 

p is (continuous) since € reflects coverings.
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Let T be a geometric theory of k-algebras, We say that T is w-stable 

if the site associated to 7 (on the dual of the category of finitely presented 

k-algebras) is I-stable, for every Weil k-algebra I (cf. §3). In other words, 

if gl1I] = ep kt] is a model (in the classifying topos) of T, for every Weil 

k-algebra I. 

Corollary 

Let T be a geometric theory of k-algebras. Then, T is w-stable if 

and only if for any Weil k-algebra I, (yl is the (essential) geometric en- 

domorphism of the classifying topos E(T) = ¢ of ¥ which classifies g7I]7. In 

particular, if 7 is w-stable, g is of line type and l-small objects (in the 

sense of [4]) are internally projective. 

Remark 

Given a point s of c, let s[I] be the point defined by s[I]*h = s*hp, 

where h is the Yoneda embbeding. If ¢ has enough points, then ¢ is I-stable 

if and only if s[I] is a point of ¢ whenever s is a point of ¢. This is 

clear since the family of points of C, by assumption, reflects coverings 

(use definition of s{I] above). This notion had been used in the preprint 

mentioned in the introduction. A. Joyal suggested to werk with the conti- 

nuity of p directly. 

nv 
If T has enough models (i.e., £(T) = C has enough points), then T is 

I-stable if and only if A[I] = A ® I is a model of T whenever A is a model of 

T. This was the original definition of A, Kock [3]. Theories with enough 

models are, for example, those which are either coherent (i.e. finitary) or 

By w geometric with countably many axioms (cf. [6] Chapter 6). A different 

type are those who consist of (all) geometric sequents true in a given class 

of k-algebras.
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§2 What does the Well topos classify in the ianguage of R-algebras? 

Following [2], we call Weil Topos the category sets’ of set valued 

functors on the category ! of Weil algebras. Recall that a Well algebra is 

a finite dimensional RR-algebra of the form R ® M such that every element 

of M is nilpotent. Finite colimits of Weil algebra are Weil algebras, as 

well as any quotient (# 0) and any sub-algebra. It follows then that (V 

has also finite limits (since given X = R® M and Y = R@®N, then 

XQOQY =ROMON 1s a product in ’). The real numbers R is a terminal and 
R 

initial object for Wl. We shall need the following lemma of general nature: 

Lemma 1 

Given any diagram IT ZX E in a topos E and a cone X, —> U in E, 

if: 

a) X + U is an epimorphic family 

b) For every non empty fiber product 

X «X xX + X there exist a «vy >» B in I such that X = X x X_ (together 
a ay B 8 Y ay B 

with the projections). 

Then, Xx, + U is a colimiting cone for X. 

Proof 

Check that any cone X_ + F is a compatible family (with respect to 

X, x Xg) Then, the claim follows since in a topos all epimorphic families 

U 

are effective.
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Theorem 

Let C be a site on the dual of the category of finitely presented 

R-algebras. Consider the following 3 conditions: 

0) For any Weil algebra X ¢ (WW, the representable functor C XT Sets 

is continuous 

1) The empty family co-covers the null ring in C 

a 
2) The family R(t] ——> X) exe co-covers in C. 

y 
Then, 0), 1) and 2) hold in C if and only if C is equivalent to the 

n, 

Well Topos in such a way that to the generic model g = ¢ R[t] ¢ C cor- 

responds the forgetful functor U sets”, 

Proof 

Assume 0), 1) and 2). By 0) we obtain a continuous functor 

c 3 w > Sets which induces a geometric morphism (a*,q,) making the following 

diagram commutative: 

* 
sets? 9 

Nk q Rt] = u 

TN, q*g = U 

On the other hand, the inclusion weP cl C 1s (vacuosly) continuous 

and hence induces a geometric morphism (i*,i ) making the following diagram 

commutative: 

%* Nn 

Sets” Ax, ¢ 

[n Ie i*hX = eX, X e W. 

o i Ww? — ¢
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To prove the theorem we have to check that there is an isomorphism of 

R-algebra objects i*ll ¥ g (that is, 1i*q R(t] ~ € R(t] for the co-R-algebra 

object R[t] ¢ C). Let (R[t] = xX), = (hk 2 gs a(t) = 6(idy) €e Xe WU, 

be the canonical diagram of ll, The family i*hX ixe) i*ll is a colimiting 

cone, and there is a cone ex £0) | g. This induces a morphism of IR-algebra 

objects gry 2 gd such that ¢i*(8) = e€(a). On the other hand, it follows 

immediatly from condition 1) and 2) that the cone eX _ela) | g satisfies the 

hvpothesis of Lemma 1. This shows. that ¢ is an isomorphism. The converse 

is immediate. Suppose the equivalence to be given by a pair of functors 

q* and i* as before. Since [-,X] = evyq = ev,q*e (where evy is the evalua- 

tion in X functor of the Weil topos), condition 0) holds. Conditions 1) and 

2) follow since there are enough points of the form [-,X] = ev,.q¥e, with 

X e W, 

Corollary 

The forgetful functor U € Sete” is the generic model of a (geometric) 

theory T in the language of R-algebras if and only if T has a complete axio- 

matization given by the following two axioms (in L.)" 

1) 0=1= 4 

2) Ya V x)" =o 
reR 

nelN 

Proof 
Immediate if theories are viewed as sites (see e.g. [6]). All there 

is to verify is that REX py is a Weil algebra.
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All such theories are thus the same, that we will denote by 1, 

Remark that 1, is the theory of (all) the geometric sequents true in all 

Well algebras. We shall call 1, the geometric theory of Weil algebras. 

Proposition 

Condition 2) in the theorem is equivalent to the following condition: 

3) 1) C has enough points 

ii) Every (left exact) continuous functor C 2, sets (i.e., every 

point) is a filtered colimit of representable [-,X], with X ¢ W. 

Proof 

Consider, for each (fixed) A ¢ C the following families: 

W) px) B20 sea) a11 A 2 x, X € U. 

0A 0 
(2) [A,X] — pA), all (-,X]——> p, X € W. 

It is an immediate consequence of Yoneda's lemma that (1) is a surjec- 

tive family if and only if (2) is a surjective family. Condition 3) ii) 

means that for every point p, the family (2) is surjective. It follows then, 

by 3) ii) that the family A = X, X ¢ W, co-covers A in C. Taking A = R[t] 

this shows that 3) implies 2). Assume 2). Then, from the theorem it follows 

that C has enough points of the form C HET? SIN Sets with X ¢ W. Since for 

each A € C each one of these points 1s continuous with respect to the family 

A2— X, Xe W, 1t follows that A232 X, X € W co-covers A in C. Thus 

for any p as in 3) ii), the family [-,X] ——> P, X € W, 1s an epimorphic 

family in sets’. Given [-,X] 2 P and [-,Y] ——> p, the fiber product



[-,X] x [~,Y]1s represented by [-,Z]where 2 ¢ X x Y is defined by: 

P 
2 = {(x,y)]|6 R[t](x) =n R(tI(y)}. It is not difficult to check that 

Z ¢ W and that it satisfies the required universal property: 

X 

f rd [ry ¥f,g such that 

6Z(n,) = nd(n,) and AZ - - - > 3 SA(F) = nA(g) 
Sn 

Y 

Thus the hypothesis in lemma 1 are satisfied. This concludes then the proof. 

We remark that in condition 3) 11) we can assume the [-,X] Sb _, p to 

be sub-functors. The image of 6 is represented by [-,Z], where & is X divi- 

ded the congruence x ~ 0 <=> 8 R[t](x) = 0. Since by condition 1) 0 #1 

in p(RLt]), 1 is not congruent to 0, and thus 0 # 32 ¢ W. In fact, the 

converse is also true. If[-,X]>——> p, Xe I) i8 a colimit diagram, then 

p(0®) = # and since there are enough p's (by 3) 1)), the empty family covers 0. 

Corollary 

The fortgetful functor U sets” is the generic model of a (geometric) 

theory T in the language of R-algebras if and only if T satisfies the fol- 

lowing conditions: 

0) All Weil algebras are models of 7 

3) T has enough models and every model of T 1s a filtered colimit of its 

Weil sub-algebras. 

It follows then that T = Tu
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Proof 

Immediate if theories are viewed as sites (see e.g. [61]). 

Remark 

M. Makkai has noticed that no L, " geometric theory in the language 

1 

of R-algebras can have Sets as its classifying topos. (Otherwise 

a 
——— 1 - . (RL t] > X) ext VOuld have a countable sub-cover) 

We shall exhibit our L, w geometric theory Ts satisfying o) and such 

1 

that every model is a filtered colimit of its Weil sub-algebras. It follows 

then that Te does not have enough models, and that the models of Te are 

exactly the same that the models of Te 

Let T be the L, © geometric theory whose generic model R satisfies 

1 

the following axioms 

1) R is a local ring 

2) R is real closed or, equivalently, R[1] is separably closed (cf. [9] 

for an explicit coherent axiomatization of this notion). 

3) R is Archemedian, that is, ¥x ¥y (x > 0 >» V nx > y), where x > y 
2 n>0 

stands for 12 (2 invertible A x~-y = 27). 

4) Every element of R is either invertible or nilpotent, that is, ¥x (x 

invertible v V x = 0). 
n>0 

We define 1 = FT u A(k) = the theory of k-algebras satisfying 1)-4) 

in the language of rings with one constant for each element of k.



-111l=- 

Then clearly every Weil algebra is a model of LA and furthermore, 

every model of Tn is a filtered colimit of its Weil sub-algebras. For this 

last claim, see Lemma in §3.
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§3 The L, w geometric theory of Weil algebras 

1 

In this section, we prove that the theory Tp introduced in §2 is a 

complete axiomatization of the L, w geometric sequents true in all Weil 

1 
R-algebras. 

Before turning to the proof, we shall prove a simple (and well known) 

Cohen's type theorem on the existence of coefficient fields (cf. [9, Cor 2, 

page 280] for Henselian local rings of characteristic 0 (i.e. Q-algebras). 

Proposition 

Let R be a Henselian local ring of characteristic 0. Thus the ca- 

t 

nonical map R —2 kp has a section, i.e., there is a ring monomorphism 

i: kp + R such taht tgol = eg In particular R ko @® me. 

Proof 

By Zorn'slemma, we can find a subfield K ¢ kp with a map i: K > R 

such that the following diagram commutes 

R 
Q >> R—> k 

> R 

7 
K 

0 I 
kp R 

and which is maximal in the sense that i admits nc proper extensions to 

K' oo K(k' c kp). We claim that K = ko If not, there is a ¢ kp \K. If o 

is transcendental over K, we extend i to K(a) c kp by sending ao into any 

B € ea). This is possible, since B is a unit. If o is algebraic over 

K, let p(t) e¢ K[t] be the irreducible (monic) polynomial of a over K. Since
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ch(K) = 0, p'(a) # 0 and hence a can be lifted to a root 8 of p(t) in R 

(which is a K-algebra). We extend i to K(a) by sending a into 8. In any 

case, we have contradicted the maximality of (K,i) and this shows that 

K = kp ~ 

We have proved that the exact sequence 0 - my, > R —>> ko +0 

splits and this implies that R A kp ® mp. 

Theorem 

If ELT] 0, where o 1s a sequent ¢(X) => ¥(%) with L, o geometric 
1 

formulas ¢,¥Y of the language of Tg» then there is a Well R-algebra X such 

that o is false in X. 

Proof 

By using the formal system introduced in [6, Chapter 61, we refor- 

mulate the hypothesis as follows: 2 ¥ o. 

We may clearly assume that ¢ is coherent and ¥ = V {v_: n > 0} with 

Yo coherent (by noticing that a L, o geometric formula is equivalent to a 

1 
countable disjunction of coherent ones). 

Let k ¢ IR be any countable ring with 1 such that all the interpretations 

of the countable many constants of ¢, {vy : n > 0} belong to k. 

A fortiori, T. b* 0 and by the completeness theorem for countable 

L " geometric theories of [6, Chapter 6], there is a model R of T. such that 
1 

oc 1s false in R.
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For a commutative ring k with 1, we define a Well k-algebra be a 

finite dimensional k-algebra of the form k ® m such that every element of m 

is nilpotent. 

Lemma 

Any model R of the theory T (defined in §2) is the filtered lim of 
-»> 

its Weil ko-algebras. 

Proof 

n 
Since ch(R) = 0, Ry k @m by the Proposition. For each <€pseeer€ > € Wp 

we let 

°1 
kp <Epreeer€ > = a, Loan €1 +e Ey 1(kp) c R 

(where 1 is the section of te given by the Proposition). Since each €y is 

nilpotent, this + has only a finite number of terms and so kp <EpeeeE is 

a Weil kp algebra, Obviously R = lim kp <€peeeE and this system 

> _n 
is filtered. SEpeceEp7EMR 

Coming back to the proof of our theorem, we notice that were co true 

in each Weil kp-such algebra of R, 0 would be true in their filtered lim, 

i.e., in R. Therefore, there is a Weil ky -algebra X and a sequent a of 

elements of xX, such that X E ¢fal and X, ¥ vy [al for all n > 0. 

To continue the proof, we need the following straightforward reduc- 

tion of truth in a finite dimensional k-algebra (e.g. a Weil k-algebra) to 

truth in k.
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Lemma 

(cf. [3] for a particular, but representative case). 

Assume that k » I is a k-algebra of dimension n. For any finitary 

sentence o of the language L, of the theory of I-algebras, there is another 

finitary sentence o1 of the language L as the theory of k-algebras such 

that for every k-algebra k + K. 

I@K Eo iff KF og 
k 

Proof 

By hypothesis on I we have a commutative diagram of k-modules 

A *) | 
Nn 

and we can describe the multiplication table of I by means of the basis 

@1secese obtained (via the isomorphism) from the canonical basis of kK": 

n 
°° = z Yi 4k ey, with Y4 5k in k. 

k=1 

For each term t of Los we define (by recursion) a sequence (ty) 
i<n 

of terms of L as follows: 

n 

1) if t = ae I, ty = a; in L (where a = z ae) 

i=1 

2) if t = =x, ty Tox 

- ! 1" — ’ "” 3) if t = ¢t' +t", t, = ty tt] 

4) 1if t = t' - t", t, = I vy ACI 
17 jk=1 3k 73 k
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We now define 6; (x95. cesX 3Y se esY see nsZysene 2) for each formula 

d(X,¥,.0.,2) of L; by recursion in the obvious way, e.g., if ¢ = t' = t", 
n 

= P= ths = = co . then 91 = st ty ts if ¢ = J x 6, then 91 dx Ix 6, etc 

Via the base extension k + K, (*) is transformed into the new 

diagram 10K 

yd 

Nu > 

and we prove, by induction on ¢, 

KE #L(agsevesa ),y(brsenesd Vyenny(eysenn,e )] AEE 

K E 0 lagseeesa hbyseeiyb senescence 1 

(K" is given the obvious K-algebra structure via the isomorphism). 

For ¢ atomic this is essentially the statement that the multiplication 

table of I ®K is the same as that of I (in terms of the corresponding basis). 
k : 

To finish the proof of our theorem, we consider the following diagram 

(noticing that kp may be embedded in R, since it is Archemedian) 

LN S—> ’ 

lo 
R >—m—> X Or =X
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By Tarski's theorem on the elimination of quantifiers in the theory 

of real closed fields or the fact that this theory is model complete 

(cf. (7D), kp >———> R is an elementary extension. The previous lemma allows 

us to conclude that Xx, + X is again an elementary extension (of Weil alge- 

bras) and, in particular, 

X |= ¢lal and X F v (al, for all n > 0.
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§4 The (general) notion of stability 

The notion of e-stability depends ultimately on a purely algebraic 

construction, that is, the multiplication table of the ring of dual numbers. 

In this section we clarify the mechanism that stablish this dependence, and 

we thus extend the results of section §1 from the theory of R-algebras to 

algebraic theories in general. 

Let k be any commutative ring with unit and let ¥ = {A LA. 0A yl), 

A = K(X 5ee0,X ] be the algebraic theorv of k-algebras. A finite n dimen- 

sional k-algebra 7 A Sets determines, via its multiplication table, a 

generic I. That 1s, a R-algebra object p in T. Thus, p is a co-k-algebra, 

structure in the polynomial k-algebra A_ = kX X;...X 1, or, equivalently, 

a product preserving functor 7 2 > 9. This is done as follows: Let 

epessese be a (linear) base of I. The products of the es determine a mul- 

tiplication table e184 ©: 149%” 14k c which means that the es can 

be considered as symbols (or indeterminates) satisfying the relation (1). 

Given any s-ary polynomial F, we can compute then n ns-ary polynomials £ such 

that F(..., ERE) = EF Cee Ky ney We define then p by: 

(A, £ A) —> x Lf), KE). 

We call I-construction the (functorial) process which to any k-algebra 

object in a cartesian category E, 7 2 E, it assignes the R-algebra object 

T Xpd | E defined as the composite I L217 x, E. One verifies immedia- 

tely that, for k = Al = free algebra in no generators, A = A lpl % I by means 

of an isomorphisms that transports the canonical base of A into the (given) 

base epe,,. se of I. It follows that if T A, Sets 1s any k-algebra, then 

A" = Alp] = A x R[p] ¥ A © I, which means that the tensor product is built



up from A in the same way that I is built up from k. We see that, in par- 

ticular, the algebraic functor induced by p preserves finite presentability, 

and thus it restricts into an endofunctor of the category of finitely presen- 

ted k-algebras. What follows is motivated by the preceeding discution. 

Let C —£—> C be a left exact endofunctor of a cartesian category C. 

Given any left exact functor C xX, E into a cartesian category E, let X[p) 

be the composite C £2 _.¢ xX, E. 

Definition 

We say that a site structure on C is p-stable if any one of the fol- 

lowing three (equivalent) conditions are satisfied: 

1) C —2— C 1s continuous 

11) Given any fiber C x E in a topos E, Xp] is also a fiber 

i111) elp]l is a fiber (for e€ = the generic fiber) (by fiber we mean a left 

exact functor that sends coverings into epimorphic families). 

Recall that condition ii) means that there 1s a geometric morphism 

nv 

E » C which classifies X[P]: 

cE ¢ 

p* — p, 
€ X 

p*e = X[p J 
0 _p* E o 

ny 

Recall also that when E = C and X = ¢, then p, 1s given by composing 

with p(which sends sheaves into sheaves).
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Observation 

If p has a continuous left adjoint C 4 C, q ~ p, then the 

functor p* 1s given by composing with q, and the geometric morphism that 

classifies e€[p] is essential. 

Proof 

Nv AY) 

Let q, = composing with q: C + C. Since q -| p, then q, ~ Py. 

By definition p* - P+ Thus q* ~] q, = p* and p is therefore essential. 

Let 7 ={AA...A...} be any algebraic theory and T £2 _1a product 

preserving functor. There is then a colimit preserving extension of p (that 

we denote also by B)to the category A of algebras: T°P + A B25 A which 

has as right adjoint A 4 A the algebraic functor A ——> A[p] induced 

by p. 

After dualizing we have then: 

Proposition 

Let T be any algebraic theory and 7 LL 71a product preserving 

functor. Consider the commutative diagram: 

7-2 1 

c£—¢ 

where C 1s the category dual of that of finitely presented algebras, and 

Cc -B— C 1s the left exact extension of T ==> T. Then: 

a) If the algebraic functor induced by p preserves finite presentability, 

then p has a left adjoint q defined by q(A) = Alp].
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b) If q is given by q (A) = A x I for some (fixed) I ¢ C, then I = Ap] 

I 
and p = (=). 

Proof 

Only the last statement needs some proof. By assumption, 

A x I = A Trl. Since A_ is the terminal object, the first equality follows. 

For the second equality, one verifies immediately that any left adjoint of 

an algebraic functor is an extension of the (inducing) product preserving 

functor between the theories. 

In particular, we have proved the following: 

Corollary 

Let 7 be any algebraic theory, 1 £ T a product preserving functor, 

and C —£—> C the left exact extension to the dual of the *category of finitely 

presented algebras. Given a p-stable site structure on C (cf. definition 

above), consider the following two conditions on the algebraic functor q 

induced by p. 

a) It preserves finite presentability 

b) It is given by cartesian product with a (fixed) algebra I ¢ C, which is 

necessaraly equal to Alp] (notice that bt) => a)). 

Then: 

If a), the geometric morphism p that classifies ep] is essential. 

If b), the inverse image p* = q, is the exponentiation with el, p* = (-)cL, 

(To verify that last statement, notice that (=) 1 is always given by 

(I x (=), = q,).
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FORMALLY REAL LOCAL RINGS, 

AND INFINITESIMAL STABILITY. 

Anders Kock 

We propose here a topos-theoretic substitute for the theory 

of formally-real field, and real-closed field. By 'substitute' 

we mean that the notion is not just a lifting of the correspon- 

ding classical notion, but at the same time a generalisation which 

takes into account the mathematical applications of the specific 

topos—-theoretic features of the notion. Thus in [1], it was argued 

that the good topos theoretic substitute for the notion of field 

is the notion of local ring object. Rousseau, in [6], has argued 

that topos-theoretic results often mathematically are identical to 

classical results which depend smoothly on a parameter. 

We study here properties which depend smoothly on parameters 

in the sense that they are infinitesimally stable: they are not 

changed by infinitesimal changes in the parameters. More precisely, 

we study ring-theoretic properties ¢ 80 that if ¢ holds for a given 

object A, then ¢ also holds for the ring object A[€] of dual 

numbers over A. It was precisely the ring-of-dual-numbers that 

motivated [1]. Clearly, the notion of field is not infinitesimally 

stable, whereas the notion of local ring is. 

-123=~
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1. Two basic ring constructions 

If A is a commutative ring object in a category E with 

finite products, then there are several ways of making AxA into 

a commutative ring object. We are interested in the following 

two classical ways (in both cases, the additive structure, or 

even A-module structure, is coordinatewise): 

Ring of dual numbers: A[€] = AxA, with multiplication 

(a,b) (c,d) = (a c,a*d + b.c). 

Multiplicative unit 1 is (1,0). The element (0,1) is denoted 

£, £2 =0. 

Gauss-numbers: Ali] = AxA, with multiplication 

(a,b) ® (c,d) = (a.cC - b.d,a-d + b.c) 3 

Multiplicative unit 1 is (1,0). The element (0,1) is denoted 

i; 1% = -1. 

Assume now that E is a category where coherent logic has 

a good semantics (say, E a topos or a pretopos). Consider any 

finitary coherent formula ©(2y700.,2) (in the sense of [3], see 

e.g. [5] §5) about n-tuples of elements from rings. Then clearly 

there is a simple way of constructing a coherent formula Pe 

with 2n free variables such that for any ring object A,



AF oc (X,Y q0reeesX 0Y) 

(1.1) iff 

Ale] Po((xqy,yq) seve, (Xx hy )) 

(there are several examples below). Similarly, an n-ary formula 

¢® gives rise to a 2n-ary formula 9, such that (1.1) holds when 

®c and A[€] are replaced by ©, and A[i], respectively, 

Therefore also, if T is a coherent theory of commutative 

rings, there is a coherent theory Te such that AFT, iff 

Al€] FT. similarly with T.: A FT, iff A[i] FT. 

We say that a theory T is e-stable or infinitesimally 

stable if A ET implies A[€] ET, or equivalently if Te © T. 

By the well known metatheorem for coherent logic [3] we have in 

particular: 

Proposition 1.1 A coherent theory T of commutative rings 

is e-stable if and only if, for every T-model in Set, A[€] is 

also a T-model. 

An immediate application is 

Proposition 1.2 The coherent theory To, of local rings is 

e-stable. 

For, if A is a local ring in Set, then so is A[€]. Note 

also that no coherent field notion is stable, for A[€] is not 

always (in fact never) a field.
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Remark 1.3 One could similarly talk about i-stable proper- 

ties and theories, but we do not know of any significant example. 

The notion of local ring is not i-stable: First, we note that in 

Ali] = AxA, an element z = (x,y) is invertible if and only if 

- -1 - - 
x%4+y? is invertible, and then =z La (x+y?) Zz where 2z = 

(x,~y)). Next, let F be a field in Set of characteristic 

: . . 2 
+ 2, and suppose there is an element Jj €F with j= = -1 (for 

instance F = €). Then certainly F is a local ring, but F[i] = 

FxF is not. For, (1,3) and (1,-j) are non-invertible since 

1243° = 0, but their sum is (2,0) which is invertible. So F[i] 

is not local. 

2. Some e-stable theories 

Consider for each natural number n the coherent sequent S.3 

n 

vx X_ VV (x, invertible) = ) xX 2 is invertible 
17°77" n 7 i=1 Ti i=1 71 

We let Ter denote the coherent theory of commutative rings whose 

axioms are the sequents S. We call Ter the theory of formally- 

real rings. 

Proposition 2.1 If K is a field in Set, then K F Top 

if and only if K is formally real in the classical sense: ' -1 

is not a square sum' (cf. e.g. [2] XI.2). 

The proof is straightforward.
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Proposition 2.2 The theory Tor of formally-real rings is 

e-stable. 

Proof By Prop. 1.1, it suffices to consider a formally real 

ring A in Set and prove that A[€] is formally real. Let 

(%5,¥;) € Ale] = AxA for i =1,...,n. Now (x,y) €A[€] is inver- 

tible iff x is invertible in A. So one of the (x;,v;)'s is 

invertible iff one of the X;'s is invertible, which implies that 

Ix, is invertible (by formal-realness of A). But then also 

2 
(Ix; 7, 1 2x.y,) 

is invertible in A[€]. The displayed element is the square sum 

I of the (x:,¥;) S. 

Porposition 2.3 If A is-'formally real and local, then Ali] 

is local. 

Proof easy, using part of remark 1.3. 

Clearly, no coherent theory of algebraically closed field is 

e~-stable, because the notion of field is not e-stable. But the no- 

tion of algebraically closed local ring is not e-stable either 

(algebraically closed ring means: monic polynomials have roots). 

For, if it were, C€[€] in Set would be algebraically closed local, 

which it is not, since € has no square root. 

However, Wraith [7] has displayed a coherent theory Tse of 

'separably closed local rings'. It has the property that for a ring 

A in Set, AF Tse if and only if A is a Henselian local ring



with separably closed residue field (or: A is strictly Henselian, 

in the terminology of [4], chapter VIII). The existence of such a 

theory has been known for some time, using theorems og Makkai-Reyes, 

Deligne, and Hakim; cf. [3]. 

Propositoin 2.4 The theory Toc of separably closed local 

rings 1s €-stable. 

Proof. Again, by Prop. 1.1, it suffices to consider rings in 

Set. Let A be a Henselian local ring with separably closed res- 

idue field k. Then A[€] is local, and its residue field is also 

k. So we just have to prove that A[€] is Henselian. We use the 

description of this notion given in [4] VII §3 prop.3. no. 2, so 

we must prove that for monic polynomials P(X) over A[€], simple 

roots in k 1lift to A[€]. Now we have canonical ring maps 

Ale] —— A —— k . 

Q 9 

If P(X) is a monic polynomial over A[€], we denote its image 

under gq, and q,eq, by P(X) and P(X), respectively. Assume 

P has a simple root ¢€ k. Since A is Henselian, this root may 

be lifted to a root b€A of P(X), and b is necessarily a simple 

root (meaning P'(b) is invertible). Now 

P(X) = P(X) + €.0(X). 

To lift b means to find a c€A so that P(b + €c) = 0.



Now 

P(b + €c) = P(b + €c) + €.0(b + €c) 

= P(b) + €c P'(b) + €-Q(b) + € (Ec Q'(b)). 

The first term vanishes since P(b) = 0. The last term vanishes 

since €? = 0. Thus to find <c¢ means to solve 

0 =€cP'(b) + €Q(b) 

whi¢h can be done since P'(b) is invertible in A. This proves 

the proposition. 

3. A substitute for the notion of real-closed field 

We shall say that a ring object A is a separably-real-closed 

local ring if A is formally real local, and A[i] is separably 

closed (A[i] is local by prop. 2.3). 

Let, as above, Tp — and Tg be the (coherent) theories 

of local, formally real, and separably closed local, rings, respec- 

tively. Then the theory of separably-real-closed local ring is 

Toren = TLV TprY (Toe) iv 

and as such, it is a coherent theory. 

Proposition 3:1 The theory TsreL is e-stable.



Proof The theories Tp Teg? and Tse are e-stable by 

propositions 1.2, 2.2, and 2.4. The result will now follow from 

the following general 

Lemma If T is an €-stable theory, then so is T,. 

Proof We have 

(AF T;) = (Ali]l FE T) =» (A[i] [€]F T) 

(by €-stability of T) 

= (Alelli]l FT) = (al€] EF T,), 

since obviously Alelli] = Alille]. 

Besides (or related to) the €-stability of Tgperr 2 Justification 

of this theory lies in the followin conjecture: The Dedekind reals 

in an elementary topos with NNO satisfy TSRreL: A support for the 

conjecture is 

Proposition 3.2 The sheaf R of germs of continuous real-valued 

functions on a topological space X is a separably-real-closed local 

ring object. 

Proof We have R[i] = C = sheaf of germs of continuous complex- 

valued functions. To see that C Ek Tgcr it suffices, since Tgc is 

a coherent theory, to see that for each x €X, Cy = Toc But Cy 

is well known to be Henselian (and have € as residue field), see 

e.g. [4] VII §4.



We note that R is not a real-closed local ring in the sense 

of R [i] = being an algebraically closed local ring. For, if it 

were, then one could solve x2 = id around the origin of X = C, 

which cannot be done continuosly (there is homotopy obstruction). 

4, Strict order structure. 

In this section, A will denote a fixed separably real closed 

local ring object. Any formally real ring, and in particular A, 

is an algebra over the rationals 0, for, n = 12 +...+ 12 (n times) 

and is thus invertible. 

We equip A with a binary "Strict order relation" < by posing 

for arbitraty a: X — A 

a>0 iff | x 3y (v2 = a and y invertible). 

We put a>b if a-b>0. 

Proposition 4.1. The following coherent sentences hold: 

1) Va: a>0 = a invertible 

2) va, a, a, >o0 and a, >0 implies a,-a, >0. 

3) Va: a invertible implies a>0 v (-a) >0 

4) vVe,f: e>0 and f£>0 implies e+f>0 (and hence a, >a, and 

b,>b, implies a, +b, > a, +b,). 

5) Ve,f: e+f > 0 implies e>0 v f>0 . (I am indebted to Peter 

Johnstone for this observation,)



-132=~ 

Proof. Again, by coherence, it suffices to prove these in Set. 

The first and second are immediate. To prove the third, consider 

the monic polynomial x? - a. Since A[i] is separably closed 

and 2 is invertible, this polynomial has a root, x+iy , say, with 

Xx and y € A . So 

(x+iy) 2 = a 

that is, 

(4.1) x? - v2 = a 

and 

(4.2) 2xy = 0. 

Since a is invertible, we conclude from (4.1) and localness: 

X invertible or y invertible, 

whence from (4.2) 

y =0 or x = 0. 

= 2 _ _ 2 _ If y=0, x*“=a. If x=0, y° = -a, whence a>0 or (-a)>0, 

respectively. 

To prove 4), assume x? = e and vy? =f, with x and y inver- 

tible. By A being formal-real, we conclude e+f invertible so by 3) 

etf>0 or -(e+f) >0.



We just have to exclude the latter possibility. But -(e+f) >0 

implies 

(x2 + y?) = —(e+f) = z2 

for some invertible 2z, whence x2 4y Zax? = 0, contradicting formal 

real—-ness. 

To prove 5): if e+f£>0, then e+f is invertible. Since A is 

a local ring, either e or ff is invertible, say e is. Then by 3) 

either e>0 (in which case we are done) or (-e) > 0 , whence 

f = (e+f) + (-e) >0 by 4). 

Corollary 4.2 The relation > is transitive. 

Proof ((a>b) and (b>c)) implies ((a-b) >0 and (b-c) >0), 

which in turn implies ((a-b) + (b-c) >0), thus a-c>0, thus a>c. 

Corollary 4.3 if n is a positive natural number, then n>0: 

and n_ | >0 in A. 

Proof. By prop. 4.1(3), it suffices to exclude -n>0 and 

-n" >0, which is easy. 

We now leave the world og coherent logic by introducing the - Y 

predicate '<'. We put b <0 iff Va: a>0 implies a>b. 

Also, put b< Cc if b-c <0. 

Proposition 4.3 Va,b: a<0 and b<0 implies a+b <0.
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Proof. Let c>0 . We must prove a+b < c . Now cc = %c +%c , 

and %c > o by c¢>»> and Coroll. 4.3.. Thus (a<kc) and (b<kc) , 

whence a+b < %c+k%c=c (using Prop. 4.1 (4)). This proof is intui- 

tionistically valid, hence valid in E . 

Again, it is clear that this Proposition implies the transi- 

tive law for < . Also, Va: a<a , so that < is a preorder. We 

cannot conclude that it is a partial order. 

The next Propositions have evident corollaries obtained by 

adding elements to both sides of the various (strict or nonstrict) 

inequality signs. We omit these corollaries. 

Proposition 4.4. Va,b : a> and b>o implies a+b > o . 

Proof. Since Vd: d<o implies d<a , Wwe also have 

Vd: d < b implies 4d < a+b . 

In particular, this holds for 4d = 3b , thus o< %b < a+b , 

whence a+b > o by transitivity of > . 

Proposition 4.5. For all a and b , we have 

1) a>o implies a>o 

2) a>o and b>o implies ab > o 

3) a>o and b>o implies a‘b > o . 

Proof. 1) If a> and c¢<o , then by transitivity of 

<, c<a . Since this holds for any c¢<o , a>o . 

2) The following corrects my erroneous proof in the originally 

circulated version (June 1977) of the present paper. It depends 

on the following Proposition, due to Peter Johnstone, this Pro- 

position at the same time refutes a remark to the contrary effect 

in the June 1977 version.
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Proposition 4.6. We have 

- (z2>0) «= z<0 . 

Proof. By Prop. 4.1. (5) we have 

Vz,y : z2+y > O => Z2>0 Vv y>0 

hence 

Vz,y : z+y > 0 A =(2>0) - y>o , 

hence 

Vz =(z>0) =» [Vy : z+4y>0 = y>0] . 

But it is easy to see that the.formula in the square bracket 

is equivalent to z<o : 

Vy ¢ 2z+y > oO = y>o 

4p 

Va : z+(a-z) > o = (a=2z) > © 

<p 

Va ¢ a > o =» a> z . 

This proves the implication = . For the other one, 

observe that 

Zz<o0 A (2z>0) =» z>z , 

using the definition of < . But z>z is false. 

Proof of Prop. 4.5.(2) and (3). Assume a>0 and b>o . 

To prove a+b>o0 , it suffices to prove = (arb)< o . But if 

ab<o , a+b is invertible, so in particular, b is , by Pro- 

position 4.1.(3), b>0 or b<o . By Proposition 4.6., b<o 

is incompatible with b>o , so that b>o . Similarly a>o . 

Thus a*b>0 , by Proposition 4.1.(2) , contradicting the as- 

sumption a+<b<o .



-136- 

Now (3) in the Proposition follows by combining (1) and 

(2) . Again, the present proofs are intuitionistically valid, 

hence valid in E . 

Let us finally remark that we cannot conclude a<b and 

bla implies a=b . (IR[e€] in Set furnishes a counterexample.) 
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REMARKS ON THE PREVIOUS PAPER 

Extracts from two letters from Peter Johnstone to Anders Kock, 

March 1978. 

Concerning your conjecture that the Dedekind reals are 

always a separably real-closed local ring: As you remark 

(Proposition 3.2.) this is true in any spatial topos, from the 

"classical" fact that the stalks of the sheaf of continous real- 

(or complex-) valued functions on a space are always Henselian. 

In fact this observation is sufficient to prove your conjecture 

in any Grothendieck topos, for the simple reason that "the gene- 

ric unramifiable polynomial over €" lives in a spatial topos. 

Explicitly, let f be a monic polynomial of degree n over ( 

in a topos ¢ . Then the coefficients of f define a geometric 

morphism Ff : € — Shv (€') , and f is unramifiable precisely 

if the image of f is contained in the open subtopos of points 

in where at least one of the hyperdiscriminants is nonzero. 

But over this space, the sheaf of continuous €-valued functions is 

separably closed, and so we can cover the space with open subsets 

on which the generic polynomial has a simple root. Pulling back 

this cover along f , we get a localization of ¢ over which ff 

has a simple root. 

Given that the result is true, there clearly ought to be a 

better proof of it than this. I suspect that in order to get a 

direct proof we are going to need a formulation of Tsrel which 

does not involve mention of the extension ring A[i] . 

I feel that there ought to be something analogous to the 

hyperdiscriminants which would tell you (in the classical case) 

when a given polynomial over a formally real field has at least 

one simple root in a formally real extension, but so far I have
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not found a way of distinguishing between real and complex 

roots that can be expressed coherently. 

Re-reading what I wrote earlier, it occurs to me that 

perhaps the theory of separably real-closed local rings needs 

to be written in the language of ordered rings rather than the 

language of rings. Define the theory OLR of ordered local 

rings to consist of the theory of rings plus a unary predicate 

P satisfying 

P(a) b— 3b (ab=1) 

3b (ab =1) }— P(a) v P(-a) 

P(a) A P(b) I— P(ab)a P(a+b) 

P(atb) — P(a) v P(p) 

P(o) }— false 

Then the underlying ring of an OLR is formally real local, 

conversely, in Set every formally real local ring admits an 

ordering (since we can order its residue field, and then pull 

back). You showed that every SRCL ring admits a unique orde- 

ring (the positive elements being invertible squares). But in a 

topos it is not true even locally that a formally real local ring 

can be ordered: consider, in the topos of diagrams of the form 

. R 

LA” , the formally real field =~ 
~~, QV GR 

where the two embeddings are different. Now it seems to me that 

one has rather better chances, in the theory of ordered fields, 

of saying that a polynomial has a simple root in an ordered 

extension field (not, of course, the same thing as a formally 

real extension field), for example, with a quadratic one can 

make the assertion that its discriminant is positive.



ON THE SYNTHETIC THEORY OF VECTOR FIELDS 

Anders Kock 

The present note is an exposition of some of the general 

"synthetic differential geometry". The style of exposition is 

that it expresses maps, subobjects, and statements in set theoretic 

language. As long as one stays inside what Lawvere calls "cartesian 

logic", which is essentially negation free (but higher order) logic, 

then the maps, subobjects etc. described can be interpreted in any 

cartesian closed category with equalizers. So when we for instance 

say "ring", we mean "ring object in such a category". 

Let A be a commutative ring with 1. Let DcA be the set of 

elements of square zero. We say that A is of line type if every 

map t: DA is of form 

(0) t(d) = b+d-c vdebD 

for some unique b and c€A. Clearly b=t(0). We denote the 

c occurring here by t'(0). Similarly, if £f: AA is arbitrary, 

and ae€A, we define f'(a) to be that unique element in A such 

that 

(1) f(a+d) = f(a) +d.£f"' (a) vd eD 

(this element exists uniquely in virtue of A being of line type). 

We call (1) the Taylor expansion of £f at a. 

To amap f: A-»A we have thus associated a new map, f': A-A, 
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its derivative. It is easy from (1) to prove 

(f+g)*' = f' +g" (feq)'=f'-g+f-g’ 

(fog)' = (f'og) +g’ (identity) ' = 1 

(constant)' = 0; 

see [5]. In fact proofs of these laws explicitly using elements with 

vanishing square were used very early in the history of calculus 

(Fermat) , but were later abandoned, perhaps due to 

Proposition 1. No non-trivial rings in the category of sets 

are of lire type. 

Proof. If A is non-trivial, then D must contain more than 

just 0€D (for, otherwise the c¢ occurring in (0) could not be 

uniquely determined). So take some §€D with § #0. Define a 

function t: D-A by 

t(§) = 1 

’ t(d) = 0 for d#8§. 

By the line type axiom, t is of form t(d) =b+dec. Obviously 

b=0, so t(d) =dec vdeD. In particular 

1 = t(8§) = Sec. 

Multiplying this equation by 6, we obtain §=6%c=0, "(since 

§ €ED), contradicting the assumption § #0.



The proof hinges on the construction principle *, which has 

no place in cartesian logic. 

For the rest of this note, A is a fixed ring, assumed to be 

of line type. 

We note that the uniqueness assertion about <¢ in the line 

type notion can be formulated: for any c€A 

(ced=0 VAdED) =» (c=0). 

This principle, we refer to as "cancelling universally quantified 

d's". 

Geometrically, D is the intersection of the unit circle around 

(0,1) €EAxA and the x-axis Ax {0} cA xA, and is thus a unity of 

the opposites: "curved" and "straight". In fact, for any object M, 

a map t: D-»M should be thought of as a tangent vector on M at 

the point t(0) €M (Lawvere, [3]). Likewise (ibid.), a vector field 

X on M is a law which to each meM associates a tangent vector 

X(m,-): D->M. Thus, a vector field on M is a map 

X: MxD -» M 

satisfying 

X(m,0) =m VvmeEM 

Keeping a d€D fixed, we get a map 

(2) X(-,d): M > M 

called an infinitesimal transformation belonging to X.
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The classical work of Lie on differential equations (see e.g. 

[2]) makes wide use of these endomaps of M, which have no place 

in modern rigourous treatments. 

It is natural to ask whether X(-,d) is a bijective map, with 

inverse 

X(=,-d): M »> M. 

A condition on M that will guarantee this, and also will 

allow us to add tangent vectors at the same point, is the condition 

that M is infinitesimally linear in the following sense. For each 

natural number n, we let D(n) ca” be the subset 

n _ os 
{(dy,...,4) €A ld; eds =0 vi,j} 

(in particular al =o Vi). For i=1,...,n, we have the "i'th 

inclusion" 

incl: D » D(n) 

given by 

incl, (4d) = (0,0,...,d,...,0) 

(the 4d in the i'th place). 

We say that M is infinitesimally linear [6], [8], if for each 

n and each n-tuple t,: D-»>M (i=1,...,n) of tangent vectors at 

the same point me€M, there exists a unique 1: D(n) -M with 

(3) l1oinecl, = t, i=1,...,n.



In particular, if M is infinitesimally linear, and ty, t, 

are two tangent vectors at m€M, there is a unique 1: D(2)->M 

with (3) holding (n=2), and we define (t,+t,): D-M to be the 

map given by 

(t, +t,) (d) = 1(4,4) 

(note that 4d €D implies (d,d) €D(2)). 

Likewise, if t: D-»M is a tangent vector and a €A is a 

scalar, we define a*t to be the map D-M given by 

(at) (d) = t(a-d) 

(note that d€D and a €A implies a-+d €D). 

It is then easy to prove ([(6],[8],[9]) that the set of tangent 

vectors at any given point m of M becomes an A-module, with the 

structures thus defined (one uses D(3) to prove associativity; 

the higher D(n)'s are not used). 

To prove 

(4) X(X(m,d),-d) =m, 

we shall more generally prove, for (d,,d,) €D(2) 

(5) X(X(m,d,),d,) = X(m,d, +d,) 

(note that (d,,d,) €D(2) =»d, +d, € D, because when squaring d, +d,, 

the double product vanishes by assumption). To prove (5), note that 

both sides define maps 

l: D(2) »- M
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with loincl, =X(m,-) (i=1,2), and thus are equal, by the 

uniqueness assertion in the infinitesimal linearity assumption. 

We can add two vector fields X and Y on an infinitesimally 

linear object M, by letting (X+Y) (m,-) be the sum (as already 

defined) of the two tangent vectors at m, X(m,-) and Y(m,-). 

We can also multiply a vectorfield X with a scalar valued function 

¢: M->A, namely by putting 

(9X) (m,d) = X(m,@(m) 4d). 

In this way, the set of vector fields on M becomes a module over 

the ring of functions M-A. 

Recall [6] [7] that an A-module M is called Euclidean if 

each t:D-»M is of form 

t(d) = t(0) +d-v 

for some unique Vv €M, called the principal part of ¢t. 

Proposition 2. If M is a Euclidean A-module which is also 

infinitesimally linear, then addition of tangent vectors at a given 

me€M using infinitesimal linearity agrees with the obvious addition 

"adding principal parts". Similarly for multiplication by scalars. 

Proof. Let 

t, (d) =m+dev, i=1,2



be two vectors at m€&€M. Their sum, using infinitesimal linearity 

is found from 1: D(2) »M given by 

1(d,,d,) = m+d, ov, +d,-v, 

since loincl, =t¢,. So we have, for all d4de€D, 

(t,+t,) (d) = 1(4,d) = m+d-v, +dev, 

= m+de (v,+v,), 

proving that t, +t, has principal part Vi +V,. 

The last assertion of the Proposition is trivial. 

We henceforth assume that A is of line type (hence Euclidean 

as an A-module), and infinitesimally linear; and M is assumed to 

be an arbitrary infinitesimally linear object. 

We proceed to consider Poisson bracket of two vector fields 

X and Y on M. For fixed d, €D and d, €D, we may consider 

the commutator of the two bijective endomaps X(-,d,) and Y(-,d,) 

of M. In other words, for fixed m, we consider the "circuit" 

q: = X(p,-4,) 
(6) -— p:=Y(n,d,) 

| oo f 
¥ 
Ir: =Y(q,-d,) 

em "7 n:=X(m,d,) 

(recall from (4) that X(=,d,) 7 =X(=,-d,), and similarly for YY). 

For fixed m, the r obtained depends on (d,,d,) €D xD, so that 

we have a map 

(7) DxD - M 

(d,,d,) Pr
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If d, =0, we have n=m and g=p, so that 

r = Y(q,-d,) = Y(p,-d,) = n =n 

the third equality sign by (4) and Y(n,d,) =p. Similarly if d,=0, 

we get likewise r =m. So the map (7) satisfies the condition for 

T in the following requirement on M,[6]: 

Requirement. For any map T: DxD-M with 

t(d,0) = t(0,d) = 1(0,0) vd €M 

there is a unique map t: D-»M with 

We assume henceforth that M satisfies this. Thus the map 

described in (7) is of form (d,,d,) »t(d,-4,) for some unique 

t: D-M with t(0) =m. We denote this t [X,Y](m,-). Letting 

m vary, we obtain in this way a vector field [X,Y] on M. It 

is characterized by 

[X,Y] (m,d,+d,) =r V (dy,d,) €D xD, 

r obtained as in (6). 

It is easy to prove that [X,Y]=0 and I[X,Y]=-[Y,X]. I 

belive that bilinearity and Jacobi identity for the bracket operation 

described here can be obtained by reinterpretation of the proofs 

for similar facts about the Lie algebra object of a monoid in [6].



Easier proofs exist (using Proposition 2) for the case where M 

is a Euclidean module, essentially by using the notion of "direc- 

tional derivation along a vector field" which we shall discuss in 

a moment. However, we do not want to perform "a double-dualization" 

by identifying a vector field with a differential operator on a ring 

of functions. Thus, the following Theorem, which is essential in 

Lie's theory of differential equations, is stated and proved entirely 

in geometric terms (no differential operators!). 

We shall call a vector field X proper if each X(m,-): D-M 

is an injective map (thus we make a positive assumption on X instead 

of the classical negative "X(m,-) is always non-zero".) The theorem 

deals with two vector fields X,Y (with X proper) such that all 

circuits are X- trapezia, i.e. have shape 

(8) q p 

which, to be precise, we take to mean that for each m€M and 

(d,,d,)€Dx*D the r constructed in (6) is of form X(m,§) for 

some 6 €D (necessarily unique since X is proper). 

We shall finally assume that A also satisfies the Requirement 

above. Then 

Theorem 3. Let X,Y be vector-fields on M, with X proper. 

Then the following two conditions are equivalent:
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i) all circuits of form (6) are X-trapezia, (8). 

ii) [X,Y] =p+*X for some scalar valued function p: M-A. 

Proof. Assume (i). Let m be fixed, and consider for . 

(d, ,d,) €DXD that unique § = § (d, rds) such that 

(9) r = X(m,§) . 

Arguing as for the map described in (7), we see that §&6(d4,0) =8§(0,d)=0. 

Therefore, by the Requirement for A, we have §(d,,d,) =t(d,-d,) 

for some unique t: D-»A. Since t(0)=0, we get, since A is of 

line type, a unique b €A such that t(d) =bed for all de€A, so 

that 

§(d,,d,) = bed,-d, VY (d,,d,) €D xD. 

Now let m vary, and record the dependence of b on m by writing 

b=p(m). Thus we have, for all (d,,d,) €EDxD, 

[X,Y] (m,d,d,) = r = X(m,bed,-d,) 

= X(m,p (m) +d, -d,) = (peX) (m,d,-d,) . 

From the uniqueness in the Requirement then follows 

[X,Y] (m,d) = (peX) (m,d) for all deD 

(and all mm). This proves (ii). 

The converse implication is trivial; if r= (peX) (m,d,-d,) , 

we have r=X(m,p(m)-d,-d,) witnessing that r is of form X(m,3d).
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If we call two elements m, and m, of M X-neighbours 

provided there exists a de€D with 

X(m,,d) = m,, 

then it is easy to see that the conditions of the theorem in turn 

are equivalent to: for any d€D, the permutation Y(-,d) preserves 

the relation "being X-neighbours". Lie uses the phrase: "X admits 

Y". The phrase "Y permutes X" makes a certain sense too in this 

connection, since by integration (which has no place in the present 

set up) the X-neighbour-relation passes into the relation"being on 

the same streamline for the flow generated by X", so that Y(-,d) 

permutes the streamlines of X (possibly reparametrizing them). 

We now discuss directional derivatives. Let X be a vector 

field on M, and f: M->V a function with values in a Euclidean 

module V (in particular, V might be A itself). Consider for 

fixed meEM the map D-V given by 

de £f(X(m,d)). 

By Euclidean-ness of V, this map is of form 

dw» f(m) +d-v 

for some unique v€V, which we denote X(f)(m). Thus X(f): M-V 

is the function characterized by 

(10) f(X(m,d)) =f(m) +d-X(£f) (m) vVdeED, VmEM 

("generalized Taylor formula").



The construction f# f' previously mentioned is a special 

case, namely for X the vector field 2 on A given by 

2 (a,d) = a+d. 

It is proved in [7], Prop. 1.2 that fv X(f) is A-linear, and 

satisfies appropriate evident generalizations of Leibniz-rule: 

X(pef) = X(9) f+ @-X(f) 

whenever f: MV and ¢: M->A. (The proofs are easy from (10)). 

We proceed to investigate how X(f) depends on X. We shall prove 

Proposition 4. For any vector fields X1/X5,Y on M, and 

any ¢: M->A, we have 

(1) (X,+X,) (£) = X, (f) +X, (f) 

(ii) (peX) (£) = 9 (X(£)) 

(iii) [X,Y] (f) = X(Y(f)) -Y(X(£f)). 

for any f: M->V (V a Euclidean infinitesimally linear module). 

Proof (i): Let L: MxD(2) »M be defined so that for any 

meM, 1=L(m,-,-): D(2) »M has 

loincl, = X, (m,=) i=1,2
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Consider for fixed mé€M the map h: D(2) -V given by 

h(d,,d,) = £(L(m,d,,d,)) 

We then have (for 1i=1,2) that hoincl,: D-»V is the tangent 

vector at f(m) with principal part X, (£) (m); to see this, for 

i=2, say 

h(incl, (d)) = h(0,d) = £(L(m,0,d)) 

= £(X,(m,d)) 

= f(m) +d-X, (f) (m). 

From the uniqueness assertion in the statement that V is 

infinitesimally linear, it then follows that 

h(d,,d,) = £(m)+d,-X, (f) (m)+d, +X, (f) (m). 

We have, for all d4de€D, 

fH(X4+X,) (m,d)) = £(m) +d- (X,+X,) (£) (m). 

On the other hand, for all de€D, 

£((X,+X,) (m,d))= £(L(m,d,d)) = h(4d,d) 

= f (m) +d-X, (£) (m) +d-X, (f) (m) 

Comparing these two expressions for £((X4+X,) (m,d)) and cancelling 

the universally quantified d, we get (i), as desired. The proof 

of (ii) is easier, and omitted. Let us finally prove (iii). For
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fixed m,d,,d,, we consider the circuit (6) and the elements 

n,p,q,r described there.We consider f(r) -f(m). First 

£(r) = £(q) - 4d, ¥(£) (q) 

= £(p) =d,«X(f) (p) -d,-Y(£) (q) 

using generalized Taylor (10) twice. Again using generalized Taylor 

(10) twice, (noting m=X(n,-d,) and n=Y(p,-d,) by (4)), 

f(m) = £(n) -d,-X(f) (n) 

= £(p) -d,*Y(£) (p) -d +X(f) (n). 

Subtracting these two equations, we get 

(11) £(r) -£(m) = d+ {X(£) (n) = X(£).(p)} 

+d, + {Y (f) (p) —Y(£) (q)} 

= —d ed, Y(X(£)) (p) +d +d, *X(Y(£)) (p) 

using generalized Taylor (10) for the function X(f) and for the 

function Y(f). Now we have 

d,+g(n) = d,-g(p) 

and 

d,+g(m) = d,+g(m), 

since 

d,-g(p) = d,+g(¥(n,d,)) 

= d,e (g(n) +d, Y(qg) (n)) 

= d,+g(n),
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the last term vanishing because az-=o. Similarly for the other 

equation. Since the terms on the right hand side of (11) occur 

with both a d,-factor and a d,-factor we may apply this principle 

for the functions Y(X(f)) and X(Y(f)) to replace the argument p 

by, first n, and then m. Thus 

(12) £(x) -£(m) = d +d, (X(Y(£)) (m) -Y(X(£)) (m)). 

On the other hand 

[X,Y] (m,d,-d,) =r 

so that 

(13) f(r) -£(m) = d,-d, [X,Y] (f) (m). 

Comparing (12) and (13), we see that for all (d,,d,) €D xD, 

dyed, e (X(Y(£)) (m) = Y(X(£)) (m)) =d,+d,[X,Y](£) (m), 

and cancelling the universally quantified d's, we get (iii). 

A final useful classical result about Lie brackets of vector 

fields on M 

(14) [X,f-Y] = £.[X,Y] +X(f)-Y, 

(where f is a scalar valued function) is easy to prove if M is 

a Euclidean module and infinitesimally linear. I do not know how 

to prove it without the module structure on M.



- 1049 = 

A function f: M-»>V (M and V infinitesimally linear, 

M satisfying the Requirement, V being a Euclidean module) is 

called an integral of the vector field X on M if X(f) =0. 

This is equivalent to saying that for any 

t: DM 

which is a vector of the field X, i.e. X(t(0),-)=t, the 

function f is constant on t, 

fot =£(t(0)). 

Then the level set £1 (£m) contains the tangent vector X(m,-) 

(meaning that X(m,-): D-»M factors through the level set). 

An integral f: M-»V of X is called universal if for any 

other integral g: M->W of X, 

g=wof 

for some w: V-W (not necessarily linear), This definition should 

really be made a local one, but we are not going very far in this 

direction anyway. It is reasonable to think of the level sets of 

a universal integral of X as being precisely the streamlines of 

X (viewed as unparametrized 1-manifolds). Here we shall use "level 

set of universal integral" as definition of "streamline". We then 

have
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Proposition 5. If the proper vector field X admits the 

vector field Y, in the sense of the conditions of Theorem 3, 

then for each d€D, the infinitesimal transformation Y(-,d):M-M 

permutes the streamlines of X. 

Proof. We have by assumption 

[X,Y] = pX 

for some p: M->A. Assume f: M-»V is a universal integral. 

We claim Y(f) is an integral also. For 

0 = peX(f) = (pX) (f) 

= [X,Y] (f) = X(Y(f)) -Y(X(f)) 

= X(Y(£f)) -Y(0) 

= X(Y(£)), 

using Proposition 4 (ii) and (iii). By universality of f we get 

ws: V->V with 

Y(f) = wo £. 

Now we claim that Y(-,d) takes the level set £71 (c) into 

£1 (c+dew(c)) . For, let f(m) =c. Then 

f(Y(m,d)) = £(m) +d-Y (ff) (m) 

= f(m) +dew(£f(m)) 

= f(m) +dew(c).



Since Y(-,d) is bijective, we actually get that it takes the 

level set f£ '(c) onto £ | (ctd-w(c)). 

This proves the Proposition. Of course, we have no way presently 

of proving existence of universal integrals. 

The use of Theorem 3 for differential equations [2] is that 

for the case M= the plane A xA, if Y permutes X in the sense 

of Theorem 3 or Proposition 5, then the function which to meM 

associates the reciprocal of the determinant of (the principal parts 

of) the two vectors X(m),Y¥Y(m) in a? is an integrating factor 

for the differential equation, X(f) =0, meaning that 

1 . X 

det (X,Y) 

is a source-free vector field, and thus an integral for it, and 

thus for X, can be found by curve integration (the orthogonal 

field is a gradient field: its potential function will work). 

Lie states [1] that he found these theorems "by synthetic 

considerations" but found it difficult to write down the proofs 

synthetically, whence his articles present mainly analytic proofs 

in coordinates. I believe that the above proofs may be closely 

related to the synthetic theories of Lie.
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CONNECTIONS IN FORMAL DIFFERENTIAL GEOMETRY 

* 

A. Kock and G.E. Reyes 

This paper is a contribution to formal or synthetic differen- 

tial geometry (see [4], [51, [6], [7], [9]). We recall that the ba- 

sic idea (suggested by Lawvere [7]) is to work in a category with 

a ring object A ("the line") and an object D ("the generic tan- 

gent vector") by means of which one may interpret directly geometric 

entities on suitable objects M ("manifolds") in the category M, 

by performing simple operations of the category on A, D, M. The 

tangent bundle of M becomes MP, etc. In this paper we study con- 

nections, parallel translations on "vector bundles", covariant dif- 

ferentiation, and related ideas in this synthetic context. Thus, in 

§ 1, the notion of connection on the tangent bundle of an object M 

is defined as a data which completes each infinitesimal configura- 

tion in M 

* 
) Partially supported by a grant of The National Research Council of Canada 

-158-~
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into a configuration 

THT i f 

Such completion data in our context is simply a splitting © of 

the restriction map MPP MP VD where DxD and DvD are cer- 

tain objects derived out of D. From this idea (and the pictures 

(0.1) and (0.2) associated to them) it is immediate that the com- 

pletion data V provides the infinitesimal germ of parallel trans- 

port (the picture (0.2) being full of small parallellograms). Alter- 

natively, under suitable assumptions on M, MP ~ MXV (at least 

"locally" in a sense to be explained in §3) where V is a vector 

space (= A-module object in the category). Under this identification 

the data of a connection becomes a splitting of a certain map 

(Mxv) P = MP xy? a MP xv, so pictorially is a data which completes 

(0.3) v 

T



into 

(LLL wo 

This reflects the distinction between the "active" and "passive" 

tangent vector in a parallel transport situation; thus in (0.3), 

T is the active aspect, the one that transports. 

The v in (0.3) is the passive vector (the one that is transpor- 

ted in (0.4)). The passive tangent vectors may be replaced by vec- 

tors is an arbitrary vector bundle E over M, cf. §2. (A few 

more pictures appear in §6). 

For some of the technical work with this data, we derive from 

it an equivalent data, namely a connection map C in the sense of 

Dombrowski [2] and Patterson [8]. In particular we use this form 

of the data to define covariant differentiation, and, under natural 

assumptions on M and V, to prove Koszul's laws for it. We also 

discuss torsion and curvature. Since infinitesimals occur explicitely 

(in the form of the object D ), the geometric interpretation of 

the curvature tensor of E. Cartan [1] is obtained rigourously. 

A remark on method: since all categorical operations we per- 

form rest entirely on use of pull-backs and cartesian closedness 

(exponential objects), all equational arguments and constructions
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can be performed as if we were in the category of sets (which we 

are not: in the category of sets, no models for synthetic diffe- 

rential geometry exist, essentially because in the category of sets 

non-differentiable mappings exist). Thus, we work with elements, 

just as in [4], [5], [6], [9]. 

We would like to thank G.C. Wraith for several discussions on 

this subject. Furthermore, the second author would like to thank 

J.-M. Terrier for his obstinate efforts to teach him some differen- 

tial geometry.
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§1. The geometric notion of connection in the tangent bundle. 

As in [6], we work in a category E with finite inverse limits, 

with a ring object A. We let D(n)>— A" be defined by 

n : D(n) = {(a;s...,a_) €A |a; cay = 0 Vi,j= 1,...,n}, 

(using set theoretical notation). We shall in particular be interes- 

ted in D(1) and D(2), which we also denote D and DvD, re- 

spectively. The 0 of A, 1-25 A (where 4 is the terminal 

object) factors through D, 0: 1 — pb. Similarly, for D(n). We 

have furthermore n inclusion maps 

i: D —— D(n) 

given by 

d —— (0,0,..,4,..,0) 

with 4d placed in the r'th position. We shall assume from now on 

that D(n) is exponentiable for any n. 

An object M is infinitesimally linear (cf. [6]) if for each n 

i 

M1 
MP (Dn) . MP 

—— 

in 
M 

0 D(n) . 0 D makes M": M —= M into an n-fold product of M*: MM — M, 

in E/M. (We denote mM: MP— M by =; geometrically, it asso- 

ciates to a tangent vector the point of M where it is attached). 

As in [4], we say that A is of line type if the map 

os: AXA — aP defined by <a, a;> b—{d —la +a,d]] is inver-
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tible. Throughout this paper, we assume that A is of line type, 

and is infinitesimally linear. Also, M denotes henceforth a fixed 

but arbitrary infinitesimally linear object inE ( M is to be 

thought of as a manifold). 

Since M is infinitesimally linear, we have in particular 

MP ¥D _ MP (2) ~ MP MP 

- M 

n woz DvD . 
so that an "element" in M looks like 

(1.1) ("a cross"), 

a pair of tangent vectors tir, attached at the same point of M 

(which is the justification for the notation DvD). 

Clearly, we have 

DvD €¢ DxD ¢€ AXA. 

We denote the inclusion DvD € DxD by Jj. We thus have a restric- 

tion map 

J M 
MP <D MP VD 

Definition 1.1. A connection on M is a splitting 

MP VD Vv , MP*D of the mapping M7. 

. ( We shall later add an equational condition on such V, defining the no- 

tion of affine connection). We gave some of the geametric heuristics of this no- 

tion in the introduction. We elaborate a little on it. The (almost) vertical lines 

in the infinitesimal grid (0.2) are to be viewed as V-parallel tran- 

slates of the given vertical line in (0.1) along the given horizon-
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tal line (0.1). ("Line" here means "curve parametrized by the in- 

finitesimal segment D of the global line A" = "tangent vector 

to M" ). 

Thus, in the picture (0.1) and (0.2), the given horizontal "li- 

ne" is the active tangent ( the one that transports), and the given 

vertical "line" is the passive vector ( the one that is transported). 

To arrive at finite parallel transport from this infinitesimal 

parallel transport given by V, of course means integrating a cer- 

tain differential equation. 

To be specific, we want to define the notion of when a curve 

of tangents to M is V-parallel. A curve in any object N is, 

by definition, a map A ——N (since A is "the line"). Since MP 

is the tangent bundle of M (cf. [5], [6], [7], [9]), a curve-of- 

tangents on M is a map 

(1.3) A —= MP. 

Now any curve h:A-—N on any object N determines a curve-of-tan- 

gents on N, "the speed curve of h" which we shall also denote 

’ 

h , namely the composite 

A D 
A x, aD nh N°, 

A D 
where +(a) = [dF a+d]. Take in particular N = M, h = k as 

in (1.3); then we get the speed curve of k 

1 

(1.4) A —X , uP —& , yD, 

(The isomorphism © 1 :MmP*P — (MP)P here sends £f:DxD — M into 

[d, +14, — £(d,,d,) 11). On the other hand, if we denote by k,
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the composite of (1.3) with m:MP » M (the "footpeint curve of 

1 

k") we get, using k as well as the speed curve k, of ky a 

map 

1 

<k.,,k> 
(1.5) A —1— Mx MP MP VP 

Definition 1.2. The curve-of-tangents k is parallel accor- 

1! 

ding to V if "vV-parallel transport of k-vectors along k, yield 

k-vectors", or more precisely, if (1.5) composed with v.MPVD _ yD*D 

yields (1.4), that is, if 

1 1 

Vo<k,,k> = wok . 

In particular 

Definition 1.3. A curve h:A—M is geodesic with respect to 

I 

V if its speed curve h is a V-parallel curve-of-tangents, that 

is, if 

1 1 " 

Vo<h ,h > = ¢@oh . 

A proposition concerning the "parameter invariance" of the no- 

tions of the two last definitions will be proved in Proposition 2.9 

under the assumption that V is an affine connection (Definition 

2.7). 

The notion of V-parallel curve of tangents, and v-geodesic,can 

be relativized for curves
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kK: U — MP 

h: U—M 

’ 

defined on subobjects U of A. In fact, if U cU is so that 

’ 

"adding elements from D to elements from U yields elements 

of U", 1i.e., if there exists a factorization 

' + 
TTY 

AXA —— A 
+ 

we derive 

® ’ A D 

(1.4) u Ful EX, (MP)DapP xP 

and 

v 

‘ y <k,,k> (1.5) v'— Px MP uP VD _V MP *D_ 

The curve k is then (generalizing Definition 1.2) said to be V- 

1 ! " 

parallel-according to V on U if (1.4) and (1.5 ) agree. 

f 

Note in particular that we may take U = D, U = {0} and 

talk about when a curve k:D — MP (a very short curve!) is V- 

parallel at O. 

Similar relativization can be made for the notion of geo- 

1 

desic. There we need U cU stable under addition of two ele- 

ments from D (because of occurrence of the double derivative 

in Definition 1.3). 

A vector field on M is a cross-section X of the map 

7 :MP -+ M. Given two vector fields X and Y, one can consider 

the diagram
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M _ MP 

(1.6) <X,Y> | | yP 

MVD ___, xD _= _, DD 

v © 

The difference of the two ways round in this diagram (taken fibre- 

wise in the tangent bundle of MP, MP) P — MP ) will lead to 

the notion of covariant differentiation, VY, of the vector field 

Y along the vector field X, cf. Definition 2.6 below. The geome- 

tric heuristics can in our context be objectivized as follows: gi- 

ven m€M. Then X(m): DM is a (small piece of) a curve ("in- 

tegral curve of X through m" ) in M, and YoX(m): D — MP 

is a (small) curve k of Y-vectors along it. On the other hand, the 

counterclockwise composite in (1.6) is (modulo the isomorphism ¢¥ ') 

a map DxD -» M, the grid obtained by parallel transporting Y-vec- 

tors along the tangent vector X(m). 

So the difference of the two ways round in (1.6) measures how 

much the curve of Y-vectors along the integral curves of X dif- 

fers from being parallel according to V. (Note that we do not real- 

ly integrate the vector field X, since we only need to know the in- 

tegral curves on small bits of length D anyway). 

The difference of the two ways round in (1.6) is a map M— MP 

or M — MP XP, so is not yet a vector field on M, but rather a 

"grid field". To extract a vector field Vy ¥ from it, we need some 

preparations of technical nature. For these technical preparations 

it is convenient for notational reasons, to generalize slightly in 

the sense that the"passive tangent vector" is replaced by a vector 

in an arbitrary vector bundle E —M (= A-module object in E/M ).
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§2. Tangent bundles of vector bundles. 

In the following, p:E-M is a fixed map in E with both the 

objects E and M infinitesimally linear. We shall also assume 

that E —M is equipped with a vector bundle structure (that is, 

structure of A-module object in E/M ). However, for our first 

proposition, this structure is not needed: 

Proposition 2.1. The object p:E—M in E/M is infinite- 

simally linear. 

Proof. Let us denote by ( ), the functor E—E/M ‘cros- 

sing with M". It preserves those exponentials that exist, and in- 

verse limits, so that (A) y is a ring object of line type in E/M. 

Of course, the statements we make about formal differential geome- 

try in E/M refers to this ring object. Now, given 

t,: (Dy =DxXxM — E (i =1,2) 

in E/M (so that pot, = pot, = projection to second factor) with 

t,(0,m) = t, (0,m) (= t(m), say) for all m, we should prove u- 

nique existence of an 

£: (DvD), —E in E/M 

restricting to t, and t, on the two axes of (DvD)y- For each 

meM, we get by infinitesimal linearity of E a map £.,:D vD —m E 

restricting to ty (-,m) and ty, (=m). The L.'s together define a 

map (DvD) xM ——E. We must prove that it is a map in E/M, mea-
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ning that we should prove commutativity of 

(DvD) xM ££ , E 

M. 

This means that we should prove that pof :DvD —— M has constant 

value (=m ). On the two axed of DvD, this is certainly so, since 

£ restricts to t, and t, and p(t; (d,m)) =m for i=1,2, 

since ty and t, are maps in E/M. Now, knowing that pol re- 

stricts to the map "constant m" on the axes of DvD implies, by 

the uniqueness assertion in infinitesimal-linearity assumption on M 

that pol must be constant m on the whole of DvD, as was to 

be proved. The uniqueness of £ follows just from the infinitesimal 

linearity of E. 

We remind the reader (cf. [6] and [9]) that if N is an infini- 

tesimally linear object, then m:ND — N has a natural vector bundle 

structure: given two tangent vectors t, and t, at me€M ( so 

t;:D—M with t, (0) =m, i=1,2), we first find the unique 

£: DvD —M which restricts to t, and t, on the axes of DvD; 

and then we define ty +t, by (t, + t,) (d) = £(d,d). We call this 

the tangential addition. In the present paper it is denoted by ®: 

(t, ®t,) (d) = 2(4,4) deD . 

The associated "multiplication by scalars from A" is denoted © 

and given by 

(aot) (d) = t(a-d) d€ED 

(note d€D =» a-d€D).
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We now utilize the vector bundle structure on p:E—M to 

derive a natural diagram associated to it. We largely use notation 

from [3]. The diagram in question is 

(2.1) ExyE —— E> —S— MUX E 

where H and K are given (in set theoretic notation) as follows: 

H: <u,v> b———— [dr u + d-v] 

where u and v are in the same fibre of E— M, and u + d-v 

refers to the A-module structure of that fibre. Next, 

K: £f b————<pof,f(0) > 

where f:D—E. (Recall that f£f(0) is also denoted m(f)). 

In the case where E —M is MP —u, it is easy to see that 

K equals the restriction map MP*P — PVP, modulo the canonical 

xX 

isomorphisms @:MP D ~ (MP) PD ana MPVP ~ MOx, MO Therefore we can 

generalize Definition 1.1 into 

Definition 2.2. A connection on the vector bundle E —M is 

a splitting V of the map K in (2.1). 

Pictorially, this can be represented as data for completing (0.3) 

into (0.4). 

Let us note that each of the three objects occurring in (2.1) 

carry two vector bundle structures (over different bases), which in 

set theoretic notation may be tabulated as follows
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(2.2): 

structure map fibrewise addition notation 

proj,: Ex E —E ((w,2y), (0,2) — (u,¥,+¥,) ® 

poproj,: ExyE — M ((u, yg) ’ (u,,¥,) — (u,+u,,yv,+ ¥,) + 

(= poproj,) 

Te EP— E tangential addition ® 

p’: EP — MP (£,9) ——{d +» £(d) + g(d)] + 

. D_ D 
proj, : M x BE —M"  ((t,v,),(t,¥,)) — (t,v +V,) + 

pProj,: Mx E —— E ((t, '¥) (ty, V)) -_— (t, ®t,,v) ® 

In each case, it is understood that the entries live in the same 

fibre for the relevant structure map, so that the indicated opera- 

tions can be performed. For instance, in the last case, t, (0)=t, (0) =p(v). 

In the following proposition are implicit the following easily 

seen commutation relations: 

_D _ 
proj, oK = p and proj,oK = 7 

with K as in (2.1). 

Proposition 2.3. The map K is linear with respect to the struc- 

tures denoted ®, as well as with respect to the structures denoted +.
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Proof. Linearity of K with respect to ® follows because 

K = <p?,m> and pP: ED —s MP is linear with respect to tangen- 

tial addition, by functorality of the vector-bundle construction 

( - 2, To see the second assertion, let f,g be given tangent 

vectors to E in the same fibre of EP — Mm meaning pof = pog.. 

(= tt, say; t:D—M). Then 

K(f +g) = <po(f+qg),(f+gqg)(0)> 

= <t,f(0) +g(0)> 

K(f) +K(g) = <pof,f£(0)> + <pog,£f(0)> 

= <t,f(0)> + <t,g(0)>. 

which are the same. 

In the following Proposition is implicit the following easily 

seen commutativly: w-H = proj, . 

Proposition 2.4. The map H is linear with respect to the 

®-structure, as well as with respect to the +-structure. 

Proof. Given (u,v;) and (u,v,). Then 

H((u,v,) ® (u,v,)) = H(u,v,*+v,) = [dr—u+d-(v, +v,)]. 

On the other hand, to compute the ®-sum of 

H(u,v,) = [d+—u+d-yv,] 

and 

H(u,v,) = [d—u+d-v,], 

we need to find an ££: DvD —E which restricts to these two map- 

pings, and then look at dFr—£(d,d). Now £ is easily given expli-
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citely: it is clear that 

£(d,,d4,): = u+d, v, +d, v, 

will work. Setting 4, = d, = d gives u+d-v,+d-v, again. 

The proof of linearity of H with respect to the +-struc- 

ture is trivial. 

Recall [5], [9] that if A is a ring object in a category 

E', and N is an A-module object, then we say that N is Eu- 

clidean if the map 

D 
a: NxXN ——— N 

given by 

(u,v) —— [d+—u +4-V] 

is invertible (with D = {a €A | a’ = 0}). 

These notions in particular apply to the A-module object 

E —M in E/M. It is clear that the H ‘in (2.1) is closely 

related to a for this object. 

We have 

Proposition 2.5. If p: E—M is Euclidean in E/M ("E is 

fibrewise Euclidean"), the sequence (2.1) is left exact with respect 

to the addition structures given by @. 

Proof. If Z and Y are objects in E/M such that the expo- 

nential object vx exists in E/M, we shall denote it xh, Y. Now 

it is easy to see that the object in E/M 

Dy ut (E —M) 

is the left hand vertical arrow in a pull-back diagram in E
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Q —— E° 

D 

M —— MP 

A 

A being the exponential adjoint of proj: MxD -» M; so A is the ze- 

ro for the vector bundle structure on MP — mM, i.e. the structure 

e. Thus, Q is the kernel of pP (for the structure 8 ). On 

the other hand, the Euclidean-ness of E -» M says ExyE ~ BQ, Ay (E—M) 

via H, so that, under this identification, Ex E (more precisely, 

H) is kernel for PP, or equivalently for K, with respect to the 

structures ©. 

We now consider a fibrewise Euclidean vector bundle object 

p:E-M (with E and M infinitesimally linear, as always). Since 

(2.1) is left exact with respect to the ®-structures, it follows that 

if we have a connection 

vi MOx,E — ED 

on E, the difference (with respect to the structure ®; we denote 

the corresponding subtraction by 6) 

(2.3) id gq © VokK 
E 

factors through the kernel H of K, whence we get a map 

C,: EP ——s Ex E 
1 M’ 

and therefore also a map proj,oC,: EP— E, which we denote CC, 

C: EP ——s E,
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from which the original V can be reconstructed. Certain of the 

calculations we shall make are more readily expressed in terms of 

C than in terms of V. However, the geometric meaning of C is 

less direct than that of V. The analogue of C in "classical" 

differential geometry we learned from Dombrowski [3] and Patterson 

[8] . Also, the following notions, expressed in terms of C we 

learned from [8]. 

Definition 2.6. Let X: M - MP be a tangent vector field and 

Y: M— E an E-vector field. Then VY: M—-> E is defined to be 

the following composite 

X D yP D C 
M ——M ——EF ———E, 

called the covariant derivative of Y along X (with respect to 

V; C is derived as above from V). 

This definition can easily be extended to "partially defined 

vector fields", i.e., given 

X: N — MP ’ Y: N—E 

with moX = poY (= h, say), we can define VY: N — E with 

poV,Y = h,. 

In the case where E — M is M° — mM, the difference consi- 

dered in a preliminary way in (1.6) can be obtained from the diffe- 

rence (2.3), so that Definition 2.6 above provides a way of getting 

a vector field VY from "deviation of Y being parallel along the 

integral curves of X", as alluded to earlier.
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Now, if we have a connection Vv on E = M, that is, a split- 

ting of K in (2.1), it follows that K is split epic. Also, be- 

cause V is a splitting of K, it is easily seen that V pre- 

serves the fibrations of PD and Mx E over E as well as their 

fibrations over MP, whence it makes sense to ask whether V pre- 

serves the linear structures given in the table (2.2). 

Definition 2.7. We say V is an affine connection on p: E—=M 

if it preserves both the linear structures + and ®. 

Remark. For the case where E = MP, it is geometrically rea- 

sonable to ask that V preserves the structure + (linear struc- 

ture on passive tangent vectors). It can be viewed as an infinite- 

simal version of the statement: parallel transport along a path from 

m, to m, defines a linear map from the tangent-space at m, to 

the tangent-space at m,. 

Concerning the linearity of Vv w.r. to the structure ® ("li- 

nearity with respect to the active tangent vectors"), we can best un- 

derstand its geometric significance by using it to prove parameter- 

invariance of the notion of V-parallel-curve of tangent vectors, Pro- 

position 2.9 below. We may as well do this for the more general case 

of an (affine) connection in the fibrewise Euclidean vector bundle 

p: E— M. We need first generalize Definition 1.2. 

Let k: A=» E be a curve in E, and denote by k, the com- 

posite pok. 

Definition 2.8. We say k is a parallel-curve with respect 

to V if the following diagram commutes
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K 

< k> 
1’ D 

EE ——— A M XME 

NY 

| 7 
k? 

gP 

Proposition 2.9. Let k: A—E be a parallel curve w.r. to 

the affine connection V, and let f: A A be arbitrarv. Then the 

curve h = kof: A=» E is parallel w.r. to 9. 

Proof. We have h, = kof. We must prove 

1 T 

V ox h,,h, > = h 

We compute on the left hand side 

1 ! 

Vo <h,,h> = Vo < (k of) kof > 

' 1 

* Yo < (kqof) 9f ,kof> 

1 |) 

**f 0 (Vox kof, kof >) 

' ’ 

=f € (Vo <k,,k >of) 

’ 1 

=f 0 (k of) 

1 ’ 

* (kof) = h, 

as desired. At the two equality signs marked * we have used an e- 

vident and easily proved chain rule analogous to that of [4], and at 

** we have used the ®-linearity of Vv ( ® denotes that multipli- 

cation by scalars that goes together with the addition & ). 

Proposition 2.10. Let V be an affine connection. Then 

C: ED — E satisfies both possible linearity laws.



- 178 - 

Proof. Since C, = id D © (VokK), it is clear from @®-line- 

. E . . D 
arity of K and V that C4 is ®-linear: E — EXE - Then 

since the ®-structure on ExyE is just the structure of the se- 

cond factor, it is clear that proj, -C, sends ®-structure of ED 

to the (unique) structure + of E (everything fibrewise over M). 

To see the other linearity condition, let £,9 € EP, with 

pof = pog (= t: D—-M, say), so that f and g can be added 

according to the structure + on ED. We must prove 

C(f+g) = C(f) + C(qg). 

It suffices to prove 

H(C,(f£+g)) = H(C, (f) +C,(qg)) 

Since H is linear w.r. to the +-structure, and HoC, = id p © VokK, 

E 

we are required to prove 

(fF+g) ©V(K(f£+g)) = (£6 VKE) + (g © VKg). 

Since K is linear with respect to +, we may rewrite the left 

hand side, so that our problem now is whether 

(2.4) (f +g) © (VKEf + VKg) = (f£ © VK) + (g©VKg). 

The result then follows from a distributivity law between the two 

structures + and @® on EP, which is expressed in the following 

Lemma 2.11. Suppose £1099785,9,¢ D— E are tangent vectors 

to E, and that 

(a) pof, = Pog; (= ts say, t,: D— M) for 1 =1,2 

and that
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(b) £, (0) = £,(0) and g,(0) = g,(0). 

Then all additions occurring in the following equation can be per- 

formed, and the equation holds: 

(f, +g.) ® (f,+49,) = (f, ®f,) + (9, ®g,) . 

Similarly if ® is replaced by ©. 

Proof. Tangential addition is natural with respect to maps 

between infinitesimally linear objects (cf. [9]). Therefore, 

D 

(Bx EB)" —) EP 

is a fibrewise linear map with respect to the ® structure. (Note 

that Ex E is infinitesimally linear since E and M are). But 

the vector bundle m: (Bx, EB)” — Ex E can be identified with 

EP x ED — Ex E 
D M 

M 

with addition in the domain being given by 

—y (£,/,£5),(94,9,) (f, ®f,,9, ®g,) 

where Eq1reerg, satisfy (a) and (b). The lemma now easily fol- 

lows. 

To apply the lemma in proving (2.4), we just have to verify 

the conditions (a) and (b) which here say 

pof = pog 
(a) 

poVKf = poVKg 

(b) £(0) = (VKL) (0) (and similarly for g). 

It is clear that (b) holds; and (a) follows because all four 

expressions are equal to t:D — M . This proves Proposition 2.10.
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§3. Koszul's law. 

In this section, p: E - M denotes a fibrewise Euclidean vec- 

tor bundle (cf. Proposition 2.5), and V: MOx BE — E° denotes an 

affine connection on it. 

We defined on basis of this the covariant differentiation struc- 

ture VY. We shall prove the following identities 

(3.1) v Y=Y,Y+V, Y 
X, 9X, X4 Xs 

v7 = . (3.2) ro x¥ f VX 

= 7 (3.3) Ve (Y +2) VX + 72 

and, under a further assumption of local trivializability of E —B 

(see below), the "Koszul law" 

(3.4) Vy (£7) = £.9,¥ + X(f) -Y. 

In this latter, f denotes a map M—= A, and X(f) denotes the 

derivation of £ in the direction of the vector field X, [5], that 

is, the composite 

D proj 
(3.5) M ~ x mP—f AP ~ AXA — 2 ,a. 

Proposition 3.1. The equations (3.1),(3.2),(3.3) hold for an 

arbitrary connection V. 

Proof. Let C denote the Dombrowski-Patterson connection map 

associated with V. To prove (3.1), recall that by definition of
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covariant differentiation, the left hand side of (3.1) denotes the 

composite map 

X, dX D 
(3.4) M— 2 YX gp _C 5 

Now yP is linear with respect to the ® structure, by functorali- 

ty of the tangent-bundle construction ( yD, Also C has a line- 

arity property w.r. to ®, by Proposition 2.10. Thus (3.4) can be 

written (Cox oX,) + (Co¥ oX,), which is ‘just the right hand side of 

(3.1). The same argument proves (3.2). To see (3.3), note that the 

left hand side of (3.3) denotes 

X p (x+z)° pC M ——M ————a EF —————E, 

D D D D 
but for the + structure on E, clearly (Y+2) = Y +Z . The 

result is now clear from the other linearity property of C. 

The proof of (3.4) (in the cases where we can prove it), de- 

pends not surprisingly on a Leibniz rule for differentiation. Let 

F be a Euclidean A-module. To any 

g: D ——F 

we can (as in [5]) associate g'(0): Ll ——F. If also f: D —sA 

is given, then one proves easily (much as in [4] ) the 

Leibniz rule: The following two maps D—F agree: 

d mm £(d) -g(d) 

d ——£(0)-g(0) +d-(£'(0)-g(0) + £(0) -g' (0))
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or equivalently 

(£-9)' (0) = £'(0)-g(0) +£(0) -g' (0). 

Remark that in the ( )'-notation, the derivation X(f) of Ff 

in direction of the field X introduced in (3.5) can be written 

X(f) (m) = (foX(m))' (0). 

We now prove a special case of (3.4), namely for trival bund- 

les (product bundles). 

Proposition 3.2. Assume E ——M is of form proj, : MXF = M 

with F a Euclidean A-module. Then (3.4) holds. 

Proof. The section Y: M — E = MxF can be written <id,Y, >, 

where Y,: M — F ("the principal part of Y"). Furthermore 

EP = (MxF) DP ~ MPx FP ~ MPxFxF. 

Under this identification, the linear structure + on gP is simp- 

ly given by the linear structure on FxF, whereas the linear struc- 

ture @® on ED is given by the linear structure of MP over M 

and the linear structure on the last factor F: 

(ty,u,v,) @ (£5,4,v)) = (t,0t,,u,v,+v,). 

Under the identification, H: ExyE —— EP can be described (m,u,v) 

— (O,u,V) where O denotes the zero vector for the @ struc- 

ture in the fibre over m. We have further that vPox: M — EP 

can be described as 

m — <X(m,Y,(m, (Y,0X(m)) (0) >
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whence by definition of VY in terms of C 

(VY) (m) = C(X(m),Y,(m), (Y,oX(m))"' (0). 

Note that for m€M, we have X(m): D—M, so that the succession 

of symbols makes sense. 

Since 

(£-Y,) 0X (m) = (foX(m)) - (Y,0X(m)) 

we get from the Leibniz rule that 

((£:Y,)0X(m))" (0) = (foX (m))' (0) *Y, (m) + £(m) + (Y,0X (m)) * (0) 

(note X(m) (0) =m, so (Y,0X(m))(0) = Y,(m)). 

Thus 

(3.6) Vy (£:Y) = C(X(m),£(m)-Y,(m), (foX(m))" (0) +Y, (m) + £(m) - (Y,0X(m)) ' (0)). 

Let us denote by On, the zero vector over M in MP. It is the 

map D—M given by drm. Then using the ®6-linearity of C, we 

may rewrite (3.6) as C applied to the expression 

1 (0 £(m) -Y,(m), (£0X(m))' (0) .Y,(m)) 

® 

(X(m) ,£(m) -¥, (m),£(m). (¥Y,0X(m))"(0)) 

= (Op f(m)-¥Y,(m),0) + (0/0, (foX(m)) (0)-Y,(m)) 

® 

f(m)- (X(m),Y,(m), (¥Y,0X(m))"'(0)). 

Note that the first of our three terms in the zero vector for the & 

structure. Now applying C and using its linearity with respect to 

both the + and the ® structure (Proposition 2.10) yields
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C(O, .O, (foX(m)) * (0) ‘Y, (m)) + £(m)-C(X(m) Y, (m) , (Y,0X (m) ) '(0)) 

= C(H(m,O, (foX(m)) (0) -Y,(m))) + £(m) CX (m),Y, (m), (Y,0X(m)) '(0)) 

= (foX(m))'(0)-Y,(m) + £(m)-C(X(m),Y,(m), (¥Y,0X(m))'(0)), 

using 

(3.7) C(H(m,o0,v)) = proj, (C,(H(m,0,v)) =proj,(m,o,v) = (m,v) 

which we denote just Vv, m being understood. Thus we get 

X(£f) (m) -Y, (m) + £(m) -C(X(m),¥,(m), (¥Y,0X(m))" (0) 

= X(f) (m) -¥,(m) + £(m)-(V,Y) (m), 

which proves the Proposition. 

We can prove the Koszul law (3.4) for bundles E-— M which on- 

ly locally are trivial. We call a vector bundle p: E— M locally 

" 

trivial if there exists an epic &tale map u:M - M and a pull-back 

diagram of form 

E' = (M'XF) —————— E 

(3.8) | | P 

M' ——a M 
uy 

with F a Euclidean A-module and € fibrewise linear. Even without 

using uy epic, it is easy to see that a connection V on E-—-M 

gives rise to a connection V' on E' —- M' which is affine if © 

is (to define V': E'x E' — (E'), one needs that (E*)P sits in 

a pull-back diagram 

*) For this notion, see [6].
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(g)° —— 8° 

E' —— E 

€ 

which is a consequence of ¢ being étale (which in turn follows 

from uy being &tale and (3.8) being a pull-back). Also, C be- 

longing to V pulls back to C' belonging to V', vector fields 

X: M -» MP and Y: M—E pull back to vector fields X': M' — MD 

(using uy étale) and Y': M' —E', 

Finally, if f: M-» A, we denote by £f' the composite 

M' —M — A, 

u f 

Using the assumption that E' =» M' is a trivial bundle M'xF — M 

and that Koszul's law holds for trivial bundles (Proposition 3.2), 

we get 

(3.9) Vig (£1Y") = £1.v'.,Y! + X'(£f')-Y". 

However, it is easy to prove that pulling back commutes with the o- 

perations defined in terms of the connection, so that (3.9) implies 

(3.10) (Vo (£-¥))" = (£:V,¥ + X(f)-Y)" 

which expresses an equality of two vector fields M' = E' that a- 
® 

rise by pulling back two vector fields M—E along yp: M'-—M. Un- 

der the assumption that uy is epic, we therefore conclude equality 

of the two vector fields M -» E, that is, of (3.10)without the pbri- 

mes. But this is (3.4). We have thus proved 

Proposition 3.3. Koszul's law (3.4) (and also the laws (3.1)- 

(3.3)) hold for any affine connection V on a locally trivial vec- 

tor bundle E —M.
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§4. Further structure associated to a connection. 

From Proposition 2.10 it follows that an affine connection 

Vv: Mx E —s ED in our sense gives rise to a map C: ED —E which 

satisfies the formal analogues of the conditions (1) - (2) in Pat- 

terson's characterization Theorem ([8], Theorem 1). The condition 

(3) in loc.cit. is in our context, for the case of a product bund- 

le, the equation (3.7) ;by the technique of &tale descent used in the 

proof of Proposition 3.3, we can generalize it to any locally trivi- 

al vector bundle E, and prove 

(4.1) Cov = idg, 

where Vv: E — EP is the exponential adjoint of fibrewise multioli- 

cation by scalars from D 

EXD == E, 

So connections in our sense give rise to (the formal analogue 

of) connection maps in Patterson's sense. The notions, and equations 

proved for them, can now be mimicked in our setting. For those equa- 

tions and relations that essentially use coordinate calculations, we 
° 

can mimick these also, under the assumption that the objects in ques- 

tion locally (in the sense of étale maps) can be covered with coordi- 

nates: this is the technique of étale descent, as used in §3. 

It should be recalled that in the context in which Patterson 

works, he can prove that a connection map C in his sense is equi- 

valent to a connection in the sense of Koszul, which is by definition 

an operation that work on vector fields, not on individual vectors, 

as Patterson and we do. Patterson employs a partition-of-unity argu- 

ment to come from a Koszul connection to a C. The passage the other 

way works quite generally, and, aS proposition 3.3 shows, it works.
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in our formal context. 

We briefly indicate which of the connection-related notions 

and equations, which Patterson succeeds in expressing in terms of 

C also can be expressed/proved in our context. We already mentioned 

covariant differentiation, and the laws for it. 

For an affine connection on the bundle MP - M 

7. mPVvD mP>D 

we define (cf. [8], Theorem 3) the torsion 6 of Vv as the map 

0: MPP —_— MP 

given as the difference between C (= the Patterson-Dombrowski con- 

nection map associated to V), and CoS (where S: mP*D — MPP 

is the map induced by the interchange of the two factors of DxD) . 

Out of 6, we can derive a "tensor" T as follows 

_ D 
T(X,Y) = 60Y 0X 

(X and Y tangent vector fields on M). To express the relation- 

ship of this tensor to covariant differentiation, we need that M 

is an infinitesimally linear object, which is locally good in the 

sense that there exists an étale epic N —» M with N satisfying: 

(i) N is parallellizable (meaning NP + N is isomorphic to a pro- 

duct bundle NxF -» N, with F a Euclidean module) 

(ii) N satisfies Axiom 2 of [9] (this is an axiom that implies a 

natural Lie algebra structure [-,-] on the set of vector fields 

on N). 

One can prove that under these assumptions, M itself also satis-



- 188 =~ 

fies Axiom 2 of [9]. It is now possible to prove 

Proposition 4.1. If M is locally good in the sense explained, 

then for any affine connection V on MP + M, the torsion tensor T 

introduced above satisfies 

T(X,Y) = VY - VX - [x,Y]. 

We shall not give the proof, since it is standard (using small 

segments of suitable Taylor series [5]), and does not employ or re- 

veal specific geometric features of our method. 

In a similar vein, we follow Patterson in introducing the cur- 

vature tensor of an affine connection V in a vector bundle E » M 

(not necessarily of form MP - M). It is defined to be the map 

Ks gD PD —> EB 

given by 

coc? - cocPos 

where C° is the Patterson connection map associated to VY, and 

S: gP*D _, gP*P (as above) the "twist" map. 

Out of «k we can form a "tensor" R as follows 

R(X,Y,2) = kozP"PovPox, 

where X and Y are tangent vector fields M — MP and 2 is a 

vector field M -» E. (Note: we are using the identification 

MPP ~ PP.) It is now possible to prove
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Proposition 4.2. If M is locally good in the sense explained 

above, then for any affine connection V on E - M, the curvature 

tensor R introduced above satisfies 

Again we omit the proof. 

However, in this case, the fact that V is defined for indivi- 

dual pairs of vectors makes it possible to give an elementwise geo- 

metric interpretation of curvature, which we present in the follow- 

ing §.
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§5. Coordinate neighbourhoods. 

In this §, we compute in coordinates some of the notions in- 

troduced. So we assume M is a étale subobject U — AD of al 

( U is "subeuclidean" in the terminology of [5]). We assume that 

A is of line type and infinitesimally linear. By 2.3 of [6], U is 

infinitesimally linear. Furthermore since 

uxal —_— al al _ (aM P 

U _— A" 

is a pull-back, uP ~ uxa® as a vector bundle over U, so U is 

parallelizable (in particular, it is an n-dimensioned manifold in 

the sense of [6]). 

A connection on the bundle uP —- U becomes a map 

(5.1) uPx 0° ~UxA"™xA" — yxa®xa®xa” x uP*P 

which is completely determined by its fourth component, because of 

the condition that V should be a splitting of K. Note, namely 

that under the identifications in (5.1), K is given by 

(W,¥,,¥5,V3) FF (U,V,,V,). 

x 

The two additions ® and + in uP DL (uP) P are given by 

' ? 1‘ "n n -— 1 17" ! ey 1) (0,v1,v5, v3) & (u,v)',v,, vy) = (u,v) +vy',v,,vi+vy) 

and 

1 1 ”" n — 1 ”" I n (wv, v5v3') + (u,v,,vy, vy) = (0,v,,vs+vy',va+vy), 

respectively. Similar for multiplication by scalars. Let us denote 

the fourth component of Vv by ¥, so that
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V(u,v, Vo) = (u,v, Vo, (u,v, 'Vo)). 

Saying that V is affine therefore in this case amounts to saying 

that V(a,v,,v,) depends bilinearily on VyrVys (whence we can de- 

scribe V(~,-,-) by a 3n-indexed family of of functions U - A). 

To a pair Vqir¥, of tangent vectors at u, or equivalently to 

DvD » U with analytic expression 

(d,,d,) — u+d,v, +d,v, vid, .d,) €EDvVD, 

V associates a map DxD = U with analytic expression 

(dgsdy) = u+dqvy +d,v, +d,d,7(U,vy,V,) 

Thus, "to each d, is associated a tangent vector at u+d,v.”, namne- 

ly v,+d,-V(u,v,,v,). (We are here using the basic identification 

a of Axa" with (a™P which identifies (x,y) with dw x+d-y.) 

Thus, 

Vy *+dy Vi, vy vy) 

can be called "the result of V-parallel transport of vs along d,_ 

units of v,"; its base point is u+d,v,. 

. D D D,D . . . . 
Since H:U xy — (U7) in the coordinatization used can be 

seen to have the effect 

(u,v,w) — (u,0,v,w), 

. D,D D n . 
the connection map C:(U") =» U = UxA, or rather, this C followed 

by projection to the second factor, can be identified with
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(W,¥q,¥5,¥3) FH v3 =V(U,v,,V,). 

We can now interpret, in the terminology of parallel transport, 

the curvature «k of V introduced in §4. This geometric interpre- 

tation is given in terms of "infinitesimal parallellograms" (see 

[1])]), but these have now been objectivized into maps DxD -» U. The 

curvature then measures the difference in transporting a vector paral- 

lel along the two ways round in the parallellogram. To wit, given 

u€U and two tangent vectors v, and v,. Let v; be a third tan- 

gent vector. We can then, according to the description above trans- 

port v4 parallel d, units along Vi and then d, units along 

V,# or we can do it in the reverse order. Then we can subtract. Trans- 

porting Vs d, units along Vi yields the following tangent vec- 

tor at u+d,-v, 

that is, the tangent vector vy +d, -V(u,v,,v,) attached at u+d,-v,. 

This we now transport d, units along Vo which yields the follow- 

ing tangent vector attached at utd, -v, +d, v,: 

(5.2) vy+d,-Vlu,v,,vy) +d,-V(u+d, v,,v,,vy +d, v(u,v, V3). 

Similarly, if we first transport V3 d, units along Vo and then 

d, units along Vir We arrive at the following tangent vector at- 

tached at u+d,-v, +d,-v, 

(5.3) v3 +d,-V(u,v,,v,;) + d, V(u+d,v,,v, ytd, V(u,v,,v4)) : 

We rewrite (5.2) using linearity of V in the third variable, and u- 

sing Taylor series development [5] in the first D, V denotes direc- 

—1 
tioned derivative in the direction Vi viewing V9Y(-,-,-) as a func-
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tion in the first variable only): 

v3 +d, -vi,v,,v,) 
+ dy-(viu+d,v, 1VorVy) +d, -v(u+d,v, Vor 7 (u,v, 'V3)) 1] 

= ¥3t+dyViu.v,.vy) 

Similarly, we get that (5.3) equals 7 

vyt+d,-Viu,v,,v,) 

+ dy lv(u,v,y,vy) tdyby, (u,v,,v3) +d,-v(u,v,,V(u,v,, v3) 1. 

The difference is 

dd° [Dy V(u,¥p,¥) + V(,¥,, ¥(1,¥,,¥;))] 

= Pv," (u,v, V3) - V(u,v, 'V(u,Vy,V3) ) ] . 

If we compute out the square bracket in coordinates, putting Vi T &4 

(i'th canonical basis vector) and v, = es V3 = &. We get for the 

£'th coordinate of the expression in the square bracket (using bili- 

nearity of V(u,-,-): 

3 L 3 £ a £. a L 
ox; [3k 3%; Fix (w) Fel (W) eT Fig) Ty, a, 

where ri = k'th coordinate of Vie; iey). This agrees with 

the classical analytic expression for the curvature tensor of the 

connection V with coordinates res.
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§6. Pictures. 

We append a few pictures analogous to those of (0.1) - (0.4). 

Note that a tangent vector at m€M in our context is a map D-—M, 

Dc A being a certain definite (but small) piece of the line. This 

is of course the same idea as defining a tangent vector on M to be 

an equivalence class of curves passing through m. Because indivi- 

dual maps D -» M are conceptually simpler than equivalence classes 

of maps A + M, they are also easier to represent by a picture. 

Elements in M: o 

. D 
Elements in M : yd 

~~ 

Elements in Ox, MO: xX 
\ 

DvD * 
Elements in M : 

(since an element here may contain some more information than an e- 

lement in MOx M>, if M is not infinitesimally linear. 

Elements in E: A 
¥ 
M 

Elements in MP *P ~ (MP) D : see (0.2) 

Elements in Ex M : see (0.3) 

Elements in gD : see (0.4)
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COMPLEX STRUCTUR.:S ON TOPOI 

by Christiane Rousseau (*) 

Mc Gill University 

Introduction: 

For a few years work has been done in expressing classical con=- 

cepts in the language of a topos and in working on these concepts 

within the language « For example Mulvey proved Swan's theorem by 

means of a "Kaplansky's theorem" inside the topos of sheaves over 

the base space « Some other work has been done in that direction 

by Fourman and by the author « Here we show how we can do some 

differential geometry on a manifold M , using the internal langua- 

ge of the topos Sh(M) of sheaves over M . Let us consider the topos 

Sh(M) , in which we distinguish two objects: Ro and R_,, the shea- 

mes of locally constant (resp. differentiable i.ee C*®) real-valued 

functions on M « In this context we can express that M is a complex 

manifold , and construct H , the sheaf of germs of holomorphic functions 

on M « We can work with vector fields and differential forms , in 

particular we can eonstrut the differential of a function . Then 

we look at connections by looking at their covariant derivatives o 

We construct the riemannian connection’'on a riemannian manifold , 

and we give an internal proof of the following theorem: an almost 

complex manifold is a Kahler manifold iff the riemannian connection 

is almost complex . 

(*) Research supported by the National Research Council of Canada 
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We now come to the motivation for the present work . In [FR] 

we show that a differentiable (resp. complex analytic) family of 

complex structures can be represented as a complex manifold in the 

topos Sh(M) , where M is the space of parameters « In the first 

case the complex numbers object is RC , in the second case it is H » 

Kodaira and Spencer proved in [xs] that a complex snalytic family 

which is differentiably locally trivial is analytically locally 

trivial « We ask if there exists an internal proof of this fact . 

This was the motivation for the present work . Here we have cons- 

tructed the object H from R_, and Re » in the internal language of 

Sh(M) , provided we have a complex structure tensor J . So we have 

a relation between R_,and H 

The theory presented belowhs merely algebraic « Ye stopped sol- 

ving the problem mentionned above precisely where classically a 

Lie equation is solved o \le stop at the same place when we try 

recovering a linear connection from its covariant derivative , i.e. 

building a splitting of the second tangent bundle into horizontal 

and vertical vectors « On the other hand it seems that the theory 

can be done if one replaces BR. —R,, bY any ring inclusion A<B , 

at least for the first 4 sections «Of course the theory is uninte- 

resting if there are not enough derivations of B with respect to A 

For the last 3 sections it seems enough to have an inclusion A<sB 

of ordered apartness fields . However we do not present the theory 

inkuch an axiomatic context: this work is considered as unfinished . 

We are interested to know if there is an axiomatisation of Rover 

R- , in terms of , for example,the Lie equations that are solvable .
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1. Real numbers in Sh(M): 

In the topos Sh(M) of sheaves over the manifold M we have two 

"objects of reals numbers", R. and Ry the objects of Cauchy, resp. 

Dedekind, real numbers, given by: 

R,(U) = {f:U—R|f is locally constant} 

Ry (U) = {f:U—R |r is continuous) 

Now it seems natural to consider R, , the sheaf of germs of dif- 

ferentiable real-valued functions on M, which "represents" the dif- 

ferentiable structure of M. In [FR] we show that we can consider R_, 

as an object of real numbers in Sh(M), in the sense that R is a 

suitable object for doing real analysis. Ye have in Sh(M) the fol- 

lowing ring inclusions: Roc R,< Ry . 

2 Differential of a function: 

Fourman noticed in F | that the tangent bundle of M can be repre- 

sented in Sh(M) by the object of derivations of R_ with respect to 

Rp namely if: 

Der(R,,R.) = (X:R,——R,  X is R,-linear and X(fg) = X(f)g + £X(g)} 

then Der(R,,R;) is the sheaf of differentiable vector fields on M, 

i.e. the sheaf of differentiable secticns of the tangent bundle of Me. 

Remark: Der(R,,R,) is a R_-module 

Definition: 1) Let fe¢R_, then the differential of f is defined as:
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ev, 
f, ¢ Der(R,,R,) ———R, 

Xt——m——— f(X) = X(f) 

2) The gradient of f is a differential form : Vf = df eDer(R,,R,)" 

We have V(X) = df(X) = X(f) VX €Der(R,,R) 

Proposition: Let U be an open set of M and let f:U——=R be differen- 

tiable (fe R,(U))s Then f, is the sheaf map generated by the classical 

differential of f. We say that f, represents the classical differential of § 

and we use the same notation than in the classical case. 

5. Almost complex manifolds: 

If M is a complex manifold, then M has local coordinates 

zy =x, +1iy, , «e+, 2 =x +iy . The tangent bundle T(M) of M 
: \ 

has locally the following basis 8° , *oe Jo, These 
dx, 37 0X Oy, 

vector fields give locally a basis of Der(R Rk.) over R_ + We can 

define a "complex structure tensor" J by: 

a ) = 2 , 7) = - . 
x. . . xX, 

J Yj Y; J 

J gives a R -~linear map J: Der(R,,,R;) — Der(R,,R:) » such that 

Je - -1. 

Definition: A map J: Der(R,,R,)—> Der(R,,R;) , Which is R_-linear 

and satisfies 3° = -1 is called an (@lmost) complex structure on R_ 

Proposition: M is an almost complex mamifold in the classical sense 

iff there is a complex structure on R_ in Sh(M).
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Remarks: 

1) C. = R_° is the shegf of germs of differentiable complex-valued 

functions on M. There is a map J':€.—C_ ,J'(z) = iz , such 

that J'° = -1. 

2) Der(R.2,R.") = Der(R,,R,)° 

3) J:Der(R,,R,) — Der(R,R;) extends canonically to a R_°-linear 

map J: Der(R,”,R.%) — Der(R,>,R.>) , which satisfies J = <1 . 

4) We can speak of the differential of fer =C_, , as a map 

2 2 2 f,: Der(R_ Re ) —> R] £f.(X) = X(f) » 

Definition: fer C is almost complex iff J'f, = f,J « (A section 

feR_Z(U) is almost complex in the sense above iff almost complex 

in the classical sense). 

Now let us consider again a complex manifold M with local coor- 

dinates Zq oy *ce 4 Zo The basis $0 y ®°° ° ’ 2 > 

Xo "N “*n “In 
2 2 2 : - ooo 

of Der(R,”,R,") over R cmn be replaced by the basis 2» J 
oz, cz 

Ss cece — ’ where 2 = HS - 19) ’ = =H 3— + id). 

Z Zz Z. x . Z X . 1 n j J Yj j j V3 
We canconsider the subspace generated py & , © 2 , and call 

oz, dz 
n 

it Der(r,2,R.2)* e« In the same way 9__ yg oc , 9 generate a sub- 
oz; oz 

n 
2 2,= 2 oo 2+ . - space Der(R_ Ro) oo Der(R,, JR, ) is the sheaf of differentiable 

sections of the complex tangent bundle of M ) 

But J(2 _) - 49° and J(2__) = ~i9 _ . 

oz; Oz °Z; zy J 
. 2 2. = . 

So Der(®,Z,R,5)"* = {X|J(X) = iX}and Der(R, ,R; ) = xox) = -ix§ 

We can generalize this to the case of an almost complex manifold.
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Notation: In order to simplify the notation we write Der(R,,R;) = Der , 

2 2 2 2.+ + 2 2 - Der(R,”,R,") = Der’ , Der(®R,R.")* = Der® , Der(R,,R,°) = Der” . 

Proposition: Let J be an almost complex structure on R,_, « There 

is a splitting : Der’ = Der® @ Der” , where Der’ = {X [9X = iX }, 

and Der = {x|ox = -ix{ Moreover Der = Der - iJDer and 

Der = Der + iJDer 

Proof: Let XeDer® . Then X = 3(X - iJX) + #(X + iJX) , and 

J(X = iJX) = JX + iX = i(X = iJX) , J(X + iJX) = =-i(X + iJX) . 

If 2 =X + iY € Der® s, Where X,YeDer , then JZ = iZ iff 

JX + iJY = iX -Y iff JX = =Y iff 2 = X = iJX « 

Proposition: fer 2 is almost complex iff YZeDer~™ Z(f) = O . 

Proof: algebraic calculations. 

Definition: Let H be the subobject of Rr 2 of almost complex elements: 

H = [fer Z| VXeDer™ X(f) = 0} « (H is the sheaf of germs of almost 

complex functions on M) . 

Proposition: If M is a complex manifold , thea H is the sheaf of 

germs of holomorphic functions on M . 

Proof: Der is locally generated by the sa __. 

A 
J 

Lie bracket overation: 

-,-] : Der Der or —,—] : (mer®)2_____ | per® 

[x,Y] = xy - wx 

Proposition ¢ The following are equivalent:
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1) VX, YeDert [x,1] &€ Der” 

2) YX,YeDer™ [X,Y] « Der” 

3) ¥YX,YeDer N(X,Y) = 2( [JX,JY] - X,Y - JiX,JY] = JJX,Y]) = 0 

( N is called the torsion of J ) 

Proof: 

1) es 2) comes from: X<Der® iff XeDer , X,Y] = [%,7] , J(X) = JX) 

1)e 3) Let X,YeDer , let X' = X - iJX , ¥Y' = Y = iJY . 

Then [X',YY] = [x,v] - [x,0v] - i [ox,¥]-i[x,07] 

so [x',y)e pert ifr J%',¥vY =iXx',yY 

iff J(x,¥] - J[0x,9y - ig[ux,¥] - 1J[X,JY) 

= ifX,¥] - 1[Jx,JY) + 9x, v] + [x,37] 

iff 1 N(X,Y) = JN(X,Y) iff N(X,Y) = o , because N(X,Y)<Der 

Definition: J is said to be integrable iff J satisfies the equiva- 

lences of the previous proposition » 

Theorem: M is a complex manifold iff J is integrable « 

Proof: J is integrable in the sense of our definition iff J is cla- 

ssically integrable , iff M is a complex manifold (by the theorem 

of Newlander and Nirenberg) -. 

Proposition: Let M be a complex manifold . Then 

Der(H,R.”) = $X:H—H|X is R,"-linear and X(fg) = X(£f)g + fX(g) 

= {XeDer'|X(H) cH} , is the sheaf of holomorphic 

sections of the complex tangent bundle 7° (M) of M . 

Proof: Any R,-derivation X:H——H extends to a derivation 

X:R © RZ , since Dor (H,R,") has locally the Pet , cee So
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Le. Differential forms: 

Proposition: The sheaf of differential forms on M is constructed 

. . * ’ * P %* 

in Sh(M) as the exterior algebra of Der :/\Der = BoA Der o 

In the same way the sheaf of complex differential forms is given 

* 

by \Der® . 

Cp P * / p+1 * . 
Proposition: There is an operator d: APper — 5 NA Der , given by 

dw)(X) = X(w) if p=20 

ad i+1 & 
dw) (Xq peeve, Xo q) = 2 (-1) Xi (WlXpyeeesXgyoee,X q)) 

i+] ~ A 

+ (0 G(X, XJ] Xoo Xeyoo Karon sX L ) Fw ([Xy, NE 1? ry get yX 1) 

d(w) is called the exterior derivative of w « In the same way we 

define d for complex differential forms a° = 0 

Proof: same as classical proof . 

* - - 4 

Remark: Der’ = Der’ ® Der * y Where pert’ = fwl|w(x) = O|vXeDer ye 

Definition: The object of complex forms of bidegree (p,q) , where 

p+ q=1r, is the subobject of Der®” defined by : 

AP» 9perC* = (ofw(Xyy eee, X) = 0 if p' # p of the x; belong to Der’ 
\ 

and the remaining (r - p') X; belong to Der” }. 

caso. AT C* _ AP, Qa C* 
Proposition: A" Der = Der Der ° 

Theorem: The following are equivalent for a complex structure J : 

1) J is integrable 

* 

2) a (AP? pert) c AP» a+1p, 0% ® AP*1,ap.C
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* 

3) a(A%''per®) ¢ A Tper® @ AC %perC” 

4) a(A 1%perC™)y Cc Alper @ A2+ Oper” 

Proof: 1)=2) Let we’? Apert” , let Xqye-+,X_eDer’ , and 

Yyyees,Y Der , With s#p,p+! and s+t = p+q+! (so t#aq,q+1) 
= . 

i+1 < Then du(Xy, see, X ,¥;,000,Y,) = 2 (=D) Xg (Xp yeeXyyeeX ,¥p,00Y,)) 

+1i+1 7 
+ Pen Yo (Xoo) X 3 Yee, Yo ye0,Y)) 

i+] ; s > 
+ )_(-1) J J( (x5, 1 XgpoeXyseeXgyeeX Yee Ty) 

i<j 

2s+i+j - 5 o 
+ 2-1) J u( Fi ¥ 3) X ae eX ¥y pee ¥yyee¥ yet) 

<J 

& & s+i+j 2 o + 2 2h WORT Xp ee Xy eo X, Tyee Ty, ee Fy) 

Each of the terms is zero , since X; 1X seDer” implies (x;,xJeper® ’ 

[¥;,¥ ]€Der y and (x;,7]] = 2 + 2 with Z<Der and Z «Der 

2)=3) , 2)=4) 
- 1,0, _C* 

3)=31) Let X,YeDer~ , and we /\ * Der . 

Then dw(X,Y) = Xa(Y) - ¥Yu(X) - w({X,¥)) = -w({X,¥]) =O 

So w([X,Y)) = 0 Vw A 2Opert” « This means (x,Y]eDer” . 

4)=1) in the same way. 

Definition: Let d'w be the component of dw in Pts ape C* , and let 
be 

d",, ‘the component of dw in AP a+ ne CF This gives: 

at: 2PalpenC* aptly CF 

aw: APalperC* AP» a+Tp, CF 

Ces 2 2 
Proposition: 1) d'" =0 , da" = 0 , d'd" + d"d' = O 

, » QO C* 2 _ A . 2) If we Der’ = R_ , then d'(w)(X) = ¥(X - iJX)(w) , and 

d"(w) (X) = F(X + 1idX)(w) » 

3) H = {1eR 2 [an (1) = 0} .



-205- 

5« Riemannian manifolds: 

Definitions: 1) feR_ is apart from O (f#0) iff f is invertible , - 

iff |[£]>0 

2) XeDer is apart from O (X#0) iff VfeR, X(f) # O . 

Proposition: Let M be a differentiable manifold ..]is a riemannian 

manifold iff there is a morphism of sheaves ig Sh(M) , g:Der>— LR, y 

called a metric for M , which is an inner product on Der , i.e. 

1) g is bilinear 

2) g(X,Y) = g(Y,X) YX, YeDer 

3) YXeDer g(X,X)>0 and g(X,X)>0 iff X#0O 

Proof: Ariemannian metric extends to an inner product on the vector 

fields over any open set U of M 

Definition: Let M be an almost complex manifold » Ametric g for M 

is hermitian iff VX,YeDer g(JX,JY) = g(X,Y) 

Proposition: The following are equivalent: 

1) g is hermitian » 

2) VX,YeDer g(X,¥) = 0 and 7X,YeDer g(X,Y) = O . 

. C2 2 mC ana 
( g extends uniquely to g:(Der’)——>R__ , R, -bilinear ) . 

Definition: Let g be a hermitian metric on M . We define w:iDer— LR_, 

by w(X,Y) = g(X,JY) « w is the Kahler form of M . 

Proposition: we A°Der” 

Proof: w \X,Y) = g(X,JY) = g(JX,JI°Y) = -g(JX,Y) = -w(Y,X)
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Proposition: M is an almost complex Kahler manifold (in the classical 

sense) iff dw = O in Sh(M) (i.e. w is closed) . 

6e Basis of Der (RR) . Dimension: 

Proposition: There exists a basis for Der in Sh(M) in the following 

sense: 3X;,ee¢,X eDer V Y<Der EE STEER ALIN Y = > fi¥4 

and VA eee, A ¢Ry IA, #0 a > A Xy # O « 

Proof: If Xjyeee,X are local coordinates for M , then 3... 
ox, 

> | is a local basis for Der .9_ 0, since 9 (x,) =1 
ox 9% dxy 

Remark: With the definition of a basis given above we can prove 

that the vectors of a basis are apart from zero : this fact is essen=~ 

tial for the rest of the development 

Proposition: The dimension n of M is given by the number of elements 

of any basis Xygeoe X, of Der » 

Proof. external proof by interpreting -. 

( There is an internal proof in Sh(M) that two basis have the same 

number of elements , using elementary linear algebra on an apartness 

field) . 

Proposition: Let g:Der® ,R_ be a metric on a riemannian manifold 

M « From a basis Xyseoo,X we can construct an orthonormal basis 

Proof: Gram-Schmidt's orthogonalization process works because 

g(X;,X,) is invertible Vi
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Proposition: Let g:Der>— ,R_ be a metric on a riemannian manifold 

* 

M « Then there is an isomorphism : Der — Der 

X mm g(X, =) 

Proof: ¢ injective: suppose g(X,Y) = O ¥Y « In particular g(X,X) = 0 , 

so X = 0 » 

$ surjective: let Xygere,yX De an orthonormal basis of Der and let 
n J ~~ 

FeDer + Let fy = F(X) « Then F = 8s f.X:9-) . 

7 Covariant derivative and connections: 

Definition: let M be a differentiable manifold » 

1) A derivation law (or connection) is a R -linear map 

Ve:Der —— Homp (Der, Der) X——> Vy 

such that “A, (fY) = X(£)Y + VY Vier, VYeDer 

2) The curvature of Vis K: Der’ Hom, (Der,Der) 
oc 1 

YY YT NL 
(X,Y) —— K(X, 1) = VV = IV = Vig ys 

3) The torsion of V is T: DerZ— Der given by: 

T(X,Y) = VY = VX = X, 1; 

Remark: We can extend Vy to tensors of type (r,s) by : 

If K:Der°— Der’ is R, -multilinear , then 
S 

VeK(X yeee,X) = Vy (K(X) 000,X)) = 2, K(Xy 000, VX goose, X) , 

where , if K(X;yeeeX)) = (Yy,000,Y) then Vy (K(X;,e«0,X.)) = 

(Vy¥ypeee, Vy YL) °
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Theorem: Let M be a riemannian manifoid with metric g:Der®— sR 

Then there exists a unique connection V such that YXeDer V8 = O and 

V has no torsion ieee T = 0 « Vis called the riemannian connection . 

Proof: VY is given by : 

2g(V,Y¥,2) = Xg(Y,2) + Yg(X,2) ~ 2g(X,¥) + g([X,¥],2) + g([2,x],Y) 

+ g(x, z,Y]) . 

Then g(VyY,Z) + g(%,2,Y) = Xg(Y,2) VX,Y,2, ieee Vg = 0 » 

T = 0, since g(V,Y¥,2) - g(YX,2) = g([x,Y],2) VX,Y,2 . 

Conversely let Vg = O and T = O « From Vg = O we get: 

Xg(Y,2) = g(V,Y,2) + g(Y,V,2) , Ya(X,2) = 8(VyX,2) + g(VyZ,X) 

-2g(X,Y) = -8(V, X,Y) - g(X,v,¥) 

So Xg(Y,2) + Yg(X,2) - zg(X,Y) = g([X,2),Y) + g([Y,2],X) + G(Vyy + VX, 2) 

= g([x,2],Y) + g([¥,2),X) + 28(V,¥,2) + g([¥,X],2) . 

Definition: let M be an almost complex manifold with complex struc- 

ture J « A connection V is almost complex iff VJ = O 

Theorem: Let M be an almost complex hermitian manifold ¢ Then the 

riemannian connection is almost complex iff N = O and dw = 0 i.e. 

M is a complex Kihler manifold (recall that w(X,Y) = g(2,dY) ) 

Proof: The proof follows from the following lemmas . 

Lemma 1: Let M be an almost complex manifold with complex structure 

J « Then VX,Y,%€¢Der we have: 

Lg (Vy, J)Y, 2) = 2dw(X,JY,Jd) - 2dw(X,Y,2) + g(n(Y,2),JX) , where 

N(X,Y) = 2((JgX,JY] - [X,Y] - J[JX,Y] - J[X,JY])) is the torsion of J . 

Proof: g((V,J)Y,2) = g(VyJY,2) - 8(J (Vy), 2) = g(VyJY,2) + g(V,Y,J2) . 

dw(X,Y,2) = Xw(Y,2) - Y(X,Z) + Zw(X,Y) -w((X,Y),2) + w((X,7),Y) 

- w([Y,2],%)
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= Xg(Y,J2) - Yg(X,J2Z) + Zg(X,JdY) - g([X,Y]),J2) 

+ g([X,2],JY) - g([Y,2],JdX) 

dw(X,JY,J2) = -Xg(JY,2) + JY¥g(X,Z) - JZ2g(X,Y) + g([X,JdY],2) 

- g([x,92],Y) - g([JY,d2],JX) 

g(N(Y,2),JX) = 2(g([JY,d2]),dX) « g([Y,2),dX) - g([Y,J2],X) - g([JY,2],X)) 

so g(Nff,2),JX) + 2dw(X,JY,Jz) - 2dw(X,Y,3) 

= 2JYg(X,2) + 2Yg(X,JZ) - 2J2g(X,Y) - 2Zg(X,JY) + 2g((X,Y),J2) 

- 2g([x,2],JY) + 2g([X,dY],s) - 2e([k,J2]),Y) - 2g([Y,J2],X). 

- 2g([JY,z],X) 

= 4(g(V,JY,2) + 8(RY,02)) = 4g((Vyd)Y,2) 

Lemma 2: Let M be an almost complex hermitian manifold « If the 

riemannian connection has no torsion then dw = 3 Alt Vw , where 

Vu(X,Y,2) = (Vyw)(¥,2) and 6Alt w(X,Y,2)is the sum of the 

w (cX,cY¥,6Z) for all permutations o of X,Y,Z « 

Proof: V,u(Y,Z) - Vyw(Z, Y) = Xu(Y,2) - Xw(Z,Y) - w(VyY,2) 

-~w(YNZ) +W(Yy2,Y) + w(Z,V,Y) 

= 2Xu(Y,2) = 2w(V,Y,2) = 2w(Y,V,2) 

Vu (2,X) = V(X,2) = 2Yu(2,X) = 2w(@2,X) - 2w(Z,VX) 

Vw(X,Y) - V,u(Y,X) = 2Zw(X,Y) = 26 (V,X,Y) - 2w(X,V,Y) 

So 6Altw (X,Y,2) = 2Xw(Y,Z) + 2Yw(Z,X) + 2Zu(X,Y) - 2w((X,Y],2) 

+ 2w((X,2],Y) - 2uw([Y,2),X) = 2dw(X,Y,2) 

Proof of the theorem: 

Suppose that V is almost complex i.e. VJ = 0 « We show Vw= 0 

Vy (Y,2) = Xw(Y,2) =v (V,Y,2) = o(Y,0,2) 

= Xg(¥,J2) - g(VyY¥,d2) - 8(Y,V4(J2)) = Vye(Y,J2) = O «
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By lemma 2 dw= 0 « By lemma 1 g(N(Y,2),JX) = 0 VX,¥,2 . SoN=0 » 

Conversely if dw= 0 and N = O then g((V,J)Y,2) = 0 VX,Y,Z2 by 

lemmma ¥, so VJ = 0 . 
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COMPLEXIFICATION OF VARIABLE FIELDS 

G.C.Wraith 

This article is written in appreciation of J. Kennison's 

visit to Sussex University in 1977. Problems concerning sheaf 

representations of rings led him to enquire about extensions of 

fields in toposes. He is responsible for most of the ideas pre- 

sented here, and has meanwhile carried the theme further. 

We shall restrict ourselves in this article to investiga- 

ting the generic adjunction of v-1 to a field in a topos. To 

construct explicitly this generic adjunction we shall use two 

basic tools, namely torsors and glueing. It is hoped that the 

modest scope of this article will eliminate complication without 

sacrifice of the essential ideas. 

By a field we mean, of course, a commutative ring with unity 

satisfying the geometric Axioms: 

i) — (o=1) 

ii) Vx x=o0 v dy. xy=1. 

By the generic adjunction of V-1 to a field K in a Topos ¢ 

we mean the generic model of the e-theory T whose models are 

fields containing K and satisfying 

Vx Jy (y2==1) A Vv (x=a,+ya,) 
a ra, €K 

We shall simplify matters by supposing that 2 is invertible 

in K. 

Now in Sets the problem is relatively simple: either (i) K 

already contains a V-1 in which case the trivial extension solves 

our problem, or else (ii) it does not, in which case we want the 

extension 

K = K(i) 

-211~
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where K(i) is K x K as K-vector space, with the Gaussian 

rule for complex multiplication 

(a,b). (a',b') = (aa' -bb',ab'+a'b). 

In the latter case, (ii), we should think of K(i) as an 

object not of Sets but of sets?? , the topos of sets-with-an- 

involution, where of course the involution on K(i) is given 

by complex conjugation (a,b) +» (a,-b). 

In a general Topos ¢ , matters are not so straightforward. 

Let I denote {a € K a’ = -1}, and let U be the support of 

I, i.e. U = im(I » 1) . We will adapt the usual abuse of lang- 

uage by writing U for the open suptopos of ¢ given by ¢/U, 

and we write ¢€-U for its complementary closed suptopos. It is 

clear that K/U , the restriction of K to U , falls into 

case (i), so that over U only the trivial extension is needed. 

Over ¢-U we are in case (ii), so that we shall want to consi- 

der K(1i)/(e-U) in (e-u) 22 . Then we must somehow glue these two 

cases back together. A slight complication arises here because 

K/U may contain no global V=1 to which the i of K(i)/(e-U) 

should be attached on the boundary of U. 

We will see that I/U is in general a Z, -torsor, whose non- 

triviality tells us that the two V=-1's in K/U can be distinguis- 

hed locally but not globally. We shall need to use this torsor to 

twist matters straight. 

We define an involution on I by a+ -a. 

Proposition I/U is a Z -torsor in U. 

Proof. Since I -» U is epic, by definition, I/U has global 

support. Since 2 is invertible in K the involution has no fixed 

points. Since in K we have 

a’=p? =» (a=b) v (a=-b)
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we deduce that ZZ» acts transitively on I/U, and hence I/y is 

a %,; -torsor. 

Now we recall some facts about glueing. Let 

U 4, €E-U 

be the fringe functor, that is to say the composite of the 

direct image functor for the open inclusion U Se followed 

by the inverse image functor for the closed inclusion ¢€-0U Se. 

Every object X of ¢ is uniquely determined up to isomorphism 

by the three pieces of data (X/U, X/(e-U) , a(X)) where 

x/ e-v) 22, a (x/v) 
is the attaching map of X. 

We have already argued informally that over U we want the 

trivial extension, and that over ¢€¢-U we want the extension 

K SK (i) , thought of as living in (e-u) 22 , the topos of 

objects-with-involution in ¢-U. 

This means we wish to glue U and (eu) 22 together along a left 

exact functor, which we will now pull out of the hat and justify 

later. 

7 = 
K/U & K/U l l K/(e-U) € K(i)/(e-U) 

Cd (Ce) 
~ / 

( UU i e-U
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For any object Y of U , the involution on I/U defines an 

involution on 

v (L/0) 

and hence we get an involution on ay (279) We denote this 

object of (e-U) 22 by A(Y) , and thus get a left exact functor 

uv —24  (e-u) Zz, 

We denote by 9 the topos obtained by glueing along A . 

It is an ¢-topos because A is a locally internal functor over ¢ . 

Now we want to construct a T-model in 9 . First note that 

since (-) 1 is left exact, - has a canonical ring structure, 

and that the map K—=——s K1 adjoint to the projection KxI — K 

is a ring homomorphism. Furthermore ¢/U is injective since I/U 

has global support, so that we may identify K/U with a subring 

of (xu) (170) by means of c/U . 

We denote by 1 3, x! the map adjoint to the inclusion 

ISK. It should be clear that 52 = -1. 

Let L be the object of 9 defined by 

L = (K/U , K(i)/(e-U) , 1) 

where K(i)/(€-U) has the standard involution (a,b)w (a,-b) , 

i.e. complex conjugation, and 1 is given by 

K(i)/(E-U) —2— A(K/U) : (a,b) — a(K}) (a+jb) . 

It is easily verified that 1 is a %, -equivariant ring homo- 

morphism, from which it follows that L is a ring in 9g . We have 

a ring homomorphism K — L in 9 given by the commuting diagram 

in ¢-U 

K/ (e-0) —2E) gq (x/m) K 

| | d(c/U) | 

K(i)/ (ev) —=—— d(x /u) L
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Since we have a surjection of toposes 

u+ (6-0) —u+ (em) PP —— g , 
to verify that L is a T-model it is enough to verify that 

K/U is a T-model in U and that K(i)/(e-U) is a T-model 

in =U . 

It remains to show that L is the generic T-model. So 

suppose that 

FB 

is an ¢-topos and that p*(K) SF is a T-model in &F . The 

splitting of ¢ into the open and closed complementary pieces 

U and ¢-U pulls back along p to split & into open and 

closed complementary subtoposes JF/U and &F/(e-0U) . 

Let us write 

Fu S$ F/(e-u) 

for the fringe functor. We have the following diagram of func- 

tors commuting up to natural isomorphisms: 

wu RD, y EOF, oy 

| ‘| ‘| 
%* 

F/ (=U) p/(e=Uly, e-U p/(e=U) | F/ (=U) 

Let us write J = {x€F | x%=-1} , with involution given 

by XV -x . Since F is a T-model J has global support 

and is a Z, -torsor in F . Hence J/(e-U) is a Z, -torsor 

in ¥/(e-U) . Let 

F/ (e-0) —L— (e-u) 22 

be its classifying map. This means that for any object V of 

(e-0) 22 we have 

g*(V) = (p/(e=U))* (V)e Z , J/(e=0) .
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If a and b are variables of type K , then in F/(e-U) 

we have 

Vx Va Vb (x° = =1 a atxb = 0) = (a=b = 0) . 

Hence a + xb +— a - xb , for x2 = -1 , defines an invo- 

lution on F/(e-U) . Now if we twist F/(e-U) by the Z, -torsor 

J/(€-U) we obtain a locally isomorphic field with a global V-1 , 

which must therefore be isomorphic to p*(K(i)) / (e-U) . 

We deduce that 

F/(e-U) =~ g"(L/(e-U) . 

It is clear that F/U =~ p*(K)/U , and that J/U =~ p*(I)/U . 

From the latter isomorphism, and from the commuting diagrams of 

functors above, we find that we have a diagram of functors commu- 

ting up to natural isomorphisms 

* 

s/o Ox, y (ROE, 5/4 

‘| : | ° | 
Ix, Za, g* F/ (e=U) (e-U) J/ (e=U) 

It follows that F/U _p/U, U and JF/(e-U) 4, (e-u) 22 glue 

together to give a map of ¢-toposes 

FI 9 

uniquely determined up to natural isomorphism by the property 

that f*(L) = F . It follows that { is the classifying e-topos 

of T , and that L is the generic T-model.
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Report on the Open House on Topos Theoretic Methods in Geometry and 

Analysis, Aarhus May 10-24 1978 

Talks given: 

May 10: A. Kock: Opening talk. 

May 11: A. Kock: Lie's synthetic theory of differential 
equations ( ~ this volume no. 6). 

G.C. Wraith: On Chou's iterated path integrals. 

A. Joyal: Real Algebraic geometry. 

May 12: G.E. Reyes: Subtoposes of the ring classifier (~ this 
volume no. 4). 

G.C. Wraith: Recent work of Kennison. 

D.van Osdol: An exposition of virtual groups. 

May 13: C. Rousseau: Complex structure on topoi (~ this 
volume no. 8) 

May 15: G.E. Reyes: Dubuc's models for formal differential 
geometry. 

A, Joyal: Recent work on real number systems. 

M. Fourman: Logic in Chen's topos. 

May 16: A. Kock: Universally solving differential equations. 

Problem Session 1. 

A. Kock: More on Lie's synthetic theory. 

May 17: M. Coste: The generic model of an e¢-stable theory 
is of line type (~ this volume no. 2). 

M. Tierney: On Schanuel's work. 

A. Joyal and F.W. Lawvere: Discussion on Philosophy. 

May 18: Problem Session 2. 

C. Rousseau: Parameters versus logic. 

F.W. Lawvere: Algebraic Theory of classical thermo- 
statics. 

May 19: M.-F. Coste: On real algebraic geometry (~ this 
volume no. 3). 

R. Bkouche: Frobenius Theorem in Differential Algebra. 

F.W. Lawvere: Is category theory useful in learning 
thermo-mechanics ? 

May 20: M. Coste: On real algebraic geometry (~ this volume 
no. 3). 

May 22: G. Cifoletti: Hegel and differential calculus. 

M. Foruman: C is separably closed. 

F.W. Lawvere: Discussion on Physics.
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May 23: J. Beck: Simplicial Methods in Foundations of 
Analysis. 

P. Johnstone: Gleason Cover. 

M. Tierney: Beck conditions in Topoi. 

May 24: F.W. Lawvere: Category of dimensions. 

M. Coste: Solutions to some of the problems. 
(~ Appendix 1 and 2 in no. 3).


