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PREFACE

The present collection of articles is part of a trend
towards use of topos theory in "basic" mathematics, in particular
in geometry including differential geometry, but also in element-
ary analysis and algebra.

As such, the collection can be seen as work on the points
one and two in the three-point program outlined in the article
"Categorical Dynamics" by Lawvere, which is included as the first
article in the collection. The lectures, of which this article is
a summary, date back to 1967 and have deeply influenced the subject.

Thus the articles all "do" basic mathematics in toposes,
or in some specific topos, but hopefylly if will be apparent that
they do that as part of a program, whose aim is not just to "do",

but to guide the learning development and use of mathematics.

It is appropriate here to give some historical remarks on
how and when the remaining articles in the present volume were
collected.

In the period May 10-24, 1978, an arrangement* took place at
the Mathematics Institute at Aarhus, with the title

OPEN HOUSE ON

TOPOS THEORETIC METHODS
IN GEOMETRY AND ANALYSIS

*partially supported by the Danish Natural Science Research Council
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The idea was to have a work session on the specific program
mentioned but at the same time to provide an open forum for talks
or discussions on mathematical and category theoretical topics
in general. I used this meeting to make proposals to some of the
speakers (namely those whose contributions I deemed were inside
the specific program) to print reports on their talks in a quick
informal way - together with some other, previously unpublished,
but relevant material.

This is what is being done here (except for the quickness).
Some authors needed longer time than others for having their
contributions ready, so that I had to postpone the deadline
several times; for which I apologize to the contributors who
obeyed the first or second dead-line.

It is clear from the foregoing that the present collection
is not a "Proceedings of the Open House Arrangement", but that,
on the other hand, the collection to a large extent is an off-

spring of the Open House.

A brief report of the Open House is included as item 10.

I shall attempt to give a few comments on the contents and
mutual relationship between the articles. The numbers refer to
the "table of contents" above.

In 1., the whole program of synthethic differential geometry
and categorical dynamics, is presented (as well as, implicitely,
the importance of topos theory). The articles 6. and 7. are con-
tributions to development of differential geometry on such an
axiomatic or synthetic basis, whereas the articles 2. and 4. are
concerned with the question of models for these axioms. These
papers contain two different proofs of the affirmative answer to

a question I raised in Nov. 1977 in the "Peripatetic Seminar on
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Sheaves and Logic", namely whether the generic ring for an
e-stable coherent theory of rings would provide a model for
synthetic differential geometry. The notion of e-stability was
introduced in 5. in an attempt to understand those coherent ring
theoretic properties that seem to be relevant to both real-number-
objects in spatial toposes, like in 8., and to line-type rings

in synthetic differential geomety. The study of both these kinds
of rings leads to the study of real-algebraic geometry, which
even in the set-case is not too well understood. The article 3.
is a contribution towards that, using sheaf theoretic methods.
Finally, 8. and 9. deal with complex numbers and complex analysis
in toposes: in 8. the problem of how to adjoin a square root of
-1 to a field object in a topos is solved by means of Artin
glueing; in 9, the notion of complex structure on a ("classical")
manifold is studied using the internal language of the topos it

defines, and two distinguished real-number objects therein.

The articles were available in their present form (except
for minor revisions) at the following dates: 1.: May 79, 2.: Aug.78,
3.: Aug.78, 4.: Feb.79, 5.: June 77, 5b.: March 78, 6.: Oct.78,

7.: Dec.77, 8.: Aug.78, 9.: May 78.

Anders Kock



CATEGCRICAL DYFAMICS

F. William Lawvere

[ The following is intended as a summary of some lectures which I gave at
several places in 1967. In these lectures, I offered some preliminary calcu-
lations in support of a program to (3) axiomatize the foundations of continuum
mechanics in the spirit of Walter Noll on the basis of (2) a direct axiomatiza-
tion of the essence of differential topology using results and methods of the
French work in algebraic geometry (some of which I had learned from Gabriel);
but I further maintained that this requires (1) axiomatic study of categories
of smooth sets, similar to the topos of Grothendieck, since the most natural
form of (2) is incompatible with "usual" set theory. Now;since my joint werk with
I'terney in 1969-1970, several conferences, many articles, and even one published
book (by Johnstone) have been devoted to carrying out part (1) of this program.
Meanwhile, a serious start on part (2) by Wraith and Kock has been followed by
neveral further contributions, and in particular Dubuc in August 1978 explicitly
demonstrated the consistency of part (2) by construccing a category in which
nrdinary differential topology is fully embedded but which morecver, satisfies
the set-theoretically outragious axioms suggested by aléebraic geometry. Work
on (2) is far from complete (for example, it now seems that an approach in this
aplrit to differential forms involves still further divergence from '"usual"
wet-theoretical logic). However, the growth of confidence in the program en-
penidered by these developments.has also led to a growth of interest in the origin
ut the program itself. I am taking advantage of this curzent interest to pub-
lish this summary, along with the observation that seriously taking up part (3)

ol the program will surely lead in particular tc rfurther illumination of parts



(1) and (2). Of course, the framework of "ordinary" set-theory has not succeeded
to prevent Noll's'own work from advancing; two fundamental works from the early
1970's are included in his selected papers published by Springer. My main
external sources for the following summary have been page 937 of volume 14

of the Notices of the AMS and especially notes taken by Saunders MacLane on

May 19, 1967 at Chicago and on November 25, 1967 at Urbana, which he very

kindly sent to me in summer 1978. Some remarks based on more recent develop-

ments have been inserted into the summary between brackets [ ].]



I hope that categorical methods can te used -to give
n simple axiomatic basis for parts of mathematics which arose
from physics (particle mechanics, fluid mechanics, differential
tecometry, harmonic analysis, etc). Some physicists and engineers
secem in effect to have the insight that geometrical and physical
constructions can be perfdrmed, with almost as much freedom as
sets can be defined in naive set theory, without ever leaving the
realm of smooth objects and smooth maps. But usual mathematical
models, such as the category'df smooth manifolds, on the one- hand
presuppose a long intricate purely mathematical construction
(there does not seem to te an intrinsic description of that cate-
pory which could reasonably te taken as a "simple" starting point)
nnd on the other hand are poor in regard to closure properties
gince even something so fundamental (for calculus of variations
rtc) as the smooth space of smooth maps between two smooth spaces

15 ambiguous and difficult, and pullbacks in general don't exist.
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E:TAS I emphasiged in my 1971 - 72 Aarhus lectures, not only the
function space but also the smooth space of smooth subspaces
and the smookh space of representations of a given smooth group
"should" have clear meanings according to such insighE}'But
rather than scoffing at insight (which some seemed to have con-
sidered the only healthy public response in recent decades) we
can try to axiomatically express what some aspects of it might
mean precisely and also to construct mathematic3zlly acceptable
models of such axioms, in the hope ultimately of actually
clarifying the learning, development, and use of these branches
of mathematics. From 1966 Oberwolfach lectures by M. Demazure
and P. Gabriel I learned some facts and methods which seem
important both for the axiomatics and for the construction of
models, essentially the Cartier-Grothendieck functorial approach -
to algetraic groups {j since published in Springer Lecture Notes
# 151 (1970) and a 1969 North-Holland book by Demazure-Gabriel}

Consider a category ?6 in which we have a given ring:

object R . About TX: we will assume that it has a terminal object
1, pullbacks, and for each X —L3 Y, a right adjoint

to the functor £* of pulling back along f. This implies that
each %V/X has an internal hom right adjoint to product over X,
denoted by exponentiation. {'Thus 36 is what came to be called,
after the work of Penon, a locally cartesian-closed category:}

(iater we will need one construction which is most easily guaranteed



by assuming %ﬁ has countable coproducts and coequalizers, Ot jects
of 3& are to be thought of as smooth spaces, and morphisms X —=R
are to be thought of as quantities smoothly varying over X. Note

that for example .LHQmR(A,B) for two R-modules has a well-defined
meaning as a subobject of.BA. R-modules are to be thought of as
vector spaces (with a smooth structure) even thoughwe do not

assume R is a field. The geometric”origin of R is roughly as follows.
ln‘?e there are Euclidean spéées E,, By, Ey whose structure (ibgsic
geometric constructions) are given by morphisms of?ﬁ. In particular

there are abelian_ subgroups

E
Vp = Trans (B,) CE ™0

of translations and hence rings

R = Hom (Vo V).

R =Ry is commutative Yecause of two facts: E; is one - dimensional,
and every homomorphisn vy _ Vl is a homothety tecause it, like
rvery nan in ?é , is smooth. Of course from analytic geome:iry we
& ow essentially how to use cartesian products to cornstruct co-
ordinatized models of Er’ imagining in inverted fashion that we
start with the datum R:

The second axiom will permit an intrinsiec theory o
differentiation to be developed. We assume given a subobject D& R

® 5 R and which is to be

which contains the zero quantity 1

thought of as the space of first-order infinitesimal quantities.



For any object X, the object ~XD will be thought of as the
tangent bundle of X, with projection XD ___>x induced by 1 l}D,
and for any morphism X —&5 ¥ in 36 s 2 will te thought of as

the derivative of f. Thus a tangent vector D —3 x to X 1sat
the point 1 L—?D )x of X, and the derivative fD of f

takes any tangent vector D —Y

»X at a point x to the tangent
vector D —3y X L > Y at the point fx. The functoriality of

exponentiation ( )D is thus essentially the chain rule for
differentiation. To prove 1). the Leibniz rule (for differentiation
of variable quantities) as well as that 2) there are precisely the
right amount of tangent vectors for R and related spaces, we 2assume
our second axiou(ﬂ)iwe need that D is closed uncer the action of the
multiplicative monold R, and that the composites

(a) Dv—>R -2 R

Tji"?

are equal, where ()2 denotes the squaring map from the ring structure
of R and 0 denotes the constantly 0 mp R —> 1 —OSR, and we

also need that there is anAisomdurphism ’

(b) RD =~ R xR
In fact, we may as well define D by requiring that (e) bé an
équalizer, . and assume (b). EHowever, as Massimc Galuzzi ané
Gian-Carlo Meloni calculated in July 1978, (a) follows from (b)
if we assume that %E R and interpret (b),as in the meantime
had bteen done in several papers by Anders Kock, to mean that the
canonical morphism RDQ— R x R 1is invertible ¥. Though there

are many morphisms R ) R (there are at least alli the polynomials),

upon restricting to D they all tecome lirear; but on the other hand

D is large enough so that distinct linear



(i.e. affine) maps R “‘“?’R have distinct restrictions D ; R.

de need category theory for this axiom, since it seems no such ring
could exist in classical set theory {:as was proved in considerable
generality by calculations in the mid-7C's by Kock, Schanuel, and
Lawveré}. The condition (b) is not restricted to "line-like" R, since
it follows that for any R-module V

* * *
(V)D=V xV

canonically, since

HomR(V,R)D= HomR(V,RD) = HomR(V,RxR) = V*x V*

llowever, many vector spaces are not dual modules and it is less clear

how to compute their tangent bundles. But it is trivial that for any

X, Y in %
(Yx)D = o

showing how "easy" the smooth structure ofinfinite-dimensional objects
re-
really is. Using (b) we can define thgfgradient of any variatle

quantity X f—}R to te the composite

R xR _Ei_,> R

D
xD __1;;> RD ¥
where o 1s the other projection, the one rot corresponding to
the map induced by 1 —Af> D. Also the interpretation of targent
vectors as distributions ("of compact support") is given bty the
morphism

D X
X* —> Homg (R, R)

corresponding to
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XDX.RX———} RDTr_) R.

Note thap differentiation is itself a smooth map
oy @&

as is the pre-gradient
RS ___ Hong(x;R)

where Homﬁ denotes morphisms which are homogeneous with respect

to the action of the multiplicative monoid R. This monoid

acts on D, hence on XD. On the other hand, additbn of tangent vectors
xD§xD+_)» X

only exists under the assumption on X; that the functor X() takes-
certain non-pushout squares of D=like objects into products in
9e/x, Ejessentially what is called '"condition E" in SGA3 as I
noticed in April 1979?}! On.the other hand, since (f’maps which

are everywhere defined on a vector space and homogeneous of degree 1

are automatically additive, we may expect that

Homp (V,V') C—, Homg” (V,V')

has a strong tendency to be an isomorphism in our?ﬁ , and that in
particular

Hon&: (RD, R)
may serve as a reasonable surrogate for

Hom (XD, R x X)
RxX v



even when XD i$ not acditive over X.(Here we imagire that Hom has
been given some rational definition using the rich supply of
additive relations induced by those not-necessarily-pullback squares
of multiple tangents over X).

{ZAfter reading Kock's exposgs on Synthetic Differential
Geometry from the Benabou Seminar Jan. 1979) The natural extension of
the axiom (b) itself to multiple and higher tangents seems to be to
consider the cate.ory ‘1/{) of all co‘rnmﬁfative R-algebtras W in % with

the following properties

W = R®H

H ¥ RK as R-modules, some KT N

H —2-X H equal for some pPeEN
(01524

and to define

D(W) = Alpgg(W,R).
and then require that the natural map
D()
W — R
into the double dual te an isomorphism for all W jxxohf. This implies

nrain the same statement for any dual vector space

V*©w ~ ANE)
RNy 5

NV 0, i

We define a vector field on an otject X in 36 to be any

section v of XD___9 X, and a morrhism of vector fields X,v —>X',v!
to be any f in K such that



is commutative. We thus get a category VectR(%b. Because our tangent
concept is representable byAa single generic object D, the notion

of vector field can be equivalently:expressed in the simpler form

XxD —‘V—yx

A

with a corresponding form of the notion of morphism
X ——f;—éxl

f -

XxD -?r;;jy§ X' xD

shen convenient, the notion of vector field can be equivalently expresse

in a third way: C=.
D — &
AN 71,
1 X

-The object R carries a canonical vector field (essentially
the derivative of the identity) so that for any path R —=>X,
its derivative can be composed with it to yiéld a path of tangent

vectors.



The notion of vector field is usually taken to be the basic
notion of "differentiable dynamical system", in infinitesimal form.
The corresponding integrated form, is a flow or action of the additive
group R; in the continuous case the study of such is called "topological
dynamics". The narrow meaning of the term "categorical dynamics" is
thl_xs analogous to the use of‘ "cat" as a variable which can take values
like cat=top, cat = diff, cat = PL, etc., i.e. the study of % -flows,
where % denotes a pair % ,R satisfying our two axioms and where a
flow is a pair X, X xR —% X in % satisfying the usual axioms

xe® = x

xet1*ts = (xetl)etZ

where this use of the symbol e is solely for notational harmony.
A morphism f of flows satisfies

r(xe®) = (fx)et.

Thus we have a category Flowg %) of %-dyhamical objects.

Now since D& R, every flow X xR

>~ X restricts to a
vector field X x D —3 X by considering only those time-lapses
infinitesimally close to 0, yielding a functor

FlowR (%) -——S—).—>VectR(X)
which preserves underlying space. The problem of integrating a system
of ordinary differential equations could thus be viewed as having two
parts, namely applying an adjoint to the functor ( )‘ and then
studying to what extent the underlying space has teen changed by such
"integration". Actually the above functor has two adjoints, which
might fancifully be called the "upper and lower integrals of a vector

field". The right adjoint can be seen to exist without further ado as



HomD(R,X)

the subspace (of the space of all complete paths R —X)
zoneisting of morphisms from the canénical vector field on R to

siven one v on X, or briefly the subspace consisting of solution
curves for the infinitesimal flow v. This solution space carries

+ rztural flow, induced by translations on R itself, whose correspon-

infinitesimal flow is mapped morphically back to X,v by the

evazluation at O

HomD(R,X)-
\Le
X

wiici. to every solution curve assigns its underlying initial-value at

7+ The properties of injectivity or surjectivity ofé? expresé

s 71ly the uniqueness or existence theorem for the initial-value

sr¢oiem for the ODE system determined by v.

To calculate the left adjoint
A
Vecty % W Flowg %)
D

oo | )., we need the existence of coequalizers

XxDxR _—_:XxR > X@R
EE— D
X, hy t 7 X,t + h

wiiz12 we have written xeh = v(x,h) and where of course R acts on

LR by<{x,§>et =Cx,s + t). To gompute X %)R in a particular
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case is more difficult, as it depends not only on detailed knowledge
of v but also on detailed knowledge of coequalizers in}%. An
approximation to such a computation may be useful along the
following lines. Let %é, R be as arpropriate for algebraic or
analytic geometry over a field of characteristic O (see below)

and suppose X = spec{A) for a commutative algebra A. Then a vector
field on X can be identified with a derivation dv (Leitrniz: rule) on
A since elements of A are idenﬁified with morphisms X -1;4> R

and we can always form

£ gD

X —v 5yxP >R

RxR SR
¢
L4

dvf
Now define (in sets % )

A, =<[f~aA Jnd0 [a (- ﬂ\g

in terms of iterates of d , a subalgebra of A, for which a flow

on spec (Ay) can be explicitly defined by
Av __._7 Av[—t‘l
n
f M: dv(f) a

—_—t
Z;J n !
Then there is a unique morphism of flows such that the following

diagram of morphisms of vector fields commutes

X —> Q=&
D

\ !

spec (Av)

Note that A is filtered into quantities invariant under the
v



flow "on X", quantities whose timev dependence is linear along the

flow, etc. The value of such appfoximation seems limited, however.

If we also have countable coproducts in %, then the two
"integrals" for ( )° can be viewed as special cases of the very
general adjoints Homs(R,-) s )%’R associated to a homomorphism
S —} R of any two monoids in% . For we can define

e = Z D"/n!
n=20

the free commutative monoid on the object D, where ( y%/nt - denotes

the orbit space fof the natural action of the symmetric group, and

find a natural homomorphism el — 'R induced by the inclusion

D C R, and whose image is the ideal of R generated by D, consisting
of all sums of elements of square O. If S is cefined as the quotient

of eD modulo the congruence relation determined by the condition that

1 -—0-5 D be congruent to the neutral element of eD, then eD——-PS % R

and we have

R ® s S oy
Flowg (%) =¥~ —LAS° = vecty G-
provided D is so small that every vector field in% also satisfies

infinitesimal commutativity

XxDxD —&}X‘XD v
.x%r/ \x
/—7
XxDxD ———>Sxxp "
vxD

lw

However, if it turns out that the latter is a special condition on X
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and/or v (i.e. does not follow from the identity axiom for vector-
fields by itself) then one should consider its companion condition of

infinitesimal invertibility

XXD% X x D K_X(-_l)%XXD V%X

p:

and even consider strengthening the concept of vector field by adding

the following still stronger axiom of infinitesimal associativity to the

definition:

X x(+
XxD, —m——s X xD
1 \\Z\
> X
/V

XxDxD———XxD
v x D

Here Dl is the irnfinitesimal neightorhood of the diagonal in D x D

defined by the pullback with multiplication

D — 1

L e

DxD—>D

whose importance here is that it is equally well defined bty the pullback.

C——=> DxD

—

~~
+
o
OD<---—-

5 R
since we assume % € R. (Zven if the above additional laws are added
to the definition of S, it is not clear whether S — R Dbecomes

monic).

Vector fields are just the simplest kind of models of a
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differential-algekraic theory, where the latter refers to a concept
more generazl than algebrzie theories in% , whose arities are matural
numbers, but significantly less general than general monads ( = triples)
in %_, whose arities are arbitrary objects, namely we consider theories
in %imose arities and co-arities z2re objects like D {_i.e. more
generally .B(¥) for ‘ueﬂ.f} where in general an operation of arity A
ard co-arity C on X means a2 map C x & —= X. The hope would be that
more refined theorems as to coequalizers, etc. could be proved for
such limited theories than could be true for arbitrary monads in X. Thus
for example in ordimary algebraic theories we can dezl with commutative
algebras X with an additional unary operation f satisfying
féxl + 12) = f(xl} . f(xz), but only with differential-algebraic theories
as mieled in sych % does it become "algebraic" to require also f! = f
where ( J' is the intrinsic é&erivative for the underlying object of X
(preceeded by XSE:I8 x x x T 1D ana followed by L X x X 25%).
Bven ordinary "abstr-ct" algebraic theories, e.g. groups or Lie algebras,
when extended naturally to"trivial™ differential-algetraic theories,
may hzve noen-trivial morphisms of differential-algetraic theories
tetween them.

As is well known, if G is 2 model of an algetraic theory
in a category with expomentiation and if I is an otject then GI is
a model of the same theory, 2nd morecver maps k' =M1 indu;e
homomorphisms el ﬁ GI‘. For example if G is a monoid then the
projection GD — G is a horomorphism of monoids (of groups if G is
a group) znd the kernel of that homomorphism is Lie(G). For example,
Lie(xX) = Vect(X), the otject whose elements are all the vector fields

non- .
on X, which Is thus seem to always carry an "addition' (mybeﬂcormutanve'
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even for the X which are so bad that addition on XD in 3€/X does
not exist; of course, if addition of tangent vectors does exist
then the Eckmann-Hilton Lemma shows that the "addition" must be
commutative since it must agree with addition ty naturality. Since
Lie is functorial for monoid homomorphisms, an associative action

of G on a space X induces an "infinitesimal action"

X x Lie(G) x D >X

of Lie(G) on vector fields on X. What is explicitly the monoid M

obtained by dividing tre free monoid generated by Lie(G) x D by
all relations which are true in all zctions induced from a global
G-action? It is again clear in principle thzt there are left and
right "integration" adjoints.

Now the functor

ar(¥%) e i (%)

is itself representable, in fact by the S previously diszcussed.
However we don't know exactly what;gibC¥)‘is; with respect to which
doctrine of theories should the costructure of S be computed - partial
differential-algebraic theories? {jln the first circulated article
following the synthetic aporoach suigested in the lectures here
summarized, Gavin Wraith in the early 70's showed how the pullback
conditions on multiple tangents of G neeaded to get the Lie-algetra’
structure on Lie(G) could be expressed 3nd used in the axiomatic
setting j} For any definite interpretation ofjﬁh&%ﬁ general prin-
ciples say that Lie will have a left adjoint, ané hence in particular
for each G?;C-rOﬁ) a co-adjunction homomorphism /E —> G, whose
kernel and cokernel are further definite groups which could be

called 1Ti(G) and TYO(G)....But whatever may be the complications



which may lurk in "arbitrary"Agroup objects, the above definitions
and axioms are sufficient to calculate explicitly in 3§the Lie
algebra of classical algetraic groups, e.g.

Lie(GL(n)) = R, with commutator

Lie(S0(3)) = V3 with cross p roduct.
{TSee not only the writings of Demazure and Gabriel but also
J.P. Serre's Benjamin book on Lie'groups and Lie algebras.61965):}

The physical study'of a dynamical system involves not

only a state space X equipped with a dynamical vector field, but

actually a more specific construction of such in terms of simpler
objects. Frequently there is a space Q of configurations and a

given map X __%>Q expressing that each state has an underlying
configuration, but in general must involve more., For particle mechanic

rigid body mechanics, and hydrodynamics one can define
x=qP

but this actually amounts to the very restrictive hypdothesis thit the

restonse of the material depends only on the infinitesimal history

of its motion, where motions are interrreted to mean paths
R -ila'Q in configuration space. In the "simple" cases just
mentioned, the analysis of the required vector field on X is often

associated with the study of a "Lagrangian"

Lix—— 53
which induces a functional

QR RRxR

7

called "action' by applying to



ganon o gD _a” 5D - Z
R &290s g y R ¥R —4-3Q X —3% R
\\ _/"‘:7
I (WY

the integration process

RR : RR x R

—

b
£y (Ka,Bymn{, £(t)at)

A possible (physically motivated) addition to our two axioms
would be the existence of the morphism ; , but it is not clear what
condition on it woulé be both desirable and possible. E:one of the

desirable ones woulé be

a+ h
Qr £f(t)dt = £(a)n
a

for any h such that h2 = 0. This would seem to yield an algetraic

proof of the fundamental theorem of calcﬁlus, in conjurction with
the additivity of Jo in each of its two kindés of argument?}

But more furdamertally, even if the rzther =tstract Lagrargian
is useful, its construction anc¢ the construction of the vector fi~ld
on states in a particular case irnvolves the knowledze of forces
and more particularly of an aralysis of forces into three kindsj
inertial, external, and internzl mutual response. Such an analysis
depencs in turn on a more specific construction of the configuration
space Q, which (even when X is more general than QD) is usually

realized as a given subspace
Q €8P

{,of "placements".} vhere E = E, is the dctual spzre 2nd where B

3

is the space of "particle§” of the miterial body in gquestion,
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In particle mechanics, B is a finite discrete set, but in continuum
mechanics it is usually a three-dimensional manifold {:although in
the theory of rods, cords, plates, and shells, B 1s perhaps a lower-
dimensional object for which the fibers of BD —> B are nonetheless
three dimensional:} One of the motivations for the axiomatic theory
of 36,R is to give simple expression to the o0ld idea that the theory
of the infinite-dimensional Q with dim(E)>0 should be in some respects
"just like" the particle case E which was also a motivation for K.T.
Chen's Urbana (1978?) notes on the calculus of variations, in which a
category with some properties in common to our )sis independently
constructed }

A reasonatle condition on

Q € &°

would be that Q is mapped into itself by the induced action of the -
group of rigid motions of E. The group G(B,3) of all those invertitle
endomorphisms of E which map Q into Q might thus serve as a crude
measure of the distinction between very rigid bodies (G minimal) and
rarefied gases (G maximal); however a more serious measure of the
distinction of the kinds of material B is made of should involve
infinitesimal symmetry of the internal mutual response fuﬁctional,
not discussed here.

Wwhen the simple definition of state space suffices, we have
D.E B
x=P € E)P=E=ExW

where ED =ExV with V = V3,the translation vector space of the

affine space E = E3’and hence

x = €q x
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where VB

is the space of yvelocity finldés on B. Inertial forces, momentur
and kinetic energy involve not only velocity fields and a metric on
V for their computatioh, but also a further given structure of a

mass distribution on the body. Using the total mass of the body as unit

so that the mass of parts can te measured in terms of pure quantities
R, such distribution can be considered as an R-linear morphism

RB_m%R

which preserves constants and which-is positive. {:But what is the
best way to account axiomatically for positivity? Do the elements
of D support a rotion of positivity or not? Unpublished lecture

of André Joyal at Columbia University, December 1975 on "real
algetraic geometry" gives some indications:} Integration with
respect to m can then te applied to functions with values in convex

sets such as E, yielding in particular a '"center of mass" map

Q —> E.

The mass distribution and the metric on E are the main ingredients
in the analysis of one kind of external force and internal mutual
response, namnely gravitation. For more cetzils on more subtle
internal mutual response which material hodies may have, see papers
of Walter Noll in the Archive of Rational Mechanics and Analysis,
late 1950s E_and especially Noll's Selected P»pers published by
Springer ;974:} the main physical and mathematical ideas of which
can hopefully be expressed in categories like our 36 .

An important virtue of the categorical axiomatics we have
indicated is that if there is one model 36 tnhen there are immediately
infinitely many otrer interesting and useful models for the whole

theory, in fact at least two classes of such. If G is any group
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object iJl?&(e.g. the Galilean or Lorentz group??) then the category
766 of G-actions and equivariant morphims is again a model for our
axioms if we interpret R to mean R with trivial action. Also if M
is any ("parameter") object i1176phen the category js/M of objects
over M is also again a model for our axioms, interpreting R as R x M;
theory of dynamical systemé in géyM is the theory of families of
dynamical systems 1n.36parameterized by M {jas in bifurcation theory,
see Marsden BAMS vol. 84, Nov. 1978 }. It was, as briefly indicated in
paper for the Eilenberg volume, qualitative and unpublished consider-
ations of the kind just mention=d, as much or more than published
problems of independence, etc. in abstrsct set theory and logic,
which were an important impetus toward the 1969 -70 Lawvere-Tierney

development of essentially algebraic axioms for topos theory:}



Now we consicer three general cateiorical constructions which
are useful in sﬁawing the existence of models for our axioms as well
as for suggestihg possible stronger axioms. All our models ?é are
subgenerated by the algebraic theory :L whose n-ary operations are

by definition

A ®%R) =% @R%R)
where by "subgenerate" we mean (strongly) generated by the full sub-
category g_of ?C determined by those'objects X which occur as
equalizers

X —> R —= RO

Thus conversely we can construct such jé by starting with a suitable
algebraic theory A and considering the category g?p of finitely
presented  A-algebras, i.e. those that occur as coequalizers of finitely
generated free A-algebras in the category £lg(i) = Lex(Q,QS) og
A-algebras. Therlagis to be sought as a full subcategory of QBQ

whose inclusion has a left-exact left adjoint, for then tharks to

work of Giraud and Verdier in 3Gil4, we can conclude that the category

?Q , called a "topos" will satisfy our first axiom on the existence
of-quand in fact have further useful exactress properties. As a matier
of fact, the basic duality between algetra and geomctry is just the

restriction of an adjoint pair called "conjugacy" by Isbell:

Cyop coP
(G=)H ¢
s <
Lex(¢.$)°P sh(c,5)

| !

function

alg(n)°Palgebray % = ngeom(s)”

spec
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where both conjugates are defined by the same formula
conj( )(C) = Nat(-,C)

where the C' on the right denotes the representable functor of the
appropriate variance, and Nat refers to natural transformations
of functors of the same variance. Thus
(function algetra of X)(¢) = % (X,C)

and

spec(a)(cOP) = Alg(a) (a,cOP).
Those A © Alg(A) which are inverse limits of finitely-presented
A-algebras will satisfy '

A = function algebra of 'spec (A)

coP
There is still the choice of which subtopos XOI‘% is more
appropriate but note that the conditions ™ 99% ¥ ana &spec(A)
€% for all A€Alg(h) Fare equivalent and provide a minimum

restriction on this choice.

In order to satisfy the second axiom, we define

reY € ge”

to be the underlying set functor on QOP QAlg(}\;), or equivalently
the functor represented by the free A-algetra on one generator. Thus
the spectrum of any algebra in Q_OP -is a space form CE C and any
object: XE% is determined by a discrete fibration (/X

over C whose fiters consist of all figures in X of a given form
(possibly singular figures) and whose morphisms are "incidence re-
lations" between such figures. But X also determines, by mapping
into R,RZ, in general into all the equalizers C —an jﬁm in%_,
a discrete op-fibration X/C over C whose objects are all variable

quantities on X satisfying various given equations, and whose



morphisms are A-algebraic operations on such quintities. The
requirement fhat R be a commutative ring in % will te met if

the theory ﬁ contains the algebraic theory of commutative rings as a
suttheory, and then D€ C will re forced to be the spectrum of the
A-algebra ottained by dividing the free A-2lgebra on one generator

t by the ﬁ;congruence relation generated ty the one relation t2 = 0,

i.e.

D e;é < q5-90p

is the covariant set-valued functor on the category gop of algebras
which assignsto each algebra cPe g?p its subset of elements of

square O. Since the full inclusion
< op
ce¥egt
preserves products and whatever exponentials may exist (for any
Ered

small category C), in order to verify our second axiom for 7Y,

namely

R 2 rxr

it suffices to know tha ( )D, right adjoirt to ( ) x D the

free or "tensarM™ -rociuct in slg( L), exists in € a:é that

Sre oaxist
nolds there. In the case of 2lpelrsic geometry, where A consists

.
only of polynomials with coefficients in some ground field k, this

is indeed the case, in fact any algetra which is firite-dimensioral

as a k-vector space can be applieé as an exponent in ilg (éﬂOOP,

and D = spec(k[dl), where k[d] = k[ﬁ]/t2 s two-dimensional. But
it should te possible to take A  as the algebraic theory of all
real- analytic functions or of all C*> real functions of n variables.
E'In 1978 Eduardo Dubuc succeeded ir constructing an gé satisfying

both of our two axioms and containing as a full subcategory



the category of all real C°° manifolds; the extent to which it

is generated b.y ( the dual of )A the category of all finitely =
presented C”;algebras is still unclear to me at this writing}
There should be many algebraic theories A intermediate between
only polynomials as operations and all C“ functions as operations,
perhaps satisfying some suitzable clloiure conditions, in particular
the A generated by cos, sin, expaeu/’fﬁ.nders Kock has studied the
closure condition that with each f (x_,t) in 4. there is also con-
tained in A the unique continuous f,(x,t,h) such that f(_x_’t +h) =
£(x) + fl(gg,t,h).h'. for all real x, t,h. The inverse of this con-
dition would also seem interesting }.

ESome feel that a geometrical category% should not recuire a
category as tig as C to gererzte it, nor should it satisfy the topos
exactness condition that monic epics are isomorphisms, but rither -
should be generated (weakly) more nearly by points in a narrow sense.

If

BC cC%k

are categories where ae (weakly) generztes C, C ¢erierates % , and
% is complete cartesian clcsed, then the full subcategqryyﬁ of%
weakly generated by ff) , can te cdefired tfo consist of all ¥ such
that for any distinct C : Y with C in C, there is & — C,
with E €8 such that E —3¢ 37 are different. Yg is closea
under inverse limits and %, -subot jects, so is eni-reflective

in %, . Ir F;actgﬁ is closed under exrornsntiation ard contains

£ as a full subcategory, =s well as teing weakly gererztecd by 4;6 .
The interest of this enersl corstruction for us is thot an anproprizte

Nullstellensatz for _[L would tell us th~t the dual D of the

special category wof finite dimensional algebras



defined e=rlier,

actually coes weakly gererate (. 3irce C%CX are “ull, ‘(6{‘3 is

mote nearly a geometrical categery than other cortesian clos
. Yl
categories generated (strongly) ty Pd) such as C,DI . As pointed

out in my 1972 Aarhus lectures, such categ orles as the latter retain

only the formal aspects of the :roups, spaces, etc from }f]

For any category C having finite products and split idempotents, an

op .
object C %Sg is representable iff the functor ( )C has a right ajoint

[ohe: Qd"
_—C
% e

cop
In fact for any Y in g" we have for any S in C

¥,(8) rat(sC,y)

and in particular if S°€ G for 21l S € C  then

Y. (s) = ¥(s%y,
~0p
A subtoros %of 3= will te closed under ( )C provided

( )C preserves coverings. ’E Several'people have recently poirted
out that the foregoirg is true (in the mocdels) for C = D(¥W), lu'i&b\f .

Thus for example we have the rule
i_—_—:*_Y_
X — Y
In particular if Y = R we fird that there is a subobject Lof RD

defined 'by the éondition that
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the two induced actions of the multiplicetive monoid of R agree.
Then the gradient of a map X — R can be interpreted not only as

an element of D

. X
HomR(XD,R)C: R( )

but also as a map

X — LR

In fact, there is a canonical map ﬁ -—11—5 Rp which factors through

L, and the gradient of any X-£->R can be computed as the composite
grad(f) = d4f

Something like this feature exists also in the cartesian-closed

category constructed by K.T. Chen in BAMS vol. 83, September 1977,

even though the objects D and L dc not exist since his category is .

weakly generated by 1 .:}
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Harie-Frangoise Coste end Michel Coste

Anders Kock introduced in [S] the notion of ang -stanle
theory:let T be a geometric extension of the theory of
(commutative and unitary) rings,G its generic model;T is said
to be £ -stable when G[ﬁ] (the ring of dual numhers aver G)
is again a model of T.If ‘T is given by axinms involving
at most denumerahle disjunctions,T isg& -stehle iff for anv
model A of T in the category of sets A[i] is agAain a model of T
(this is due to a general result of takkai and .eyes [2]).

The theories of local rings and of strictlv henselian

local rings are € -stable [5] and it is proved in 3]

that their generic models are of line type.In this paper

we generalise this result.The proofs in [3] rely on the

fact that the Zariski topology (for local rings) and <he &tale
topology (for strictly henselian lccal rings) are suicanonical.
In general the topoloqgy associated to the extersion T is not
subcanonical.The idea of our proof is tao construct first a site
with a subcanonical topology which allows us to use the same
methods than in the particular cases ahove.

This work is actually a joint work with Anders ®Bck:his
letters have led us to modifyv completely our original proof
which gave the result only in the coherent case.He pointed out
to us that the main fact is that G[TJ is classified ty a
geometric morphism uhiﬁh has>(-)D (where D is the object of
infinitesimals of G) as @nverse image.We follow in the second

part his proof of this fact.

-29-
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Gonzalo Reyes has a different proof of %the same result (4] .
Actually our proof gives a slightly more general result but
up to now we don't see any application of this further gene-
rality . The reading of his proof has influenced the presentation

of ours .

I) Standard extensions

In the following Lo is a language , TD a }im-theory Eﬂ and T

a geometric (finitary or infinitary) extension of TD both in LD .

a) It is well known that to the extension T of TU corresponds a
Grothendieck topology % on the category FF'MDdTDDp (where FPMudTD
is the category of finitely presented models of TD) : see for

instance Eﬂ or Eﬂ chapter. IV .

Definition : T is a standard extension of TD when € is sub-
canonical (i.e, every representable presheaf is

a sheaf for %) .

There is a syntactical characterization of this situation

( M1, 1v.3.2.) :

Proposition l_: T is a standard extension of Tu iff both fol-
lowing conditions are satisfied

i) every sequent Q(T) !'-' 3'\7 .\E(?,V) where é
and f are conjunctions of atomic formulas and
‘2(;,'\7) ’ ‘I(?,;) }-?'; v = 7  which is a theorem
of T is a theorem of T0 .

ii) every geometric formula C)(;.V) which is in

T a functional relatiaon —;!—».\7 (i.e.

@(;,V) , @(;,?) h‘ -\7 =7 ) with domain a

conjunction of atomic formulas Q(x) (i.e,
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37K, V) P%:f Py ) is equtvalent in T to a
gD =y s o -

formula JY V(;,f,f) where ¥ is a conjunction

of atomic formulas and

oy = - - -
S_J(x>,\/),€) y ‘_p(x),\/),-lg) I_T_ t = u
o

h) In the case where T is nnt a standard extension of TD , is
there a lim-theory T1 between TD and T such that T is a standard
extension of T1 ? The answer is "ves , hut possibly with a

change of language" :

Proposition 2 : There exist a language L1 caontaining Lc| and
having the same sorts of variables , a lim-theory

T1 and a geometric extension T' of T1 both in L1

such that :

i) T,I is an extension of To ,

ii) T' is an extension of T which is equivalent
to T ; Precisely , the canonical geometric mor-

phism from the classifying topos for 7' to the

classifying topos for T is an equivalence .

i1i) T' is a standard extension of T, .
L 1

Proof : Let L) be L and T° be T . Suppose that L, and
™ have already been constructed with Lg extension of LD and

" a geometric theory in LE extension of T and equivalent to T .

n+1

LD is constructed in the following way :

For any geometric formula M (X,7) of Lg which is in T" a
functional relation ;r—a?ﬁ with domain a conjunction of
atomic formulas of Lg , add to LE a new predicate Ro (;;7) .
T+l is T plus the axioms R@ (%,7) k:L1 @(;,3) . ]
is equivalent to 70 , hence to T .

tet L, =Y L" ang 7' = VU 17 . No rew sort of variables
1 n o n



has been added , and T' is nf couvrse enuivalent ta T . Let T1
be the lim-theory in L, with axinms all tha@theorems of T!
like Q(';?) = av 1;(3?,'(7) where f and ¥ are conjunctions
of atomic formulas of L, and Y0, PR ['—T-, vT=7.
T1 is an extension of To and by proposition 1 T' is a standard

extension of T1 . n

Let % be a topos .

Corollary 1 : Let U be the restriction Functor from Mud(T1,%)

to Mod(TO,‘e) . U is faithful .

Proof : Clear , since L1 has no more sort of variables than LD . u

Corollary 2 : Let A be a model of T in € . It may canonically
be considered as a model A' of T' ., Then for any
model C of T1 in € the applicatian

Hom (A',C)—————————+HomL (A,UC)
1 5]

is bijective .
Proof : Since A = UA' the application is injective by corol-
lary 1 . Now let f : A——UC be a LD-mDrphism . We have to
show that it preserves the new predicates of L1 . Let R(D)

be one of these new predicates . It is equivalent in T' to a

W

geometric farmula Q(?) of L, , so we have {? € A ]R(;)}A

{‘;6 Al @(})} . since (%) l—T‘, R(X)  we have

2 K R and {?e C \R(i‘)} > i&’e uc | @(1’)} .
1

50 since f preserves @ , it preserves also R . ®

II1) Generic models of @-stahle theories

Lg s To , T, L, » T, and T' are as in' proposition 2 .
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a) Let ‘ng,p he the classifying :onos for T lle know that

1

‘5[-.-1] = FPMacIT1GD . The reneric model G, of T, is the inclusion

l—'i’.‘rlndT,] C—s MDdT,I .
€[T] , the classifying topos for T , is equivalent to E[T7]

so0 we may suppose it is the topos of sheaves on FPH(::IT,'D:'

for
the subcanonical topology associated to the starndard extension
T' of T1 . Ule have

€ =g S ——lr] .

The generic model G' of T' is aB,l and the generic model
G of T is UG' , that is aUG1 . Since G1 and UG’I are represented
by models of T, and T_ in FPModT,lc'p and the topology is sub-

canonical we have iG' = [31 and 1iG = UG1 .

b) Let I be a finite presentation in [ (i.e. a finite set of
generators {a,],...,an} together with a finite set of closed
atomic formulas of L i@l(;),..., {’p(’é’)} with:parameters in
CPEREREL I If A is a model of To , (I,R) will be
{(x,l....,xn)énnl §1(;)A ...n@p(?)} . Let [I] (resp. (I)) be
the model of Tn (resp. T1) of presentation I . If A is a model
of T  (resp. T’I) A[I] (resp. A<I)) will denote the sum Al CI]
(resp. Ah(I)) in the categorv of models of T (resn. T1) H
this makes sense even if A lives in a topos which is not the
topos of sets bv replacing [I] (resp. <I)) by the constant
sheaf . e have the following isomorphisms

Hom

LcJ( [I],D) ~ Ham(1,(I,B))

l-lomLD(A[I] +8) ¥ Hom (A,B) x Hom(1,(T,B))

where A and B are models of TD , and

Hom ({1),0) x Hom(1,(I,UD))
1

L

Hom (C(I),D) ~ HlJmL
1

(C,D) x Hom(1,(I,uD))
1

where C and D are models of T‘l .
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c) uWe are going to prove the following result
Theorem 1 : If G[I] is a mndel of T , it is classified by a
geametric morphism with ()T, ‘Z[T]—-—>2[T]
as inverse image .
Lemma 1 : The functor (-)(I'UG1) : ifT,‘]———af(TJ preserves
‘the'colimits , and it is the inverse image functor

of a geometric morphism 6-1 .

Proof : The presheaf (I,UG,l) is represented by (I} : For

any P € I-TF‘fVlch,l we have (I,UG1)(P) = (I,UP) = HomL1((I),P) .

So if X is any presheaf on FPMudT10p ,

x(TUED 5y Nat(HomL1(P,~),X(I'UG1)) = KatCham_(P,=)x(1,U6,),0
= Nat(HomL1(P,-)xHumL1((1),-),X) =~ ftat(HumL1(P(I},-),X)
x X(PLD)) .

This shows that (-)(I'UL‘1) preserves colimits , and we already

know that it preserves limits since it is a right adjoint .

Lemma 2 : Suppose GfI] is a model of T , classified by § .
Then the diagram &
1
el1,] (1)
. i N i
L) ——— ¢(1]

commutes (up to iso) .

Proof : Wle have to show that 6‘1‘1 and id classify isomorphic

L ey 2 (e

P{I) ; hence 6‘1*"51 ¥ G1<I) and al.".,li'tl:i,I x a(G,I2) x (a6, X1

models of T‘I . We know that &1*51(P) = G

Q

G'CIy . Now é%aG, = 8%6' = (G[L])' (i.e. GLI] considered as
a model of T') . G[IJ' has the same universal property that

G'(I'\/ : For any model A of T, in #1] we have



llomL1(G[I] LA) v HamLo(G[I],U‘\) (hy corollary 2)
& Hom (G,UA) x Hom(1,(I,UA)) (cf §b)
o
Hom (G',A) x Hom(1,(I,UR)) (corollary 2) .
1

50 G'(I) and G[I]' are isomorphic .

| emma 3 : With the hypothesis and notations of lemma 2 ,

Iga( is (_)(I,G)

Proof : Let X be an object of %U] . we have

(iX(I'UG.‘I)) Since UG, = i (cf §a)

AU .
we have (I,UG,) = i(I,G) and Frxalixt T8y a5 (x100)
v (18

— .

' x §*aix x aJﬁiX“.‘ a

this completes the proof of the theorem . @&

Jd) We suppose now that To is the theory of rings . Let I he
. . . N 2
Lhe presentation given hy a generator & and the relatinon € =0 .,

l;[_'I] is G[f] and (I,G) is D . The theorem 1 gives immediately:

Theorem 2 : If T is f£-stable , G['f,] is c_lassified by a ceo-
metric morphism whith (-)D as inverse imane .

%y

In particular G is of line type (i.e. G[£] ¢ G
and D is internallv projective (i.e. (--)D preserves
finite colimits [3]) .

“ore generally let In be the presentatioﬁ aiven by nenerators
51,...,€n and the relations 5.1 ﬁ]. = N for all couples (i,J) .
6(1,.] is denoted by G[€,,...,€ ] and (1_,6) hv D(n) (cf [3]) .
Following G. Reyes [’f] we sav that T is 1-stahle if for everv n
Li[£1,...,£n] is a model of T . We have

Theorem 3 : If T is 1-stable , G [€;,...,£ ] is classified by a

. (n) R .
geometric morphism with (_)D‘n) as inverse image
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(for all n) . In particular G is of line type ,
1-small objects (i.e. finite products of D(n)'s )
are internally projective , and G is infinitesimally

GD(n) D

linear (i.e. is the n-fold pullback of G

[over G [3]) .

Proof : The only point which is not obvious is the last

remark . We have to use the fact that G[€,,...,€ ] is the n-fold

pullback of G[t] over G (cf [3] p. 26) .
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The follcwing paper is a redaction cf our lectures
in the open house in tepos theory in AZrhus in ifay 78.

We want to thank all the participants and especially
the organiser A.Kock.The very interesting discussions

we had there have heen a great help for us.
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A)REAL ZAKISKI TOPULOGY

Reanl ideals , i.e. those satisfying xi+...+xié I — xle .I
play an imjortant role in real algebraic geometry,and have been used
for the "real nullstellensatz" (Dubois,Risler,Efroymson).

The main idea of this first part is to replace prime ideals
by real prime ideals.

In the case of a ring of polynomial functions on an algebraic
variety in IR n ,real maximal ideals correspond exactly to real
points of the variety.

This leads to replace local rings by real local rings,obtained by
localisation at real primes.

We define the real analogues for the Zariski Spectrum of a ring
and its structural sheaf :they are just restrictions of the ordinary
ones.Nevertheless a new problem arises :what'rings are isomorphic to
the ring of global sections of their real Zariski spectr.um?

As G.Wraith suggested ,the proof we gave in Aar;us of the
compactness of the real Zariski spectrum was very simplified
by the study of real rings.Unfortunately this complicated proof will
be necessary in part B) for the compactness of the real étale

spectrum.
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1) Real ideal,real local ring,real ring

Definition 1: I is a real ideal iff I is an ideal such

tha* 2+...+x§é I3 ¥ i=1,...,n x; € I

X1

Example:

l){D) is real in/R ,not inC .

2)(X-a) is real in R[X] ,not (X2+l).

3) The ideal generated by (X-1) and(Y-1) is real in

R[_x,v]/’(xv-l) ,not the ideal generated by (X+V).
Ptoposition l:Let I be a real ideal then I={? .

proof:

\E =yprQ2>IP

Let n be the smallest integer such that a"€ 1

= {al a"€ 1 for some nelN}

n
-If n is even a¥ € I:contradiction

n+l n+l n+l
-If n is odd a € l,at ¢ I'T =n and n=1,

Definition 2:A is a real local ring (formally real
local ring in (1))iff A is local and its
maximal ideal'mﬂ is real.

1) Real local rings are models of the following finitary
geometric theory:

a) 0=1}

b) F3vy xy=lv3 y' (l-x)y'=1

i=n

i
. 2
c)for each n inN + 3, (l+i=il x{dy=1

A ring is local iff a) and b) are verified (well known).
i=n
. b4 2 < .
If ’MA is real l+i=l' X3 cannot be in NA and hence is

:"anert'1ble.l3cmversely"m,R is real.If not we can find

2 2
(Xyyeeesx ) such that Xy +...+xn€mA and x; & MA .

1=n 2
x; is invertible (A is local) hence 1, Z(ﬁ) em,:
X
contradiction. i=2 1

2)1& ring is real local iff it is local and its residue field

is real (-1 is not a sum uf squared.
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Proposition 2:Let I be a prime ideal.AI is a real
Llocal ring iff I is real.

proof:trivial.

Proposition 3: Real ideal generated by an ideal(Risler)

Let I be an ideal

2 2 2
Let I’=< a]i ncNﬂ@l,...,xn) a +xl+...+xrfl}
ﬂ(I):J;‘ is the smallest real ideal

containing I.
proof:

-1t is clear that every real ideal containing I contains R(I).
-I' is an ideal.The only thing to prove is that a€éIl|b€I's)ya-bel!
2..2 2 2 2 2
We have a +x1+...+xnéI,b +y1+...+ymtI
(a-b)2+(a+b)2+2(xf+...+x§+y§+...+y§)€ I hence a-be€1I'.
Al 2 2 AI/—‘" ;
I' is real.lLet 8y+...+a  be an element of JI':there exists m) 4

2 2.2 2
and elements (bl....,bk) such that (al+...+an) m+bl+...+b%fi

. - 2mi 2 2
so there exist elements CyreessCy such that(al ?+cl+...+c16 I

hence al€{;7.
Proposition 4:An ideal maximal among the real ideals
is prime.
proof:Let I be maximal among the real ideals and such that
xy&I,xf I and y4 I.
R(I+Ax)=A,R(I+Ay)=A hence we can find (xl,...,xn) and
(yl,...,ym) such that l+x§+...+xic I+Ax,1+y§+...+y§ € I+Ay
hence(l+x§+...+xi)(l+y§+...+y§)€1 hence 1 € R(I)=I:contradiction.
Defipition 3:A ring is real (formally real in (1))
iff for every n¢WN and every (xl,...,xn)

1+x§+...+x2

n is invertible.

Remark: The theory of real rings is a lim-theory (2).

Proposition 5: In a real ring A the real ideal generated
by a proper ideal is a proper ideal.
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P-cof:Let us suppose that R(I)=A;1€ R(I) hence there exist
(xl,...,xn) such that 1+xf+...+xi e I,that is I=A.
Proposition 6:A is a real ring iff its maximal ideals
are real.
proof:Let M be a maximal ideal in A,R(M)="M_ by proposition
5 hence ™ is real.
Conversely l+x§+...+x§ cannot belong to a maximal ideal
hence is invertible.
Proposition 7: free real ring associated to a ring A .

z l=< l+x§+...+xi ¥V  nenNV (xl....,xn)fﬂn 5

is a multiplicative subset of A.

-1
A(Z l\ is a real ring and every ring-
homomorphism between A and a real ring B

Lf‘actors by A(f.;) .

proof:Let sl,f..,sn he elements of Z 1 .When we reduce
i 2 X 2

l4§—— LEERS Fene to the same denominator we find an
1 n '

expression of the form %— with's and s' in Z.l’

-1
It is clear that A( Z l) has the required universal property.

Proposition 8:free real ring with an element a of A invertec
2n 2 2 n
7 a —{a Xk kX JVHQkal,...,xn)é A }

is a multiplicative subset of A.

)
Alf a)is a real ring and every ring

homomorphism f from A to a real ring B

Luwith f(a) invertible factors by A(z:).
proof:as in proposition 7.

Proposition 9:Let S be a multiplicative subset in A,
' The application J~—3 g HLS")is a bijection
of real prime ideals with no elements in §

and real prime ideals in A (S-J.

proof: no difficulties.
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Corollary:The application p— p A(f'?) is a bije;tion
between real primes in A and in A (Z-;) .
proof:Real prime ideals in A have no elements inﬁﬁiﬂ.
Remark:
Prime ideals in a real ring are not always real :.For example
in“(EX,le (X2+Y2) is prime,not real and does not contain

- e
elements of & 1 .It defines a prime not real ideal ian;}.Y:Cfl).

II)Real Zariski spectrum of a ring.

The real Zariski spectrum of a ring A is the following topo-
logical space:

-elements are real prime ideals

-basic opens are of the form Da={)J JP real prime ideal a#ﬂ}
This topolegy is the restriction of the Zariski topology

to real prime ideals.

Wwe note Spec (A) the real Zariski spectrum of A,

RZar

Let f:A ——% B be a ring homomorphism and SpecRZar(f)

be the applicationJP —_—) F-l(ﬁ ) .Spec r(F) is a

RZa
continuous map from npecRZar(B) to SpecRZar(A)’
Remark:

-
1)The elements of SpecﬂZar(ﬂR,}]) are
-points of J8 (prime ideals of the form (X-a))
-the{U& ideal (the generic point)

2)The elements of Spec (R ©,v]/xy-1) are

RZar
-real points of the hyperbola (prime ideals generated by
(X-g) and(Y-b) with ab=l,a and b real numbers)

-the generic point (the {0yideal) .
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(ACa~1)) and D_ are isomorphic

Proposition 1: Specanr a

topological spaces.
proof: cf I) proposition 9.
Proposition 2: SpECRZar(A) and SpECRZar(A ﬁﬁi)) are
isomorphic topological spaces.
proof: e¢f I) corollary of proposition 9.
Definition;The family ¢a,) covers Spec (R)

i“i€el RZar

le}{Dai = SpecRZar(A).

Proposition 3:Let A be a real ring.The family (ai)iéI

lcovers Spec(A) iff it covers Spec (n).

RZar
pronF:Let}) be a prime ideal of A.It is contained in a maximal
ideal of A M .M 1is real (I),proposition 6) .So there exist
ay which does not belong to M ,hence to P in the family

[u)
(ai)

i€l °

Theorem:The real Zariski spectrum of a ring is a compact
topological space.

proof:Proposition 2,proposition 3 and compactness of Spec(A).

Corollary:For all a in A'Qa is compact.

proof:theorem and proposition 1.

Remark:

The conditiaon “(al,...,an) cavers SpecRZar(A) " is equivalent

to "1 is a linear combination of @yreees@y in A(Iaﬁ",uhich

can be easily expressed by a denumerable disjunction of

finitary geometric formulae of the theory of rings with

parameters (al,..;,an).
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III)Structural sheaf of the real Zariski spectrum of a ring.

Let JPDEC?Zar(A) be the following sheaf on Spec (R):

-the stalk at the real prime ideal.} is 5ﬂ

RZar

-a basis of open sets is given by the {g-eaqv Ix and s
fixed in A and q varying in Ds}'

:fpecRZar(A) is galled the structural sheaf of the real
Zariski spectrum of A,or simply the real Zariski spegtrum
of A.It is just the restriction of the structural sheaf

df the Zariski spectrum to Spec (R).

RZar
:fpecRZar(A) is in some sense "the best real local ring
over A": .

rroposition:Let A be a ring and B8 a real local ring
in the topos of sheaves over the topological
space X.There a one-to-one correspondance
between ring-homomorphisms f from A to
™ {8) (the global sections of B) and the
couples (f,g) with ¥ continuous map from
X to SpecRZar(A) and g local morphism

<
LFrchéfpecRZar(A))tn B.
proof:The ring homomorphism f:A— *(8) defines for all x in X

FX:A—% EX.HX is a real local ring and Fx factors through an

unique A’ with g real prime ideal.Define Y(x);ﬁ .It is clear
foly)
X v o
)—w for s 1n\f (x).

This gives us the required one-to-one correspondance.

. R " . "
that V is continuous.iMow define g(s
Remark:

We shall have later a stronger version of this "spectrum-

property" of . pec ().

RZar



1V )Real Zariski topos.

We are going to define a Grothendieck topoloay on the dual
of the category FPRings of finitely presented rings,

called the real Zariski topology.

Let us define first a Grothendieck pretopology:

covering families of A are of the FUrm(A————)A(a;l)) el
with (ai)iéI covering Speanar(A).

-ZA——EgA} is a covering family

-local character is trivial

-stability under change of basis:given f:RA— ©§ if the family
(ai)ieI covers Speanar(A) (by II) theorem,I may be supposed

finite) the family (F(ai))iel covers SpecHZar(ﬁ) by last

remark in II).

Now covering families for real Zariski topology are families

of arrows of same source containing a family in the given

pretopology.

Remark:

The Zariski topology is contained in the real Zariski topology.
Definition:The real Zariski topos,RZar is the topos

of sheaves for the real Zariski topology.

his i Gi ec.
This topos is coherent since SDOCJZar

R
is for all A a compact topological space.
Theorem:The real Zariski topos is the classifying
topos for real local rings.
proof:It is sufficent to show that C is a real local ring
iff HomRinqs(-,C):FPRingst—————a 5ets is continuous for

the real Zariski topology.
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-Let C be real local and f:A—C be a ring homomorphism.
7nc is real,hence F-l(MIC) is a real prime ideal in A,
Let (ai)iel be a covering family for the real Zariski topology.

There exists 1  such that f—l(qlc) does not contain a, .
)

-1 . R
f factors through A(aio ) hence HomRings(—,E) is continuous
for the real Zariski topology.
-Conversely Hom(-,C) is continuous for the real Zariski
topology hence for the Zariski topology:C is a local ring.

2 2,-1

Also e[xl....,xn] —_ Z[xl,....x&((1+xl+...+xn) )
is covering for the realZariski topolagy:a prime ideal in

. 2
Z[xl.....xn] does not contain 1+Xl+...+xi.Hom (-,C)

:Rihgs
being continuous for the real Zariski topology we have:

HOM s ngeC Ll Xy e eenX ] WE)=romp, o (Z[x) . O

that is 1+x§+...+xi always invertible in C.
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V)Back to the real Zarisk:. spectrum.

Une can find in (2) a general construction of spectra.

Let us consider the following localisation triple:

T_= theory of rings

T= theory of real local rings

v = {(true,a y xy=1)5

UV-admissible morphisms are morphisms which reflect the fact
of being invertible,that is ,between local rings,local
morphisms.A localisation of a ring A for this triple

is a localisation of A at a real prime ideal.

The general construction of spectra gives in this case

the sheaf Ypec (A) described in ITI).

RZar
We have thus the universal property of spectra in the case

of any Grothendieck topos:

Proposition: Let SpecRZar(A) be the topos of sheaves

over Spec (n).Let € be a Grothendieck

RZar
topos and B8 a real local ring in g .
There is a one-to-one correspondance
between rings-homomorphisms from A to

P(E,B8) and local morphisms of real-

local-ringed-toposes from
[=4
(apechEr(A)hf DECRZET(A)) to (g,8)

(that is a geometric murphism\ffrom € to

s it
'DECRZar(A) together with a local

Lrnorphism from Y.ijCRZar(A)) to B).
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A good algebraic approximation for the theory of

real local rings?

Let us give a description uf)fpecRZar(MIX]).

The elialk at the maximal ideal (X-r) is the real local

ring of rational functions defined at r.

The stalk at (ul, is the real fiels [R(X).

Global sections are rational functions defined at any

real point,that is the ring lR[X][f-;lof' rational functions
with denominators of the form:positive real+sum of squares.
This leads us to the following guestion:

Is Al?-;] alxays the ring of global sections of . pec (n)?

RZar
which means:is the theory of resi. rings a good algebraic
approximation of the theory of real local rings? that is to

say :is the theory of real local rings a standard extension

of the theory of real rings?

When we try to answer "yes" we are led to the following

/ Alx —t]\)
A[f -4 },/5 a.l- a]

push-out in the category of real rings is also a pull-back.

problem:show that

It is easy to see that if the image of x is null in A[Zl:}
and in A[Zlia] ,X is null.But we are not able to prove

that if two elements in L\[Z:J and A[_Zl:;] have same

image in Akzhl-;\ they are coming from the same element inA.
On the other hand the theory of real rings is rich encugh to
be a candidate for #4osd algebraic approximation of real local
rings.Eor example the axiom xlc1+...+xncn=l—#3 t (x§+..+x§)t=l
obviously true in the theory of real local rings is also

true in the theory of real rings:
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If the ideal I generated by xf+...+x§ is different from A
so is R(I) (I) propasition 5).The ideal generated by

(xl.....xn) is contained in R(I) hence is different from A.

So that the question is still open.



B) REAL _ETALE TCPOLUGY

We are here interested in the real analogue for
etale topology . The etale topology is related to
strictly henselian local rings . The corresponding
real notion is the notion of real closed local rings
( introduced by A. Kock in (1] ) i.e. for rings in
sets henselian local rings with real closed residue
fields .

We are thus led to consider "localisations" of
a ring A which are formally etale real closed local
A-algebras , which correspond to prime real ideals 3]
of A together with an order an the residue field k(p) .
The set of these couples , with a natural topology ,
is the real etale spectrum of the ring .

When passing from Zariski topology to etale topology
no new point is added ( in both cases they are prime
ideals of the ring ) but in some sense automorphisms
of the points are introduced ( they correspond to the.
automorphisms of the separable closure of the residue
field ) . In the real case new points are added ( since
a residue field at a real prime may have several orders
and no automorphism is introduced ( the real clasure
of a real field has no automorphism ) . This suggests

that the generic "localisation" of a ring A ought

to be a sheaf over a topological space , precisely
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the real etale spectrum of A . UWe are able to prove
that this is the case when A is the ring of polyncmial
functions over a real algebraic curve .

For all this we owe a great deal to Gavin Uraith .
Actually it is one of his letters which motivated
our work on this subject : In this letter he intro-
duced the etale real spectrum of a ring ( as its peneric
"localisation" ) and indicated this ocught to be a sheaf
over a tosological space . lHe also remarked that the
etale real spectrum of a ring of polyncmial functions
over a real algebraic variety should contain the sheaf
of lash functions as a restriction to the variety with
its euclidian topclogy , and this is certainly the
most interesting aspect of real etale topoclogy .

The results in section I concerning real clcsed
local rings are not original . The property of facto-
risation of a morphism inta a real closed lecal ring
was indicated to us by G. Yraith . It is citained
here from results on separably closed mcrphisms .

The "prime negideals" ( or rather their complementaries
have also been considered by A. Jdoyal who is ithe first ,
we think , to have insisted on the interest of real

closed local rings for real algebraic npeometry .
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I) Real closed local rings

a) These rings have been introduced by Anders Kock ﬁ]

under the name of separably real closed local rings .

Definition 1 : Let A be a real local ring . A[i] = A[X]/X2+1
is again a local ring . A is said to be

a real closed local ring when Afi] is

separably closed [?] ( or strictly hen-

selian ) . -

We know that the theory of separably closed local
rings may be formulated as a finitary geometric theory
in the language of rings ; this is due to.Joyal and
Uraith ( see [3] ) : Let P be an arbitrary monic poly-
nomial of degree n . The elementary symetric functions
of the P'(xi) where Kqreo.sx  are the Qirtual roots
of P are polynomial expressions with coefficients in
Z in the coefficients of P : these are the hyper dis-
crimants H1""'Hn of P ( the nth hyperdiscriminant is
the usual discriminant ) . In the case where P is a
polynomial over a separably closed field it has a
simple raot iff one of its hyperdiscriminants is not
zero . It follows that a separably closed local ring
is a local ring which satisfy for each ny1 the axioms
3z ( WPz = 1) = 3y (P =0 A /...

e/ 3 CPYYIE = 1))
for i =1,...,n where P is the polynamial
AL x1Vn'1 + eee + X0 wWhith X ,...,x

n variables .
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50 we can formulate the theory of real closed lecal

rings as a finitary geometric theory

Proposition 1 : The real closed local rings are the
real local rings which satisfy the
following axioms for each nRil

EE: <_R_<H,a.(n))2+;(ﬁj<s=>)2).z I S

oo/ 3y Iy [_R_(F'(yn'.y')) =0 A L(PCy+iy")) =G A /...

ceos 6 CRP iy IRryriyZ )t = 1]

for j=1,...,n where

po=y" +'(x1+ix%)Yn-1 +oe.. + (xn+ix$) ,

x1,....xn,x%,...,xé are variables

and R and I denote respectively the

real and imaginary part .

A real closed local ring in a topos will of course
be a model of this geometric theory . For an ordinary

ring we have the following equivalences

Proposition 2 : Let A be a ring . The following are

equivalent
1) A is a real closed local ring ,

2) A is a local henselian ring and

ka is real closed ,

3) A is a real local ring and every

real local-etale A-algebra ( see [h] )

is isomorphic to A .

Proof 12 : kA'[i]g kA[i] is separably closed so

kA is real closed . We have to show that A is henselian .



Let P be a monic polynomial of A Dq and suppose its
image 3 in kADG has a simple root a in Ky - Since
Afi] is henselian a is the image of a root a+ib of
P in Afi] . Since a-ib must also be a root of P and
the lifting of a simple root is unique we have b = 0 ;
this is what we wanted .

2<1 : A is real local so Afi] is local . Since it
is finite as an A-module , it is henselian . kA is
real closed so kA[i] -4 kA[i] is separably closed .

2#3 : Let B be a real local-etale A-algebra .
kB is real , and a separable extension of kA , hence
it is isomorphic to kA . Using the fact that A is
henselian iff every local-etale A-algebra with the
same residue field is isomorphic to A , we have that
B is isomorphic to A .

322 : A is surely henselian ( use the eguivalence
mentioned above ) . If K is a real field which is a
finite extension of kA , K is the residue field of

some real local-etale A-algebra and hence is isomorphic

to kA . This proves that kA is real closed . @

b) Factorisation of a morphism into a real closed

local ring

We recall first some definitions and results of [5] .

DEfinition 2 : A morphism of rings f : A—>B is

separably closed when for every com-

mutative diagram




where s : A YE 1is an etale A-
algebra , there is an unigue

u : E ——>A such that wus = IdA
and fu =t . A morphism of rings

f : A—>d in an arbitrary topos 54
is separably closed when for every X

in € ‘Hom(X,A) ——» Hom(X,3) is

Ligparably closed . //////

In ﬁﬂ this definition applies only to local morphisms

between local rings . Actually we shall consider sepa-
rably closed morphisms only between local rings . We

have :

Proposition 3 : Let 6 be a local ring . A morphism

f : A——>8 is separaoly closed

iff A is local , f is a local morphism
and for every monic polynomial PP in
A[X] and every simple root b of P in

8 ( P(b) = C and P'(b) invertible )
there exists a root ( necessarily
unique and simple ) a of P in A such
that f(a) = b . This holds also for

rings in a topos , with the convenient

Lﬂinternalisation .
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Proof : This is an easy consequence of the local
structure of etale algebras ( see [ﬁ] DA |

A typical example of separably closed morphism is
the canonical morphism A —> kA where A is local
henselian . The main fact about separably closed morphisms
is the following factorisation property which in the
case of the morphism from a local ring to its residue

field reduces to the henselisation

Proposition 4 : A morphism of rings f : A ———>G
—_— e

has an initial factorisation
A—9 st —P 58 uhith h separably

closed , and this factorisation is

functorial : If A ——i—é g is a

RS

At g

commutative square with f' separably
closed , there is an unigue morphism

C —— A' making everything commute .
The factorisation property holds also
for morphisms of rings in arbitrary
.toposes and the factorisation is stable

under inverse image of geometric mor-

phisms .

—_—

In the case of ordinary morphisms of rings , the
factorisation is obtained by taking the filtered colimit

of all factorisations A —E ——> 8 uwhere £ is

an etale A~algebra . Thus we have
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Proposition 5 : The factorisation of a morphism

f : A—>8 1is isomecrphic to

1d
A—f—3s8 —2Bs3 iff 8 is a formally

etale A-algebra ( i.e. a filtered
colimit of etale A-algebras ) . In
the case of rings in an arbitrary topos
the first property will serve as a
definition of formally etale morphisms .
So any morphism of rings admits an
unigue ( up to iso ) factorisation

in a formally etale morphism followed

by a separably closed morphism .

L
The fact of being a real closed local ring is re-
flected by separably closed morphisms ( as the fact

of being separably closed local )

Proposition 6 : Let f : A ———> 0 be separably closed
and B be real closed local . Then A
is real closed local ( and f is a

local morphism ).

Proof ( see r5] ) : A and f are local by proposition
3 . Consider the commutative square ——L—é
—_

%

AN o

A 2}

kA is separably closed in kE , and A ————?kA is

separably closed ( that is A is henselian ) . Hence

A is real closed . g
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Corollary : A morphism f : A——> B8 1in a real closed
local ring 8 has an unique ( up to iso )
factorisation A —3% C ——D—> B8 where

C is real closed local , g is formally
etale and h is separably closed ( remark

by the way that any local morphism between

real closed local rings is separably closed ) .

In the following , a formally etale real closed

local A-algebra will be called a "localisation" of A

( with the " ) .

Proposition 7 : The isomorphism classes of "localisations"
of A are in bijective correspondance

with the couples composed of a real

prime ideal of A , J , together with

an order on the residue field kgr)

( the orders on fields we consider

L_?re all total ) .

Proof : The factorisation of f : A

>B with

B real closed local may be obtained in the following
way : Let g belf-1(ﬂba) . § is real prime . The unique
order on kg induces an order on k(g) . Let k be

the feal closure of k(y) with respect to this order ,
and A’ ————a'ﬁ; _ ?QTT the factorisation formally
etale-separably closed of the composite

Af ‘k(r) 4TFT
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Rg is local henselian with residue field k@) .
So it is real closed local and it is also a formally
etale A-algebra . By the functoriality of the factori-
sation there is an unique morphism Ay ——> B making
everything commute , and it is separably closed .
A — ﬁ; ——> B is thus the wanted factorisation .
We can now explicit the bijective correspondance mentioned
in the proposition

- To a "localisation" A ——>» B corresponds

£
the couple formed by [ F~1(mﬂ) and the order on

k(y) induced by the order on kg .

- To a couple (P,é) corresponds the "localisation"

A ——> B obtained by taking the factorisation formally
etale-separably closed of the morphism A — Ft;?
where ETE? ig the real closure of k(p) with respect

to the given order .

Here is an example of such a "localisation" : Consider
the ring R[XI , and the real prime ideal (X) together
with the unique order cn the residue field of QICX](X)
which is IR . The corresponding "localisation" is
obtained by taking the factorisation formally etale-

separably closed of ﬁl}](x) ——— [} since R is
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real closed . This is just the henselisation of |[R BJ(X)

and it is known that it is the ring of germs of Nash
( or algebraic ) functions at 0 , i.e. germs of real

analytic functions f satisfying a relation P(x,f(x)) =

with P a non constant polynomial ( see Bﬂ ).

II) The etale real spectrum of a ring

a) We have just seen that the "localisations" of a

ring A correspond to real prime ideals of A together
with an order on the residué field . Suppose we are
given a real prime ideal ¥ and an order dn ka) ; we
have then a partition of A in three parts : the elements
of A which become 0 in k(F) (i.e. 8 ) , those which

become strictly positive and those which become strictly

DEI
L=

Proposition 1 and Definition 1 : Giving a real prime

negative

ideal p of A together with an order on
k(r) is equivalent to giving a subset I
of A satisfying

1) 1 & 1

2) -x% € 1

3)x €1 Ay €1 = x+y € 1
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4) xy €1 & (x€1 A -yel) Vv /...
v/ (-x €I A yel .

The condition 4 may be reformulated as

the conjunction of the following three

conditions

h!]) x €1 A -x&l =b xy € I

hé) XE€I A -y&lI = xv &l

hg) xy&l = xe&l vyel .

I is the set of elements which become 0O

in k(‘p) . QisIn-I.

A subset of A satisfying conditi 1 to &

will be called a prime negideal of A .

Proof : It is obvious that the set of elements which
become g0 in |<(p) satisfy conditions 1 to &4 . Suppose
now we are given a prime negideal I«<A . Let P be
In-I . Condition 3 gives xe€p A yEQ =D x+y €
condition 4} gives xEQY D Xy Gl‘p , condition 1
gives 1€&yp , condition lsi gives xy €p = xGJa VVER .
Suppose we have x12+x22+...+xn2€,p . By conditions 2
and 3 we have x12 € I , which by condition &4 implies
x1é‘-Ja . So il is a real prime ideal of A ; uwe shall say
that p is associated to I .

It is easy to check that there is an order on A/F
the positive elements of which are the images of x&€-1 .
This is a total order since conditions 2 and &4 imply
x€I v-x€I , andl it induces an order on the field

of fractions k(‘s) .
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Remark : THe right thing to consider in the context
of "localisation" ( from an intuitionistic or topos-
theoretic point of view ) would be not the prime neg-
ideal but its complementary ( just as the right thing
to consider is not the prime ideal but its complementary ) .

b) The topology of the real etale spectrum .

Definition 2 : The real etale spectrum of a ring A

( denoted by Specqet(ﬂ) ) is the set of
its prime negideals with the topology
given by the basis of open sets

Dé1""'an = [I prime negideal of A [gqﬂl AeeoA anéI} .

The name of real etale spectrum is justified by thne
fact that it is related to "localisations" of A which

are real formally etale local A-algebras . Dé

Q1@

ig the set of prime negideals such that in the corres-

ponding ordered field A r.-008, become strictly positive

SpecRet is obviously a contravariant functor from the

category of rings to the category of topological spaces .
Let us describe the real etale spectrum of R Ed .

We have already seen that the real primes of R [X]

are the real maximal ideals corresponding to the points

of the real line and the ideal 0O which is the generic

point of the real line . The residue field at real

maximal ideals is R and there is no choice for the order

on it : each real point determines a prime negideal
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The residue field at 0 is |R Dq . To order it we have
to introduce X somewhere in the real line ; the fol-

lowing cases may occur

X = ~ e
X = a
for a in R
A = a
+
X = + 0o .

For instance the set of strictly positive elements for
the order determined by X = a_ is
{remrp]| 3er0 vxelo-e,a[ FOO>0 ] .
So the generic point of the real line has exploded in
many points , each one corresponding to a "half branch"
of the line centered at a real point ( or at infinity )
We can make the following picture of the real etale

spectrum :

-0 £ - +00

The open sets are generated by the intervals @+,b_J
Cuhich is Dy .\ ) or [e.0] or [a,,+0] . So the
real etale spectrum of Hl}] contains the real line
with its usual topology ( this is a general fact for
algebraic subsets of R

It is easy to see that Spccﬂet(ﬁ Dﬂ) is compact .

This is a general property

Proposition 2 : The real etale spectrum of a ring is
I compact .
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Proof : Consider the language L which is the language
of rings augmented by a unary relational symbol 3 .
Consider all the sequents é + 3¢s) ( where § is a
conjunction of atomic formulas of L and s is a term )
which are consequences of the theory T of rings-with-a-
prime-negideal ( obtained by adding the four conditions
of proposition 1 to the theory of rings ) . Let us call
C this set of sequents . In C we have for instance the
conditions 2 , 3 , ha , hé but not 1 nor h% . Consider
now a ring A and a subset X of A, and let J(X) be the
closure of X.far C ( i.e. the smallest J A containing
X such that all the sequents of C are valid when J is
interpreted by J .

Lemma 1 : J(X) is the intersection of all prime negideals
of A containing X .

Proof of the lemma ¢ First it is clear that this
intersection contains J(X) . Suppose nouw that every prime
negideal of A containing X contains a . Let f : A —> 8B
be an A-algebra and I a prime negideal of B containing
f(X) . Then I contains f(a) since f-1(1) must contain a .
Consider now tHe realisation of L given by A and X
( for the interpretation of 1) . The preceding remark
means that the positive diagram of this realisation
( i,e. the set of closed atomic formulas of L with
parameters in A which are true in this realisation )
and the theory T of rings-with-a-prime-negideal imply Q(a) -

By compacity we get a conjunction of atomic formulas
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of L é(y1,...,yn,x) such that i(y1,...,yn,x) = 100
is a consequence of T and there are b1,...,bn in A
such that the realisation (A,X) of L satisfies

§(b1,...,bn,a) . By the construction of J(X) we have
then a€d(X) . 4

. - U o Qs ini
Lemma 2 : If Specﬂet(A) = LEX DX , there is a finite
5 =Y '
subset Y of X such that apecREt(A) = 2y Dx .
; . - 1
Proof of the lemma : Specﬂet(A) = ;{X Dx means

that there is no prime negideal of A containing X ,
which is equivalent to J(X) = A, or 1€J(X) . From
the construction of J(X) it is clear that there is then
a finite subset'Y of X such that 1€J(X) . & .

}R) is

We are now in position to show that SpecREt

compact . Suppose we are given an open covering of
SpECRet(A) ; we may always suppose this covering is
composed of open sets of the basis

- U
SpecRet(A) = D!

i€l ai.U""'ai,ni-1 °
This is equivalent to :
; -V
Vie Iy ny  Specp () = o
i,3(1)

( where n; = {U,1,...,ni-1} ) . By lemma 2 for every j
there is a finite 11CI such that

Specﬂet(A) - Y o

€I T3y 51
The elements of ;E} ny which coincide with j on Ii

T
i€1
is compact . so there are j1,...,jm such that

form an open neighbourhood \/j of j in n, which

m
T n, = U y. . Let J be the union of the I,
iel I J

Jy K
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J is finite and we have :

= 1
SpecRet(A) = D .

Y,
ie ai.U""'ai,ni—1

Remark : This proof is raher unsatisfactory . It would
surely be nicer to have an actual description of the
intersection of the prime negideals containing a given
subset of a ring ( as there is such a description in

the case of prime ideals ) .

Proposition 3 : Every D! is compact .
PR

Proof : Since the image of a compact set by a conti-
nuous map is compact , this will result immediately
of the following lemma

Lemma 3 : If aeA , let A[VA] be (A[x1/,2_) (za)" 1] .

It is an etale A-algebra . D! is
reee
a4 '8y
the image of SpecRet(A(VE1,...,V53}) in
SpecRet(A) .

Proof of the lemma : Since A[f51,...,V3n] is an
etale A-algebra any "localisation" of this ring is a
"localisation" of A . Let I be a prime negideal of A .
The "localisation" of A at I factors through

A[Vé1....,V%n] iff IR become strictly positive

in the ordered field associated to I , that is iff
IeD! .
€0 uera - W
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III) The real ectale spectrum of a field as a ringed

space .
Let k be a field . SpecRet(k) is just the set of
orders which can be put on k . It is non empty iff
k is real . There is an obvious sheaf to put on this
topological space which we shall denote by gbecnet(k)

- If 0 is an order on k , the stalk of ?pec (k)

Ret
over 0 is Ea , the real closure of k with respect
to 0. —

- Let « be an element of Ea. « is algeb-r%er k 3
let P be its irreducible polynomial . All roots of P
are simple so we can build a Sturm sequence
Pp =P P, ,e.e, P for P Csee [7] ) . Let
CPTRRRRC I be the leading coefficients of the Pi's
and U be the set of orders on k giving to Aqreessd

m

the same signs that @ . U is an open set of Specqet(k) .

For every O' in U , P has a constant number of real
-t
roots ( roots in k° ) which is given by Sturm's theorem .
. t -
® is , say , the n h root of P in ka for the order

. ] + —
on K9 . For 0'e U let of bte the n'" root of P in K

o
al

The sets {0\ | o'e\l} for V open set contained

in U form a basis of open neighbourhoods of & for

the topology on the sheaf $pec (k)

Ret

9$ecﬂet(k) has the following universal property

Proposition 1 : Let X be a topological space and 5’
I a sheaf of rings over A such that each
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stalk is a real closed field . For
every morphism g : k —> I"S’
there is an unigue couple (¥,f) where
Y: X — SpecREt(k) is continuous

and f : ¥Y*$pec (k) ——> & is a

Ret

morphism of sheaves such that

kK —— r':fpecRe (k)

g lf‘

T

t

Lc_?mmutes .

Proof : g induces 9, ° k ——»3; for x€éX . The
order on 3; induces anorder f(x) on k . “f is continuous
since for aek *-1(Dé) is the open subset of X over
which the global section g(a) of ¥ is strictly positive ,
i.e. the value of the formula 3x Jt ( xt = 1 A x2 = g(a)
Since yx is real closed there is an unique morphism
Fot (AN 5;( and glueing together the f 's
yields amorphism of sheaves f : ‘“f*(ffpecﬁet(k)) — 5. s

We shall come back later on the existence and the’
eventual universal property of a similar sheaf on the

real etale spectrum of a ring .



=50

IV) Real étale topolaigy

We are going to define a Grothendieck topology
the real étale topology on the dual of the category
of rings.

Let us define first a pretcpology:

f

the family (A i

>Ai)iGI ig in Cov(A) iff for all i
in I Filﬁ——+ A, is an {tale N-algebra and

ﬂj Im(SpecRét(fi))=SpecRﬁt(A).

iel 1

—/A —A—-)n} is in- Cov(®)

-loual character is trivial

~-stability under change of basis: _—

f.
Let (A _—i—aﬂi) be a cavering family and

(8 _31-5ERA1) the family obtained by push-out under
f:A—3B.

We must prove that it is a covering family:
let J be a prime negideal iq B.There exist an i and
a prime negideal J;, in A, such that f;l(Ji)=F'l(J).

e get three real closed fields k(J),k(F—l(J)),
k(Ji) which are respectively the residue firlds
of the "localisations" EJ'Af'l(J)’ﬁi Ji ;since -eal
closed fields admit amalgamation property(elimination
of quantifiers and proposition page 53 ch.l13 in 3Sacks
saturated mndel theory) there is a real closed field-s

which makes the diagramn

commute.
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So we get a morphism h Ffrom Htﬂi to K.It is clear
. D § A . . s
that Ji-h {x, xgﬂ} igs a prime negideal in hgmi such that
-1 1) =
9; (Ji)-J.
Now covering families for the real étale topology
are families of arrows of same source containing a sub-

family in Cov(A).

Propasition l:the real étale topology contains

the realZariski topology (and the Zariski
topology).

proof:lLet (al,...,an) be a covering family for
real Zariski topology.Let I be a prime negideal of

A such that the images of the a;'s are all in m,
Aq
maximal ideal of AI.The inverse image uF’ﬂA in A
I

is then a real prime ideal containing all the a;:
contradiction.

Remark:
-real étale topology does not contain étale topology
€—GC is covering for real étale topology,not for
real étale topology.
-étale topology does not contain real #tale topolﬁgy:
IR —> is covering for &tale topology,not for real

¢tale topology.

Before going further we are going to state the
following result concerning real closed local rings:

Proposition Z:LEt?nm be the formula with free
variahles(xl,....xn,yl.....ym):

13 x xn+xlxn_l+...+xn=U /e..

m-1+...+y )=1

RV B - t.(nxn-1+(n-l)xlxn-2+...+xn_l).(xm+v1x m



-1-

There exist polynom. al expressions in (xl....,xn,

Vl""’ym) Ell""’Eln1""'Ekl""’aknp cuca that
153 ”i, B b
clbnm & })-‘{ /]x;\l Ly :> n (1) is true in the thecry

of real closed local rings. (A)U stands as an abreviation
for "thke exist a simple square root cf A":
L?x x%=a A Jt t.2a=1).
prooF:{(xl,...,xn,vl,...ym)} ?Imj(xl,...,xn,vl,...,ym)}

n+m

is an open subset of IR .Hence we can firnd the required

Eij sucih that (1) is verified in real clesed Fields
from the theorem in anpendix 1.

low a real closed local ring bLeing henselian over its
residue field
AF‘f’nm(al,...,an,bl,...,hm) iff
KEP n(@psee s 0B 000, B)

Also since we have only strict inaqualities

n.
¥ i . ~ A .
AI: % ?91 Eij(nl....,an,bl,.,,,l.m))L iff

n, .
KaE W/ /i,él Eij(El,...,En,El,...,Em))b .
So (1) is also verified in real closed local rings.
Remerk: The proposition 2 tells us that the
existence of a simple root in a real closed ring
can be expressed by a disjunction of conjonctions
of strict inequalities concerning polynomial expressions
in the coefficient of the polynomial.But we have no
ceffective way of calculating these expressions as we do
for hyperdiscriminants in the case of strictly lccal

henselian rings.



Proposition 3: If f is an étale A-algebra
‘ bpecﬂét(f) is an open map.

proof:Let us prove first that Im(SpecRét(F)) is
open.Since SpecRét(A(a_l)) may be identified to the open
DLV D! the only case to consider is A L ard/e [rr7Y]
(because of the theorem of local structure of étale A-
algebras) with P monic polynomial of degree n and R monic
polynomial of degree m.

We know that the formula 3Ix P(x)=0a3 t.P'(x).R(x)=1
is equivalent to \Q/ ;;{ Eii)U with

i=1  j=1 '

E{j=Eij(al"'"an’bl”°"bm) ythe a,;'s and bj's being
the coefficients of P and R.

Let u=\Y o}, .
i=1 i1’ ini

.We are going to prove
U=Im(5pecRét(F)).

Ltet I be a prime negideal in U.In the real closed
local ring AI the image of P has a simple root &
with R(&) invertible since the required inequalities
are verified.Hence A —) AI extends to a morphism from
A[X] /P [P'R_l] te A; .The inverse image of the maximal
negideal of A; is a prime negideal J in A [x]/p CP'R'lJ
such that SpecRét(F)(J)=I.

Conversely let J be a prime negideal in A[xVP[P'R'l].
Alx) /e [P'R-1JJ is a real closed local ring and a
formally étale A-algebra:it is a "localisation" of A,AI.
P has a simple root  with R(x) invertible in Ar:
the image of X.So the coefficients of the images of P

and R in AI verify the required inequalities and I is in U.



fow every D! being of the faorm Im(S5pec,,.,(F))

l....,an Rot

3

(Il)proposition 3) we are finished.
roposi*inn 4: Zvery finite familv in fnv(i) is

octitained by push-out from a family

M

in Cov( il A is a finitely
in unv_f\g) where o 1 initely
presented rinn,
proof:Let f:A—>8 te étale .0y local structure of
étale algebras 3bl,...,bn covering for Zariski topology

. i -1 -1yp -
such that ¥ida,,P R, with B(b] ¥ Aa; )[xI/P; PiRiJ .

is - in Cuv(A) can be

The fact that (A =8. }-
2 4:4,.-)1\\/

expressed by a geometric formula of the  theory of rings

with parameters ag'and the coefficients of P?and R:.
(For example to the covering family A(a-l)

A
Tae™h
we associate the formula a)0v=a)0vb)Cv-b)0 ,to

A —Alx]se [P'R-l]ue associate the formula
n,

[y
[P
fai

2 E{j)u as in proposition 3).
j=1

It is clear then that this situabion is obtained

fr om a similar situation in FPRings .

Mropositinn 5: Every family in “nv(A) contains
a finite Tamily in Couv(n).

proof:clear since Gpec,,, (N) is compact and far all
T étale Specqér(F) is apen
Sefinitinn:The topos of sheaves Tor the real “tale
. -in s op .
topology on FrFRinns is ralled *he real
Gétale topos A%t
Pronnsition 5 gives us immediately Lhe

Theorem 1:The real ftale tepos is coherent.
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Theorem 2:The real étale topos is the classifying
topos for real closed local rings.

proof:We are going to prove that A is real closgd

local iff HnmRings(-,A):FPRingst__a S5ets is continuous

for the real étale topology.

Consider (Fi:A-—Q Ai)ieI a covering family in
FPRings"® and f:A —3B.The family g, :8 —3 @A, obtained
by push-out under f is also covering.S5o the maximal
ideal of A,which is real prime comes from a real prime
ideal p of an Ai.@gAilp is real locale étale hence
isomorphic to A (I proposition 2),this gives Qi: Ai——9A
such hifi=F .

Conversely A is surely a real localtring.UE must see
that A[i) is separably closed i.e. that axioms like

REH2+ImH2 invertible/...
.../F 323 3b Re(P+iN)(a+ih)=0 A Im(P+iQ) (a+ib)=0/...
ceo/ARe(P 410" (arin)ZeIm(P14171) (a+ib)® invertible
with F=P+i( monic polynomial and H one of the
hyperdiscriminants of F are verified.
A =a[x,v]/GRe(F O i), InCF (x+iv))) [ (xeivd] 2)1]
is étale since |F'(X+i¥)|? is the Jacobian of Ref and

ImF with respect to X and VY.

It is now easy to check that if we take
F=(><+iv)“+(xl+ivl)(X+iv)“'l+...+(xn+1vn) and
L T SN [F!el-12+ImH2 17" the morphism
is in this case covering for the real étale topology.
The fact that HDmRings(_'A) is continuous for the
real étale topology gives then the result.



V) The real etale spectrum as the ceneric "localisation"

a) We are given a ring A . Ye are now interested in
giving a description cf the generic "localisation"
of A ( i.e. the generic real closed local formally

etale A-algebra ) . Ue shall dcnote by gpeci (a)

el
this generic "localisation" and by ggggﬂet(ﬁ) the topos
where it lives . gbecqet(ﬂ) has the following universal
property

Given a real closed local ring § in a topos £ and
a morphism f from ( the constant sheaf ) A to 3 ,
there is an unigue ( up to iso ) couple (¥,F) where
¢ is a geometric morphism from £ to EEEERet(A) and

T is a separably claosed morphism from ¥<(%pec

26 (R))

toc B such that the following diagram commutes

A —-———>‘ex(‘?pec (A))

Ret

f F
35

Indeed the factorisation formally etale-separably

clased of the merphism f : A

> nives
A—2 ¢ ——i—a B with C real closed local ( I b

propositions &4 , 5 and 6 ) . Mow the"localisation"

g : A >C is classified by a geometric morphism
Y4: E Spec,,(A) such that ?*(gpecne4(ﬂ)) =C .

?pacRet(A) is thus a spectrum in the sense of

Cole [11] . In the terminology of [2] , it is the
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spectrum associated to the localisation triple (Blgg,vft)
where : - Ring is the category of rings ,
- V is the set of etale morphisms between
finitely presented rings .
- ¥ is the real etale topology on FPRingDp ,
the dual of the category of finitely presented
rings .
This triple satisfies the condition for being a
localisation triple since the real etale topology is
generated by families of etale morphisms . So the

general results of (2] give a description of Soec (n)

Ret

Propositian 1 : Specnet(A) is the topos of sheaves

over the dual of the category of etale
A-algebras for the real etale topology
and Spe:REt(A) is the sheaf associated
to the presheaf given by the inclusion

of the category of etale A-algebras in

the category of rings .

Proof : This is exactly the description of the
spectrum in ﬁg'once we have remarked that
- by pushing out V under A we get the category of
etale A-algebras ( cf [4] chapitre Y exercice p.55 ) ,
- by pushing out "€ under A we get the real etale
tupology ( cf IV proposition & ) . g

Remark : EEEERet(A) is a coherent topos since the

real etale topology is generated by finite families .



b) Is the real etale spectrum a sheaf over a topological
space ?

If the answer is yes , gpecﬂet(A) is a sheaf over
the real etale spectrum of A described in II ( this

justifies the notatiaon )

Propositicn 2 : If Specqet(A) is spatial it is the

topos of sheaves over Spec, .{A) .
: .)e'r
Ret

Proof : Suppose 3pec ‘(A) is the topos of sneaves

——=Ret

over a topological space X . 5ince points of ’aecmet(ﬂ)
===q

correspond to "localisations" of A , X and SpecRe+(A)
have the same points . By the censtruction of Suesqet(A)

the family of sets {q : 4 —> 3 "localisasion" of A
g factors through s : A — E‘} indexed by the etale
A-algebras s : A —> E is a basis for the topclogy
of X . Since s etale implies SpecREt(s) open ( IV

proposition 3 ) and D! is the image of
PR

Specp ( A —>AlVE,,...,v8 ] ) ( II lenma 3 ) the
topology on X coincide with the topolsoy on Specnet(A) .
llow we come to the gquesticn itself . Y= use the
following result , proved in Appendix 2 : a coherent
topos is spatial iff the category of its points is
equivalent to an ordered set . The category of points
of EEEERet(n) is eguivalent to the category of "lccali-
sations" of A , the morphisms beinq mcrphisms of A-
algebras . So the problem is reduced to the following

one : Given any two prime negideals T and J of A ,
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show that there is at most one morphism of A- algebras

from the "localisation" AI to the "localisatiaon" AJ .
Remark that if there is a morphism of A-algebras

fram AI to AJ we have necessarily J&I since the

fact of being strictly positive ( i.e. having an inver-

tible square root ) is preserved by any morphism .

It looks plausible that the ordered set of prime neg-

ideals of A is equivalent to the dual of the category

of "localisations" of A with morphisms of A-algebras .

But all we have been able to prove is the following

two results ( the first one. being rather obvious )

Proposition 3 : If the prime negideals I and J have
the same associated real prime ideal
there is a morphism of A-algebras from
AI to AJ iff I =3 and in this case

there is no other morphism than the

identity of AI .

Proof : Suppose In-I = Ja-J = B and f : F\I —> A,

is a8 morphigm. of A-algebras . Then f is a morphism of
Aj-algebras and since A; and ﬁJ are local-ind-etale
i&-algebras f is local ( see [h] ) . Hence we have a

comnutative diagram
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Since k(I) and k(J) are real closures of k(F) we have

I =3 and T is the identity ( cf [7] ) . Houw
/7 AI\

Ap f k(1) is cummutative and
\‘\ o /

I

Ap — AI ——> k(I) 1is %the factecrisatian formally

etale-separably closed of 4 ———> k(I) . This implies

f=1d .
AI

Proposition & : Let I be a prime negideal of A and g
its associated real prime ideal
Suppose k(g) is dense in k(I) ( for
the order ) . Then for any orime neg-

ideal J of A there is at m:!st one

i - bras AN
morphism of A-algebras from AI tc 3

Proof : Let 1 be the real prime ideal associated to J

and f a morphism of A-algebras from A, to AJ . It induces
a morphism of A-algebras g fron AP <o A% :

7

_
/“r f
A% —_— AJ
We know that there is at most cne such morphism from A
to A .
AI is a filtered colimit of local-ctale Hp-algebras
( cf [5] p.10 ) i.e. of Ap-algebras like (A-PCX]/P)YP
where P is monic and n is a prime ideal not containing

P! ; the image of X in AI is a simple root of P . So
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it is sufficient to prove that there is only one way

to send simple roots of monic polynomials in AP[X]

from AI to AJ .
Let P be the image of P in k(P)[X] and let  be

the image in k(I) of a simple root « of P in A; . If

k(p) is dense in k(I) we can surely find 3 and B in

k(p) such that FL&=x«b and that there is no other

root of F in [;,E] . By the theorem of appendix 1

the formula "there is a simple rocot of P in ]E,E[ and

no other root of P in [E,E]" is equivalent in the theory

of real closed fields to a disjunction of conjunctions

of strict inequalities involving polynomial expressiaons

over Z in 3 , b and the coefficients of P ; we shall

denaote this last farmula by F(a,b,P) .
Suppose now that there is an other morphism of A-algebras

ft : Ap —> A, . UWe have f(a) = f'(a) = g(a) and

F(b) = f'(b) = g(b) . Since f and f' both preserve

strict inequalities we have in k(J) .g(_a$<f_(';7<g(_by

and g(a) ¢F'(2) £a(b) and also F(3(a),5b),g(P)) ..

So there is only one root of g(P) between g(a) and g(b)

and hence FG&) = F'(x) . Since flx) and f'(x) are
two simple roots of P which have the same image in
the residue field we must have f(x) = f'(x) which
is the wanted result . @

Remark : There are ordered fields which are not

dense in their real closure : Take R(X) with the
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order associated to X = +e . Its real closure contains
.f? and there is no rational function between JY and
ZJX.( this example is borrowed from a paper by fPicitenna
"MNew facts about Hilbert's 17th problem" ) .
We can apply proposition 3 in the case where N

is a field k . ngCRet(k) is then a sheaf an a topologicel
space , and it is the one described 'in section III .
c) There is another case where we can answer positively

the guestion of 3b

Theorem 1‘: Let M be an algebraic curve in R" and

A the ring of polynomial functions on r.
Then gﬁecget(A) is a sheaf over the topolo-
gical space Specﬁet(ﬁ) . YWe have already
seen that Specﬂct(A) contains as a sub-
space [ withthe topology induced by the

usual one on R" . fpecﬂet(ﬁ) restricted

to P is the sheaf of Hash functicns on I'.

’roof : There are two kinds of real prime ideals
in A : 1) those which are ceneric points of irreducible
real components of r R
2) those which are real points of r.
Consider now two prime negideals I and J of A with
associated real pr%mes r and q - Suppcse that there

is a morphism of A-algebras f : N A e

3
want to show that f is the only one

If p and % are of the same kind we must have f = %



and then we can apply proposition 3 . If not p is of
the second kind and 9 of the first kind . k(p) is
surely dense in its real closure gince it is R ;

so we can apply proposition &4 .

The stalk of gpecﬂet(n) at p when g is a real maximal
ideal of A corresponding to a real point s of M is
the "localisation" of A at the prime negideal aover p
i.e. the henselisation of the local ring of germs of
polynomial -functions on M at s : this is the ring af
germs of Nash functions on Mat s . This gives the
last part of the theorem . |.

We can now give a description of the réal etale
spectrum of the real line as a ringed space : The

topological space Spec (R[%]) has already been described

Ret
in II a . We know already that the stalk of 3pecREt( R
at a real point of the line is the ring of germs of

flash functions at this point . We have to look at

the stalk at points of Specaet( I?[Xl) like -0, a_ , a,

Oor +¢ . Let us consider for instance D+
Proposition 5 : The stalk of gbec C ]!Dﬂ) at 0
Ret +
is the field ¥ of germs of flash functions
at the right of 0 , i.e. the filtered

colimit of the rinns of itash functions

defined on ]0,t[ for €50 .

Proof : KW is a field since a iash function which is

not identically zero must be invertible on some ]G,E[.
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% has an order : the strictly positive elements are
germs f which are strictly positive on some ]D,it .

Kk is then an ordered extension of T(X) with the order
dtermined hy X = C+ . iy definiticn of ilash functions
K is algebraic over R(X) . It remains to show that

it is real closed . Let P = X" 4 F1Xn-1 e+ T

be an irreducible polynecmial nf Y%[{xX]1 . Ye can construct
its Sturm seguence PD=P , P1""'Pm and Sturm's
theorem gives us the number of ronts of P in the real
closure of K , say r . Consider now an interval ]C,tE
where the leading coefficients of the Pi's have constant

signs . For any x in J6,tC , %"

+ 1"1(><)Xn-‘I Fowat Fn(x)
has r roots in R , and the implicit function theorem
yields the fact that , when x describes }LEL , these
r roots give us r Nash functions on ]U,tL . This proves
that K is real closed , and that it is the real closure
of R(X) for the considered order ( this ought tc be
already known ) . B

Remark : We can give another descripticn eof ¥ . Let
R(X)® be the field of fractional power series , i.e.
series in x1/p for some positive integer p with a finite
number of terms with negative exponents . nOO* is
real closed since E(X)¥ is alcebraically closed
( BZJ chapter IV theorem 3.1. ) . It contains R(X) ,
inducing on it the order determined by X = U+ . So
K may be identified with the field of fractional power

series which are algebraic over R(X) .
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Since 0 is in the closure of {D+} , we must
have a morphism from the ring of germs of Nash functions
at 0 to K . This is clear since a germ at O determines
a germ at the right of O .

The ring of sections of Ypec ( R{X]) over the

fet
open [é+,b_] is the ring of Nash funcitiamng aver ]a,b[
and in particular the ring of global sections is the
ring of Nash functions on R.

We can give a similar description of the real etale
spectrum of the ring of polynomial functions on the

hyperbola : Let A be R[X,Y] /2 e may first

;V2+1

check that the topological space Spec ‘(A) is just

Ret
the union of two disjoint copies of Snecqet( ExY)

upper - 6o upper + oo

‘lower -oe lower + oo

It is also true for the sheaves : Yge:ﬂet(ﬂ) is the
union of two disjoint copies of fpecﬂet( R X ) : 1t
is sufficient to seethat the projection of the hyperbola
on the x-axis along the y-axis induces isomorphisms

on the stalks of the sheaves
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- Let s = (a,b) be a point on the hyperbola . A(K—a,Y-b)
is a local-etale EQBJ(X_G)-algehra with the same

residue field , so they have the same henselisation .

- Consider now a point like s with s = (a,4)
The field of fractions of A with the order determined
by (X,Y) = s, is an ordered elgebraic exiension i
I?[X] with the order determined by X = a_, hence
the two fields have the same recal clocure .

So , from the etale real point of view , a hypcrbola

is just the union of two disjoint lines .
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Appendix 1

This appendix is devoted to the proof of the

following result

Theorem : Let A(x1,...,xn) be a formula of the language
of ordered fields such that the set of
(a1....,an) in R" which satisfy

A(a1,...,an) is open . Then there exist

polynomial expressions E1 1,...,E
’

R

’l,m1

...sE '1,...,E

p in XgresarX with

p,m n

p
coefficients in Z such that A(x1,...,xn)

P m.
is equivalent to .1\’51(55% Ei,j>U) in

the theory of real closed fields .

Proof : The theory of real closed fields admits
elimination of guantifiers , so we already know that
A(x1,...,xn) is equivalent to a quantifier free for-
mula i.e. a boolean combination of strict inegualities
We have to reduce this boolean combination to a
positive one , that is a disjunction of conjunctions
of strict inegualities .

Since the theory of real closed fields is complete
it is sufficient to look at interpretations cof these
formulas in R . liow we have to prove essentially
that a semi algebraic subset of Rn which is open
is a finite union of subsets given by a finite

number of strict inequselities .



This is a consequence of the "separation lemma"
of G. Efroymson Cb] . Here is a ( slightly modified )
statement of this result :
qrene 1,....Xn .

The roots of P1,...,Pm divide up Hn into 2 disjoint

Let P ,P“ be polynomials in R X
union of connected subsets where each Pi is either
constantly zero or either constantly >0 or either
constantly <G ( cf Theorem 2.1 in tu;] ) . This
partition of Rn willbe called the partition associated

to (P1,...,Pm) . For instance the partition of RZ

associated to (XB-X2+Y2,X+1)

!
(—ua\ '

(1,%)

is composed of the two points (-1,Y2) and (—1,-V3) s
the six bits of curves

(4,%)  (-4-%) C43) )

e4w) (' >O /

('4’ V:) ( -4 ‘v-l
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and the six connected open subsets of the plane which

can be seen on the picture .

Separation Lemma : Let P1....,Pm be polynomials in

REX1,...,XH] . There exist polynomials
PrpqreeesPq in B‘_—X1....,Xn} such that if
S and T are any bits of R" uhich belong

to the partition associated to (P1,...,Pq)
we have the following equivalence

S Cadh(T) iff any sign condition (> 0O or
<0 ) on the Pi (i=1...,q ) which holds

on S holds on T . Moreover if P1,....Pm
are in Z[X1,...,XA] Pm+,!,...',F‘q may also

be chosen in zz[x1....,xn] .

We give now a proof which is simplified and which
yields immediately the last part of this result . This
is nevertheless essentially the proof of G. Efroymson

The proof is by induction on n

1°) n = 1. Let P P  be all the derivatives

m+1’°°" ' q
at any order of the P1,...,Pm . Then the property is
satisfied ( this is known as Thom's lemma ) : Let x
and y be two points of R ( x<y ) such that every
sign condition satisfied at x 1s satisfied at v . It
is sufficient to show that F‘.1 (i=1,...,9 ) cannot
have a root on ]x,y] . Suppose Pi has a root on ]x,y] .

If it is simple and the aonly one an [x,y] then

( Pi(x)70 and F’i(\/)gtl ) or ( Pi(X)<D and Pi(y)>D )
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which is a contradiction . If the ront is not simple
or if there are several roots on [},y] there is a rcocot
of Pi' on ]x,y] and we can repeat the aroument : at
the end we always get a contradiction .

2°) From n-1 to n .

Consider P1....,Pm as polynomials in Xn with coef-
ficients in F[X1,...,Xn_1] . We may always suppose that

the coefficient of the term of highest degree in Xn is

a constant in W : If it is not the case we may change

. - s « = xt M
the X, axls by putting 4 X 1t ARty
N _ v v
K1 = Alpoa * 3%,
X = X!
n n
and it is always possible to find a1,...,an_1 in O

such that the cohdition is satisfied by the polynomials
in X'1,...,X'n .
Now let Pm+1""'Pr be all the derivatives at any

order of the P1....,P withrespect to Xn . In the

m
derivatives also the coefficient of the term of highest
degree in )(I_l is a constant . Let H1,...,H5 be all the
hyperresultants of all couples (pi’Pi) 1€i<r 1€JiLr
i # J with respect to the variable X, - e must say
what are these hyperresultants

iIf P is a menic polynomial in cne variable of degree
d , the d hyperresultants of (P,Q) are the elementary

symetric functions of the Q(x1),....Q(qd) where

11,...,xd are the virtual roots of P , The hyperresultants
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are polynomials over Z in the coefficients of P and 4
The dth hyperresultant is the ordinary resultant

of P and Q and when P'=] these hyperresultants are
the hyperdiscriminants of P ( ¢f I a ) . The hyper-
resultants of (P,Q) have the following property

( P and Q are supposed in R(X] ) : Let i<€d be the
smallest integer such that for all j3>»'i the jth
hyperresultant is zero . Then there are d-i roots
of P in @ which are roots of 9 .

H1""'Hs are polynomials in x1,...,x . From

n=-1
the induction hypothesis we get a finite set of
polynomials Pr+1""'Pq in BQEX1,...,XH_4] containing

n-1

H1....,H and such that the partition of R

s
associated to Pr+1""’Pq has the separation property
of the theorem . We are going to prove that the parti-
tian of Rn associated to P1,...,Pq has alsa this
property .

The key to this fact is to remark that over any
bit U of the partition of Rn_1 assoclated to
[=]

r+1....,Pq the real roots of P1""'Pr are glven

by continuous functions ¥:u

I and that
these functions do not intersect over U ( use the

property of hyperresuliants mentioned above )

tet W :R" ——R™" e the projection along

the xnaxis . Let S and T be bits of the partition of
R" associated to P1,...,Pq . W(5) and WT) are then

bits of the partition of Rn_1 associated to Pr+1""'P

q
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Suppose S & adh(T) . Several cases may cccur

a) If M(S) & adh(W(T)) there is a sign condition
on some F‘.1 r<igq which holds on S and not an T .

b) If w(S) = M(T) and 5 & adh( (T)) we are
reduced to the case n = 1 by looking at one fiber
for W ; there is a sign condition on some F'i 1€1i4&r
which holds on S and not on T .

c) We are left with the case T(S) 4 MW(T) ,

S) € adh(TM(T)) and S & adh(T) . In T (WT)) T is
bounded ( if it is ) by two roots ¥ and ¥ ( Y<4Y)

- or it is a root 'f- . We may choose s in S , s &€ adh(T)
t in T and a path [ in r™7 going from M(t) te W(s)
inside WT) excepted at ™s) . When we go fromqE) tocws)
along M, 4 and Y have limits Y(TM{(s)) and ¥W(s))
Since s@ adh(T) s, ( the nt" coordinate of s ) must
be outside [-‘l("lf(s)).‘{’('lf(s))] , say sn<‘f(‘ﬂ(s)) H

we are led to a similar inequality when T is redgced
to a root Y. Let F'i be a polynomial of minimal degree
among those of P1,...,Pr which have Y as root ( with
respect to X ) . We want %o show that either

Pi(s) # 0 and for all s' sufficiently near to s over

PISIEUI U1 {EOP

i - o ' gt
TW(T) there is no root of ‘i(s qreeers' oy

— 9
3b

W) W)



or there is some derivative which is not zero

at s and such that for every s' sufficiently near to s

e

over W(T) there is a simple root of i in ]s'n,‘f’("f(s'))[
L 1

and no other root on [s’n.‘e(v(s'))] . a}<n

—  f
rool of a—‘z'.
02Xt
s S.
(s )

In both cases there will surely be a sign condition
satisfied at s and not on T . MNow the proof of the result
mentioned above 1is an easy consequence of the follcwing
fact : Ifp is a root of I‘-‘j over (T) and xeﬂ—1(v(s)) is

also a root of Pj with  x < ¢(TM(s)) there is a root
of G)Pj over WT) , ¢, such that e ge and x < (T(s))
X,
This is so because the maximum of lF‘j(s,]....,sn_,l,Xn)
an Exn.f’(ﬂ(s))] gives a root of 9Pj where the sign of
DX
n

P, .
? jehanges and so this root must be the limit of a
2 X
n
PP
root & of j over T(T) . A

? X,
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Ye can now go back to the proof cof our theorem .
Let UeR' he the set of (a,,...,a ) satisfying
a gquantifier free formula which is a boolean combination
of things like P = 0 or P»0 for P tcelonging to a

finite set P‘I""'P of polynomials of Z[X,],...,}(n} .

m
The separgtion lemma gives Pm+1""'Pq£ ZZC}(,l,....Xn]
such that the partition of Rn associated to P1,...,Fq
has the separation property . U is a finite unicn of

3

bits of this partition : U = Si
1

i
Suppose now U is an open set . Let Eibe the conjunction

of sign conditiaons which hold on S.l . The set cof
(a,l,...,an) satisfying §§/1 C, is U for if a bit
T of the partition is - contained in this set
there is an i such that S.IC adh(T) which implies
T€&U since U is open .

This ends the proof of the theorem !
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Appendix 2

Theorem : A coherent topos is spatial iff the category
of its points is equivalent to an ordered

set .

The main idea of the proof and the following proposition

1 were indicated by André Joyal

Let E be a coherent topos . £ is the classifying
topos for some finitary geometric ( or coherent ) theory
T . Let RT be the logical category associated to T
( see (8] ) . There is an equivalence between the
category of models of T and the category-of logical
functors from R to the category of sets . Let 5(1)
be the lattice of subobjects of the final object in RT .
S(1) as a category is a logical category and the inc-
lusion I : 5(1) — RT is a logical functor .

By the construction of Ry s S(1) is equivalent to

the lattice of closed finitary geometric ( or coherent ,
or existential positive ) formulas of T with the preorder
AgB when A — B 1is a theorem of T ., In the following
we shall identify these two lattices .

A logical functor from S5(1) to the category of sets
factors necessarily through the lattice fD,ﬂ and
so may be identified with a prime filter on S(1) i.e.
a subset F of S(1) satisfying : 0 & F 1 &F

AvBEFé&—— A eF vBsasF f ARBEF &> AEF A BeF .
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The prime filter is the set of elements of S5(1)
which are sent on 1 by the logical functor .

The inclusion I : 5(1) —— R induces then

T
a functor IX from the category of models of T
to the lattice of prime filters on S(1) . If

M is a model of T , I¥(M) .is simply the prime

filter of finitary geometric formulas satisfied

by M .

Proposition 1 : 1) For every prime filter F on 5(1)
there exists a model & of T such
that TIX(M) = F .

ii) For every model ¥ of T and
every prime filter F on 5(1)
containing 1%(M) there exist a
model N of T and a homomorphism
from M to N such that I¥(N) = F .
iii) If M and M' are two models
of T such that IX(#) = 1%(m)
there exist a third model N of T

and homomorphisms M —> N and

M!' —2 N such that IX(N) = IX(M) .

Proof : Let F be the set of negations of closed
finitary geometric formulas which are not in F .
We must shouw tﬁat T+ F +F has a model . If not
there are A in F and B with 8 in F such that

A —3>B is a theorem of T , which is absurd .
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ii) Let D(M) be the set of closed atomic formulas
with parameters in M which are satisfied by M . UWe
have to show that T + F + F + D(M) has a model
the reasoning is the same that for i .
iii) We have to show here that T + F + F + D(®) + D(M")

has a model and we use the same reasoning . @

Proposition 2 : Suppose that there is at most one

homomorphism between any two models of T .
Let f : M —> N be a homomorphism
with I®(M) = I®(N) . Then f is an

isomorphism .

Proof : Let be any element of a model M of T . Since
there is at most one homomorphism between two models
of T, T + D(M)1 + D(M)2 implies a; = a,
and D(M)2 are two distinct copies of D(M) obtained by

( D(M)1

associating to each element b of M two distinct constants
b, and b2 ) . We can then find a finitarv geometric
formula A(x) which is satisfied by a and such that
A(x)A A(x') —> x = x' is a theorem of T ( we say that
A is univalent.) .

Consider now f : M ——> N with 1%(1) = I%(W)
If r is a relational symbol of T and if in N we have
r(F(a1),...,F(an)) , then in ™ we have r(a1,...,an)
We know that there are finitary geometric univalent
formulas A1,...,An satisfied respectively by CPTRERRE.

n
in M . N satisfies the formula
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Ixg... axn B(x1,....xn)A A1(x1)4 ... AAn(xn)] .
This is a finitary geometric formula so it is also
satisfied by # , which implies that we have r(a1,...,an)
in M.

It remains to show that f is surjective . Let b
be an element of N ; it satisfies a finitary geometric
univalent formula B . In M the formula Ix2(x) 1is also

true . Let a be the element of i such that 4(=)

\

. Then

necessarily f(a) = b . n

Proposition 3 : Suppose that there is at most cne
homomorphism between any two models of T .

.
Then I* is an equivalence of categcries .

Proof : IX is surjective on objects by proposi-
tion 11 . It remains to show that it is full ( it is
necessarily faithful ) . Suppose that we have FCG
and M and N two models such that I%(M) = F and
I*(N) = G . By proposition 1ii there exist a model
N' such that I®(H') = G and a homomorphism from
M to N' . By proposition 1iii there exist a model u©"
such that I®(W") = G and homomorphisms from I tc "
and from ' to K" . Oy proposition 2 tnese homomorpnisms

are isomorphisms and so we get a homomorphism from i1 to

iHlere is now the end of the proof of the thecrecm
dy Makkai and Reyes' conceptual completeness theorem
( Theroem 7.1.B. p.204 in {8] ) since I™ is an equivalence

the classifying topos for T , i.e. E , is equivalent to
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the category of sheaves over S(1) for the topology
generated by the following covering families

A is covered by the (B,) (I finite and B;¢8 )

i6 1

B, . This topos is eguivalent to the

when A = iel B3

topos of sheaves over the following topological space

- The points are the prime filters on S5(%) i.e.
the case we consider isomorphism classes of models

of T .

A basis of open sets is given by the sets

A= {Fl AeF'} ¢ or {m | M satisfies A} ) for
A element of S(1) ( i.e. closed finitary geometric

formula of T ) .



~99=

REFEREICES

01 A. ¥ock : Formally real local rings , and infinitesimal

stability ; preprint , Aarhus , June 1977 .

@] ti. Coste : Localisation dans les catégories de
mod®les ; Thise , Université Parig-vicrd ,
Juillet 1977 .
LUEalizatinn(, spectra and sheaf Tegpresen-

tation ; in Applications af sheave

9]

’

Proceedings of the Durham symposium ,

July 1977 ; to appear in Lecture fiotes

in rMath., , Springer .

Eﬂ G. Wraith : Generic Galois tiheory of local rinns ;

in Applications of sheaves ...

[t] . Raynaud : Anneaux locaux henseliens ; Lecture

Notes in Math. n® 16%Y , Springer .

Eﬂ M. Cnste : Extensicns séparables d'anneaux locaux ;
Prépublications du dp. de math. de
l'Université Paris-iord

’ nD 2 2

Juillet 1976 .

[E J.J. Risler : Sur l'anneau des lonctions de fiiash
globales ; Ann. scient. Zc. tarm. Sup.

() 2 (1975) p.355-376 .

Ed S. Lang : Algebra ; Addison-Wesley .



=100~

Ch] . Makkai , G. Reyes : First order categorical logic ;

Lecture Notes in #Math. n° 611

I
Springer .

[9] G. Efroymson : Substitution in fash functions ;
Pacific Journal of Mathematics &3
(1976) p.137-145 .

Etﬂ G. Efroymson : A Nullstellensatz for Nash rings ;
Pacific Journal of Mathematics 5&4
(1974) p.101-112 .

ﬁ1] J. Cole : The bicategory of topoi , and spectra ;

to appear in J. of pure and applied algebra

E%] R. Walker : Algebraic curves ; Dover .



-101-

Subtoposes 04 the ning classifier

E.J. Dubuc and G.E. Reyes*

This paper is a corrected, simplified and extended version of a
preprint with the same title written by the second author. It is divided
in four sections. In §1 we give a (new) proof of the following theorem of
M. Coste, M.F. Coste and A. Kock [1]: the generic model of an e-stable
geometric theory of rings is of line type and (—)D commutes with colimits.
In §2 we show that the Weil topos Setsw (described in [21) is the classifying
topos of the theory consisting of (all Law) geometric sequents true in all
Weil algebras, and that this theory has a complete axiomatization given by

the following two axioms:
0=1=1

r > \% (x—r)n=0
reR
nell

We shall say that this theory is the wa geometric theory of Weil
algebras. In §3 we show that the theory of Archemedian real closed local
R-algebras such that every element is either a unit or nilpotent is the
Iww geometric theory of Weil algebras. We don't know yet the me theory
of Weil algebras. We suspect it to be simply the theory of real closed local

R-algebras. In §4 we extend the results of §1 to algebraic theories in

general.

We are grateful to M. Makkai who discovered a mistake in the preprint
refered to above (cf. §2). We also acknowledge conversations with A. Joyal,

A. Kock and R. Paré.

* Research partially supported by a grant from the National Research Council
of Canada.
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§1 Generic rings of line type and e-stability

We shall be concerned with subtoposes of the ring classifier and,
more generally, with subtoposes of the k-algebra classifier (for k a com-
mutative ring with unit). Throught this paper, given any k-algebra A, we
shall superline-it, writting A, to indicate the corresponding object in the

dual category.

lLet k ~» I be a k-algebra of finite (linear) dimension n over k. For
4
any k-algebra k -~ A, we let A[I] = Acqc I. Then A - A[I] is an algebraic
functor (of degree n) (cf. §4) and it thus has a left adjoint A -+ A* such

that k[Xl...Xs] > kX ...an] (cf. [51). It follows then that if A is fi-

1
nitely presented, so is A*., Since clearly A[I] is also finitely presented,

we have:

Proposition
The object I is exponentiable in the dual C of the category of

finitely presented k-algebras. Furthermore, p = (-) T has a left adjoint
q given by q(K) = AlT).

A direct construction of this exponential is possible. For e;ample,
1f A = k[(x&)a] divided by (FB)B and I = k[e] (the "dual numbers"), then

= oF
I B)

= A% * = X
A%, and A% = KL(X),(Y)) divided by (Fy,L Y, 530

By definition, [A,p(k(t])] = [A[I],k(t]] = [(k[t],A[I]] = A[I]. That

is, 1f U = [k(t],-] is the fortgetful functor c°? > Sets, and if we let

ULTl(A) = Al1], we have U[I] = [p(k[t]),-1
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Assume now that C is a site on the dual of the category of finitely presented
k-algebras. Then, following [1] we say that C is I-stable if p is continuous.
That is, there is a geometric endomorphism (p*,p*), p* 4 p, = composition
with p, and a commutative diagram:
L2 ¢

ep kl[t] = p* e klt]
€ e’

0e«— O

p* , ¢ gl1] = p*g

Where g = # U = € k[t] is the generic model, g[I] = ep klt1 = #(UCID),

def

and # indicates the associate sheaf functor.

Theorem

Let C be a site in the dual of the category of finitely presented
k-algebras. Then C is I-stable if and only if the exponentiation (-)EE is
the inverse image of an (essential) geometric endomorphism of E such that

¢l = gra.

Proof
First notice that q is always continuous, and that given any sheaf
v T -— —_— -
F in C and k-algebra A in C, FL(R) = FL(A) = F(AxI) = F(gA). That is,
eI

(-)"" = q, (q, defined by composition with q).

Then, if C is I-stable, that is, if p s continuous, since q, 4 p,,
it follows that p* = q, = (—)eI. On the other hard, if (—)EI is the inverse

image of a geometric endomorphism (—)eI = r* such that g[I] = r*g, we have

ep k[t] = r*e kTt], which implies ep = r*c. Thus ep is continuous and thus

p is (continuous) since € reflects coverings.
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Let T be a geometric theory of k-algebras, We say that T is w-stable
if the site associated to T (on the dual of the category of finitely presented
k-algebras) is I-stable, for every Weil k-algebra I (cf. §3). In other words,
if g7I] = ep k[t] is a model (in the classifying topos) of T, for every Weil

k-algebra I.

Corollary
Let T be a geometric theory of k-algebras. Then, T is w-stable if

and only if for any Weil k-algebra I, (—)EI is the (essential) geometric en-
v

domorphism of the classifying topos E(T) = C of ¥ which classifies g{I]. 1In

particular, if 7 is w-stable, g is of line type and l-small objects (in the

sense of [4]) are internally projective.

Remark

Given a point s of E, let s[I] be the point defined by s[I]*h = s*hp,
where h is the Yoneda embbeding. If E has enough points, then 8 is I-stable
if and only if s[I] is a point of z whenever s is a point of E. This is
clear since the family of points of E, by assumption, reflects coverings
(use definition of s[I] above). This notion had been used in the preprint
mentioned in the introduction. A. Joyal suggested to werk with the coﬁti-

nuity of p directly.

n
If T has enough models (i.e., E(T) = C has enough points), then T is

I-stable if and only if A[I] = A ® I is a model of T whenever A is a model of
T. This was the original definit:on of A. Kock [3]. Theories with enough
models are, for example, those which are either coherent (i.e. finitary) or
Lw N geometric with countably many axioms (cf. [6] Chapter 6). A different

type are those who consist of (all) geometric sequents true in a given class

of k-algebras.
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§2 What does the Well topos classify in the ianguage of R-algebras?

Following [2], we call Weil Topos the category Setsw of set valued
functors on the category " of Weil algebras. Recall that a Weil algebra is
a finite dimensional IR-algebra of the form R @® M such that every element
of M is nilpotent. Finite colimits of Weil algebra are Weil algebras, as
well as any quotient (# 0) and any sub-algebra. It follows then that (t
has also finite limits (since given X = R® Mand Y = R@®N, then
XY =-ROM®@PN is a product in &). The real numbers R is a terminal and

R

initial object for W. We shall need the following lemma of general nature:

Lemma 1

Given any diagram I > E in a topos E and a cone xa > U in E,

if:

a) xu + U is an epimorphic family

b) For every non empty fiber product

X « X x X - X there exist o « y > B in I such that X = X x X_ (together
a oy 8 [ Y oy 8

with the projections).

Then, xu + U is a colimiting cone for X.

Proof
Check that any cone'Xa > F is a compatible family (with respect to
xa x XB). Then, the claim follows since in a topos all epimorphic families

U
are effective.
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Theorem
Let C be a site on the dual of the category of finitely presented

R-algebras. Consider the following 3 conditions:

0) For any Weil algebra X e (U, the representable functor C —I‘;’&> Sets

is continuous
1) The empty family co-covers the null ring in C

o
2) The family (R[tl > X)anew co-covers in C.

N
Then, 0), 1) and 2) hold in C if and only if C is equivalent to the
N
Well Topos in such a way that to the generic model g = ¢ R[t] ¢ C cor-

responds the forgetful functor U e Setsw.

Proof
Assume 0), 1) and 2). By 0) we obtain a continuous functor
¢4 Set:soJ which induces a geometric morphism (q*,q,) making the following

diagram commutative:

Setsw <——L*

€

[

I q RIET = U
q
c

On the other hand, the inclusion w°P Li—-> C 1s (vacuosly) continuous

and hence induces a geometric morphism (i*,1,) making the following diagram

commutative:

N
¢

Th Ie i*hX = eX, X € W,
c
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To prove the theorem we have to check that there is an isomorphism of

R-algebra objects i*ll & g (that is, i*q R[t] ¥ e R[t] for the co-R-algebra

o 6

object R[t] € C). Let (R[t] > X)a = (hX > U)e, a(t) = B(idx) e Xel,

1*(9)

be the canonical diagram of ll. The family 1*hX > i*lUl is a colimiting

e(a)

cone, and there is a cone eX > g. This induces a morphism of IR-algebra

objects i*U —i——> g such that ¢i*(8) = e(a). On the other hand, it follows
immediatly from condition 1) and 2) that the cone eX —E£21—> g satisfies the
hypothesis of Lemma 1. This shows. that ¢ is an isomorphism. The converse
is immediate. Suppose the equivalence to be given by a pair of functors

q* and i* as before. Since [-,X] = evXq = evxq*e (where evy is the evalua-
tion in X functor of the Weil topos), condition 0) holds. Conditions 1) and
2) follow since there are enough points of the form [-,X] = evxq*e, with

X e W

Corollary

The forgetful functor U € Setsw is the generic model of a (geometric)
theory T in the language of R-algebras if and only if T has a complete axio-

matization given by the following two axioms (in wa)=

H 0=1=¢

2) Yt v 1)t =0
reR
nelN

Proof
Immediate if theories are viewed as sites (see e.g. [6]). All there

is to verify is that R[X]/ n is a Weil algebra.

(x-r)
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All such theories are thus the same, that we will denote by Tw.

Remark that Tw is the theory of (all) the geometric sequents true in all

Weil algebras. We shall call Tw the peometric theory of Weil algebras.

Proposition
Condition 2) in the theorem is equivalent to the following condition:
3) 1) C has enough points

1i) Every (left exact) continuous functor C 2, sets (i.e., every

point) 1s a filtered colimit of representable [~,X], with X e W.

Proof

Consider, for each (fixed) A ¢ C the following families:

@ p0 2L ja), a11 A -2 X, X € W
2 [a,x1 25 p(a), a110-,X1-2— p, X < 0.

It is an immediate consequence of Yoneda's lemma that (1) is a surjec-
tive family 1f and only if (2) is a surjective family. Condition 3) i1)

means that for every point p, the family (2) is surjective. It follows then,

a

by 3) 1i) that the family A > X, X € W, co-covers A in C. Taking A = R[t]

this shows that 3) implies 2). Assume 2). Then, from the theorem it follows
that C has enough points of the form C-L:iglo Sets with X € W. Since for
each A € C each one of these points is continuous with respect to the family

a a

A

> X, X € W, it follows that A

> X, X € W co-covers A in C. Thus
[:]

for any p as in 3) 1i), the family [-,X]
[¢]

> p, X € W, is an epimorphic
n

family in Setsc. Given [-,X]

> p and [-,Y] > p, the fiber product
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[-,X] x [-,Y]is represented by [-,B]where & ¢ X x Y is defined by:

m
n

P
{(x,y) |8 R[tI(x) =n R[t](y)}. It is not difficult to check that

2 € W and that it satisfies the required universal property:

//////E//)? ™ ¥f,g such that
02(r)) = nd(r,) and A > BA(F) = nA(g)

Thus the hypothesis in lemma 1 are satisfied. This concludes then the proof.

2]

We remark that in condition 3) ii) we can assume the [-,X] > p to
be sub-functors. The image of 6 is represented by [-,3], where & is X divi-
ded the congruence x v 0 <=> 8 R[t](x) = 0. Since by condition 1) 0 # 1

in p(R[t]), 1 is not congruent to 0, and thus 0 # 8 ¢ /. In fact, the

converse is also true. If[-,X]>——> p, X e ) i8 a colimit diagram, then

p(0) = # and since there are enough p's (by 3) 1)), the empty family covers O.

Corollary

The fortgetful functor U e Setsw is the generic model of a (geometric)
theory T in the language of R-algebras if and only if T satisfies the fol-

lowing conditions:

0) All Weil algebras are models of 7T

3) T has enough models and every model of T is a filtered colimit of its

Weil sub-algebras.

It follows then that T = Tw.
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Proof

Immediate 1f theories are viewed as sites (see e.g. [6]).

Remark
M. Makkai has noticed that no Lw © geometric theory in the language
1
of R-algebras can have Setsw as its classifying topos. (Otherwise

(R[t] SLEEN X) would have a countable sub-cover).

aeXel

We shall exhibit our Lwlw geometric theory ﬁR satisfying o) and such
that every model is a filtered colimit of its Weil sub-algebras. It follows
then that TR does not have enough models, and that the models of !R are
exactly the same that the models of T

W

Let T be the Lw ® geometric theory whose generic model R satisfies

the following axioms

1) R is a local ring

2) R is real closed or, equivalently, R[1i] is separably closed (cf. [9]

for an explicit coherent axiomatization of this notion).

3) R 1is Archemedian, that is, ¥x ¥y (x > 0 > V nx > y), where x > y
n>0
stands for 33 (2 invertible A x-y = 82).

4) Every element of R is either invertible or nilpotent, that is, ¥x (x

invertible v V x* = 0).
n>0

We define T, = T u A(k) = the theory of k-algebras satisfying 1)-4)

k

in the language of rings with one constant for each element of k.
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Then clearly every Weil algebra is a model of TIR’ and furthermore,

every model of '!R is a filtered colimit of its Weil sub-algebras. For this

last claim, see Lemma in §3.
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§3 The Lm © geometric theory of Weil algebras
1

In this section, we prove that the theory TR introduced in §2 is a
complete axiomatization of the Lw ° geometric sequents true in all Weil

1
R-algebras.

Before turning to the proof, we shall prove a simple (and well known)
Cohen's type theorem on the existence of coefficient fields (cf. [9, Cor 2,

page 280] for Henselian local rings of characteristic 0 (i.e. Q-algebras).

Proposition

Let R be a Henselian local ring of characteristic 0. Thus the ca-
t

nonical map R > kR has a section, i.e., there is a ring monomorphism

i: kg~ R such taht tgol = lkR. In particular R & kR (%) me-

Proof

By Zorn'slemma, we can find a subfield K c kR with a map i: K+ R

such that the following diagram commutes

t
R
Q ™™ R > kp
I'jfi:::://’/////7
K
0
kp lkR

and which is maximal in the sense that i admits nc proper extensions to
K' o> K(K' < kR). We claim that K = kR. If not, there is o € kR\K. If o
is transcendental over K, we extend i to K(a) < kR by sending a into any

B € t;l(u). This is possible, since B is a unit. If o is algebraic over

K, let p(t) € K[t] be the irreducible (monic) polynomial of a over K. Since
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ch(K) = 0, p'(a) # 0 and hence o can be lifted to a root B of p(t) in R
(which is a K-algebra). We extend i1 to K(a) by sending o into B. In any
case, we have contradicted the maximality of (K,1) and this shows that

K=k -

We have proved that the exact sequence 0 - mp > R >> kR +~0

splits and this implies that R v kp G)mR.

Theorem
If E[ﬂal)l o, where o is a sequent ¢(X) => ¥(¥) with Llu ® geometric
1
formulas ¢,¥ of the language of TR, then there is a Weil R-algebra X such

that o is false in X.

Proof
By using the formal system introduced in [6, Chapter 61, we refor-

mulate the hypothesis as follows: Tg W o.

We may clearly assume that ¢ is coherent and ¥ = V {Wn: n > 0} with
Wn coherent (by noticing that a Lw © geometric formula is equivalent to a

1
countable disjunction of coherent ones).

Let k ¢ R be any countable ring with 1 such that all the interpretations

of the countable many constants of ¢, {Wn: n > N0} belong to k.

A fortiori, Tk b o and by the completeness theorem for countable

Lw © geometric theories of [6, Chapter 6], there is a model R of Tk such that
1
o is false in R,
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For a commutative ring k with 1, we define a Weil k-algebra be a
finite dimensional k-algebra of the form k ® m such that every element of m

is nilpotent.

Any model R of the theory T (defined in §2) 1s the filtered lim of

>

its Weil kR-algebras.

Proof
n
Since ch(R) = 0, R ~ kR@m*R by the Proposition. For each <Epseces€ > € Mo

we let

%1

a
n a
GI,Q,GHE‘N CTRERELN i(kR) s R

kR <e1,...,en> =

(where 1 is the section of tR given by the Proposition). Since each e is
nilpotent, this + has only a finite number of terms and so kR <el...en> is

a Weil kR—algebta. Obviously R = lim k, <e

R 1...en> and this system

< > sem®
is filtered. €q e € €My

Coming back to the proof of our theorem, we notice that were o true
in each Weil kasuch algebra of R, 0 would be true in their filtered 1$m,
i.e., in R. Therefore, there is a Weil kR-algebra Xo and a sequent a of

elements of X, such that X, E ¢lal and X, ¥ Yn[gl for all n > O.

To continue the proof, we need the following straightforward reduc-
tion of truth in a finite dimensional k-algebra (e.g. a Weil k-algebra) to

truth in k.
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Lemma

(cf. [3] for a particular, but representative case).

Assume that k - I is a k-algebra of dimension n. For any finitary
sentence g of the language LI of the theory of I-algebras, there is another
finitary sentence or of the language I..k as the theory of k-algebras such

that for every k-algebra k -+ K.

I@KFoiff Kk op
k

Proof

By hypothesis on I we have a commutative diagram of k-modules

I
A

(*) k
9.

and we can describe the multiplication table of I by means of the basis

epseee ’en obtained (via the isomorphism) from the canonical basis of kn:

n
eiej = kfl Yijk e with Yijk in k.

For each term t of LI’ we define (by recursion) a sequence (ti)
is<n
of terms of Lk as follows:

n
1) 1if t = ae I, £ = ay in Ik (where a = 151 aiei)
2) 1if t = =x, ti =%
- 1] " - 1) "
3) ift = t' + t", ty =ty +t]

4) if t =t' - t", t t' et

= Z
17 ek 5k
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We now define ¢I(x1,...,xn,y1,...,yn,...,zl,...,ﬁ)for each formula
$(X,¥,...,2) Of LI by recursion in the obvious way, e.g., if ¢ = t' = t",
n
= ! = " = = el .
then ¢I = 1:1 £y ti’ if ¢ _H x 6, then ¢I _3xo ]anI, etc

Via the base extension k + K, (*) is transformed into the new

diagram 10k

v
N

and we prove, by induction on ¢,
&k 0Cagseeesa ) s(byseeasb )sunn,(egsnnn,e )] LEE

KE ¢I[al,. .. ’an’bl" . ,bn,. ceaCpsnne ,cn].
(Kn is given the obvious K-algebra structure via the isomorphism).

For ¢ atomic this is essentially the statement that the multiplication
table of I @K 1s the same as that of I (in terms of the corresponding basis).
k .
To finish the proof of our theorem, we consider the following diagram

(noticing that kR may be embedded in R, since it is Archemedian)
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By Tarski's theorem on the elimination of quantifiers in the theory
of real closed fields or the fact that this theory is model complete
(cf. [7D), kR >——> R is an elementary extension. The previous lemma allows
us to conclude that xo + X is again an elementary extension (of Weil alge-

bras) and, in particular,

X | ¢lal and X | ‘!’n[§], for all n > O.



=118~

§4 The (general) notion of stability

The notion of e-stability depends ultimately on a purely algebraic
construction, that is, the multiplication table of the ring of dual numbers.
In this section we clarify the mechanism that stablish this dependence, and
we thus extend the results of section 51 from the theory of R-algebras to

algebraic theories in general.

Let k be any commutative ring with unit and let ¥ = {Ro,ll,...,xn,...}.

An = k[Xl,...,Xn] be the algebraic theorv of k-algebras. A finite n dimen-

sional k-algebra T > Sets determines, via its multiplication table, a

generic I. That is, a R-algebra object p fn T. Thus, p is a co-k-algebra,

structure in the polynomial k-algebra An = k[xoxl...xnl, or, equivalently,

a product preserving functor 7 L 7. This is done as follows: Let

epessese be a (linear) base of I. The produéts of the eis determine a mul-
w3

tiplication table eiej E Yijjgk’

k=1 °
be considered as symbols (or indeterminates) satisfying the relation (1).

Yijk c yvWhich means that the eis can

Given any s-ary polynomial F, we can compute then n ns-ary polynomials fk such
n n
that F(..., iElxijei,...) = kgle(...,Xij,...)ek. We define then p by:

- Fi...F
& Lty @ il g,

We call I-construction the (functorial) process which to any k-algebra

> E, 1t assignes the R-algebra object
X

object in a cartesian category E, 7

T —KLEJ—> E defined as the composite T I > E. One verifies immedia-
tely that, for k = Ao = free algebra in no generators, AE B AO[p1 % I by means

of an isomorphisms that transports the canonical base of AE into the (given)

base epey,.se of I. It follows that if ¥ > Sets is any k-algebra, then

A" = Alp]l = A x R[p] % A @ I, which means that the tensor product is built
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up from A in the same way that I is built up from k. We see that, in par-
ticular, the algebraic functor induced by p preserves finite presentability,
and thus it restricts into an endofunctor of the category of finitely presen-

ted k-algebras. What follows is motivated by the preceeding discution.

Let C 2—> C be a left exact endofunctor of a cartesian category C.
X

Given any left exact functor C > E into a cartesian category E, let X[p]

be the composite C L2 _,¢ X > E.

Definition
We say that a site structure on C is p-stable if any one of the fol-

lowing three (equivalent) conditions are satisfied:

1) ¢ 22— ¢ 1s continuous

X

i1) Given any fiber C > E in a topos E, X[pol is also a fiber

1i1) elpl is a fiber (for e = the generic fiber) (by fiber we mean a left

exact functor that sends coverings into epimorphic families).

Recall that condition ii) means that there is a geometric morphism

o
E » C which classifies X[P]:

c2-¢
l l p* - p,
€ X
*e = X[p ]
E—P—-*>E P Po

N
Recall also that when £ = C and X = €, then p, 1s glven by composing

with p(which sends sheaves into sheaves).
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Observation
If p has a continuous left adjoint C . NN C, q -4 p, then the
functor p* is given by composing with q, and the geometric morphism that

classifies e[p] is essential.

Proof
v
Let q, = composing with q: C + C. Since q ~| p, then q, - Py

By definition p* py- Thus q* q, = p* and p is therefore essential.
* *

Let 7 ='{ZbK1...§n...} be any algebraic theory and T 2 1, product
preserving functor. There is then a colimit preserving extension of p (that

we denote also by B)to the category A of algebras: 7°P 5 A B A which

has as right adjoint A -4 4 the algebraic functor A > Alp] induced

by p.

After dualizing we have then:

Proposition
Let T be any algebraic theory and 7T L2 7, product preserving

functor. Consider the commutative diagram:

P

Y
IU

0 ——u

where C is the category dual of that of finitely presented algebras, and

¢ B— C is the left exact extension of T -=—> T. Then:

a) If the algebralc functor induced by p preserves finite presentability,

then p has a left adjoint q defined by q(A) = Alpl.
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b) If q 1s given by q(A) = A x I for some (fixed) I ¢ C, then I = Aofp1

and p = (1)L

Proof
Only the last statement needs some proof. By assumption,

Ko xT1= X;KET. Since K: 1s the terminal object, the first equality follows.

For the second eqhality, one verifies immediately that any left adjoint of

an algebraic functor is an extension of the (inducing) product preserving

functor between the theoriles.

In particular, we have proved the following:

Corollary
Let 7 be any algebralc theory, T —2——> T a product preserving functor,

and C —2—> C the left exact extension to the dual of the ‘category of finitely
presented algebras. Given a p-stable site structure on C (cf. definition
above), consider the following two conditions on the algebraic functor q

induced by p.

a) It preserves finite presentability

b) It is given by cartesian product with a (fixed) algebra I ¢ C, which is

necessaraly equal to A°[p] (notice that b) => a)).
Then:

If a), the geometric motphism p that classifies e[p] is essential.
If b), the inverse image p* = q, 1s the exponentiation with eI, p* = (-)EI.

(To verify that last statement, notice that (~)eI is always given by

T x (N, =q).
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FORMALLY REAL LOCAL RINGS,
AND INFINITESIMAL STABILITY.

Anders Kock

We propose here a topos-theoretic substitute for the theory
of formally-real field, and real-closed field. By 'substitute'
we mean that the notion is not just a lifting of the correspon-
ding classical notion, but at the same time a generalisation which
takes into account the mathematical applications of the specific
topos-theoretic features of the notion. Thus in [1], it was argued
that the goéd topos theoretic substitute for the notion of field
is the notion of local ring object. Rousseau, in [6], has argued
that topos-theoretic results often mathematically are identical to
classical results which depend smoothly on a parameter.

We study here properties which depend smoothly on parameters

in the sense that they are infinitesimally stable: they are not

changed by infinitesimal changes in the parameters. More precisely,
we study ring-theoretic properties ¢ 8o that if ¢ holds for a given
object A, then ¢ also holds for the ring object A[€] of dual
numbers over A. It was precisely the ring-of-dual-numbers that
motivated [1]. Clearly, the notion of field is not infinitesimally

stable, whereas the notion of local ring is.

=123~
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1. Two basic ring constructions

If A is a commutative ring object in a category E with
finite products, then there are several ways of making AxA into
a commutative ring object. We are interested in the following
two classical ways (in both cases, the additive structure, or

even A-module structure, is coordinatewise):

Ring of dual numbers: A[€] = AxA, with multiplication

(a,b)+(c,d) = (arc,a*d + b.c).

Multiplicative unit 1 is (1,0). The element (0,1) is denoted

2

e, €7 =0.

Gauss-numbers: A[i] = AxA, with multiplication

(a,b)-(c,d) = (a.c - b-d,a-d + b-c).
Multiplicative unit 1 is (1,0). The element (0,1) is denoted

i, 1% = -1.

Assume now thgt E is a category where coherent logic has
a good semantics (say, E a topos or a pretopos). Consider any
finitary coherent formula w(z1,...,zn) (in the sense of [3], see
e.g. [5] §5) about n-tuples of elements from rings. Then clearly
there is a simple way of constructing a coherent formula 0,

with 2n free variables such that for any ring object A,
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A F o (xl,yv---,xn,yn)
(1.1) iff
ale] Pw((x1,y1),.--,(xn,yn))

(there are several examples below). Similarly, an n-ary formula
¢ gives rise to a 2n-ary formula wi such that (1.1) holds when
®e and A[€] are replaced by @y and Alil, respectively.

Therefore also, if T 1is a coherent theory of commutative
rings, there is a coherent theory T€ such that A P're iff
Al€] FT. sSimilarly with T,: AERT, iff A[li]l FT.

We say that a theory T 1is e-stable or infinitesimally
stable if A ET implies A[€] ET, or equivalently if Te S T.
By the well known metatheorem for coherent logic [3] we have in

particular:

Proposition 1.1 A .coherent theory T of commutative rings

is e-stable if and only if, for every T-model in Set, A[€] is

also a T-model.

An immediate application is

Proposition 1.2 The coherent theory T of local rings is

L
e-stable.

For, if A 1is a local ring in Set, then so is A[€]. Note
also that no coherent field notion is stable; for A[€] is not

always (in fact never) a field.
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Remark 1.3 One could similarly talk about i-stable proper-
ties and theories, but we do not know of any significant example.

The notion of local ring is not i-stable: First, we note that in

A[i] = AxA, an element 2z = (x,y) is invertible if and only if
x2+y2 is invertible, and then L (x2+y2)-1 z where z =
(x,~y)). Next, let F be a field in Set of characteristic

4% 2, and suppose there is an element j€F with j2 = -1 (for
instance F = €). Then certainly F is a local ring, but F[i] =

FxF is not. For, (1,3) and (1,-j) are non-invertible since
12+j2 = 0, but their sum is (2,0) which is invertible. So Flil]

is not local.

2. Some e-stable theories

Consider for each natural number n the coherent sequent st

n

2

Vx1,...,x CA (fi invertible) = 21 ¥4 is invertible

n 1

We let TFR denote the coherent theory of commutative rings whose

axioms are the sequents s, We call T the theory of formally-

FR

real rings.

Proposition 2.1 If K is a field in Set, then K h'rFR

if and only if K is formally real in the classical sense: ' -1
is not a square sum' (cf. e.g. [2] XI.2).

The proof is straightforward.
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Proposition 2.2 The theory TFR of formally-real rings is

e-stable.

Proof By Prop. 1.1, it suffices to consider a formally real
ring A in Set and prove that A[€] is formally real. Let
(xi,yi) €Al€e] = AxA for i =1,...,n. Now (x,y) €A[€] is inver-
tible iff x 1is invertible in A. So one of the (xi,yi)'s is
invertible iff one of the xi's is invertible, which implies that

inz is invertible (by formal-realness of A). But then also
2
(Qx; % 1 2x;94)

is invertible in A[€]. The displayed element is the square sum

of the (xi,yi)'s.

Porposition 2.3 If A is'formally real and local, then A[i]

is local.
Proof easy, using part of remark 1.3.

Clearly, no coherent theory of algebraically closed field is
e-stable, because the notion of field is not e-stable. But the no-
tion of algebraically closed local ring is not e-stable either
(algebraically closed ring means: monic polynomials have roots).
For, if it were, C[€] in Set would be algebraically closed local,
which it is not, since € has no square root.

However, Wraith [7] has disblayed a coherent theory TSC of
'separably closed local rings'. It has the property that for a ring

A in Set, AFE TSC if and only if A 1is a Henselian local ring
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with separably closed residue field (or: A is strictly Henselian,
in the terminology of [4], chapter VIII). The existence of such a
theory has been known for some time, using theorems og Makkai-Reyes,
Deligne, and Hakim; cf. [3].

Propositoin 2.4 The theory T of separably closed local

SC
rings is €-stable.
Proof. Again, by Prop. 1.1, it suffices to consider rings in

Set. Let A be a Henselian local ring with separably closed res-
idue field k. Then A[€] is local, and its residue field is also
k. So we just have to prove that A[€] is Henselian. We use the
description of this notion given in [4] VII §3 prop.3. no. 2, so
we must prove that for monic polynomials P (X) over A[€], simple

roots in k 1lift to A[€]. Now we have canonical ring maps

Al€e] —— A —— &

EY) q4

If P(X) is a monic polynomial over A[€], we denote its image
under d, and q,°4, by P(X) and B(X), respectively. Assume
P has a simple root € k. Since A 1is Henselian, this root may
be lifted to a root b€A of P(X), and b is necessarily a simple

root (meaning P'(b) is invertible). Now
P(X) = B(X) + €.0(X).

To lift b means to find a c€A so that P(b + €c) = 0.
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Now
P(b + €c) = P(b + €c) + €.Q(b + €c)
= B(b) + €c P'(b) + €-Q(b) + € (€c Q' (b)).
The first term vanishes since P(b) = 0. The last term vanishes

since €2 = 0. Thus to find c¢ means to solve
0 =€cP'(b) + €0Q(b)
which can be done since P'(b) is invertible in A. This proves

the proposition.

3. A substitute for the notion of real-closed field

We shall say that a ring object A is a separably-real-closed

local ring if A is formally real local, and A[i] is separably
closed (A[i] 1is local by prop. 2.3).

FR’ and TSC be the (coherent) theories
of local, formally real, and separably closed local, rings, respec-

Let, as above, TL’ T

tively. Then the theory of separably-real-closed local ring is

T lJTFRU (Top)

Tsrer = T sclir

and as such, it is a coherent theory.

Proposition 3:1 The theory TSRCL is e-stable.
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Proof Thg theories TL’ TFR’ and TSC are e-stable by

propositions 1.2, 2.2, and 2.4. The result will now follow from

the following general

Lemma If T is an €-stable theory, then so is Ti'

Proof We have

(A E Ti) = (A[il E T) = (Alil [€lE T)

(by €-stability of T)

- (Alel[i] k1) - @ale]l F 1)),

since obviously Alelli] = Alill€].

Besides (or related to) the €-stability of TSRCL' a justification
of this theory lies in the followin conjecture: The Dedekind reals
in an elementary topos with NNO satisfy TSRCL’ A support for the

conjecture is

Proposition 3.2 The sheaf R of germs of continuous real-valued

functions on a topological space X is a separably-real-closed local

ring object.

Proof We have R[i] = C = sheaf of germs of continuous complex-
valued functions. To see that C k TSC’ it suffices, since TSC is
a coherent theory, to see that for each xE€X, Cx E TSC’ But Cx
is well known to be Henselian (and have € as residue field), see

e.g. [4] VII §4.
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We note that R 1is not a real-closed local ring in the sense
of R [i]l = Cc being an algebraically closed local ring. For, if it
were, then one could solve x2 = id around the origin of X = C,

which cannot be done continuosly (there is homotopy obstruction).

4. Strict order structure.

In this section, A will denote a fixed separably real closed
local ring object. Any formally real ring, and in particular A,
is an algebra over the rationéls Q} for, n = 12 +ooot 12 (n times)
and is thus invertible.

We equip A with a binary "Strict order relation" < by posing

for arbitraty a: X — A
a>0 iff | x 3y (y2 = a and y invertible).
We put a>b if a-b>0.

Proposition 4.1. The following coherent sentences hold:

1) Vva: a>0 = a invertible

2) Va1,a2: a, >0 and a2>0 implies a1-a2>0.

3) Vva: a invertible implies a>0 v (-a) >0

4) Ve,f: e>0 and £f£>0 implies e+f>0 (and hence a; >a, and
b1 >b2 implies a, +}.>1 > a, +b2) .

5) ve,f: e+f > 0 implies e>0 v £>0 . (I am indebted to Peter

Johnstone for this observation,)
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Proof. Again, by coherence, it suffices to prove these in Set.
The first and second are immediate. To prove the third, consider
the monic polynomial X2 - a. Since A[i] is separably closed
and 2 is invertible, this polynomial has a root, x+iy , say, with

x and y € A . So

(x+iy)2 = a
that is,
(4.1) x2 - y2 = a
and ’
(4.2) 2xy = 0.

Since a 1is invertible, we conclude from (4.1) and localness:

X invertible or y invertible,

whence from (4.2)

2

If y=0, x“=a. If x=0, y°“ =-a, whence a>0 or (-a)>0,
respectively.
To prove 4), assume x2 = e and y2 = f, with x and y inver-

tible. By A being formal-real, we conclude e+f invertible so by 3)

e+tf>0 or -(e+f) >0.



We just have to exclude the latter possibility. But -(e+f) >0
implies
%2 4 y2) = —(etf) = 22
for some invertible 2z, whence x2+yz+x2 = 0, contradicting formal
real-ness.
To prove 5): if e+f >0, then e+f is invertible. Since A is
a local ring, either e or f is invertible, say e is. Then by 3)

either e>0 (in which case we are done) or (-e) >0 , whence

f = (e+f) + (-e) >0 by 4).
Corollary 4.2 The relation > is transitive.

Proof ((a>b) and (b>c)) implies ((a-b) >0 and (b-c) >0),

which in turn implies ((a-b) + (b-c) >0), thus a-c>0, thus a>c.

Corollary 4.3 if n is a positive natural number, then n>0 -

and n-1>0 in A.

Proof. By prop. 4.1(3), it suffices to exclude -n>0 and

-n~'>0, which is easy.

.

We now leave the world og coherent logic by introducing the -
predicate '<'. We put b<0 iff Vva: a>0 implies a>b.

Also, put b<¢ if Db-c<0.

Proposition 4.3 Va,b: a<0 and b<0 implies a+b<0.
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Proof. Let c>0 . We must prove atb< c . Now c = %c +%c ,
and %¢ > o by c;o and Coroll. 4.3.. Thus (a<k%c) and (b<kc) ,
whence a+b < %c+kc=c (using Prop. 4.1 (4)). This proof is intui-
tionistically valid, hence valid in E .

Again, it is clear that this Proposition implies the transi-
tive law for < . Also, Vva: a<a , so that < is a preorder. We
cannot conclude that it is a partial order.

The next Propositions have evident corollaries obtained by
adding elements to both sides of the various (strict or nonstrict)

inequality signs. We omit these corollaries.
Proposition 4.4. Va,b : a> and b>o implies a+b > o .

Proof. Since Vvd: d<o implies d<a , we also have

vd: d < b implies d < at+b .

In particular, this holds for d = %b , thus o< %Xb < a+b ,

whence a+b > o by transitivity of > .

Proposition 4.5. For all a and b , we have

1) a>o implies a>o
2) a>o and b>o implies a:b > o

3) a>0 and b>o implies a-b > o .

Proof. 1) If a>o and c<o , then by transitivity of

<, c<a . Since this holds for any c<o , a>o .

2) The following corrects my erroneous proof in the originally
circulated version (June 1977) of the present paper. It depends
on the following Proposition, due to Peter Johnstone,; this fro—
position at the same time refutes a remark to the contrary effect

in the June 1977 version.
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Proposition 4.6. We have

- (z2>0) & 2z<0 .

Proof. By Prop. 4.1. (5) we have

Vz,y : z+y > O = zZ2>0 Vv y>o
hence

vz,y : z+y > 0 A =(z2>0) - y>o ;
hence

vz =(2>0) = [Vy : z+4y>0 = y>ol .

But it is easy to see that the.formula in the square bracket

is equivalent to 2z<o :

Vy ¢+ z2z+y > o - y>o
<

Ya : z+(a-z) > o = (a-z) > o
G

vat a > o - a> z .

This proves the implication = . For the other one,
observe that
2<0 A (z>0) = z>z ,

using the definition of < . But 2>z is false.

Proof of Prop. 4.5.(2) and (3). Assume a>o0 and b>o .
To prove a*b>o0 , it suffices to prove = (arb)< o . But if
a-b<o , a+b is invertible, so in particular, b is ; by Pro-
position 4.1.(3), b>»0 or b<o . By Proposition 4.6., b<o
is incompatible with bgq , so that b>o . Similarly a>o .
Thus a+*b>o0 , by Proposition 4.1.(2) , contradicting the as-

sumption a:b<o .
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Now (3) in the Proposition follows by combining (1) and
(2) . Again, the present proofs are intuitionistically valid,
hence valid in E .

Let us finally remark that we cannot conclude a<b and

b{a implies a=b . (IR[€] in Set furnishes a counterexample.)
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REMARKS ON THE PREVIOQUS PAPER

Extracts from two letters from Peter Johnstone to Anders Kock,

March 1978.

Concerning your conjecture that the Dedekind reals are
always a separably real-closed local ring: As you remark
(Proposition 3.2.) this is true in any spatial topos, from the
"classical" fact that the stalks of the sheaf of continous real-
(or complex-) valued functions on a space are always Henselian.
In fact this observation is sufficient to prove your conjecture
in any Grothendieck topos, for the simple reason that "the gene-
ric unramifiable polynomial over @" lives in a spatial topos.
Explicitiy, let f be a monic polynomial of degree n over (€
in a topos ¢ . Then the coefficients of f define a geometric
morphism f : € — Shv (En) , and f 1is unramifiable precisely
if the image of f is contained in the open subtopos of points
in €% where at least one of the hyperdiscriminants is nonzero.
But over this space, the sheaf of continuous €-valued functions is
separably closed, and so we can cover the space with open subsets
on which the generic polynomial has a simple root. Pulling back
this cover along f , we get a localization of ¢ over which f
has a simple root.

Given that the result is true, there clearly ought to be a
better proof of it than this. I suspect that in order to get a
direct proof we are going to need a formulation of TSRCL which
does not involve mention of the extension ring A[i] .

I feel that there ought to be something analogous to the
hyperdiscriminants which would tell you (in the classical case)
when a given polynomial over a formally real field has at least

one simple root in a formally real extension; but so far I have
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not found a way of distinguishing between real and complex

roots that can be expressed coherently.

Re-reading what I wrote earlier, it occurs to me that
perhaps the theory of separably real-closed local rings needs
to be written in the language of ordered rings rather than the
language of rings. Define the theory OLR of ordered local
rings to consist of the theory of rings plus a unary predicate

P satisfying

P(a) — 3b (ab=1)
3b (ab =1) }— P(a) v P(-a)
P(a) A P(b) F— P(ab)a P(a+b)
P(atb) — P(a) v P(p)
P(o) — false.

Then the underlying ring of an OLR is formally real local;
conversely, in Set every formally real local ring admits an
ordering (since we can order its residue field, and then pull
back) . You showed that every SRCL ring admits a unique orde-
ring (the positive elements being invertible squares). But in a
topos it is not true even locally that a formally real local ring

can be ordered: consider, in the topos of diagrams of the form
R

< , the formally real field QNE)<]R

where the two embeddings are different. Now it seems to me that
one has rather better chances, in the theory of ordered fields,
of saying that a polynomial has a simple root in an ordered
extension field (not, of course, the same thing as a formally

real extension field),; for example, with a quadratic one can

make the assertion that its discriminant is positive.



ON THE SYNTHETIC THEORY OF VECTOR FIELDS

Anders Kock

The present note is an exposition of some of the general
"syni:hetic differential geometry"”. The style of exposition is
that it expresses maps, subobjects, and statements in set theoretic
language. As long as one stays inside what Lawvere calls "cartesian
logic", which is essentially negation free (but higher order) logic,
then the maps, subobjects etc. described can be interpreted in any
cartesian closed category with equalizers. So when we for instance
say "ring", we mean "ring object in such a category".

Let A be a commutative ring with 1. Let DcA be the set of
elements of square zero. We say that A is of line type if every

map t: DaA is of form
(0) t(d) = b+d-.c vdeD

for some unique b and c€A. Clearly b=t(0). We denote the
¢ occurring here by t'(0). Similarly, if £f: AsA is arbitrary,
and a€A, we define f'(a) to be that unique element in A such

that
(1) f(a+td) = f(a) +d.f'(a) vdeD

(this element exists uniquely in virtue of A Dbeing of line type).
We call (1) the Taylor expansion of f at a.

To amap f: A-+A we have thus associated a new map, f': A-A,

-139-
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its derivative. It is easy from (1) to prove

(£+g)' = £' +g" (£29) ' =f'-g+f-g'
(fog)' = (f'og)+g"' (identity) ' =1
(constant)' = 0;

see [5]. In fact proofs of these laws explicitly using elements with
vanishing square were used very early in the history of calculus

(Fermat) , but were later abandoned, perhaps due to

Proposition 1. No non-trivial rings in the category of sets

are of lirme type.

Proof. If A is non-trivial, then D must contain more than
just 0€D (for, otherwise the ¢ occurring in (0) could not be
uniquely determined). So take some § €D with §#%0. Define a

function t: D-»A by

1]
-

t(6)
: {
t(d)

]
(=

for d+#S§6.

By the line type axiom, t is of form t(d) =b+d-.c. Obviously

b=0, so t(d) =de vdeD. In particular

Multiplying this equation by 6§, we obtain &= 62»c= C, “(since

§ €D), contradicting the assumption §#%0.



The proof hinges on the construction principle *, which has
no place in cartesian logic.
For the rest of this note, A 1is a fixed ring, assumed to be

of line type.
We note that the uniqueness assertion about ¢ in the line

type notion can be formulated: for any c €A
(ced=0 VAdED) =» (c=0).

This principle, we refer to as "cancelling universally quantified
d's".

Geometrically, D is the intersection of the unit circle around
(0,1) €EAxA and the x-axis A x {0} cAxA, and is thus a unity of
the opposites: "curved" and "straight". In fact, for any object M,

a map t: D-»M should be thought of as a tangent vector on M at
the point t(0) €M (Lawvere, [3]). Likewise (ibid.), a vector field
X on M is a law which to each meM associates a tangent vector

X(m,-): D-»M. Thus, a vector field on AM is a map
X: MxD » M
satisfying
X(m,0) = m vmeEM
Keeping a d €D fixed, we get a map
(2) X(-,d): M > M

called an infinitesimal transformation belonging to X.
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The classical work of Lie on differential equations (see e.g.
[2]) makes wide use of these endomaps of M, which have no place

in modern rigourous treatments.

It is natural to ask whether X(-,d) 1is a bijective map, with

inverse
X(=,-d): M - M.

A condition on M that will guarantee this, and also will
allow us to add tangent vectors at the same point, is the condition

that M 1is infinitesimally linear in the following sense. For each

natural number n, we let D(n) gAn be the subset
{(dy,...,4)) €Anldi-dj =0 vi,j}

(in particular di=0 vi). For i=1,...,'n, we have the "i'th

inclusion"
incl;: D - D(n)
given by
incli(d) = (0,0,...,d,...,0)

(the d in the i'th place).

We say that M is infinitesimally linear [6], [8], if for each

n and each n-tuple ti: D-»M (i=1,...,n) of tangent vectors at

the same point m €M, there exists a unique 1: D(n) »M with

(3) 1oincli=ti i=1,...,n.



In particular, if M is infinitesimally linear, and t1, t2
are two tangent vectors at m€M, there is a unique 1l: D(2)-M
with (3) holding (n=2), and we define (t1+t2): D-+M to be the

map given by
(tq + tz) (d) = 1(4,4d)

(note that d€D implies (d,d) €D(2)).
Likewise, if t: D-»M 1is a tangent vector and a €A is a

scalar, we define a*t to be the map D-M given by
“(ast) (d) = t(a-d)

(note that d€D and a€A implies a-+d€D).

It is then easy to prove ([6],[8],[9]) that the set of tangent
vectors at any given point m of M becomes an A-module, with the
structures thus defined (one uses D(3) to prove associativity;
the higher D(n)'s are not used).

To prove
(4) X(X(m,d),-d) = m,
we shall more generally prove, for (d1,d2) €D(2)
(5) X(X(m,d;),d,) = X(m,d, +d2)

(note that (d1,d2) €D(2) d, +d, €D, because when squaring d1 +d2,

1 2
the double product vanishes by assumption). To prove (5), note that

both sides define maps

1: D(2) » M
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with l1oincli==x(m,-) (i=1,2), and thus are equal, by the
uniqueness assertion in the infinitesimal linearity assumption.

We can add two vector fields X and Y on an infinitesimally
linear object M, by letting (X+Y)(m,-) be the sum (as already
defined) of the two tangent vectors at m, X(m,-) and Y(m,-).

We can also multiply a vectorfield X with a scalar valued function

¢: M->A, namely by putting
(9+X) (m,d) = X(m,@(m)-d).

In this way, the set of vector fields on M becomes a module over
the ring of functions M-A.
Recall [6]'[7] that an A-module M is cadlled Euclidean if

each t: 'D->M is of form
t(d) = t(0) +d-v

for some unique v €M, called the principal part of t.

Proposition 2. If M is a Euclidean A-module which is also
infinitesimally linear, then addition of tangent vectors at a given
mEM using infinitesimal linearity agrees with the obvious addition

"adding principal parts". Similarly for multiplication by scalars.

Proof. Let

t;(d) = m+dey, i=1,2



be two vectors at m€M. Their sum, using infinitesimal linearity

is found from 1l: D(2) »M given by

l(dl’dz) = m+d1-z1 +d2-22

since loincli=ti. So we have, for all d4E€D,

(t4+t,) (@) = 1(4,d) = m+d-y, +dry

1 -2
m+de (!1 v

2

proving that t1 -l—t2 has principal part v, +X2'

The last assertion of the Proposition is trivial.

We henceforth assume that A is of line type (hence Euclidean
as an A-module), and infinitesimally linear; and M is assumed to
be an arbitrary infinitesimally linear object.

We proceed to consider Poisson bracket of two vector fields
X and Y on M. For fixed d1 €D anci d2 €D, we may consider
the commutator of the two bijective endomaps X(-,d1) and Y(-,dz)

of M. In other words, for fixed m, we consider the "circuit"

:=X(p,-d )

q
(6) l o p:=Y(n,d2)
—_— .,
r

:=Y(q,-d,)
n ./- el n:=X(m,d1)

(recall from (4) that X(-,d )_1 =X(—,—d.l), and similarly for Y).

1
For fixed m, the r obtained depends on (d1,d2) €D xD, so that

we have a map

(7) DxD - M

(d1 ,d2) P r
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If d1=0, we have n=m and g=p, so that

r = Y(q,—d2)= Y(p,—d2) = n =nm

the third equality sign by (4) and Y(n,dz) =p. Similarly if d2=0,
we get likewise r=m. So the map (7) satisfies the condition for

T in the following requirement on M,[6]:

Requirement. For any map T: DxD-M with
t(d4,0) = 1(0,d) = 1(0,0) VAEM
there is a unique map t: D-M with

t(d1'd2) = T(d1,d2) v (d1 ’dZ) €D xD.

We assume henceforth that M satisfies this. Thﬁs the map
described in (7) is of form (d1,d2) —vt(d1-d2) for some unique
t: D»M with t(0) =m. We denote this t [X,¥](m,-). Letting
m vary, we obtain in this way a vector field [X,Y] on M. It

is characterized by
[X,Y](m,d.l-dz) =r Vv (d1,d2) €EDxD,

r obtained as in (6).

It is easy to prove that [X,Y]=0 and I[X,Y]=-[Y,X]. I
belive that bilinearity and Jacobi identity for the bracket operation
described here can be obtained by reinterpretation of the proofs

for similar facts about the Lie algebra object of a monoid in [6].



Easier proofs exist (using Proposition 2) for the case where M
is a Euclidean module, essentially by using the notion of "direc-
tional derivation along a vector field" which we shall discuss in
a moment. However, we do not want to perform "a double-dualization"
by identifying a vector field with a differential operator on a ring
of functions. Thus, the following Theorem, which is essential in
Lie's theory of differential equations, is stated and proved entirely
in geometric terms (no differential operators!).

We shall call a vector field X proper if each X(m,-): D-M
is an injective map (thus we make a positive assumption on X instead
of the classical negative "X(m,-) is always non-zero".) The theorem
deals with two vector fields X,Y (with X proper) such that all

circuits are X- trapezia, i.e. have shape

(8) q p
— >4
m r n

’

which, to be precise, we take to mean that for each m€M and
(d1,d2)€DXD the r constructed in (6) is of form X(m,§) for
some § €D (necessarily unique since X 1is proper).

We shall finally assume that A also satisfies the Requirement

above. Then

Theorem 3. Let X,Y be vector-fields on M, with X proper.

Then the following two conditions are equivalent:
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i) all circuits of form (6) are X-trapezia, (8).

ii) [X,Y] =peX for some scalar valued function p: M-A.

Proof. Assume (i). Let m be fixed, and consider for .

(d1 ,d2)€Dxb that unique § = 6(d1 ,d2) such that
(9) r = X(m,8§).

Arguing as for the map described in (7), we see that 6(4,0) =6(0,d)=0.
Therefore, by the Requirement for A, we have <S(d1,d2) =t(d1°d2)

for some unique t: D-A. Since ' t(0) =0, we get, since A is of
line type, a unique b €A such that t(d) =bed for all de€A, so
that

d(d,],dz) = b.d1od2 v (d1,d2) €D xD.

Now let m vary, and record the dependence of b on m by writing

b=p(m). Thus we have, for all (d1,d2) €EDxD,

[X,Y](m,d1~d2) r = X(m,b-d1-d2)

X(m,p(m)+dyed,) = (peX) (m,d,.d,).
From the uniqueness in the Requirement then follows
[X,Y](m,d) = (p+X) (m,d) for all deD

(and all m). This proves (ii).
The converse dimplication is trivial; if r=(p.X) (m,d1-d2) ’

we have r=X(m,p(m)od1od2) witnessing that r is of form X(m,3).
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If we call two elements m, and m, of M X-neighbours

provided there exists a de€D with

X(m1,d) =my,

then it is easy to see that the conditions of the theorem in turn
are equivalent to: for any d €D, the permutation Y(-,d) preserves
the relation "being X-neighbours". Lie uses the phrase: "X admits
Y". The phrase "Y permutes X" makes a certain sense too in this
connection, since by integration (which has no place in the present
set up) the X-neighbour-relation passes into the relation"being on
the same streamline for the flow generated by X", so that Y(-,d)

permutes the streamlines of X (possibly reparametrizing them).

We now discuss directional derivatives. Let X be a vector
field on M, and f: M-V a function with values in a Euclidean
module V (in particular, V might be A itself). Consider for

fixed mEM the map D~V given by
dwe £(X(m,4d)).

By Euclidean-ness of V, this map is of form
dw f(m) +d-v

for some unique v €V, which we denote X(f)(m). Thus X(f): M-V

is the function characterized by
(10) £(x(m,d)) = £(m) +d-X(£f) (m) V4 €D, VmEM

("generalized Taylor formula").



The construction f# f' previouély mentioned is a special

case, namely for X the vector field 4 on a given by

%(a,d) = a+d.

It is proved in [7], Prop. 1.2 that £fw X(f) is A-linear, and

satisfies appropriate evident generalizations of Leibniz-rule:
X(@f) = X(@) £ +@-X(£f)

whenever f: M-V and ¢: M-»A. (The proofs are easy from (10)).

We proceed to investigate how X(f) depends on X. We shall prove

Proposition 4. For any vector fields X1,X2,Y on M, and

any ¢¥: M-»A, we have

(1) (X1+X,) (£) = X, (f) +X,(f)
(ii) (@+X) (£) = @ (X(f))
(iii) [X,Y](f) = X(Y(£)) -Y(X(f)).

for any f: M-V (V a Euclidean infinitesimally linear module).

Proof (i): Let L: MxD(2) »M be defined so that for any

meEM, 1=L(m,~,-): D(2) »M has

loincli = Xi(m,-) i=1,2
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Consider for fixed m€M the map h: D(2) -V given by
h(d1,d2) = f(L(m,d1,d2))

We then have (for 1i=1,2) that hoincli: D-»V is the tangent
vector at f(m) with principal part Xi(f) (m); to see this, for

i=2, say

h(inclz(d)v) h(0,d) = £(L(m,0,d))

£(X,(m,a))

£ (m) +d°X2(f) (m) .

From the uniqueness assertion in the statement that V is

infinitesimally linear, it then follpws that
h(d1,d2) = f(m)+d, X, (f) (m)+d2-X2(f) (m) .
We have, for all d4de€bD,
f((x1+x2) (m,d)) = £(m) +4d- (Xy+X,) (£) (m) .
On the other hand, for all 4 €D,

f((X1+X2) (m,d))= £(L(m,d,d)) = h(4,qd)
= f(m) +c1~){1 (£f) (m) +d'X2(f) (m)
Comparing these two expressions for f((x1+x2) (m,d)) and cancelling

the universally quantified d, we get (i), as desired. The proof

of (ii) is easier, and omitted. Let us finally prove (iii). For
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fixed m,d1,d we consider the circuit (6) and the elements

2'
n,p,q,r described there.We consider f£f(r) -f(m). First

f(r)

f(q) - dz-Y(f) (q)

f(p) = d  X(£) (p) - d,eY(£) (q)

using generalized Taylor (10) twice. Again using generalized Taylor

(10) twice, (noting m==x(n,—d1) and n=Y(p,-d,) by (4)),

£ (m)

[}

f(n) —d1-X(f) (n)

f(P)"dz’Y(f)(P)-d1-X(f)(n).
Subtracting these two equations, we get

(11) f(r) - £(m)

d1-{x(f)(n) -X(£).(p)}

+d2-{Y(f)(p)-Y(f)(q)}

-d ~d2°Y(X(f))(P)'Fd1'd2°X(Y(f))(p)

1

using generalized Taylor (10) for the function X(f) and for the

function Y(f). Now we have

d,+g(n) = d,-g(p)

and

d1-g(n) d1~g(m),

since

d,-g(p) d,+g(¥(n,d,))

dy (g(n) +d, ¥ (q) (n))

dyeg(n),
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the last term vanishing because d§==0. Similarly for the other

equation. Since the terms on the right hand side of (11) occur

with both a d1-factor and a d.,-factor we may apply this principle

for the functions Y(X(f)) andzx(Y(fH to replace the argument p
by, first n, and then m. Thus
(12) f(r) -f(m) = d1°d2°(X(Y(f))(m) -Y(X(£f)) (m)) .
On the other hand
[X,Y](m,d1~d2) =r
so that
(13) f(r) —f(m) = d1-d2-[x,Y](f)(m).
Comparing (12) and (13), we see that for all (d1,d2) €D xD,
a °d2°(X(Y(f))(m) - Y (X(£)) (m)) =d1~df[x,Y](f)(m),

1

and cancelling the universally quantified di's, we get (iii).

A final useful classical result about Lie brackets of vector

fields on M
(14) [X,£f.Y] = £[X,Y] +X(f)-Y,

(where f 1is a scalar valued function) is easy to prove if M is
a Euclidean module and infinitesimally linear. I do not know how

to prove it without the module structure on M.
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A function f: M»V (M and V infinitesimally linear,
M satisfying the Requirement, V being a Euclidean module) is
called an integral of the vector field X on M if X(f) =0.

This is equivalent to saying that for any
t: D> M

which is a vector of the field X, i.e. X(t(0),-)=t, the

function £f 1is constant on t,
fot = £(t(0)).

Then the level set f—1(f(m)) contains the tangent vector X(m,-)
(meaning that X(m,-): D-»M factors through the level set).
An integral f: M-V of X 1is called universal if for any

other integral g: M-»W of X,
g=wof

for some w: V-W (not necessarily linear).This definition should
really be made a local one, but we are not going very far in this
direction anyway. It is reasonable to think of the levei sets of
a universal integral of X as being precisely the streamlines of
X (viewed as unparametrized 1-manifolds). Here we shall use "level
set of universal integral" as definition of "streamline". We then

have
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Proposition 5. If the proper vector field X admits the
vector field Y, in the sense of the conditions of Theorem 3,
then for each d €D, the infinitesimal transformation Y(-,d):M-M

permutes the streamlines of X.

Proof. We have by assumption

[X,Y] = pX

for some p: M-A. Assume f: M-V is a universal integral.

We claim Y(f) is an integral also. For

o
n

peX(f) = (pX) (£f)

[X,Y](£f) = X(Y(f)) -Y(X(£))

[}

X(Y(£)) -¥(0)

X(Y(£)),

using Proposition 4 (ii) and (iii). By universality of f we get

w: V-V with
Y(f) = wo £f.

Now we claim that Y(-,d) takes the level set f—1(c) into

f_1(c+d»w(c)). For, let f(m) =c. Then

f(Y(m,d)) f(m) +d-Y(£f) (m)

f(m) +dew(£(m))

f(m) +dew(c).

]



Since Y(-,d) is bijective, we actually get that it takes the
level set £ (c) onto £ (crdew(e)) .

This proves the Proposition. Of course, we have no way presently
of proving existence of universal integrals.

The use of Theorem 3 for differential equations [2] is that
for the case M= the plane A xA, if Y permutes X in the sense
of Theorem 3 or Proposition 5, then the function which to meM
associates the reciprocal of the determinant of (the principal parts

of) the two vectors X(m),Y(m) in Az is an integrating factor

for the differential equation, X(f) =0, meaning that

1

— X
det(X,Y)

is a source-free vector field, and thus an integral for it, and
thus for X, can be found by curve integration (the orthogonal
field is a gradient field: its potential function will work) .

Lie states [1] that he found these theorems "by synthetic
considerations" but found it difficult to write down the proofs
synthetically, whence his articles present mainly analytic proofs
in coordinates. I believe that the above proofs may be clpsely

related to the synthetic theories of Lie.
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CONNECTIONS IN FORMAL DIFFERENTIAL GEOMETRY

%*
A. Kock and G.E. Reyes

This paper is a contribution to formal or synthetic differen-
tial geometry (see [4], [51, [6], [7], [9]). We recall that the ba-
sic idea (suggested by Lawvere [7]) is to work in a category with
a ring object A ("the line") and an object D ("the generic tan-
gent vector"”) by means of which one may interpret directly geometric
entities on suitable objects M ("manifolds") in the category M,
by performing simple operations of the category on A, D, M. The
tangent bundle of M becomes MD, etc. In this paper we study con-
nections, parallel translations on "vector bundles", covariant dif-
ferentiation, and related ideas in this synthetic context. Thus, in
§ 1, the notion of connection on the tangent bundle of an object M
is defined as a data which completes each infinitesimal configura-

tion in M

(0.1)

*
) Partially supported by a grant of The National Research Council of Canada

-158-
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into a configuration

(0.2)

Such completion data in our context is simply a splitting V of
the restriction map mP*P -—ﬂrMDVD where DxD and DvD are cer-
-tain objects derived out of D. From this idea (and the pictures
(0.1) and (0.2) associated to them) it is immediate that the com-
pletion data V provides the infinitesimal germ of parallel trans-
port (the picture (0.2) being full of small parallellograms). Alter-
natively, under suitable assumptions on M, MD ~ MxV (at least
"locally" in a sense to be explained in §3) where V is a vector
space (= A-module object in the category). Under this identification
the data of a connection becomes a splitting of a certain map

(MXV)D = MDXVD —_ MDXV, so pictorially is a data which completes

(0.3)



into

(0.4)

This reflects the distinction between the "active" and "passive"
tangent vector in a parallel transport situation; thus in (0.3),

T 1is the active aspect, the one that transports.

The v in (0.3) is the passive vector (the one that is transpor-
ted in (0.4)). The passive tangent vectors may be replaced by vec-
tors is an arbitrary vector bundle E over M, cf. §2. (A few

more pictures appear in §6).

For some of the technical work with this data, we derive from
it an equivalent data,'namely a connection map C 1in the sense of
Dombrowski [2] and Patterson [8]. In particular we use this form
of the data to define covariant differentiation, and, under natural
assumptions on M and V, to prove Koszul's laws for it. We also
discuss torsion and curvature. Since infinitesimals occur explicitely
(in the form of the object D ), the geometric interpretation of

the curvature tensor of E. Cartan [1] is obtained rigourously.

A remark on method: since all categorical operations we per-
form rest entirely on use of pull-backs and cartesian closedness

(exponential objects), all equational arguments and constructions
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can be performed as if we were in the category of sets (which we
are not: in the category of sets, no models for synthetic diffe-
rential geometry exist, essentially because in the category of sets
non-differentiable mappings exist). Thus, we work with elements,

just as in [4], [5], [6], [9].

We would like to thank G.C. Wraith for several discussions on
this subject. Furthermore, the second author would like to thank
J.-M. Terrier for his obstinate efforts to teach him some differen-

tial geometry.
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§1. The geometric notion of connection in the tangent bundle.

As in [6], we work in a category E with finite inverse limits,

with a ring object A. We let D(n)>— A" be defined by

n L=
D(n) = {(311---,an) €A ai.aj =0 VYi,j=1,...,n},

(using set theoretical notation). We shall in particular be interes-
ted in D(1) and D(2), which we also denote D and DvD, re-
spectively. The 0 of A, 12— A (where 4 is the terminal
object) factors through D, 0: ﬂ-——»D. Similarly, for D(n). We

have furthermore n inclusion maps

i: D ——D(n)

given by
d — (0,0,..,4,..,0)

with d placed in the r'th position. We shall assume from now on
that D(n) is exponentiable for any n.

An object M is infinitesimally linear (cf. [6]) if for each n

makes M°: M*(™ M into an n-fold product of M°: M — M,

in E/M. (We denote M°: MP— M by ®; geometrically, it asso-

ciates to a tangent vector the point of M where it is attached).
As in [4], we say that A 1is of line type if the map

a: AXA — AP defined by <ag, a;> —[d hﬂ[a0+a1d]] is inver-
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tible. Throughout this paper, we assume that A is of line type,
-and is infinitesimally linear. Also, M denotes henceforth a fixed
but arbitrary infinitesimally linear object inE ( M is to be
thought of as a manifold).

Since M is infinitesimally linear, we have in particular

MP¥D _ D (2) ~ MPxpP
- M
[ " s DvD .
so that an "element" in M looks like
“.1) ("a cross"),

a pair of tangent vectors t1,t2 attached at the same point of M
(which is the justification for the notation DvD).

Clearly, we have
DvD € DxD ¢ AXA.

We denote the inclusion DvD ¢ DxD by j. We thus have a restric-

tion map

Definition 1.1. A connection on M is a splitting

MDVD —JL—>MDXD of the mapping M.

(We shall later add an equational condition on such V, defining the no-
tion of affine connection). We gave same of the geametric heuristics of this no-
tion in the introduction. We elaborate a little on it. TheA(almost) vertical lines
in the infinitesimal grid (0.2) are to be viewed as V-parallel tran-

slates of the given vertical line in (0.1) along the given horizon-
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tal line (0.1). ("Line" here means "curve parametrized by the in-
finitesimal segment D of the global line A" = "tangent vector
to M" ).

Thus, in the picture (0.1) and (0.2), the given horizontal "1li-
ne" is the active tangent ( the one that transports), and the given
vertical "line" is the passive vector ( the one that is transported).

To arrive at finite parallel transport from this infinitesimal
parallel transport given by V, of course means integrating a cer-

tain differential equation.

To be specific, we want to define the notion of when a curve
of tangents to M 1is Y-parallel. A curve in any object N is,
by definition, a map A —— N (since A is.“the line") . Since MP
is the tangent bundle of M (cf. [5], [6]1, [7]1, [9]), a curve-of-

tangents on M is a map
(1.3) A X, WP,

Now any curve h:A—N on any object N determines a curve-of-tan-
gents on N, "the speed curve of h" which we shall also denote

v
h , namely the composite

A
a + aD h ND,

A
where +(a) = [dF— a+d]. Take in particular N = MD, h =%k as

in (1.3); then we get the speed curve of k

(1.4) A —& . )P e, yOxD

~

(The isomorphism (p-1:MDxD ----—»(MD)D here sends f£f:DxD — M into

[d1'k—-[d2  £(d,,d,)11). On the other hand, if we denote by k,
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the composite of (1.3) with m:MP - M (the "footpeint curve of

L
k") we get, using k as well as the speed curve k1 of k1 a

map

1)
<k, , k>
(1.5) A 1 D

MD xMD,IID;;MD v

Definition 1.2. The curve-of-tangents k is parallel accor-
L

ding to Vv if "v-parallel transport of k-vectors along k1 yield

DvD DxD
—_—

k-vectors"”, or more precisely, if (1.5) composed with V:M M

yields (1.4), that is, if

1 L]
Vo<k1,k> =¢pok .

In particular

Definition 1.3. A curve h:A—M is geodesic with respect to
L}
v if its speed curve h is a V-parallel curve-of-tangents, that
is, if

. L] 1]
Vo<h ,h > =¢@oh .

A proposition concerning the "parameter invariance" of the no-
tions of the two last definitions will be proved in Proposition 2.9
under the assumption that V is an affine connection (Definition

2.7).

The notion of V-parallel curve of tangents, and v-geodesic,can

be relativized for curves
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k:U——»MD

h:U—M

Ll
defined on subobjects U of A. 1In fact, if U €U is so that
Ll
"adding elements from D to elements from U yields elements

of U", 1i.e., if there exists a factorization

L]
Uxp..-T..ou

I !

AxXA —— A
+

we derive

A

D
L] L]
(1.4) v 2P X, (MP)P P *P
and
1]
' v <k, ,k>
(.5 o 177 D P WP VD TP XD,

The curve k 1is then (generalizing Definition 1.2) said to be V-
parallel-according to vV on U' if (1.4') and (1.5') agree.
Note in particular that we may take U = D, v’ = {0} and
talk about when a curve k:D — P (a very short curve!) is V-
parallel at O. ‘
Similar relativization can be made for the notion of geo-
desic. There we need U'gU stable under addition of two ele-
ments from D (because of occurrence of the double derivative

in Definition 1.3).

A vector field on M is a cross-section X of the map
ﬂ:MD -+ M. Given two vector fields X and Y, one can consider

the diagram
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(1.6) <X,Y> YD

MDVD D xD = (MD)D

— M —p

v ©

The difference of the two ways round in this diagram (taken fibre-
wise in the tangent bundle of MD, (MD)D —_— MD ) will lead to
the notion of covariant differentiation, VXY, of the vector field
Y along the vector field X, cf. Definition 2.6 below. The geome-
tric heuristics can in our context be objectivized as follows: gi-
ven m€M. Then X(m): D+ M is a (small piece of) a curve ("in-
£egral curve of X through m" ) in M, and YoX(m): D —» MD
is a (small) curve k of Y-vectors along it. On the other hand, the
counterclockwise composite in (1.6) is (modulo the isomorphism ¢ ')
amap DxD -+ M, the grid obtained by parallel tragsporting Y-vec~
tors along the tangent vector X(m).

So the difference of the two ways round in (1.6) measures how
much the curve of Y-vectors along the integral curves of X dif-
fers from being parallel according to V. (Note that we do not real-
ly integrate the vector field X, since we only need to know the in-
tegral curves on small bits of length D anyway).

The difference of the two ways round in (1.6) is a map M — ﬂiﬁn
or M -—4MD xD' so is not yet a vector field on M, but rather a
"grid field". To extract a vector field VXY from it, we need some
preparations of technical nature. For these technical preparations
it is convenient for notational reasons, to generalize slightly in

the sense that the"passive tangent vector" is replaced by a vector

in an arbitrary vector bundle E — M (= A-module object in §/M ).
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§2. Tangent bundles of vector bundles.

In the following, p:E-M 1is a fixed map in E with both the
objects E and M infinitesimally linear. We shall also assume
that E —M is equipped with a vector bundle structure (that is,
structure of A-module object in E/M ). However, for our first

proposition, this structure is not needed:

Proposition 2.1. The object p:E—M in E/M is infinite-
simally linear.

Proof. Let us denote by ( ), the functor E-—E/M ‘"cros-
sing with M". It preserves those exponentials that exist, and in-

verse limits, so that (A) is a ring object of line type in E/M.

M
Of course, the statements we make about formal differential geome-

try in E/M refers to this ring object. Now, given
t,:(D), =DxM — E (i =1,2)

in E/M (so that pot1 = pot, = projection to second factor) with
t1(0,m) = t2(0,m) (= t(m), say) for all m, we should prove u-

nique existence of an
K:(DVD)M —E in E/M

restricting to t1 and t2 on the two axes of (D vD)M. For each
meE€M, we get by infinitesimal linearity of E a map !,m:D vD — E
restricting to t1(-,m) and tz(-,m). The lm's together define a

map (DvD) xM ——E. We must prove that it is a map in E/M, mea-
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ning that we should prove commutativity of

(DvD)XM#) E

o
!

M.

proj

This means that we should prove that poﬂm:D vD — M has constant
value (=m ). On the two axed of DvD, this is certainly so, since
!'m restricts to t and tz and p(ti(d,m)) =m for i=1,2,
since t1 and t2 are maps in E/M. Now, knowing that polim re-
stricts to the map "constant m" on the axes of DvD implies, by
the uniqueness assertion in infinitesimal-linearity assumption on M
that potm must be constant m on the whole of DvD, as was to
be proved. The uniqueness of £ follows just from the infinitesimal
linearity of E.

We remind the reader (cf. [6] and [9]) that if N is an infini-
tesimally linear object, then n:ND — N has a natural vector bundle
structure: given two tangent vectors 1:.I and t2 at m€EM ( so
ti:D-—>M with ti(O) =m, i=1,2), we first find the unique
£: DvD — M which restricts to t and t2 on the axes of DvD;

1

and then we define t, + t, by (1:1 + tz) (d) = £(d,d). We call this

1 2
the tangential addition. In the present paper it is denoted by @:

(t;@t,)(d) = £(d,d) deED .

The associated "multiplication by scalars from A" is denoted 0

and given by
(a0 t)(d) = t(a-d) depD

(note 4d€D =» ad€D).
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We now utilize the vector bundle structure on p:E—M to
derive a natural diagram associated to it. We largely use notation

from [3]. The diagram in question is

H D K D
(2.1) ExyE E M x E

where H and K are given (in set theoretic notation) as follows:
H: <u,v> ———[dr~ u + d-v]

where u and v are in the same fibre of E— M, and u + d-v

refers to the A-module structure of that fibre. Next,
K: £ b———<pof,£f(0) >

where f:D-——E. (Recall that f£(0) is also denoted w(f)).
In the case where E —M is MD-——aM, it is easy to see that

K equals the restriction map MDXD -——»MDVD, modulo the canonical

D D D

isomorphisms :M>~ > o) ana MPVP MDXMMD. Therefore we can

generalize Definition 7.1 into

Definition 2.2. A connection on the vector bundle E —M is
a splitting V of the map K in (2.1).
Pictorially, this can be represented as data for completing (0.3)

into (0.4).

Let us note that each of the three objects occurring in (2.1)
carry two vector bundle structures (over different bases), which in

set theoretic notation may be tabulated as follows
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(2.2):

structure map fibrewise addition notation
proj1: Ex B —E ((3,11),(1.1,12)) — (u,y+ v,) o
poproj2: Ex B — M ((:.11 ,11), (nz,zz) — (n1+ u,,y,+ 22) +
(= poproj1)
ms ED———»E tangentialladdition [}
pP: B0 — P (f,9) ——{d+ £(d) + g(d)] +
roj,: MPx B —MD  ((t,v,), (t,v,)) — (t,v,+V.,) +
p 31- M Vq) A5 (AL TR 4]

. D
Projz' M XME—E ((t1 Iy_)l(tzlz)) _— (t1 Qtzrl’) @

In each case, it is understood that the entries live in the same
fibre for the relevant structure map, so that the indicated opera-

tions can be performed. For instance, in the last case, t1 (0)=t2(0) =p(v).

In the following proposition are implicit the following easily

seen commutation relations:
. _ D . _
pr031oK =p and pro;zoK =7

with K as in (2.1).

Proposition 2.3. The map K is linear with respect to the struc-

tures denoted ®, as well as with respect to the structures denoted +.
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Proof. Linearity of K with respect to @ follows because
K = <pD,1r > and pD: ED—> MD is linear with respect to tangen-
tial addition, by functorality of the vector-bundle construction
(- )D. To see the second assertion, let £f,g be given tangent
vectors to E in the same fibre of E°— MD, meaning pof = pog..
(= t, say; t:D—M). Then

K(f+g) = <po(f+g),(f+qg)(0)>
= <t,£(0) +g(0)>
K(f) +K(qg)

<pof,f(0)> + <pog,£(0)>

= <t,f(0)> + <t,g(0)>.
which are the same.

In the following Proposition is implicit the following easily

seen commutativly: w-H = proj1.

Proposition 2.4. The map H is linear with respect to the

@®-structure, as well as with respect to the +-structure.

Proof. Given (u,v,) and (u,v,). Then

H((a,v,) ® (u,v,)) = H(u,v,+v,) = [d+=u+d-(v, +v,)].
On the other hand, to compute the @&-sum of
H(u,v,) = [d+—u+d-y,]
and
H(u,v,) = [dn—»5+d'_!2],

we need to find an £: DvD —— E which restricts to these two map-

pings, and then look at dr—£(d,d). Now £ is easily given expli-
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citely: it is clear that
£(ay,dy): = u+d vy +dyey,

will work. Setting d, =d, =d gives u+d-v,+d-v, again.

1 2
The proof of linearity of H with respect to the +-struc-

ture is trivial.

Recall [5], [9] that if A is a ring object in a category
E', and N is an A-module object, then we say that N is Eu-

clidean if the map

a: NxN —————’ND

given by

(u,v) —— [dr—u+d-v]
is invertible (with D = {a €A |a® = 0}).
These notions in particular apply to the A-module object
E — M in E/M. It is clear that the H ’'in (2.1) is closely

related to a for this object.

We have

Proposition 2.5. If p: E—M is Euclidean in E/M ("E is
fibrewise Euclidean"), the sequence (2.1) is left exact with respect

to the addition structures given by .

Proof. If Z and Y are objects in E/M such that the expo-
nential object Yx exists in E/M, we shall denote it xﬂhY. Now

it is easy to see that the object in E/M
DMAM (E —M)

is the left hand vertical arrow in a pull-back diagram in E
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‘A being the exponential adjoint of proj: MxD - M; so A is the ze-
ro for the vector bundle structure on MD-—*M, i.e. the structure
e, Thus, Q is the kernel of pD (for the structure & ). On
the other hand, the Euclidean-ness of E -+ M says EXME ~ %de(E-’M)

via H, so that, under this identification, EXME (more precisely,
H) is kernel for pD, or equivalently for K, with respect to the

structures ©.

We now consider a fibrewise Euclidean vector bundle object
p:E-+*M (with E and M infinitesimally linear, as always). Since
(2.1) is left exact with respect to the @®-structures, it follows that

if we have a connection

v: MDxME — gP

on E, the difference (with respect to the structure @®; we denote
the corresponding subtraction by ©)

(2.3) id 4 © VoK
E

factors through the kernel H of K, whence we get a map

H ED ~— Ex E,

C4 M
and therefore also a map proj20C1: ED—» E, which we denote C,

D

C: E—/E,
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from which the original V can be reconstructed. Certain of the
calculations we shall make are more readily expressed in terms of
C than in terms of V. However, the geometric meaning of C is
less direct than that of V. The analogue of C in "classical"
differential geometry we learned from Dombrowski [3] and Patterson
[8] . Also, the following notions, expressed in terms of C we

learned from [8].

Definition 2.6. Let X: M - MD be a tangent vector field and

Y:M— E an E-vector field. Then VXY: M—> E is defined to be

the following composite

M X MD Y ED C E,

called the covariant derivative of Y along X (with respect to
V; C is derived as above from V).
This definition can easily be extended to "partially defined

vector fields", i.e., given
D
X: N—M ’ Y: N —E

with moX = poY (= h, say), we can define VXY: N — E with

povyY = h.

In the case where E — M is MD~—-M, the difference consi-
dered in a preliminary way in (1.6) can be obtained from the diffe-
rence (2.3), so that Definition 2.6 above provides a way of getting
a vector field V¥ from “"deviation of Y being parallel along the

integral curves of X", as alluded to earlier.
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Now, if we have a connection V on E = M, that is, a split-
ting of K in (2.1), it follows that K is split epic. Also, be-
cause V is a splitting of K, it is easily seen that V pre-
serves the fibrations of ED and MDxME over E as well as their
fibrations over MD, whence it makes sense to ask whether V pre-

serves the linear structures given in the table (2.2).

Definition 2.7. We say V is an affine connection on p: E—=M

if it preserves both the linear structures + and @.

Remark. For the case where E = MD, it is geometrically rea-

sonable to ask that V preserves the structure + (linear struc-
ture on passive tangent vectors). It can be viewed as an infinite-
simal version of the statement: parallel transport along a path from
m, to m, defines a linear map from the tangent-space at m, to
the tangent-space at m,.

Concerning the linearity of Vv w.r. to the structure @ ("li-
nearity with respect to the active tangent vectors"), we can best un-
derstand its geometric significance by using it to prove parameter-
invariance of the notion of V-parallel-curve of tangent vectors, Pro-
position 2.9 below. We may as well do this for the more general case
of an (affine) connection in the fibrewise Euclidean vector bundle
p: E—~ M. We need first generalize Definition 1.2.

Let k: A= E be a curve in E, and denote by k the com-

1
posite pok.

Definition 2.8. We say k 1is a parallel-curve with respect

to V if the following diagram commutes



Proposition 2.9.

the affine connection

curve h = kof: A—> E

Proof. We have
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Let k: A—E be a parallel curve w.r. to
vV, and let f: A3 A be arbitrary. Then the

is parallel w.r. to Y.

. = k1o f. We must prove

L} L}
Vo<h1,h1> = h

We compute on the left hand side

1 1]
Vo<h1,h> = Vo<(k1of) ,kof >

1]
* Yo < (k.of) ®F ,kof >
= 1
1

1of,kof>)

*x£' 0 (Vo<k

as desired. At the two equality signs marked * we have used an e-

vident and easily proved chain rule analogous to that of [4], and at

** we have used the ®-linearity of VvV ( ® denotes that multipli-

cation by scalars that goes together with the addition ® ).

Proposition 2.10.
D

Let V be an affine connection. Then

C: E- — E satisfies both possible linearity laws.
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Proof. Since C1 = id b © (VoK), it is clear from @®-line-
E
arity of K and V that c, is ®-linear: ED~—~ Epr. Then
since the @&-structure on ExME is just the structure of the se-

cond factor, it is clear that projz-C1 sends ®-structure of ED

to the (unique) structure + of E (everything fibrewise over M).

To see the other linearity condition, let f,gGIED, with
pof = pog (= t: D— M, say), so that £ and g can be added

according to the structure + on ED. We must prove
C(f+g) = C(f) + C(g).
It suffices to prove

H(C,(f£+9g)) = H(C,(f) +Cy(9))

Since H 1is linear w.r. to the +-structure, and HoC1 = id D(BVoK,
E
we are required to prove

(£+g) OV(K(£+g)) = (f 6 VKE) + (g © VKg) .

Since K 1is linear with respect to +, we may rewrite the left

hand side, so that our problem now is whether
(2.4) (f +g) © (VKEf + VKg) = (f ®@ VKf) + (g ©VKg).

The result then follows from a distributivity law between the two

structures + and ® on ED, which is expressed in the following

Lemma 2.11. Suppose f1,g1,f2,g2: D —= E are tangent vectors

to E, and that
(a) pofi = pogy (= ti, say, ti: D — M) for i=1,2

and that
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(b) £,(0) = £,(0) and g1(0) = g,(0).

Then all additions occurring in the following equation can be per-
formed, and the equation holds:
(f1 +g1) -] (f2+gz) = (f1 sz) + (g1 ng).

Similarly if @ is replaced by 8.

Proof. Tangential addition is natufal with respect to maps

between infinitesimally linear objects (cf. [9]). Therefore,

D
(e 1® —11 gD

is a fibrewise linear map with respect to the @ structure. (Note
that EXME is infinitesimally linear since E and M are). But

the vector bundle n:(ExME)D-——ﬂ EXME can be identified with

D D
E"x DE —_— EXME

M

with addition in the domain being given by
—_—
(f1,f2),(91192) (f10f2,g10g2)
where f1,...,g2 satisfy (a) and (b). The lemma now easily fol-

lows.

To apply the lemma in proving (2.4), we just have to verify

the conditions (a) and (b) which here say

pof = pog
(a)
poVKf = poVKg
(b) £(0) = (VKf) (0) (and similarly for g).

It is clear that (b) holds; and (a) follows because all four

expressions are equal to t:D — M . This proves Proposition 2.10.
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§3. Koszul's law.

In this section, p: E » M denotes a fibrewise Euclidean vec-

D

tor bundle (cf. Proposition 2.5), and V: M X E-——*ED denotes an

M
affine connection on it.
We defined on basis of this the covariant differentiation struc-

ture VXY. We shall prove the following identities

(3.1) v Y =9Y,Y+V, Y
X, 80X, X4 X,

(3.2) TeoxY = fo V¥

(3.3) VX(Y+Z) = VXY+‘-7XZ

and, under a further assumption of local trivializability of E —B

(see below), the "Koszul law"

(3.4) Vx(f-Y) = f-VXY~+X(f)-Y.

In this latter, f denotes a map M— A, and X(f) denotes the
derivation of £ in the direction of the vector field X, [5], that

is, the composite

proj
(3.5) M X mP—L AP & AxA ——2 A,

Proposition 3.1. The equations (3.1),(3.2),(3.3) hold for an

arbitrary connection V.

Proof. Let C denote the Dombrowski-Patterson connection map

associated with V. To prove (3.1), recall that by definition of
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covariant differentiation, the left hand side of (3.1) denotes the

composite map

(3.4) M—2 .0 X g —C€ E.
Now YD is linear with respect to the ® structure, by functorali-
ty of the tangent-bundle construction ( )D. Also C has a line-

arity property w.r. to ®, by Proposition 2.10. Thus (3.4) can be
written (CoYDoX1) +(CoYDoX2), which is‘/just the right hand side of
(3.1). The same argument proves (3.2). To see (3.3), note that the

left hand side of (3.3) denotes

D
M X MD (Y +2) ED C ' E,

but for the + structure on ED, clearly (Y+Z)D = YD+ZD. The

result is now clear from the other linearity property of C.

The proof of (3.4) (in the cases where we can prove it), de-
pends not surprisingly on a Leibniz rule for differentiation. Let

F be a Euclidean A-module. To any
g: D ——F

we can (as in [5]) associate g'(0): . —F. If also f: D —A

is given, then one proves easily (much as in [4]) the

Leibniz rule: The following two maps D -—F agree:

d —— £(d) -g(d)
d b—— £(0) -g(0) +d:(£'(0) -g(0) + £(0) -g' (0))
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or equivalently
(£-9)'(0) = £'(0)-g(0) +£(0)-g'(0).

Remark that in the ( )'-notation, the derivation X(f) of f
in direction of the field X introduced in (3.5) can be written
X(f) (m) = (foX(m))'(0).

We now prove a special case of (3.4), namely for trival bund-

les (product bundles).

Proposition 3.2. Assume E ——M is of form proj1: MXF == M

with F a Euclidean A-module. Then (3.4) holds.

Proof. The section Y: M — E = MxF can be written <id,Y2 >,

where YZ: M — F ("the principal part of Y"). Furthermore

EP = (xF) D o MPxFP o MPxExE.

0

Under this identification, the linear structure + on ED is simp-
ly given by the linear structure on FxF, whereas the linear struc-
ture ® on ED is given by the linear structure of MD over M

and the linear structure on the last factor F:
(ty,u,v,) @ (tz,g,g2> = (t,0t,,u,v, +v,).

Under the identification, H: ExME -—-*ED can be described (m,u,v)
r———#(om,g,g) where O, denotes the zero vector for the & struc-

ture in the fibre over m. We have further that YDoX: M -——*ED

can be described as

m — <X(n9,Y2(m),(Yzox(m))'(o)>
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whence by definition of VXY in terms of C
(7y¥) (m) = C(X(m),Y,(m), (Y0X(m)* (0).

Note that for m€M, we have X(m): D— M, so that the succession
of symbols makes sense.

Since
(£:Y,)0X(m) = (foX(m)) - (Y, 0X(m))
we get from the Leibniz rule that
((£-Y,)0X(m)) " (0) = (£foX(m))' (0)-Y,(m) + £(m) - (Y,0X(m)) " (0)
(note X(m)(0) =m, so (Y,oX(m))(0) = Y,(m)).
Thus
(3.6)  Vy(£+Y) = C(X(m),£m) Y, (m), (FoX(m)) ' (0) ¥, (m) +£(m) - (Y,0X(m)) ' (0)).

Let us denote by Om the zero vector over M in MD. It is the
map D-—M given by dr—m. Then using the ®-linearity of C, we

may rewrite (3.6) as C applied to the expression

(O £(m) -¥, (m), (£0X (m)) ' (0) -¥, (m))
(X(m) , £ (m) - Y, (m) , £ (m) « (¥y0X (m)) * (0))

= (Op £(m)+¥,(m),0) + (0,0, (foX(m)  (0) “Y, (m))
-]

f(m)-(X(m),Yz(m),(YzoX(m))'(0)).

Note that the first of our three terms in the zero vector for the @
structure. Now applying C and using its linearity with respect to

both the + and the ® structure (Proposition 2.10) yields
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C (0 rO, (£0X(m)) ' (0) Y, (m)) + £ (m) -C(X(m),Y,(m), (Y,0X(m)) ' (0))
= C(H( m,O, (foX(m)) ' (0) +Y,(m)) + £(m) -C(X(m), Y, (m), (Y,0X(m)) * (0))
= (£oX(m)) " (0) -Yz(m) + £(m) -C(X(m), Y, (m), (Y,0X(m)'(0)),
using
(3.7) C(H(m,o0,v)) = proj, (C, (H(m,o,v)) =proj2(m,o,y_) = (m,v)
which we denote just v, m being understood. Thus we get
X (£) (m) + ¥, (m) + £(m) -C(X(m),¥Y, (m), (Y,0X(m)) * (0)
= X(£) (m) - Y, (m) + £(m) - (VyY) (m),
which proves the Proposition.
We can prove the Koszul law (3.4) for bundles E— M which on-
ly locally are trivial. We call a vector bundle p: E— M locally

L]
trivial if there exists an epic &talé' map u:M - M and a pull-back

diagram of form

(3.8) l P
M

with F a Euclidean A-module and € fibrewise linear. Even without
using u epic, it is easy to see that a connection V on E- M
gives rise to a connection V' on E'—= M' which is affine if V
)D

is (to define V': E'XME' e (E')D, one needs that (E' sits in

a pull-back diagram

*¥) For this notion, see [6].
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(EYVY — &

! !

E' ———E

which is a consequence of ¢ being étale (which in turn follows
from up being &tale and (3.8) being a pull-back). Also, C be-~

longing to V pulls back to C' belonging to V', vector fields

X: M - MD and Y: M—E pull back to vector fields X': M' — M'D

(using u é&tale) and Y': M' —E'.
Finally, if f: M > A, we denote by f' the composite

M' — M — A.

u f

Using the assumption that E' = M' is a trivial bundle M'xF — M
and that Koszul's law holds for trivial bundles (Proposition 3.2),

we get
(3.9) Ve (1Y) = £1.V0 ¥ X (£)) Y

However, it is easy to prove that pulling back commutes with the o-

perations defined in terms of the connection, so that (3.9) implies
(3.10) (vx(f-y))' = (fonY + X(f)-Y)"'

which expresses an equality of two vector fields M' = E' that.a-

rise by pulling back two vector fields M —E along up: M'—M. Un-
der the assumption that u is epic, we therefore conclude equality
of the two vector fields M - E, that is, of (3.10)without the pbri-

mes. But this is (3.4). We have thus proved

Proposition 3.3. Koszul's law (3.4) (and also the laws (3.1)-

(3.3)) hold for any affine connection V on a locally trivial vec-

tor bundle E —M.
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§4. Further structure associated to a connection.

From Proposition 2.10 it follows that an affine connection
v: MDXME-——~ ED in our sense gives rise to a map C: ED-——»E which
satisfies the formal analogues of the conditions (1) - (2) in Pat-
terson's characterization Theorem ([8], Theorem 1). The condition
(3) in loc.cit. is in our context, for the case of a product bund-
le, the equation (3.7);by the technique of &tale descent used in the

proof of Proposition 3.3, we can generalize it to any locally trivi-

al vector bundle E, and prove
(4.1) Cov = idE,

where v: E— ED is the exponential adjoint of fibrewise multipli-

cation by scalars from D
ExXD == E.

So connections in our sense give rise to (the formal analogue
of) connection maps in Patterson's sense. The notions, and equations
proved for them, can now be mimicked in our setting. For those equa-
tions and relations that essentially use coordinate calculations, we

. .
can mimick these also, under the assumption that the objects in ques-
tion locally (in the sense of étale maps) can be covered with coordi-
nates: this is the technique of &tale descent, as used in §3.

It should be recalled that in the context in which Patterson
works, he can prove that a connection map C in his sense is equi-
valent - to a connection in the sense of Koszul, which is by definition
an operation that work on vector fields, not on individual vectors,
as Patterson and we do. Patterson employs a partition-of-unity argu-

ment to come from a Koszul connection to a C. The passage the other

way works quite generally, apd, as proposition 3.3 shows, it works.
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in our formal context.
We briefly indicate which of the connection-related notions
and equations, which Patterson succeeds in expressing in terms of
C also can be expressed/proved in our context. We already mentioned
covariant differentiation, and the laws for it.

For an affine connection on the bundle MD - M

we define (cf. [8], Theorem 3) the torsion 6 of ¥ as the map
0: MDXD —-—-»MD

given as the difference between C (= the Patterson-Dombrowski con-
nection map associated to V), and CoS (where S: MDXD -——»MDxD
is the map induced by the interchange of the two factors of DxD) .

Oout of 6, we can derive a "tensor" T as follows
T(X,Y) = 8oYPox

(X and Y tangent vector fields on M). To express the relation-
ship of this tensor to covariant differentiation, we need that M
is an infinitesimally linear object, which is locally good in the

sense that there exists an &tale epic N —» M with N satisfying:

(i) N is parallellizable (meaning ND -+ N 1is isomorphic to a pro-

duct bundle NxF - N, with F a Euclidean module)

(ii) N satisfies Axiom 2 of [9] (this is an axiom that implies a
natural Lie algebra structure [-,-] on the set of vector fields

on N).

One can prove that under these assumptions, M itself also satis-
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fies Axiom 2 of [9]. It is now possible to prove

Proposition 4.1. If M is locally good in the sense explained,
then for any affine connection V on MD-* M, the torsion tensor T

introduced above satisfies

T(X,Y) = VY - VX - [x,Y].

We shall not give the proof, since it is standard (using small
segments of suitable Taylor series'[Sl), and does not employ or re-

veal specific geometric features of our method.

In a similar vein, we follow Patterson in introducing the cur-
vature tensor of an affine connection V in a vector bundle E o M

(not necessarily of form MD - M). It is defined to be the map

given by

CoCD - CoCDoS

where C° is the Patterson connection map associated to VY, and

S: EDXD ——»EDXD (as above) the "twist" map.

Out of k we can form a "tensor" R as follows

R(X,Y,2) = kozP*PovPox,

where X and Y are tangent vector fields M'—»MD and 2 is a

vector field M - E. (Note: we are using the identification

DxD D, D )

M ~ (M7) It is now possible to prove
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Proposition 4.2. If M 1is locally good in the
above, then for any affine connection V on E - M,

tensor R introduced above satisfies

R(X,Y) (2) = VyWyZ = V9,2 = Yy 412,

Again we omit the proof.

sense explained

the curvature

However, in this case, the fact that V is defined for indivi-

dual pairs of vectors makes it possible to give an elementwise geo-

metric interpretation of curvature, which we present

ing §.

in the follow-
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§5. Coordinate neighbourhoods.

In this §, we compute in coordinates some of the notions in-
troduced. So we assume M 1is a étale subobject U —a" of a®
( U is "subeuclidean" in the terminology of [5]). We assume that
A is of line type and infinitesimally linear. By 2.3 of [6], U is

infinitesimally linear. Furthermore since
UxAn - AnxAn - (An)D
proj,

u — 5 A"

is a pull-back, UD ~ UXAn as a vector bundle over U, so U is
parallelizable (in particular, it is an n-dimensioned manifold in

the sense of [6]).

A connection on the bundle UD-» U becomes a map
(5.1) 0P 0% s uxa™a? —Ls yaxat A" x PP

which is completely determined by its fourth component, because of
the condition that V should be a splitting of K. Note, namely

that under the identifications in (5.1), K 1is given by

(Ws¥q,¥,,¥3) > (0,v,,V,).

s s . DxD D,D :
The two additions ® and + in U =~ (U7) are given by
. 1 . " ”n P v " 1 rall
(‘_1_1!1 1!2 123) ® (Erz1 1121!3 ) = (EIY_-‘ +Y_1 IY_Z rz3 + !3 )
and
(El_!-l r!é l!3l ) + (21!1 IXE 125 ) = (2121 :y_é +zé' ,25 +!§ ),

respectively. Similar for multiplication by scalars. Let us denote

the fourth component of Vv by ¥, so that
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V(El!1l!2) = (9_121 12216(2121 122))-

Saying that V is affine therefore in this case amounts to saying
that 5(3,21,g2) depends bilinearily on Vir¥ys (whence we can de-
'a

scribe V(=,-,-) by a 3n-indexed family Fij of functions U - A).

To a pair Vyr¥, of tangent vectors at u, or equivalently to

DvD » U with analytic expression

(d1,d2) — u+d 21+d V(d1,d2)€DvD,

1 2¥2

V associates a map DxD = U with analytic expression
(@4,4,) F— u+d,v, +d,v, +d,d,7(u,v,,v,)
= (u+d,v ) +d,y (¥, +d,-V(u,v,,v,)) .

Thus, "to each d1 is associated a tangent vector at gg+d1g1", name-

ly 22-+d1v5(2,g1,32). (We are here using the basic identification
a of A™aA™ with (aA™P which identifies (x,y) with dm x+d-y.)

Thus,
Yy tdy VYY)

can be called "the result of V-parallel transport of v, along d1_

units of wv,"; its base point is u+d,v,.

Since H:UDXUUDf—ﬂ (UD)D in the coordinatization used can be

seen to have the effect

(u,v,w) — (u,0,v,w),

the connection map C:(UD)D - UD = UXAn, or rather, this C followed

by projection to the second factor, can be identified with
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(W,¥,¥,,Vy) > vy =T(u,v,,v,).

3

We can now interpret, in the terminology of parallel transport,
the curvature k of V introduced in §4. This geometric interpre-
tation is given in terms of "infinitesimal parallellograms" (see
[1]), but these have now been objectivized into maps DxD - U. The
curvature then measures the difference in transporting a vector paral-
lel along the two ways round in the parallellogram.'To wit, given
u€U and two tangent vectors vy and vy Let V3 be a third tan-
gent vector. We can then, according to the description above trans-
port Vg parallel d1 units along v, and then d2 units along
V,i or we can do it in the reverse order. Then we can subtract. Trans-
porting vy d1 units along Y4 yields the following tangent vec-

tor at u+d;-yv,
dwr (u+d -vy) +d-(vy+d,-V(u,v,,v;3)),

that is, the tangent vector 23-+d1-§(3,!1,!3) attached at B‘*d1’!1'
This we now transport d2 units along v, which yields the follow-

ing tangent vector attached at u+d,-v,+d,-v,:

(5.2) V3+Q,-V(,v,,¥5) +d,V(u+d, V,,V,,Vy+d, - T(1,v,,v5)) -

Similarly, if we first transport V3 d2 units along v, and then
d1 units along Vir we arrive at the following tangent vector at-

tached at u+d,-v,+d,-v

1 2

(5.3) V3 +dyV(u,v,,v,) + 4, V(u+d,y,,v, v +d, *V(u,¥,,93)) .

We rewrite (5.2) using linearity of V¥V in the third variable, and u-
sing Taylor series development [5] in the first ¢ D, V denotes direc-

=1
tioned derivative in the direction vy viewing ‘-7(—,—,—) as a func-
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tion in the first variable only):

v3+dyTluv vy

+dy-[V(u+dyv,,v,,vy) +d,-T(u+d,v,,v,,7(u,v,,v5))]

= ¥ytdyVin,vy.vy)

+d,[V(u,v,,v,) +d Dz1\7(g,z2.z3) +d -V (u,v,,V(u,v,,vq) 1.

1

Similarly, we get that (5.3) equals 4

V3 +d,V(W,v,,v;)

+ d1'[V(g,g1,g3)-+d2-D!2(g,g1,23)-Fdz-v(g,!1,V(g,12,13)].
The difference is

did,- [DX1\?(3,22,23) + 9 (u,v,,7(u,v,,v5))]

- Dzzv (2121 Iz3) - V(EIXA, IV(EI!2123) ) ] .

If we compute out the square bracket in coordinates, putting Vi T &y

(i'th canonical basis vector) and v, ='gj, Vy = &, we get for the

£'th coordinate of the expression in the square bracket (using bili-

nearity of V(u,-,-):

a_ L 3 £ a L a
5"—i ij(y_) - a—x; Iy () + Erik(g) -I‘ja(t_l) - T

where th(g) = k'th coordinate of ﬁ(g,gi,gj). This agrees with
the classical analytic expression for the curvature tensor of the

K ().

connection V with coordinates Pij u
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§6. Pictures.

We append a few pictures analogous to those of (0.1) - (0.4).
Note that a tangent vector at m€M in our context is a map D-=M,
D € A being a certain definite (but small) piece of the line. This
is of course the same idea as defining a tangent vector on M to be
an equivalence class of curves passing through m. Because indivi-

dual maps D - M are conceptually simpler than equivalence classes

of maps A - M, they are also easier to represent by a picture.

Elements in M: .

Elements in MD: %///*A
< /
Elements in MDXMMD: //5;
\

bY
Elements in M°VP. X

(since an element here may contain some more information than an e-

lement in MDXMMD, if M 1is not infinitesimally linear.

Elements in E: ,//7
¥
M
Elements in MDXD ~ (MD)D : see (0.2)
Elements in ExMMD : see (0.3)
D

Elements in E : see (0.4)
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COMPLEX STRUCTUR:S ON TOPOI

by Christiane Rousseau (*)

Mc Gill University
Introduction:

For a few years work has been done in expressing classical con-
cepts in the language of a topos and in working on these concepts
within the language ¢ For example Mulvey proved Swan's theorem by
means of a "Kaplansky's theorem" inside the topos of sheaves over
the base space « Some other work has been done in that direction
by Fourman and by the author « Here we show how we can do some
differential geometry on a manifold M , using the internal langua-
ge of the topos Sh(M) of sheaves over M . Let us consider the tovos

w3 the shea-

Sh(M) , in which we distinguish two objects: R, and R
wes of locally constant (resp. differentiable i.ee C*®) real-valued
functions on M « In this context we can express that M is a complex
manifold , and construct H , the sheaf of germs of holomorphic functions
on M » We can work with vector fields and differential forms , in
particular we can econstrut the differential of a function  Then

we look at connections by looking at their covariant derivatives .

We construct the riemannian connection'on a riemannian manifold ,

and we give an internal proof of the following theorem: an almost
complex manifold is a Kahler manifold iff the riemannian connection

is almost complex -

(*) Research supported by the National Research Council of Canada e
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We now come to the motivation for the present work . In [Fﬂ
we show that a differentiable (respe. complex analytic) family of
complex structures can be represented as a complex manifold in the
topos Sh(M) , where M is the space of parameters « In the first
case the complex numbers object is m,f , in the second case it is H »
Kodaira and Spencer proved in [KS] that a complex analytic family
which is differentiably locally trivial is analytically locally
trivial « We ask if there exists an internal proof of this fact
This was the motivation for the present work . Here we have cons-
tructed the object H from R,,and Rg » in the internal languége of
Sh(M) , provided we have a complex structure tensor J . So we have
a relation between R_,and H «

The theory presented belowis merely algebraic « Ye stopped sol-
ving the problem mentionned above precisely where classically a
Lie equation is solved o Vle stop at the same place when we try
recovering a linear connection from its covariant derivative , i.e.
building a splitting of the second tangent bundle into horizontal
and vertical vectors « On the other hand it seems that the theory
can be done if one replaces chamooby any ring inclusion A«—B ,
at least for the first 4 sections .0Of course the theory is uninte-
resting if there are not enough derivations of B with respect to A -
For the last 3 sections it seems enough' to have an inclusion A<sB
of ordered apartness fields . However we do not present the theory
in#uch an axiomatic context: this work is considered as unfinished -«
We are interested to know if there is an axiomatisation of R ,over

RC , in terms of , for example,the Lie equations that are solvable .
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1. Real numbers_in Sh(M):

In the topos Sh(M) of sheaves over the manifold M we have two

"objects of reals numbers", RC and R the objects of Cauchy, respe.

M’
Dedekind, real numbers, given by:
RC(U) = {f:U——-;R‘f is locally constant}

RM(U) = {f:U———aR{f is continuous}

Now it seems natural to consider R, , the sheaf of germs of dif-
ferentiable real-valued functions on M, which "represents'" the dif-
ferentiable structure of M. Ingﬂﬂ we show that we can consider R,
as an object of real numbers in‘Sh(M), in the sense that R is a
suitable object for doing real analysis. We have in Sh(M) the fol-
lowing ring inclusions: R,cR_ <R, -

C M

2« Differential of a function:

Fourman noticed in :F} that the tangent bundle of M can be repre-
sented in Sh(M) by the object of derivations of R, with respect to
Rc, namely if:

Der(R,,R;) = {(X:R,— R, X is R.-linear and X(fg) = X(f)g + fX(g)}

C
then Der(Rm,Rc) is the sheaf of differentiable vector fields on M,

j.es the sheaf of differentiable secticns of the tangent bundle of M.

Remark: Der(Rm,Rc) is a R_-module

Definition: 1) Let feR , then the differential of f is defined as:
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evy
£, ¢ Der([Ra,IRC) —— R,

Xt —y £,(X) = X(f)
2) The gradient of f is a differential form : Vf = df eDer(R&,RC)’

We have Vf(X) = df(X) = X(f) VX eDer(R,,R.)

Proposition: Let U be an open set of M and let f:U——R be differen-
tiable (fe€R,(U))s Then f, is the sheaf map ggperated by the classieal
differential of f. We say that f, represents the classical differential of {

and we use the same notation than in the classical casees

3. Almost complex manifolds:

If M is a complex manifold, then M has local coordinates

zy = x, + iy, , +++ , 2z = x +iy . The tangent bundle T(M) of M
\
has locally the following basis : é__ ° cee 3 o

’ « These
éx‘ ByI

y T

3xn éyn
vector fields give locally a basis of Der(R&,PC) over R, » We can
define a "complex structure tensor" J by:

Ay =2, 1) = -3

dx dy . . %

xJ yJ yJ xJ
J gives a R ~linear map J: Der(R“,RC)———aDer(Rw,RC) , such that
a2 = .

Definition: A map J: Der(R»,Rc)———+Der(3”,RC) , which is R_-linear

2

and satisfies J~ = -1 is called an @1mosQ complex structure on R o

Proposition: M is an almost complex mamifold in the classical sense

iff there is a complex structure on R_in Sh(M).
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Remarks:

1) (I R«f is the shegf of germs of differentiable complex-valued

functions on M. There is a map J':€;—¢C_ ,J'(2) = iz , such
that J'2 = =1e
2) per(®2,R%) ¥ Der(R,,Ry)”

3) J:Der(m“,mc)———a Der(R R ) extends canonically to a R, -linear

map J: Der(sz,RCZ)———ﬁ>Der(m°°,RC ) , which satisfies J = =1 .

4) We can speak of the differential of fe¢ Rof =cw , as a map
t,: Der(R 2,85 5 RZ £,(X) = X(£) »

Definition: feRd? is almost complex iff J'f, = f,J « (A section
feR.f(U) is almost complex in the sense above iff almost complex

in the classical sense).

Now let us consider again a complex manifold M with local coor-

? 3

dinates Zy oy cee, zn e The basis.é__ ,.E__ , vee 4, 9
dx ) X )
1 Y4 n °¥

?
n

2 2 2 i . oo
of Der(R,”,R,") over R cpn be replaced by thé basis -%—*’ "§L~
1

-30 ), =x2 432 ).

eocee 3 where < __ %

9 ’ ’
% Bz éx by
j j J

(2 F 5
Bz1 z, zj x4 Y .

We caqkonsider the subspace generated by s y ooe 2 , and call
9z, 0z

c2)+ » In the same way o , eee 3
z, oz

n

it Der(Raf,R generate a sub-

R.2

. ( Der(R ,R C )+

2.-
c )

sections of the complex tangent bundle of M ) .

space Der(Rwa,R is the sheaf of differentiable

But J(2 ) - 423 and J(2_) = -id _ -
2,:j da, BZJ 0z

So Der(Rf,Rca)* = {X|J(X) = iX}and Der(R,, ,IRCZ)' = $x|9(x) = -ix}

We can generalize this to the case of an almost complex manifolde
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Notation: In order to simplify the notation we write Der(mw,Rc) = Der ,

2.+

+ 2,2 -
c )" = Der  , Der(R, Re ) = Der

Der(m“?,mcz) = per® , Der(md?,m

Proposition: Let J be an almost complex structure on R, + There

is a splitting : DerC®

= Der’ ® Der™ , where Der' = {xlox = ix },
and Der” = {XlJX = -1x} + Moreover Der' = Der - iJDer and

Der = Der + iJDer

Proof: Let XeDer® . Then X = (X - 1JX) + ¥(X + 1iJX) , and

J(X = 1JX) = JX + iX = i(X = 1JX) , J(X + iJX) = =i(X + 1JX) -

If 2 = X + i¥ €DerC , where X,YeDer , then J% = iz iff

JX + iJY = iX -Y iff JX = -Y iff 2 = X - iJX «

Proposition: feRaa is almost complex iff YZeDer~ 2Z(f) = O .

Proof: algebraic calculationse.
Definition: Let H be the subobject of Ruf of almost complex elements:
H = {feR_f]VXeDer' X(f) = 0} « (H is the sheaf of germs of almost

complex functions on M) .

Proposition: If M is a complex manifold , them H is the sheaf of

germs of holomorphic functions on M .

Proof: Der” is locally generated by the S .
-
J

Lie bracket overation:

E_,_] : Der%———————>Der or [_,_J H (Derc)%——————é DerC

x,¥] = x¥ - «x

Proposition ¢ The following are equivalent:
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1) VX, YeDert [X,Y] € Der*

2) YX,veDer~™ [X,Y] < Der”

3) ¥X,YeDer N(X,Y) = 2( [0x,d¥] - X,¥| - Jix,9y] - Jlx,¥]) = 0

( N is called the torsion of J ) -

Proof:

1) e 2) comes from: X<Der® iff XeDer™ , m = [Y,Y_:I , I(X) = 3(X)

1)es3) Let X,YeDer , let X' = X - iJX , Y' = ¥ = iJY «
Then [x',¥] = [x,v] - [x,0v] - 1[ox,¥]-i[x,07]
so [x',¥]e pert ifr g% ,v = ix,v

iff J(x,¥ - g[ox,9y - wx,¥} - iJ([X,Jy]

ifx,¥) - 1[9x,0Y) +ij,y'_| + [x,09]
iff 1 N(X,Y)

JN(X,Y) iff N(X,Y) = o , because N(X,Y)cDer «

Definition: J is said to be integrable iff J satisfies the equiva-

lences of the previous proposition .

Theorem: M is a complex manifold iff J is integrable
Proof: J is integrable in the sense of our definition iff J is cla-
ssically integrable , iff M is a complex manifold (by the theorem

of Newlander and Nirenberg) .

Proposition: Let M be a complex manifold . Then

Der(H,RCZ)' {X:H———#H[X is Rcz-linear and X(fg) = X(£f)g + fX(g)

{XeDer*IX(H)c Hi , is the sheaf of holomorphic
sections of the complex tangent bundle TC(M) of M «

Proof: Any Rcz-derivation X:H——H extends to a derivation
3 2
éz' dz,

2 .
X:Rm?“—*RaF , since Der(H,RC ) has locally the basis
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4« Differential forms:

Proposition: The sheaf of differential forms on M is constructed
. . * , * p. *

in Sh(M) as the exterior algebra of Der :/\Der = %%0 APper .
In the same way the sheaf of complex differential forms is given

by /\Derc. .

/
Proposition: There is an operator d: ApDert——e Ap+'Der’ , given by
d(w)(X) = X(w) if p=0
p+1 i+l o
d(“’)(xl""’xwl) = ; (-1) x.(w(xv...,x,,...,x )

i+
+ -1 P X Xype00 ..X .
j,Z<j( ) ‘-U([iv ] 1 X 5 jt ‘)xp+])
d(w) is called the exterior derivative of w « In the same way we
define d for complex differential forms e« @ =0.
Proof: same as classical proof e«

1

* * -t -
Remark: Der’” = Der'” ® Der , where per*” - {»hu(x) = 0|VvXeDer y e

Definition: The object of compiex forms of bidegree (p,q) , where
p+q=r, is the subobject of Derc’ defined by :
AP 9perC - f»[w(X,,...,xr) = 0 if p' # p of the X; belong to pert

and the remaining (r - p') Xi belong to Der }.

s 4 r. Cc* '\p q C*
. — / ’ -
Proposition: Afper”” = é; Der

Theorem: The following are equivalent for a complex structure J :
1) J is integrable

*
2) a(APr%er®") ¢ AP» @+ 1per®* o AP*19perC
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c* Ccx

3) d(l\o"DerC’) c /\1’1Der G;A 2per

Cc* & Aa’oDer

L) d(/\1 OperC* ) ¢ /\" Der c*

p,q C* +
Proof: 1)=j2) Let we\ ’® Der , let X;,+-+,X eDer , and
Yl,n-,YteDer- , with s#p,p+! and s+t = p+g+l (so t#q,q+1) .

S .
Then dw(X,,e++,X, ¥y e0e,¥) = 2 (=DT1X (w(x),.X
1 s'h ) = & 1

A
+ ;(-ns*“‘vimu, IRTE S SPERNS APETIS )

1'°’xs'Y1"'Yt))

}::( 1yitd b (X, ,x J x,,..x .. coXgy¥qyeey)

j’

2s+i+j o S
Z:;( -1) w({y; Yj]'X|"‘xs"1’°'Yi"'Yj"'Yt)

s .
iy s+i+] 2 =
+ %:ﬁ g;;(-l) UJ(in,y; P STTED FTIS 0 SFITI PR

Each of the terms is zero , since )(i,)(jc:-Der+ implies [Xi,x‘]]éDer* ,

- + - + + - -
[¥;,¥,]éDer” , and Bryﬂ.=z + 27 with 2%¢Der’ and z27eDer” .
2)=3) , 2)=4)

3)=31) Let X,YeDer , and we A0

Der .
Then dw(X,Y) = Xw(¥) - Yu(X) - w({X,¥)) = -w({X,¥)) = 0
So w((X,Y]) =0 YwA2%er®* . This means [x,¥)eDer” .

4)=1) in the same way.

. -
Definition: Let d'w be the component of dw in /\p+1’qDerC , and let

d"o.»@ehe component of dw in /\p’q“DerC‘- This gives:
ar: "PrperCt L ap*Tap O
ar; AP» clDerc“——-‘; AP+ pe ¥
Proposition: 1) ar? = o, d"‘2 =0, d'd" + d"d' = 0
2) 1f we "Oper® = B2, then d'(w)(X) = ¥(X - 1JX)(») , and

d"(w)(X) = F(X + idX)(w) -

3) H = {feRN?ld"(f) = 0f «
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5« Riemannian manifolds:

Definitions: 1) feR_ is apart from O (f#0) iff f is invertible ,
iff |f]>0 .

2) XeDer is apart from O (X#0) iff YfeR, X(f) # O .

Proposition: Let M be a differentiable manifold .l is a riemannian
manifold iff there is a morphism of sheaves iy Sh(M) , g:Der%_—-aRw ,
called a metric for M , which is an inner product on Der , i.e.

1) g is bilinear

2) g(X,Y) = g(Y,X) VYX,YeDer

3) YXeDer g(X,X) >0 and g(X,X)>0 iff X#0

Proof: A#iemannian metric extends to an inner product on the vector

fields over any open set U of M -

Definition: Let M be an almost complex manifold ﬁhetric g for M

is hermitian iff VX,YeDer g(JX,JY) = g(X,Y) «

Proposition: The following are equivalent:

1) g is hermitian .

2) VX,YeDer g(X,Y) =0 and 7X,YeDer g(X,Y) =0 .
?
2

( g extends uniquely to g:(DerC) >Rdf y Ru?-bilinear ) .

Definition: Let g be a hermitian metric on M . We define w:Derz_——»RM

by w(X,Y) = g(X,JY) . w is the Kdhler form of M «

Proposition:‘uJeAZDer*
Proof: w {X,Y) = g(XJJY) = g(JX,JZY) = -g(JX,Y) = -w(Y,X)
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Proposition: M is an almost complex Kahler manifold (in the classical

sénse) iff dw = O in Sh(M) (i.e. w is closed) .

6e Basis of Der(Ruch) . Dimension:

Proposition: There exists a basis for Der in Sh(M) in the following
sense: 3x1,...,xneDer Y Y<Der 3f],o--,rnem°° Y = g:; £.X,
and VA .00, X ¢R,, IN 0 — i% MX; #0 .

Proof: If X,,eee¢,x are local coordinates for M then -2 geeey,
1’ ? n ’ b
|
é__, is a local basis for Der « 3 # O,since.é__(xi) =1
ax, axi dxy

Remark: With the definition of a basis given above we can prove
that the vectors of a basis are apart from zero : this fact is essen~

tial for the rest of the development e«

Proposition: The dimension n of M is given by the number of elements
of any basis x1"°"xn of Der

Proof. external proof by interpreting .

( There is an internal proof in Sh(M) that two basis have the same
number of elements , using elementary linear algebra on an afartness

field) .

Proposition: Let g:Dera.__—-)[R°° be a metric on a riemannian manifold
M . From a basis x,.-.-,xn, we can construct an orthonormal basis .

Proof: Gram-Schmidt's orthogonalization process works because

g(Xi,Xi) is invertible Vi e
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Proposition: Let g:Der‘z—qube a metric on a riemannian manifold
M « Then there is an isomorphism : Der—¢—-——) Der‘
X —————— g(X,=)
Proof: ¢ injective: suppose g(X,Y) = O ¥Y « In particular g(X,X) =0 ,
s0 X = 0 «

¢ surjective: let X1,u.,xnbe an orthonormal basis of Der and let

i

. *
FeDer o Let fi = F(Xi) e Then F = g( fixi,-) .

1=

7+ Covariant derivative and connections:

Definition: let M be a differentiable manifold .
1) A derivation law (or connection) is a R_-linear mé.p

Vi:Der — Homch(Der,Der) X+—— Vx

such that V,(fY) = X(£)Y + %Y ViR, VYeDer

2) The curvature of Vis K: Derz——y I-Iorn[R (Der,Der)
oc

VA VL v R VAN
1) —— KX, 1) = V% - WY - Vg v
3) The torsion of ¥V is T: Dera—-—-) Der given by:

T(X,Y) = Vy¥ - X - x, v .

Remark: We can extend Vx to tensors of type (r,s) by :
If K:Ders——> Der® is R -multilinear , then

S
VeK(X yeee X ) = Vy(K(Xy 000 ,X0)) = i}; K(X) 000, VX, 0ee, X)),

where , if K(X,,eseX ) = (¥y,ee0,¥) then Vy(K(X,,+++,X)) =

(Vy¥yseee ,nyr) .
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Theorem: Let M be a riemannian manifoid with metric g:Der‘:"—_..—__}'Re° °
Then there exists a unique connection V such that VYXeDer Y&ﬁ = O and
Y has no torsion i.ee T = O . Vis called the riemannian connection -
Proof: VXY is given by :
2(%Y,2) = Xg(1,2) + Yg(X,2) - 2g(X,Y) + g([X,¥),2) + g([2,X],Y)

+ g(x,(z,Y]) .
Then g(VyY,2) + 8(%%,Y) = Xg(Y,2) VX,Y,2, i.eo =0
T = 0, since g(V,¥,2) - g(VX,2) = e([x,Y],2) Vx,Y,Z2 .
Conversely let Vg = O and T = O . From V@ = O we get:
Xg(Y,2) = 8(Uy¥,2) + g(Y,%32) , Ya(X,2)

6(yX,2) + g(%y2,X)

-2g(X,Y) = -g(V,X,¥) - g(X,V,Y)

S0 Xg(¥,2) + Yg(X,2) - z(X,V) = g((X,2),¥) + g([¥,21,X) + (%Y + V.x,2)
= g([x,2],Y) + g([¥,2],X) + 26(%¥,2) + g(1Y,x],2) »

Definition: let M be an almost complex manifold with complex struc-

ture J « A connection V is almost complex iff VJ = O »

Theorem: Let M be an almost complex hermitian manifold ¢ Then the

riemannian connection is almost complex iff N = O and dw = O i.ee

M is a complex Kihler manifold (recall that w(X,Y) = g(2,JY) ) »

Proof: The proof follows from the following lemmas .«

Lemma 1: Let M be an almost complex manifold with complex structure

J « Then VX,Y,%¢Der we have:

Lg(Vyd)Y,2z) = 2dw(X,JY,J2) - 2dw(X,Y,2) + g(N(Y,2),JX) , where

N(X,Y) = 2((JX,dY] - [X,Y] - JluX,¥] - J[X,JY)) is the torsion of J «

Proof: g((V,J)Y,2) = g(VyJd¥,2) - g(J(),2) = g(VyJY,2) + g(V,Y,J2) -

dw(X,Y,2) = Xo(Y,2) - Yo(X,2) + Zw(X,¥) -w((X,¥),2) + w((X,7),Y)
-w([y,z],x)



-209-

= Xg(¥,92) - Yg(X,J2) + 2g(X,JY) - g((X,Y],J2)
+ g([x,2],9Y) - g([Y,2],JX)
dw(X,JY,J3) = -Xg(JY,2) + JYg(X,2) - JZg(X,Y) + g([X,J¥],2)
- g([x,92],Y) - g([JY,J2],9X)
g(N(Y,2),JX) = 2(g([JY,J2),dX) « g([Y¥,2),dX) - g([¥,02),X) - g([JY,2],X))
So g(Nff,2),JX) + 2dw(X,JY,J2) - 2dw(X,Y,Z)
= 20Yg(X,2) + 2Yg(X,J2) - 2J2g(X,¥) - 22g(X,JY) + 26((X,Y],2)
- 2g([x,2],9Y) + 2g((x,0v],2) - 2g([%,92]),Y) - 2g([¥,J2],X).
- 2g([J1,2],%)
= 4(8(Vyd¥,2) + g(%Y,J2)) = bg((Vyd)Y,2)

Lemma 2: Let M be an almost complex hermitian manifold . If the
riemannian connection has no torsion then dw = -;— AltVw , where
Vu(X,Y,2) = (Vyw) (¥,2) and 6A1t w(X,¥,Z)is the sum of the

w (6X,cY,6Z) for all permutations o of X,Y,Z «

Proof: VyulY,z) - wa(z,r) = Xw(Y,2) - Xw(Z,Y) - w(VyY,32)
- w(YR2) +W(Y42,Y) + w(ZVyY)

2Xu(Y,2) - Zw(VxY,Z) - Zu(Y,VXZ)

Vg (2,X) = Vga(X,2) = 2Yu(2,X) = 2w(y2,X) - 2u(Z,VyX)
\'/zu(x',lr) = Vyu(¥,X) = 2Z6(X,Y) = 26(VX,Y) - 2w(X,V,Y)
S0 6Altw (X,Y,2) = 2Xw(Y,Z) + 2Yw(Z,X) + 2Zw(X,Y) - 2uw([X,Y],2)

+ 2w([X,2],Y) - 2u([Y,2),X) = 2dw(X,Y,2)

Proof of the theorem:

Suppose that V is almost complex i.es VJ = 0 « We show Vw= 0 «

Veo(1,2) = Xu(Y,2) =w (VyY,2) = o(Y,7y2)

Xg(¥,92) - g(Vy¥,92) - 8(Y,9,(J2)) =V,8(1,J2) = 0 .
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By lemma 2 dw= 0 . By lemma 1 g(N(Y,2),JX) = 0 V¥X,¥,2 . So N =0 .

Conversely if dw= 0 and N = O then g((V&J)Y,Z) = 0 ¥X,Y,Z by

lemmma ¥, so VJ = O .
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COMPLEXIFICATION OF VARIABLE FIELDS

G.C.Wraith

This article is written in appreciation of J. Kennison's
visit to Sussex University in 1977. Problems concerning sheaf
representations of rings led him to enquire about extensions of
fields in toposes. He is responsible for most of the ideas pre-
sented here, and has meanwhile carried the theme further.

We shall restrict ourselves in this article to investiga-
ting the generic adjunction of V:T to a field in a topos. To
construct explicitly this generic adjunction we shall use two
basic tools, namely torsors and glueing. It is hoped that the
modest scope of this article will eliminate complication without
sacrifice of the essential ideas.

By a field we mean, of course, a commutative ring with unity
satisfying the geometric Axioms:

i) —/ (o=1)

ii) vVx x=o v 3Jy. xy=1.

By the generic adjunction of V=1 to a field K in a Topos ¢
we mean the generic model of the e¢-theory T whose models are

fields containing K and satisfying

vx Jy (y2=—1)A v (x=a,+ya.)
a, €K ! 2
2948y
We shall simplify matters by supposing that 2 is invertible
in K.
Now in Sets the problem is relatively simple: either (i) K
already contains a V=1 in which case the trivial extension solves
our problem, or else (ii) it does not, in which case we want the

extension
K S K(4)
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where K(i) is K x K as K-vector space, with the Gaussian

rule for complex multiplication
(a,b). (a',b') = (aa' -bb',ab'+a'b).

In the latter case, (ii), we should think of K(i) as an

object not of Sets but of sets??

, the topos of sets-with-an-
involution, where of course the involution on K(i) is given
by complex conjugation (a,b) » (a,-b).

In a general Topos € , matters are not so straightforward.

Let I denote {a € K | a?

= -1}, and let U be the support of
I, i.e. U= im(I » 1) . We will adapt the usual abuse of lang-
uage by writing U for the open suptopos of ¢ given by &/U,

and we write ¢-U for its complementary closed suptopos. It is
clear that K/U , the restriction of K to U , falls into

case (i), so that over U only the trivial extension is needed.
Over ¢€-U we are in case (ii), so that we shall want to consi-
der K(i)/(e-U) in (s—U)zz . Then we must somehow glue these two
cases back together. A slight complication arises here because

K/U may contain no global V=1 to which the i of K(i)/(e-U)
should be attached on the boundary of U.

We will see that I/U is in general a Z%Z, -torsor, whose non-
triviality tells us that the two V=1's in K/U can be distinguis-
hed locally but not globally. We shall need to use this torsor to
twist matters straight.

We define an involution on I by a b -a.

Proposition I/U is a Z»-torsor in U.

Proof. Since I -» U 1is epic, by definition, I/U has global
support. Since 2 is invertible in K the involution has no fixed
points. Since in K we have

a?<b? = (a=b) v (a=-b)
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we deduce that Z: acts transitively on I/y, and hence I/y is
a %, -torsor.

Now we recall some facts about glueing. Let

v s e-u

be the fringe functor, that is to say the composite of the
direct image functor for the open inclusion U < ¢ followed
by the inverse image functor for the closed inclusion ¢ ~-U <.
Every object X of ¢ is uniquely determined up to isomorphism
by the three pieces of data (X/U, X/(e¢-U) , a(X)) where

X/ e-v) 22, qx/m)

is the attaching map of X.

We have already argued informally that over U we want the
trivial extension, and that over ¢-U we want the extension
K € K (i)., thought of as living in (e-u) 22 , the topos of
objects-with-involution in ¢-U.
This means we wish to glue U and (c—U)zz together along a left
exact functor, which we will now pull out of the hat and justify

later.

K/ (e-U) € K(i)/(e~U)



-21h-

For any object Y of U , the involution on I/U defines an
involution on

¢ (I/0)

and hence we get an involution on d(Y(I/U)) . We denote this
object of (t:—U)2Zz by A(Y) , and thus get a left exact functor

U —2 1 (e-u) B2,

We denote by 9 the topos obtained by glueing along A .
It is an ¢-topos because A is a locally internal functor over e

Now we want to construct a T-model in g . First note that

I is left exact, KI has a canonical ring structure,

and that the map k—S KI

since (-)
adjoint to the projection KxI — K
is a ring homomorphism. Furthermore c/U 1is injective since I/U
has global support, so that we may identify K/U with a subring
of (K/U) (x/0) by means of c/U .

We denote by 1 3., KI the map adjoint to the inclusion
c .2

I-K. It should be clear that 3j° = -1 .

Let L be the object of 5 defined by

L = (K/U ’ K(i)/(C_U) ’ 1)
where K(i)/(€-U) has the standard involution (a,b)m (a,-b) ,
i.e. complex conjugation, and 1 is given by

K(i)/(€-U) —— aA(K/U) : (a,b) — a(KY) (a+jb) .

It is easily verified that 1 1is a 2%, -equivariant ring homo-
morphism, from which it follows that L 1is a ring in 9 . We have
a ring homomorphism K — L in 9 given by the commuting diagram
in ¢-U

k/(e-u) —3EK) _, q(x/u)

l 1 d(c/U) l

K(i)/ (e-u) —2— a&l/mw) L
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Since we have a surjection of toposes
U + (e-U) —uy+ (e—U)zz——>g ,
to verify that L is a T-model it is enough to verify that
K/U is a T-model in U and that K(i)/(e-U) is a T-model
in e-U .
It remains to show that L 1is the generic T-model. So

suppose that
F-E ¢

is an e¢-topos and that p*(K) S F is a T-model in &F . The
splitting of € into the open and closed complementary pieces
U and ¢e-U pulls back along p to split &F into open and
closed complementary subtoposes J/U and J/(e-U) .
Let us write

s 2 5/

for the fringe functor. We have the following diagram of func-

tors commuting up to natural isomorphisms:

F/U (p/U) & U (p/U) * F/U

‘] ! ol

*
\W(C-U) E/(C-U)* e-U P/(C'U) J:/(C-U)

Let us write J = {x€F | x2=—1} , with involution given
by X+ -x . Since F 1is a T-model J has global(support
and is a %, -torsor in ¥ . Hence J/(e-U) 1is a Z, -torsor
in ¥/(e-U) . Let

F/ (e-u) L (e-u) 22

be its classifying map. This means that for any object V of
(c—U)Zz we have

g*(v) = (p/(e-U))* (V)& J/(e=U) .

Z,
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If a and b are variables of type K , then in F/(e=U)

we have
Vx Va Vb (x2=-1/\a+xb=o)=>(a=b=o).
Hence a + xb —— a - xb , for x2 = -1 , defines an invo-
lution on F/(e-U) . Now if we twist F/(e-U) by the Z, -torsor

J/(e-U) we obtain a locally isomorphic field with a global V-1 ,
which must therefore be isomorphic to p*(K(i)) / (e-U) .

We deduce that
F/(e=U) = g"(L/(e-U) .

It is clear that F/U =~ p*(K)/U , and that J/U ~ p*(I)/U .
From the latter isomorphism, and from the commuting diagrams of
functors above, we find that we have a diagram of functors commu-

ting up to natural isomorphisms

sv L2l y X, 54

oL |

F/(e-u) Do (e-)Z2 L, 5/ (c-0)

It follows that /U 2% u and /(e-0) % (e-0) %2 glue
together to give a map of ¢-toposes
J’—£~ 3
uniquely determined up to natural isomorphism by the property
that f*(L) = F . It follows that g is the classifying e-topos

of T , and that L is the generic T-model.
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Regport on the Open House on Topos Theoretic Methods in Geometry and

Analysis, Aarhus May 10-24 1978

Talks given:

May
May

May

May

May

May

May

May

May

May

May

10:
11:

12:

13:

15:

16:

17:

18:

19:

20:

22:

A. Kock: Opening talk.

A. Kock: Lie's synthetic theory of differential
equations ( ~ this volume no. 6).

G.C. Wraith: On Chou's iterated path integrals.
A. Joyal: Real Algebraic geometry.
G.E. Reyes: Subtoposes of the ring classifier (~ this

volume no. 4).
G.C. Wraith: Recent work of Kennison.

D.van Osdol: An exposition of virtual groups.
C. Rousseau: Complex structure on topoi (~ this
volume no. 8)

G.E. Reyes: Dubuc's models for formal differential
geometry.

A. Joyal: Recent work on real number systems.

M. Fourman: Logic in Chen's topos.

A. Kock: Universally solving differential equations.
Problem Session 1.

A. Kock: More on Lie's synthetic theory.

M. Coste: The generic model of an e¢-stable theory
is of line type (~ this volume no. 2).

M. Tierney: On Schanuel's work.

A. Joyal and F.W. Lawvere: Discussion on Philosophy.
Problem Session 2.

C. Rousseau: Parameters versus logic.

F.W. Lawvere: Algebraic Theory of classical thermo-
statics.

M.-F. Coste: On real algebraic geometry (~ this
volume no. 3).

R. Bkouche: Frobenius Theorem in Differential Algebra.

F.W. Lawvere: Is category theory useful in learning
thermo-mechanics ?

M. Coste: On real algebraic geometry (~ this volume
no. 3).

G. Cifoletti: Hegel and differential calculus.
M. Foruman: C is separably closed.
F.W. Lawvere: Discussion on Physics.
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May 23: J. Beck: Simplicial Methods in Foundations of
Analysis.

P. Johnstone: Gleason Cover.
M. Tierney: Beck conditions in Topoi.
May 24: F.W. Lawvere: Category of dimensions.

M. Coste: Solutions to some of the problems.
(~ Appendix 1 and 2 in no. 3).



