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INTRODUCTION

A classical theorem of Poincaré-Hopf asserts, in part,
that if a compact manifold M has Euler-Poincaré characteristic
x{M) # 0 then every flow on M has a stagnation point. If the
manifold has additional structure (e.g. Riemannian or complex)
it is natural to consider the properties of the special group
of transformations that preserve the additional structure.

In particular, one may ask whether or not M admits a structure-
preserving group action without fixed points.

Since flows are generated by vector fields, for
Riemannian manifolds the question may be rephrased as follows:
What topological or geometric properties of a Riemannian
manifold M allow one to conclude that every Killing field -~
an infinitesimal generator of isometries -- must vanish some-
where on M? In this connection, Marcel Berger (3 ] has shown
that on a closed Riemannian manifold of even dimension every
Killing field of a metric of positive sectional curvature
must vanish somewhere. 1In Chapter II a number of results
along these lines are presented. Among these are:

(1) If an even dimcnsional closed manifold admits a metric
of positive Ricci curvature and satisfies a certain topologi-
cal condition then it admits no nonvanishing Killing fields
for any metric, and (2) If the second Betti number of M is
nonzero and M admits a metric with curvature satisfying a
certain positive "pinching condition" then it admits no

nonvanishing Killing fields for any metric. These results



are proved bf means of a fixed point theorem for circle
actions.

For complex manifolds, Matsushima (21] proved that if
M is projective algebraic and Hl(M,R) = 0 then every flow
on M that preserves the complex structure has a stagnation
point, i.e. every holomorphic vector field on M vanishes
somewhere. Carrell and Lieberman [ ¢ ] extended Matsushima's
result to all closed Rahler manifolds. In Chapter III
Matsushima's theorem is generalized to all closed complex
manifolds and a number of related results are proved.
We mention only: 1If M is a closed complex manifold and
the Hodge numbers of M satisfy [ hP'P*l = o then M
admits no nonvanishing holomorpﬁ%g-iector field.

Chapter IV focuses on a question raised by Chern:
If x(M) = 0 then M admits a nonvanishing vector field.
One may ask whether or not M admits a vector field that is
parallel with respect to some Riemannian metric. Chern proved
that if such a metric exists then the first Betti number bli 1
and the second Betti number b, 3.b1-1, and he conjectured
that these conditions were not sufficient (10]. One of the
main results of Chapter IV is the existence of additional
necessary conditions: b >b

- b for all 1 < k < n-1 =

k+1 k k-1
dim M~-1, These conditions are refined when the vector field
is parallel with respect to a Kdhler metric. In addition,

a number of generalizations of a classical theorem of

Hurwitz [l17) are presented. For example: If a closed



Riemannian n-manifold with Ricci curvature < 0 fails to
satisfy b ., > b, - b, _; for some value of 1< k < n-1
then its isometry group is finite.

In Chapter V the following generalization of a
theorem of Poincaré is proved: If a complex manifold
of dimension 2n+l admits a nonvanishing (2n+l1,0) form
then the arithmetic genus of M is zero. This theorem and

Hurwitz' theorem are both proved by using the theory of

elliptic operators.



I. PRELIMINARIES

The purpose of this chapter is to fix notation, collect
some facts from real and complex differential geometry, and

prove some preliminary results.

1. Riemannian manifolds.

1.1. M is a closed differentiable n-manifold if it is compact
and M = @g. If M is an oriented Riemannian n-manifold with
metric g and Riemannian volume form volg there exists an
operator *, called the "Hodge-star operator", mapping p-forms
to n-p forms: *: AP + A™P_  purthermore, ** a = (_l)p(n-p) a
if a € Ap, and * 1 = volg. If (wj} are orthonormal l-forms

£ o . .

1 Wy A eee AW if Wy A eee AW lies in the orientation
class. A pointwise metric is defined on AP by extending the

A ® o @ A ni >

= N W €

following form bilinearly: <Ei1 A coo A Ei ¢ Ny
a € AP , @ A% a = (a,a)pvolg. The pointwise inner product
may be integrated to define a global L2 inner product on
p-forms: (a,B) = IM <<;,B>p volg .
If 4 is the operator of exterior differentiation let
6 dgf formal adjoint of 4 in the L2 product above: (da,8) = (a,88).
It follows that 6: AP + AP™l and, in fact, § = (-1)Ysas
where y = n(n+p)+1 when & is applied to p-forms. The
Laplacian A dgf ds + 6d: AP + AP and with our choice of signs

8=-J D2 for M = R® with the Euclidean metric. cf. [4],[31].
i |



l1.2. If X is a vector field and w is a p-form, p > 1, we

define the interior product of X and w by ixm dgf w(X,...).
Thus ix: AP » AP, on Ao =C (M), ix is defined as the zero

operator. If n is the one form dual to a vector field E

in the metric g then i_n = n(E) = g(E,E). For a € AT,

ETI

B € AS, and a vector field X we have
= (3 _yydeg a .
ix(u A B) (1xa) AB + (-1) a A iyB
i.e. ix is an antiderivation of degree -1 on the exterior

*
algebra A (M). For a Riemannian manifold with n € Al we

gsometimes write :'Ln in place of iE where E = contravariant
form of n. Let 2n denote the operation of left multiplica-
tion by n € Al. It should be noted that i, + i AP+ AP

and, moreover, for a € AP,
= + = =
(1, 8,+ 2 4 0(a) =4 (nAa) +naia=(in)a=g(n,nla

Here inln + P.nin = multiplication by the function g(n,n) > O,

Aleo, it is easy to check that <n A a,B>p= <a,i B>

nf’p-1 (28], (31].

1.3. Let X denote the linear space of vector fields on M.

A connection or covariant differentiation on M is a map

X x X ¥ X such that for X,Y,2 € X and f € C=;

(a) v Z2 = fVXZ + VYZ

£X+Y
(b) VEY = (Xf)Y + fV ¥

where VxY = V(X,Y), etc.



The torsion of a connection V is the tensor field T
of type (1,2) given by T(X,Y) = VXY - VYX - [X,Y], where
[X,Y] is the commutator of X and Y. A connection is
Riemannian (with respect to g) if Xg(Y,2) = g(VxY,Z) +
+ g(Y,VxZ). It is well known that every Riemannian manifold
(M,g) admits a unique torsion free (T = 0) connection called

the Levi-Civita connection. Henceforth,V always denotes the

Levi-Civita connection. A parallel vector field is a vector

field X satisfying VYX = 0 for all Y € X [14].

1.4. The commutator [X,Y] is also called the Lie derivative

of Y in the direction of X and denoted LxY. Both Vx and L

can be extended to mappings of AP + AP and of tensor fields

X

of type (r,s) + tensor fields of type (r,s) as follows:

(a) If w € AP ana Yyrees¥, € X

p
V@ (¥ oeens¥p) = x[m(yl,...yp)]-jzl W(¥yseeerVy¥yreo,¥)
(b) 1Ifw € AP ana LIRRRRYE S
: P
Lxg(yl’noolyp) = x[w(Ylpooo'Yp)]-jzl w(Yl'°'.'LX j'oc.Yp)
and more generally:
(c) If T is a tensor field of type (r,s) and
Yl,...,Ys € X , Wyreeo Wy € Al , then
r
(LyT) (wyreee i ¥ypeea,¥y) = X[T(w;Y)]—jle(ml,...,Lme

8
- k£1 T(m; Yl'...'Lx Yko-oo'Ys)o

-'-o.wr;Y)



If g is a Riemannian metric, we have thus defined L,g, and if

%9
Lxg = 0 X is called a Killing vector field (with respect to g).

It is known that a Killing field is divergence free (in the
metric): divgx = 0.

1f ¢t is the flow generated by a vector field X, it
can be shown that LXT = %E ¢:(T) £=0 for any tensor field T.
LXT = 0 means that T is invariant under by and so if X is
a Killing vector its flow ¢t is a l-parameter group of
isometries of (M,qg).

The Lie derivative and interior multiplication on p forms
are connected by the following formula: L, = ix°d + doix

X
cf. [13],[19].

1.5. The covariant differentiation induces a tensor of

def
type (1,1): If X € X let Ay = L,-V, = -9 ,X. The

following property of Killing fields is well known.
Lemma 1 Ay is a skew adjoint transformation of T M if

X is a Killing field on (M,q).

Proof: Cf. [19], page 237.

We will need the following extension.

Lemma 2 If X is a Killing field on (M,qg) then L, is a

X
k , \k

skew adjoint transformation A A" (with the induced metric).

Proof: Let L§ denote the adjoint of Lx. Suppose
g/n € A%, We will show that 0 = ((Ly+ L,5)g,n) =
= t = i
I <(Lx+ Lx )g,n>k(x) volg where volg = Riemannian volume

form = vdet g dxl A cee A dxn. We may assume that £ ahd n



are decomposable at x € M so that:
<£ rﬂ>k(x) = <£1 A... Agkl Tll Aeooo Aﬂk>k(X)

Using a well known fact about differentiating determinants

we have
g(Ey,ny) .o g(&y,n)
X<E ,n> = X det 3 1771 : 177k
g€ my)  wov g ,my)

?(Ellnl) LRGN g(allnk)

k .
é(Eklnl) LRI g(Ek'ﬂk)
k
= j£1 (Ei A eee ALXEj A oo Aek' ﬂi A eeoe Ank>k

k
+ jxl <Ei A ees A Ek' Ny A --eA anjuA N>k

= <Lx£,n>k(x) + <§,Lyn>y (x)
since

k
Lo(E; A oo AE)) = ) §4 A «o AL

j=1 xbg hoees AE

0.

and Lxg

Thus, by Stokes' theorem,

0= f d°ix[<5.n>k volg] = J Lx[<E.n>kvolg] =



- t
= I x<£,n>kvol + <£,n>k vaolg = I {(LX+Lx )g,n>kvolg

gince

- - 1 n -
Lx(volg) = doix(volg) = doix(/a dx™ A ... A dx) , G—det(gij)

n . N
=a( ) -13LE xT axta.. axI A ... a ax™
3=1

n
) 3 1 n

= ) (/G X’) dx~ A ... A dx = (div X)vol = 0
j=1 3% g g

a

={a€Ak:da=0}andB§={aEAk:a’-—'dB,

h

k
.6. Set Zd

B Then HER(M) = the k*" deRham cohomology group
def K "
=

def
mod B”. The k-th Betti number of M £ dim HgR
def n
is denoted b, . The Euler characteristic x(M) = ) (-l)kbk.
k=0
The Betti numbers b, are topological invariants of M.

(M)

k
According to the Hodge theorem dim ker Ak = bk where Ak
k

denotes the Laplacian 4: A” ~» Ak . cf. (311, (33].

1.7. The curvature transformation R of a Riemannian manifold

(M,g) is the linear transform cf TPM defined by:

R(XY)Z = vaYz - vaXz - V[X'Y]Z

If P is a 2-plane in TpM spanned by orthonormal vectors Xy ¥,

def
then the sectional curvature of P is K(P) = <R(xl,x2)x2,xl>.

A Riemannian manifold has nonpositive (resp. nonnegative)

sectional curvature if K(P) < 0 (resp. K(P) > 0) for all



2-planes P at all points of M.

def
The Ricci tensor (X,¥Y) is given by Ricc(X,Y) = trace

of the operator V + R(V,X)Y, i.e. for an orthonormal
n

pM we have Ricc(X,Y) = | g(R(E,,X)Y,E,)
i=1 .

for X,Y € TpM. The Ricci tensor is positive definite

("Ricci > 0") if Ricc(x,x)p > 0 (if xP # 0) and it is

basis {Ei} of T

nonnegative if Ricc(X,X) > 0.

Example: The Riemannian product of two positively
curved manifolds has positive definite Ricci tensor but
does not have positive curvature.

The scalar curvature t of g is defined as the trace

of the Ricci tensor: 'r(p)dsf ! Ricc(E;,E;) if {E;} is an
orthonormal basis of T,M cf. [19].

Note that sectional curvatures > 0 (resp. < 0)
= Ricci > 0 (resp. < 0) = scalar curvature > 0 (resp. < 0).

One effect of curvature on the topology of M is seen in:

Myers' Theorem [26]. If M is Riemannian with

Ricci > ¢ > 0 then M is compact, the fundamental group of M

is finite, and b 0.

18

Bochner's Theorems (S5]. (a) XIf (M,g) is closed,

b1 ¥ 0, and Ricci > 0 then there is a parallel vector field
on M, (b) If Ricci < 0 then (M,g) admits no Killing

fields and if Ricci < 0 then every Killing field is parallel.

1.8. A symplectic (or Hamiltonian) manifold is a 2n-manifold

with a closed 2-form Q of rank n (2™ # 0) called a symplectic

form. Such manifolds are important in the geometrical description

of mechanics, cf [13].
10



2. Complex Manifolds

2.1. Suppose M is a closed complex manifold of dimension over
C=m. M can be viewed as a differentiable 2m-manifold with
a tensor field J of type (1,1l) satisfying J2 = -1 and also a
certain "integrability" criterion,6cf. [33]. Any such manifold

A

admits a hermitian metric i.e. a Riemannian metric h satisfy-

ing h(X,Y¥) = h(JX,JY) for all (real) vector fields X,Y.

The tensor h is a Kdhler metric if J is invariant under

parallelism: V_,J = 0 for all X € X. The complexified

X
tangent bundle TMzm ® C splits as TMl'o 0 TMo'l where a
section 2 of TMl'o (resp. TMO'I) has the form 2 = X - iJgX

(resp. 2 = X + iJX) and is called a complex vector field
of type (1,0) (resp. type (0,1)). 1In local complex coordi-
nates (zl,...,zm) vector fields of type (1,0) have the form

2 =17 a, E%—-where a, € C.. Like the tangent bundle, the

k C
k -
spaces Ak split as & AP’9 , P+g=%kand d = 93 + 9 with
2 T2 2

d” = 3" = 3" =0, cf. [19]).

A holomorphic vector field Z is a vector field of type

(1,0) that has a local expression Z = ) a —EE-with 3a, = 0.
k 9z

k
Z = X - 1JX is a holomorphic vector field iff its real part

X generate8 a local l-parameter group of holomorphic trans-
formations of M.

If h is a hermitian metric then it may be extended by

linearity to complex vector fields 2Z,W: h(z,W) = } hisziﬁj

with h13 a hermitian matrix. It is known that h is Kihler

iff the (1,1) form W, = hiw dzi A dzd is closed. Thus

J
every Kihler manifold is symplectic, cf. [19].

11



2.2. For hermitian manifolds the analogue of the ﬁodge-star
operator is * where *(a) = %3 and * is extended to complex

valued differential forms by linearity. It follows that
Apl q - Am_p JM=q

* vhere m = dim, M. As for Riemannian

manifolds, the local inner product of (p,q) forms a,f is

*<a,B> = a A *B and the global L2 inner product is

(a,B) = I a A *g = [ <a,B8> volg . The formal adjoint of 3 is

-~ def - -
6 = - *3* and the complex Laplacian is 0O = 36 + 63. Let

ﬁg q denote O: AP’9 4 AP/9 qpe Hodge numbers
’

hp'q dsf

dimension of the sheaf cohomology groups Hq(M,Qp)

and vi the theorems of Dolbeault and Hodge-Kodaira we may
take hP'9 %€ gim kernel Ep g = dim {a € AP'9; 3q = 0}

’
mod {a = 3B: g € AP/971}

For Kahler metrics it is known that O is a "real"

operator and the real and complex Laplacians are related by

20 = A. As a consequence, it is not hard to show that for

Rihler manifolds b, = [ hP'9 and nP'9 = h9'P, rThus

k +g=k
Ly = n%1aple® o ginenss h hi
3 b, = = = mension of the space of holomorphic
differentials.
The xP genus of a complex manifold is xP def 7 (-1)9nPd
) ) def o m q.0,q q=0
and the arithmetic genus = x = J (-1)9n7/9,
q=0
For m = 1, i.e. a Riemann surface, the arithmetic genus
= h0,0 - ho'l = h0,0 - hl'o = ] - genus = % (Euler character-

istic), cf. [15].

12



2.3. As in the case of real manifolds, define interior

multiplication iz » where 2 is a complex vector field,

as follows: (a) izf =0 iffec = Ao, (b) izv =v(Z,... )

for v € AL , k2 1. Then iy(v A u) =1,v A u + (-5 A i
if k = deg v. Note that if 2 is of type (1,0) then

i,: AP9 . pP~l,:Q 1o %, denote the operation of left

multiplication by ¢ € Al'o. Then as in Section 1.2 we have

2c°iz + izoic: AP+9 4 pAPr9 ang in fact its just multiplica-
c.
- For a complex vector field Z we set L, = aoiz + izoa:

tion by (2) € C

Lemma 1 If Z is a holomorphic vector field then

L

*
7 = 0 as an operator on AC(M).

- * -
Proof: Note that Lz is a derivation on AC(M): Lz(v A U)

= sz AU 4+ Vv Lzu. Also, it's local. Hence, it suffices

to check that L,(c”) = Ez(dzk) = Lz(dzk) = 0:

(a) For £ €cC”, L,f = i,(3f) = 3£(2) = 0 since Z is of type (1,0);
= ..k, _ = k .k _ = = =
(b)  L,(dz") = 3i,(dz") + 1,39z = 3(ay) - 1,33z" = 3a,

ifz=1]a 3%_ ; since Z is holomorphic 3a = 0;

k 2=k

v -k - -k * b had
(c) Lz(dz ) = aiz(dz ) + lzadz = 0 + 1za 2" =0.

3. Elliptic Operators .

3.1 Let E,F be vector bundles over a compact manifold M,
and P a partial differential operator P: T'(E) -+ I (F) where
I' denotes the space of smooth sections. The m-symbol of P,

® ®
cm(P), is the map P M\ 0 ~ Hom(E,F) defined for (x,£) € T M

13



by o (P)(x,E)s, = P(¢"s)|  where ¢ € C” such that s, = &,

¢$(x) = 0, and s € T(E). P is of order k if ¢ =0

k+1 (P)
and ok(P) Z 0. P is elliptic of order m if om(P)(x,E) is

*
nonsingular for all (x,£) € T M \0. It is easy to check that

def [n/2] {n/2] - def-
D = a+6: o AP @ a%PH 45 npdg 3 +0: o AP/29
p=0 p=0 q
+ 0 Ap,2q+1 are elliptic of order 1.

: For P elliptic, P: T(E) - T(F), the index of P (denoted
ind (P)) dgf dim ker P - dim coker P is an integer as a
consequence of the theory of elliptic partial differential
equations.

The theories of Fredholm operators and elliptic equations
together imply that if P: T(E) + T'(F) is elliptic of order m

and if A is a differential operator of order < m then

ind (P + A) is again defined, and in fact, ind(P+A) =ind(P).

Lemma 1 If 2 is a vector field of type (1,0) then iz

is a differential operator of order zero: AC(M) - A;(M).

Proof: Choose ¢ € c” such that ¢(x) =0,
1,0 0,1 = *
d¢x = £ = § + & = 3¢ + 3¢ and let w € A . Then
3iz(¢w)|x = 3¢ A izwlx and 1,3(¢w) = 4,(3¢ A w + ¢ au)lx

= 34(2) A w =36 Aiw . It follows that L,(¢u)| = 36 (2 )w

2 X X' x

= 0. 0O
3.2. It is a consequence of the Hodge (resp. Hodge~Kodaira)
theorem for A = (d + 6)2 (resp. for 0O = (3 + 6)2) that

. . def k - p
ind (D) = Euler characteristic = [ (-1) bk (resp. ind(Dp) = X

and ind D0 = arithmetic genus), cf. [15], [28].

14



II. GROUP ACTIONS AND KILLING FIELDS:

ANAIL.OGUES OF BERGER'S THEOREM

1. In this chapter we consider analytical and topological
properties of compact differentiable manifolds that obstruct
the free action of compact Lie groups. Let Diff(Mn) be the
group of diffeomorphisms of M and let G be a compact connected
subgroup of Diff(M'). Since G is a compact connected Lie
group it contains a circle group S1 as a subgroup. Hence M
admits a free action by some compact connected Lie group if
and only if it admits a free circle action.

Suppose M" is a compact differentiable manifold with

1 acts on M then we may consider

1

Riemannian metric g. If S
the metrics gY = Y.(g) where Yy € S™ and, averaging, we can
form g = I 1 y*(g) dy. It is well known, and easy to see,
that S1 acis isometrically with respect to the metric g.

It is natural to ask when a flow ¢t (i.e. a one parameter
group of diffeomorphisms) may act freely on M®. of course,
if the generator of ;he flow ¢t vanishes at a point of M
that point is fixed under ¢t. Thus if x(M) # 0 every
l-parameter group ¢t has a fixed point. 1In general, the
question must be tackled via the special properties of the
flow. In this direction, Berger [ 3] has shown that if M
is an even dimensional, Riemannian manifold with strictly

positive sectional curvature, then every isometric flow leaves

some point fixed. We note that, in one sense, this theorem

15



is very sharp for the Hopf-fibration Sl* S3 > CPl yields

a free isometric flow on M6 = 53 x S3, a simply connected,
oriented, even dimensional manifold with positive Ricci
curvature. On the other hand, it is unknown whether sectional
curvature > 0 implies that x(M) > 0, and in any event,

1 > sectional curvature > %-implies (for even dimensions)

that M is topologically a sphere (the Rauch-Berger-
Klingenberg "Sphere Theorem" [19]) = x(M) = 2 # 0. (In the

case that the flow preserves a complex structure there are

other obstructions. We take up this in the next chapter.)

2. We make the following

Definition A differentiable h-manifold is of class

T(k) 4if it is orientable and there exists a product

P k. '
I mjj of closed forms wj € 2 J(M) such that
3 P. p
(i) T v, € An(M) (i.e. Z p.k, = n), (ii) I T w j # 0 ,

and (iii) max ([degree mj] = k.

Thus, every orientable n-manifold is of class T(n).

Theorem Let M2n be a closed, 2n dimensional manifold
of class T(2). Then if a compact connected Lie group acts
freely on M, HY (M) # 0.

Corollary 1l If M2n is a closed symplectic manifold

with bl = 0 (e.g. simply connected) then no compact connected

Lie group acts freely on M.

The proof of the theorem will require the following lemma.

16



Lemma 1 If a connected compact Lie group G acts
freely on M2n then there exists a Riemannian metric on MZn

and a one form ¢§ € Al(M) such that i, 4§ = 0.

g

Proof of Lemma: Choose a circle S1 € G and any metric
gy, on Mm. Average go over S1 (as above) to get a metric
g, with respect to which S1 acts freely by isometries. Let
X be the infinitesimal generator of sl, viewed as a vector
field on M, i.e. a Killing field in the metric g5 - Choose
a new metric g = % gy where u = gl(x,x). Thus g(X,X) = 1.
Let £ be the l-form dual to X in the metric g i.e.
£ = g(X,*). Then iEE = g(X,X) = 1. For any vector fields

A,B on M we have:
dg(A,B) = AE(B) - BE(A) - E(([A,B]) = g(VAX,B) - g(VBx,A)

since the torsion of V is zero. Since X is a Killing field

v(,)x = -[V(.)X]t (see Chapter I, Section 1.5) and we have

dE(A,B) = Zg(VAx,B). Hence, iE d§ = dE(x,-)=‘2g(VxX,-) .
To complete the proof of the lemma we note that for

any vector field A

1oeo Vxx = 0. D

Proof of the Theorem: Since M is of class T(2) there
o P
exists a product of forms I ij (such that J I wjj # 0) which
may be rewritten I mjj = I aj , where aj € ZZ(M). By the

17



Hodge theorem -- for the metric g chosen in the lemma above -~
each a, has the form a_., = h. + dn, where h, is g-harmonic.
3 n J J 3 3
Hence Il aj = I hj + an exact form. By Stokes' theorem
3 i=1
we have

it = I h 0
I“jfj"

Let £ (resp. i) denote 1left exterior (resp. interior)
multiplication by the one form { chosen in Lemma 1. Then,

def p p )

as an operator on forms, T = £°i + ief: A¥ + A is just
multiplication by g(£,£) =1, i.e. the identity operator
(see Chapter I, Section 1.2). Since 1 hj € A" we have

T h T[ 1 11] 2 i[ 1 h } ea| 3 1ty n 11]
je1l 3 jel 3 je1 3 k=l K gy 3

Thus i(hk) Z 0 for at least one k. Morcover,
di(hk) = di(hk) + iodhk = Lxhk = 0

since harmonic forms are invariant under isometries. To
conclude that Hl(M) # 0 it suffices to show that there do

not exist f, € c® such that i(h,) = df, , for all k. So
def -~
suppose i(hk) = dfk. Let I (pl,...,pk) = h1 A eee A hp1
A ...A hp A eee A hn where the caret ~ indicates omission.
k
Extend the definition of I to make I symmetric in the pj's. Let

def

Zkg Z f L] f n (p 'o..,p) l<k<n
P P 1 k' ! - ="
1<py<py<-«.<pp<n ~1l k
def B
and [,5 @ h,.
j=1 J

18



Lemma 2. i zk) = d(2k+l), 1<k<n-1.

We postpone the proof of the lemma until the proof of
the theorem is concluded. Now I hj = T( hj) = loi(zo)
=f A d{l = ~d(g A ;) + dE A {1 and T(dE a {l) = £ A dE A i({l)

by Lemma 1. In fact, we have in general
T hy =T 1 hy) =§ A (@g)™ ! af_ + an exact form
= (ag)™ a Zm + an exact form

as follows easily by induction. [ M hy = [ (dg)™ A L, for

all m < n and if we choose m = n we have
n
! £, ... £, (@E)T £ 0

However, this is absurd since

n n n
fl e fn(dE) = T(f1 ...fn(dE) ) = £ A (f1 ...fn) i (dag)"'= 0.

3

To complete the proof of the theorem we must prove Lemma 2.

Proof of Lemma 2:

i(],) = £ vei £ 04 T ((Pyeeeespy)
x P1<.§.<pk Py Py (teyre--emd)

n
= z f s e f [ zl df n (pllooolpqu)]

P P q
Py<Py<...<P 1 k g=
1 k arp;
Tl
= f oo e f df n (p I""p q)
q=1l p;<...<p} Py P 1 1 K
pj#q

19



= ) d(f, ... £, £) I (Pysees,Pprq)
pj's and g in Py kg 1’ Tk

increasing order

= ) a(f_ ... £ ) T (PyseecesPpyq)
Pi<es-<Ppyy 1 Pr+1 1 k+l
= d(2k+l) since the hj are closed. 0
2

Proof of Corollary: Let 0 € Z be the symplectic
form. Then QP = a volume form and so I aP # 0. Thus,

every symplectic manifold is of class T(2).

3. Remarks

(1) It is well known that in order for a compact mani-

fold M2D

2n

to admit a symplectic structure it is necessary that

(1) M admits an "almost complex structure" i.e.a (1,1)

tensor field J such that J2 = -I, and (ii) the even degree
cochomology groups HZR(M) have dimension > 1. Corollary 1l

says that there are additional necessary topological condi-
tions. For example,.if M is simply connected it cannot admit

a free action by a connected compact Lie group.

(2) In connection with Remark 1, we note that Thurston (cf.
[32]) has constructed an example of a 4 dimensional symplectic
manifold with a free torus-action. 1In fact, it is a bundle
of a torus over a torus. In his example, Hl(M) = 3 in agree-

ment with Corollary 1 and also showing that his bundle cannot
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admit a Kahler metric. Up to now, every known simply connected

symplectic structure comes from a Kihler structure.

(3) The Pontryagin numbers of a 4m~-dimensional compact
J
manifold are defined as Pont(p,j) = f n pkk where
Mk
Py v the k-th "Pontryagin class" of M, is a certain cohomology

class € H4k(M) and ) jyk =m [24]. For a manifold of
dimension = 0 (mod 4) Bott [ 7] has shown that the existence
of a nonvanishing Killing field (i.e. a free action of a
connected compact Lie group) implies that all the Pontryagin
nurbers vanish. The theorem above can be viewed as a somewhat

analogous result for manifolds of dimension = 0 (mod 2).

(4) The Chern numbers of a compact complex manifold are

J
I ckk where ck , the k-th "Chern class"
k
of M, is a certuin cohomology class € u2¥ (M) and 2 ) 3yk

defined as Chic,j) = J

= dimR M [24}. Bott [ 7] has shown that the existence of a
free action by a connected group that preserves the complex
structure implies that all the Chern numbers vanish. We

will return to this question in the next chapter. We note here

the following analogue of Bott's theorem for differentiable S1

actions on a complex manifold:

2n

Corollary 2 Let M be a closed complex manifold with

2n

b1 = 0 (e.g. simply connected). Then if M admits a free

smooth circle action the Chern number I cln = 0.

(5) In the gpirit of Berger's result cited above we note
that we have:
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Corollary 3 If MZn is a closed manifold of class T(2)

that admits some metric with Ricci > 0 then for any metric

every Killing field must vanish somewhere.

Furthermore, it should be noted that as a consequence
of the results of Tsagas [30] there exist positive constants
C(n) (depending only on n) such that if

(1) bz(M) # 0 , and

(i1) For some metric on M: C(n) < sectional curvature<l,

then MZn is of class T(2). Since sec > 0 = b.= 0

1
we have:

2n

Corollary 4 If M is orientable (i) bzﬁ 0, and

(ii) C(n) < sectional curvature < 1 for some metric, then

no metric admits nonvanishing Rilling fields.
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III. NONVANISHING HOLOMORPHIC VECTOR FIELDS

AND MATSUSHIMA'S THEOREM

1. In this chapter we consider analytical properties of
compact complex manifolds which are obstructions to the free
holomorphic action of connected compact complex Lie groups.

Let H(M) be the biholomorphisms of M. If M is compact it is
known that H(M) is a Lie group but it is not in general compact
{6]. In any event, H(M)o (the identity component of H(M))

is generated by vector fields which when "transferred" to M

_9_
k azk

are holomorphic i.e. locally of the form 2 = ] a
where the a, are holomorphic functions.

Given a one-parameter group wt of biholomorphisms of M,
we ask whether or not it may act freely, i.e. must its
generator vanish somewhere? In this direction, Matsushima [21]
proved that for a compact Hodge manifold (which according to
a theorem of Kodaira [20) is projective algebraic) to admit a
nonvanishing holomorphic vector field it is necessary that
the first Betti number of M be nonzero. Matsushima's proof
depended on propertiés of the group of biholomorphisms of cp”.
Carrell and Lieberman [9 ] extended Matsushima's result to
all Kidhler manifolds. We generalize these results to all

compact complex manifolds.
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2. We make the following

Definition A compact complex manifold of real dimen-
r L]
sion 2n is of class T (k) if there exists a product Ty.J
a r, r.
of 9-closed forms uj such that (i) Il ujJ € An,n’ (ii) I 1! ujj # 0

and (iii) max [degree uj] = k. M is of class T'(2p) if there

P

- J
exists a 9-closed form u € A P C A2p such that ur e AN/ and

I ut # 0. Thus Té(zp) c T§(2p) and every complex manifold

of dimensionC = n is of class TL(Zn) CT (2n).
o d

Denote the space of 3-closed (p,q) forms by 229,

P.rd.
Thus if M € T_ (k) there exist differential forms M € Z__J J
] d
and integers r, such that | r.(p. +q,) = 2n and max [p.+ g.] = k.
j 573773 0 J 73
According to Dolbeault's theorem ([11],
HP'd = {a € AP'9; 30 = 0) mod {a € AP'9; « = 38} has
dimension hP’9 , and if hP'9 = 0 then every 3-closed (p,q)

form is 3-exact.

Theorem 1 Let M" be a closed complex manifold of

dimension, = n and class T (2). If M admits a frce holomorphic

c
9 1,0

action by a connected complex Lie group then h + ho’1 # 0.

Corollary 1 (Matsushima). If a closed Hodge manifold M

admits a nonvanishing holomorphic vector field then Hl(M) # 0.

Corollary 2 (Carrell and Lieberman). If a closed Kdhler

manifold admits a nonvanishing holomorphic vector field then

ulM) # 0.

The proof of the theorem will require the following lemma.
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Lemma 1 If a closed complex manifold admits a free
holomorphic action by a connected Lig group G then there
exists a hermitian metric on M and a complex differential
form § of type (1,0) such that ic(ﬁc), a differential form

of type (0,1), vanishes identically.

Proof of Lemma: Let Z be a nonvanishing holomorphic
vector field on M that generates a one-parameter subgroup of G.

Let h, be any hermitian metric on M. Let u = ho(Z,E) # 0 and

1

let h = 3 h In the metric h,Z has length 1. Let § be the

0°
(1,0) form dual to 2 in the metric h i.e. ¢ = h( ,Z).
Clearly $(2) = 1 and it is easy to see that { is a complex
differential form of type (1,0). Since Z is a holomorphic
vector field 1,03 = -5oiz (see Chapter I, Section 2) and
so 1,3; = -3i,0 = -3(¢(2)) =0 . O

Proof of the theorem: We use the notation introduced

r
above the statement of the theorem. Thus I Il ujj # 0 and
r,
we may decompose the product I ujJ as

I u;j _ g RIY

PjJQj

0,1 1,0 1,1 0,2 2,0

= F AF AF AF A FT!

Psq
where F 3 j.

We
1,0

= product of 3-closed forms in 2

Fl'o = 1, for otherwise there exist u € 2

1'0 . pj 'qj
i.e. h # 0. Since the total degree of I F is

0,1

may assume
dimR M =2n it follows that F is the product of an even
number of (0,l) forms and taking two of them at a time we

may consider Fo’l as included in Fo'z. Thus we have

r
1ud = il g 602 5§20
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Let 1 (resp. £) denote interior (resp. left exterior)

multiplication by the (1,0) form f whose existence is asserted

in Lemma 1. Note that i(F"’“) = 0 since i: AP’9 AP-1l.q,

We may assume that i(Fz'o) = 0, for if not y = i(Fz'o) € Al'o
is a holomorphic one-form (since 3y = ~-i3F%:0 - 0) and hl'o# 0.
Writing F for Fl'l and R for the remaining factors Fo'2 A F2'0
we have the product P dg i ugj = F A R where F is a product
of 3-closed (1,1) forms and R is annihilated by i. Now
factor F as F = % a. , a, € Zl'l.

j=1 I 3

Note that T ©8f goi + ief: AP’? 4 APr9 = pultiplication
by Iclﬁ on AP’9 ig the identity operator since lcl2 = 1.

Since P is an (n,n) form

m
Pe TP = R0i Pe= [ Ai(F) AR =7 A [.Z i(ay) 1 aé] A R.
k=1 j#k

Hence for some k 1i(a,) # 0 . Now 5i(ak) = -i5(ak) =0 , so

0'1 0,1

i(ak) € 2 . To show h # 0 it suffices to show that

. m © = .
there do not exist {fk}knl ' fk € Cc . such that afk = l(ak)

for all k. Suppose such fk did exist. Let I (pl,...,pk)
def ~ ' ~ A

z al ces A apl A eeeA apz A cee A apk A see A QO where
indicates omission. Extend the definition of Il

~

the caret

so that II (pl,...,pk) is symmetric in (pl,...,pk). Let

1,1
= 4 ees £ I (Pyreserby) 1<k<m
Zk 191<°§'<pkf.m P Py 1’ 18! 2 ksm,
) m
and let =F= 1 a,.
0 j=1 3
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Lemma 2 i(Z;'l) = E(Zi;i) .

We postpone the proof of the lemma until the proof of

the theorem is completed. Now

Fa R=T(FAR)=;Ai(F)AR=§Ai(I%'l)AR
=7 A 5({%'1) A R=-3(C A 2}'1 A R) + 3C A {i'l AR
- 1,1 -
= 37 A 21 A R + 3-exact form

Applying T again we have F A R = TZ(F AR =17 A 1(37 A zi'l)AR
+ 3-exact form = [ A 3z A 1(21) A R + 3-exact form
= (30)2 A Z%’l A R + 3-exact form. It is easy to see that

continuing in this fashion we have for 1 < k < m:

- - .k n,n-1
FAR®=3uw + (3¢)°A ], AR, where € A

“k
Choosing k = m in this last expression we have:

= =_m
P=F AR=3u, + (307 JI, £5 AR

o = .m
-dwm+ n fj(ac) AR
i=1
since dw = 3w if w € AR/P71, Applying Stokes' theorem we

find that
m - . m
I P = I n fj(ac) AR#O0 .

i=1

However, this is absurd since
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m m
I £, @30 AarR=1l10 £ (G® AR
jal j =1 j

m
= I £

2 ALGD® AR+ ()P A iR] =0
j=1 3

To complete the proof it only remains to prove Lemma 2.

Proof of Lemma 2:

1,1
i, ) = £ ... £ 1{(pys...,p,)
’ [’f g
- £ ... £ Af . T(Py,+-+sPy,q)
1l k
P1<P3<.--<P, Py pk' g=1 9
a’py
) ) 3
= f ) f af r[ (p p-o-'p 'Q)
£ P P q 1 k
q=1 lgpj<...<pkim 1 k
‘?J‘Pg_
- ) O(E. oo £ £) I (PyseeesPp,q)
pj's and q in Py Py @ 1 k

ascending order

k] Z 5(f LI f ) n (P I"'Ip )
P p 1 k+l
=37 fpl ces fpk+l I (pyse-+sPy,,) since the ay are
3-closed
1,1
=3 Iyl
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Proof of corollaries: Corollary 1 follows from
Corollary 2. To prove Corollary 2 we note that if M is a
Kihler manifold with Kihler form w € Al'l then dw = 0
= 3w = 0. Since f w” = nl vol (M) it follows that
M is of class T (2). Since, for Rahler manifolds,

ho’l + hl'0 = bl(M) we are done.

Remarks.

(1) Whereas in the previous chapter we dealt with compact
group actions in this section the one parameter group
need not be compact.

(2) As noted in i.e. Chapter II, Section 3 Bott [ 7] has
shown that the existence of a nonvanishing holomorphic
vector field implies that all the Chern numbers of M
must vanish. Theorem 1 shows that if ho'l =nl0ao
then the existence of a nonvanishing holomorphic vector

field implies that I w® = 0 for all S-closed (1,1)

forms w, not just w = Cy -

Theorem 2. Suppose M is a closed, complex manifold and

of class T'(Z). If M® admits a nonvanishing holomorphic vector
field then h0¢1 ¥ o,

The proof is exactly the same as the proof of the preceding
theorem; however the possibility that ho'l = 0 is eliminated

since no factors of bidegree (1,0) or (2,0) can occur.

Theorem 2 also implies the results of Matsushima, Carrell

and Lieberman.
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Note that for a Riemann surface S the Poincaré-Hopf
theorem says, in part, that if Euler characteristic = J cy
>0 (= ho’1 = 0) then every complex vector field of typ:
(1,0) must vanish. This conclusion is false if dim = n
and [ c? > 0, say. The result of Bott [ 7] can be
considered a generalization that is valid for holomorphic
vector fields. Theorem 2 above allows us to give another
generalization using a hypothesis that is closer to the

Gauss Bonnet condition J ¢, = j curvature > 0.
S S

Theorem 3. Let M" be a closed complex manifold

0,1

with h = 0 and I y A nn‘l # 0 ' for some closed

(1,1) form 2. Then every holomorphic vector field on M

must vanish somewhere.

The proof is immediate. We note that if n = 1 we
have I c, = Euler characteristic # 0. To see the relation-
ship to "curvature" recall that if Qh denotes the (1,1) form
associated to a hermitian metric h then for any n = dimc M

n-1l

[M cl A ﬂh = I scalar curvature of the "hermitian connection”

(cf. Berger, Gauduchon, Mazet [4]).

For all closed complex manifolds we can prove:

Theorem 4 If a closed, complex manifold M (dimC = n)

admits a nonvanishing holomorphic vector field then the Hodge

numbers of M satisfy:

I hplp+l #0 .
0<p<n-1
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Proof: Let [ be the (1,0) form that appears'

in Lemma 1. If £ and i, denote left exterior and interior

4 Z
multiplication, then as in the proof of Theorenm 1,
def
T = £c°iz + iz°lc is the identity operator. Let w be

an (n,n)-form such that I w# 0; e.g. a volume form on M. We

will assume that J nP'P*l .o |

Lemma 3 If ]  nP'P*l = o then there exists a
p<n-1
sequence of differential forms aq € A9'9 guch that

aaq = izuq+1 for 0 < g < n-1.

Proof: Set a =w. Since 3iw = -ijw = 0 and

hn-l,n e An—l,n-l

= 0 there exists some L

3a,_, = iw. since 3ia _; = -ifa__, = -i%y = 0 and
-2,n-1
h""e

such that

n-2

= 0 there exists a _, € A such that da o= ia__,.
In general, if there exist Qs "‘“’q+l such that
= 3 2 =319 =—2 =
5uq+l iuq+2 then 51°q+1 1aaq+1 i o +2 0.

Since hq,q+l = 0, there exists aq € A9’9 gych that

an = i°q+l and this completes the proof of the lemma. O

Using the forms aq € 299 of the lemma note that

W= Tw = Ziw = A aan_l = 3L A ano1 + an exact form
= T%u= ¢ A 37 A ia,_, + an exact form
= L AJC A sun_z + an exact form

= (35)2 A @, ., + an exact form.
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In general,
w = (§C)k LI N + an exact form, l<k
as follows easily by induction. Choosing k = n we have
- n -4
w = ao(ac) + an exact form, and a, € C. -
Applying T one more time we have:

w = aoc A i('5'c)n + an exact form = an exact form.

It follows then from Stokes' theorem that [ we=20,

in contradiction to the choice of w. a

Remark It follows from the result of Bott [ 7] that

the Chern numbers XO = xl = 0 if M admits a nonvanishing

holomorphic vector field. Thus, if dim M = 3

and
plr0 1,1, 1,2 1,3 _ 4
so hO1 4 plv2 2y 4 %2 4 pted 4 ple3 _ (1003 4 100y,

According to the theorem above we may conclude in addition

that h9'1 4+ plr2 4 o |
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IV. PARALLEL VECTOR FIELDS

1. According to the classical theorem of Hopf, on a closed
differentiable n-manifold there exists a nowhere vanishing

vector field if and only if the Euler-Poincaré characteristic
is zero, x(M) = 0. If M is Riemannian one may ask whether or
not it admits a vector field that is parallel. Chern has shown

that necessary conditioms are that the first Betti number b, > 1

1

and that the second Betti number b2 > b,-1 and he has

1
conjectured that these conditions are not sufficient [10].
Since parallel fields are Killing fields it follows from the
result of Bott [ 7] cited at the end of Chapter II that

all the Pontryagin numbers of such a manifold are zero. Of
course, this is a restriction only if dimension M = 0 mod 4.
Below, we derive additional necessary topological conditions
that extend those of Chern. Thus, we are able to exhibit a
family of manifolds with x = 0 that satisfy the conditions

of Chern and Bott but still cannot admit parallel fields
whatever the metric. If the manifold admits a complex structure
‘we refine our results to deduce additional conditions that

are necessary for M to admit a vector field that is parallel
with respect to a Kdhler metric. We apply these results to

the topology of compact homogeneous spaces (supplementing

some similar results of Hurewicz and de Rham). Finally, we
give some n-dimensional generalizations of some classical

results of Hurwitz on Riemann surfaces of genus > 2 and also

consider the effect of curvature on topology.
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2. We begin by recalling that if V is a parallel vector
field on M then V is also a Killing field. In fact, if

V¢V = 0 for all Y then (L,9)(Y,2) = Vg(Y,2) - g(L,Y,Z2)

- g(Y,LVZ) = g(VYV,Z) + g(Y,VzV) = 0., As a consequence,

if V is parallel it is divergence free, div_V = 0 (see
Chapter I). Also, if v = g(V,*) = the covariant form of V,
dv = 0 , since

dv(Y,z2) = Yg(V,Z) - Zg(V,Y) - g(V,LYZ)

= g(VYV,Z) - g(VzV,Y) =0 , for all Y,Z.

Thus v is a harmonic 1l-form and b, > 1.
Theorem 1 If a closed differentiable n-manifold M

admits a vector field that is parallel with respect to some

Riemannian metric then the Betti numbers of M satisfy:

b, >1 and b 2b, - b,y for 1<k <n-l.

k+1 k

Notice that when k = 1 we have Chern's condition b > b -1.

2 1

Proof: Suppose that V is parallel with respect to
some metric g. Let v be the covariant form of V, v = g(V,"*).
Define an operator T: A.(M) + A*(M) by T = zv + iv . Let
D=d + § and let Hk(M) denote the finite dimensional vector
space of g-harmonic k-forms. We need the following anti-

commutation property:
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Lemma 1 DT + TD = 0 as an operator on Ak

Proof: DT + TD = (@ + 6)(2+ i) + (£ + 1)(d + §)
= doil 4+ iod + 8oL 4+ L08 + dzv + zvd + 108 + Ge°i
LV+L§+A+At k

+ v Ado =dv Aw and At is the transpose of A. Since V is

where for w € A7 , A w = d(v A w)

a Killing field LV + L; = 0 (see Section I-1.5) and since

v i8 closed A = At = 0.

Returning to the proof of the theorem, note that

o pk=1 g pktl

We nowclaim that T is a linear injection of the finite

k

dimensional space H" C 2% into H¥"Ll @ wK*L S_Ak_l o A K1,

Thus by the Hodge Theorem, b, = dim HX < dim + dim

k
= b, _y + by, and this will complete the proof of the theorem.
To see that T does, indeed, have the property claimed

. k
observe first that if ay € H then Dak = dak + Guk = 0.
So, by the lemma, D[T(uk)] = d'ro.k + GTuk = 0 and (since
the ranges of 4 and § are orthogonal) we see that Tak is

k-1 k+1

harmonic. Thus T(Hk) CH ® H" ' ~. To check that T is an

injection note that if Ta = 0 then 0 = Tza = (Lol + iof)a
- |v|2a and since V # 0 we have a = 0. The proof of the
theorem is complete. a

Suppose now that M2m has a complex structure, and a

Kihler metric h. If a vector field V is parallel with

respect to such a Kidhler metric it is called Kihler-parallel.
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Recall that for a Rihler manifold the Hodge numbers hPr4
satisfy bk = ) hPr9,  we have the following refinement
p+a=k :
of Theorem 1
Theorem 2 If a closed 2m-manifold with Kdhler metric

admits a Kahler-parallel vector field then the Hodge numbers
of M satisfy:

nP*1+d 5> 4Pd - P-1e@ £5r 90 <p<n, 0<q<n.

Proof: Suppose that V is parallel with respect to some
Kdhler metric h. Consider the vector field of type (1,0)
Z =V - iJV and its dual (1,0) form ¢ = h(*,Z) so that
£(Z) = IZIﬁ ¥ 0. Let T be the operator T: A; -+ A; defined

by Tw = L,w + i,u for w € AP'? and let D =23 + .

4

- - *
Lemma 2 DT + TD 0 as an operator on AC .

Proof: DT + TD = '5°iz + iz°5 + eozc + £C°8 + 3L + 23
+ 106 + ol = iz + i; + K + A%, where A denotes left multi-
plication by 3(. Thus it is sufficient to check that
L, =& =0. Since ¢ is a (1,0) form 6Z = 0 and so 3§ = 0
O'Ef = 0. Since h is Kihler O = % A and Oz * the real
and imaginary parts of { are harmonic with respect to the
Riemannian metric h. Now ¢ = h(*,Z) = h(°,V) + ih(*,JdV)
= Re [ + i Im . As noted at the beginning of this section,
to verify that A Re L = A Im [ = 0 it is sufficient to
check that Vx Re f = Vx Im { = 0 for every vector field X.

This is, in fact, the case since Vxh = VXJ = va = 0., To
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complete the proof of the lemma we need only check that

Z is holomorphic so iz = 0 by Lemma 1 of Section I-2. To see

. . _ '_ a
that 2 is holomorphic 1let Vs = Va/az where {z"} are

local complex coordinates on M. Then 2 = Z zj —33 ’

1,0 9z

since Z, € T M , and 2 is holomorphic iff azj/aE° = 0

P
for all a,j for some choice of local coordinates {z%}.

Since the metric is Kahler we may choose local coordinates

that are "normal", (i.e. the Chrisgstoffel symbols vanish)

and so V={ = —%E . In these coordinates Z is holomorphic
. 3z .
iff V_ZJ=0. since P zJ is a linear combination of components
a

of the tensors J and V which are parallel the proof of

the lemma is complete.

Returning to the proof of the theorem, note that

T: AP/9 & AP"llq @ Ap+l:q

As in the proof of the previous theorem, we show that T
injects the finite dimensional space HP 4 dsf ker O n AP/9
c AP'9  jnto #P~1/9 g yP*Leq, By the lemma, D[T(HP'9)} = 0
and so for ap’q e HP'q, 3Ta + 6Ta = 0 = Ta is O-harmonic.
To check that T is an injection we just note that

T2 = Leoiy + ig08,
is nonvanishing. Since by the Hodge-Kodaira theorem

= multiplication by h(Z,Z) and Z = V-iJV

dim HP'9 = RPrq  ¢he proof is complete. a

As an application of Theorem 1 we can construct
examples of manifolds that satisfy the conditions of Bott
and Chern but still do not admit parallel fields for any

metric. One family of such manifolds is:

37



S(p.q.,xr) = s1 x sP s9 x g¥

1 mod 2. Here Sk denotes

with 3 < q < r-1 and p+l = g+r
the sphere of dimension k and # is the operation of "connected
sum” (c£f. [23]). It is easy to check that b1 =1and x =0

3. A classical theorem of Hurwitz may be restated as:

"A closed two-dimensional manifold of genus > 2 has a finite
isometry group for any Riemannian structure, and it admits

no one-parameter group of holomorphic transformations for

any complex structure” cf [5 ]. If a two dimensional
manifold has scalar curvature t(x) < 0 (and # 0) then by

the Gauss-Bonnet theorem % Euler characteristic = arithmetic

0,0 0,1

genus = h - h = 1 - genus < 0 i.e. b2< b.-1 or

1

0= ho'2 < ho'1 - ho'o. Bochner [5 ] has extended Hurwitz'
theorem under the hypothesis of negative definite Ricci
tensor (Ricci < 0) in place of t(x) < 0 or genus > 2.

By explicitly introducing topological conditions (in place

of using the Gauss-Bonnet theorem) we can get the same

result for Ricci < 0:

Theorem 3 If a closed Riemannian n~-manifold (Mn,g)

has Ricci < 0 and satisfies:

b4y < b -b,_, for some 1<k <n-l

then the isometry group ‘of (M,g) is finite.

Proof: According to a well known result of Myeré and
Steenrod [27] the isometry group of M is a compact Lie group

38



I(M). The finiteness of I(M) will then follow ffom the
fact that its Lie algebra, which is isomorphic to the set

of Killing fields on M, is empty, i.e. dim I(M) = 0. To

see that (M,g) has no Killing fields observe that it follows
from Bochner's theorem (cited in Section I-1.7) that any
Killing field must be parallel and it follows from Theorem L
that M admits no parallel fields.

The analogous result for holomorphic vector fields is

Theorem 4 If a closed Kahler manifold ﬂ’has Ricci < O

and satisifes:

pPratl o yPrd _ yPe91l £or gome 0 <p<n 1l<gc<n

then it admits no connected group of holomorphic transforma-

tions.

Proof: If M admits a connected group of holomorphic
transformations then it admits a nontrivial holomorphic vector
field Zz. Let h be the Kihler metric and ¢ = h( ,Z) the
(1,0) form dual to Z: Set T = £+ i, and D=3 + 6.
Then, as in the proof of Lemma 2, DT + T = A + A"
where A denotes left multiplication by 3%, and at is the hermi-

tian transpose of A.

Lemma 3 Under the hypotheses of the theorem and

with notation as above 3z = 0.

We postpone the proof of the lemma until the proof of

the theorem is completed. Returning to the theorem we have
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DT + TD = 0 and so, as in the proof of Theorem 2
v: HP'9 » yP~1+9 g yP*Lid g check that we still have an
injection note that T = multiplication by h(Z,Z) and,
since 2z is holomorphic, h(%Z,Z) # 0 almost everywhere.

To complete the proof of the theorem we only need the

Proof of Lemma 3: We use an elementary integral
formula for which we refer to [22], p. 17: For a (0,1l)-form
£ on a closed Kahler manifold (Qf,£) 2 = [ Ricc(§,E) vol

L M

+ J (Ve, VE) (x) vol where VE is the complex tensor field

(VE) Vxﬁi if A=) , B = i
AB 0 otherwise

and £ =) & az". Let £ =T = h{ ,Z) = h(-,z) € 91 .

Since 2 is holomorphic VE = 0 cf. [22]. Thus

@Q%,%) = I Ricc(Z,§) < 0 . It follows that O = 0. Since

the metric is Kahler O =0 = aoat + atoa and so

O =0 ¢ = 253 since 2 € A%, Thus 3T =g = 3z = 0
as claimed. This completes the proof of the theorem.

Remark. For a manifold with real dimension = 2,
these conditions on Betti and Hodge numbers just mean genus > 2,

Burwitz' condition.
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If we strengthen our hypotheses we can provei

Theorem 5 If a closed Riemannian n-manifold (Mn,g)

has nonpositive curvature and Betti numbers satisfying

beyir < by - b, _, for some 1 <k < n-1

then Diff (M)o (the identity component of the group of

diffeomorphisms of M) contains no nontrivial isometries.

Proof: Let ¢: M+ M be a nontrivial isometry in
Diff(M)0 and ¢t a family of diffeomorphisms of M connect-
ing ¢0 = identity and ¢1 = ¢. Let M —L» M denote the
universal Riemannian covering of M. o is a local isometry
and M has nonpositive curvature. Let at denote the unique
1ift of ¢, to M so that for 5 € M: ﬂo¢t(5) = ¢t(ﬂ(§))-

Set 5 = 61. It is easy to see that 5 is an isometry since

n°$ = ¢o7. ¢ commutes with deck transformations since

ﬂ°$t = ¢t°ﬂ for all t and the set of deck transformations
is discrete. It follows from the compactness of M that
dist(p,¢(p)) is a bounded function on M. We may now apply
the results of J. Wolf [34] to conclude that the vector field
V determined by Vi5 = tangent vector to the minimal geodesic
connecting p and §(p) is a parallel vector field on M. Since
M has nonpositive curvature and is simply connected it

follows that for any deck transformation T we have

T,Vs = VT(ﬁ)' Hence the vector field V projects to a parallel
vector field on M. Now apply Theorem 1. a
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For n = 2 the theorem is due to Hurwitz [18]. We have

used an idea of Frankel [12] who proves a similar result.

4, As remarked in [16]}, it is known that the Betti numbers

of compact horogeneous spaces satisfy: (a) b, < (dlm) {deRham)

b J J
and (b) if b, # 0 then bj > jl) (Hurewicz). We may apply

the theorem of Section 1 to prove:

Corollary 1 If G/H is a homogeneous space of compact

Lie groups with bl(G/H) # 0 then the Betti numbers of G/H
satisfy

b >b, =-Db

k+1 > Py for all 1 < k < n-1

k-1

Proof: According to Samelson [29]), every compact homo-
gencous space admits a metric with nonnecgative scctional
curvature = Ricci > 0. If b1 # 0 then Bochner's theorem
(cec Chapter I, Section 1.7) guarantees the existence of a
parallel vector field and the proof is concluded by applying

Thecorem 1.

Rerark. It follows that no compact Lie group can act

transitively on the manifolds S(p,q,r) of Section 2.

5. As a final application of Theorem 1 we have
Theorem 6 If a closed n-manifold has nonzero first Betti

nunber and satisfies

by < b - b _, for some 1 <k < n-l

then it admits no Riemannian structure with Ricci > 0.
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Proof: Again by Bochner's theorem, (see Chapter I,
Section 1.6), Ricci > 0 and nonzero first Betti number
imply that M admits a parallel vector field. The conclusion

then follows from Theorem 1.

Remark. It is a well known conjecture of Calabi [ 8]
that a compact Kahler manifold with vanishing first Chern
class admits a Ricci-flat (i.e. Ricci = 0) metric. Assuming
the validity of the Calabi conjecture, Theorem 6 implies
topological conditions for Kihler manifolds with vanishing
canonical class. In particular, suppose a Kihler manifold M
admits a nonvanishing holomorphic vector field or a free
-b

s! action. Then either ¢ # 0Oor b, .., 2b for all

k+l k k-1

1<k < n-1.
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V. ELLIPTIC OPERATORS AND VECTOR FIELDS

The purpose of this chapter is to prove some results
connecting the existence of some special differential forms
and vector fields with topological and geometric properties

of manifolds by means of the theory of elliptic operators.

1. A classical theorem of Poincaré asserts that if a
2-dimensional manifold admits a nonvanishing vector field
then (M) = 0. A 2-manifold M can be viewed as a Riemann
surface and every vector field of type (1,0) is of the

form 2 = X - iJX for & real vector field X. Furthermore,
for a Riemann surface the Euler characteristic is twice the
arithmetic genus (cf. Chapter I, Section 2). Thus, the
Poincaré result can be restated as: If a Riemann surface
admits a nonvanishing (1,0) vector field (or (1,0)-form)

then its arithmetic genus = 0. We generalize this as follows:

Theorem If a complex manifold M cfcomplex dimension .
2n+l admits a nonvanishing (2n+1,0) form then its arithmetic

genus = (.,

Corollary If M admits 2n+l independent (1,0) vector fields
then arithmetic genus = 0.

For n > 1 the arithmetic genus and Euler characteristic

are not connected in any simple manner.
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def
Proof: Let EP/&VeR (o, gP-0dd) 2% o 4p,2q

(resp. @ Ap'2q+l). Choose a hermitian metric and let 3+8 = Dp:

gPreven , gp,0dd .o Chapter I. Section 3). By the

Serre Dualitv Theorem (cf. [33]) hP’9 = pR~P-0-q

and xp = (-1)m xm-p if dim M = m. Since m = 2n+l:

x0 = _xm= Let T (E) = EO,even Py Em,odd and r(P)=:E°'°ddQ gm,even

*
and ¥ = Dy ® D;. Then J: E + F is an elliptic overator and

* * *
indJ) = ind D, + ind D_ = ind D0 - ind Dy = xo - Xm = 2x°
= 2 arithmetic genns. We will show that if there exists

w € Am'o and w # 0 then ind(0) = 0. Let ﬁw denote left
*

exterior multiplication by w , lw the adjoint operator

*
and {1 = iw ® lw. Then 1: E+ F and we have the diagram:

EO,even D0 E0,odd
L 2
@ ®
Em,odd gmseven
Dm
* ®
Lenma DO+ 020D = differential operator of order zero.

Let Dt = D + tl. Then t -+ Dt is a continuous path of
Fredholm operators (in suitable spaces) connected to 0.
Hence ind(Dt) = ind(P) . We will show that there exists a t
with ind (D

0
to) = 0. In fact, for t sufficiently large it will

®*
be seen that ker Dt = ker Dt = @,

0 0
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First, observe that ker Dt = ker D:Dt

2

* * * *
=ker [DD +t°0 Q0+ ¢t(D O +Q D)]. Note that

* - * - * - * * *
D = (3 +6) = (6+23) =DandD D=0 whileQ Q =2 £ + 22 .

If u-= uO,even e um'Odd € E then
*
a'qu = 27y yoreven g o ,* me0dd
At p€ M L u= (g,A A G )u for some 7, € Al’o ith
’ w 17" n 3 w
leck ’ j#k - Then
= (2 2 ) =4 i in T.M
= [ ] o o0 (] = ° oo ° n
w 81 tn [ 4 P

*
(cf£. [31)]), and we have lwlw = multiplication by I |Cj|2 in

*
a neighborhood of p. Similarly for lwlw. If we put

2

* *
vtvt +t 0N = A(t) it follows that for the usual

inner product on E and F there exists ¢ > 0 such that

IA(t)ullul > (A(t)u,u) = (@u,u) + t2(2 Au,u)

2

> (Ou,u)+ t2c(u,u) >t clut?

Thus ker A(t) = 0. Since A(t) has closed range and the
*
same estimate shows that ker A (t) = 0 it follows that

A(t)"! is a bounded operator.

2

It follows from the estimate 1A (t)ul > ct Iul that

2

IA(t)-ll < at €, a > 0, and by Lemma 2 we may choose t = to

* -
such that ﬁ}D*Q +Q0) °n 1(to) is a bcunded operator C
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* L)
with norm < 1. Suppose u € ker Dt D, . T™hen u € C and

- 0 0
u = A(to) 16 v and

* &
0 = vtovt u = [A(to) + to(v Q + QD) ]Ju

0

= (I +C) v

Since ICl <1 it follows that v=0= u = 0.

Thus, we have shown ker D = 0, The same method works

t
0
for the adjoint to show that ker v: = 0, and we conclude
that ind(D) = 2 arithmetic genus = 0.
To complete the proof we prove the lemma:

p"a + a'p. g0reven g gmodd | ;0,0dd o gm,even .4 4¢

O. m
u = u éu then

* * 0 m Y = 0 o= * o= m
g +aD0)(u” &u’) = [2(3+8) + (3+8)2]Ju @ [L (3+8)+L (3+6)]u

* »
= R+5)u’ @ [5 + R Ju®

where R = 23 + 23 = left multiplication by 30 €n2"*1.1

and s = (£'7 + 32Y).

R is certainly a zero order operator and we claim that
the same is true of S. 1In fact, let {U} be a collection of
small coordinate patches on M over which E is trivial.
Then, clearly, S is of order zero if S restricted to sections
over U is of order zero for all U. In U we may assume that

1,0

W =Ly Ao ALyt v Cj € A and the Cj are orthogonal.

Then 2* = 9 ... © iC (cf. Section I-1.2) and

i
Son+l 1
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=2 3 + 38 = (i 6...0 i_ )3 + (i ® ...0i_ )
u Son+l 31 San+l %1

By Lemma 1 of Chapter I, Section 3, i, ©3 = =0i_ + 2
7 !

where Zl is a zero order operator and so

S = =i © *** o i.+D+i. 4+ Jeoi o.+.0i. + zero order
2n+l 2 1 2n+l 1 operator
Continuing the transpositions i = 2 in the first term
3
on the right-hand side we find
S = -3oiczn+l 0 ces 0 icl + 5C2n+1 ° ° i, 41

+ zero order operator
= zero order operator.

Remarks (1) It is possible to prove the theorem by applying
some characteristic class theory and the full force of the
Hirzebruch-Atiyah-Singer Riemann-Roch theorem for
arbitrary compact complex manifolds (whose only proof
is via the Atiyah-Singer Index theorem). The proof above is
elementary. In any gvent, the result does not appear to have
been remarked in the literature.

(2) It should be observed that the proof showed that
(1) arithmetic genus = ind(P) and (ii) ind(DP) < 0 and ind(D) > O.
It is conceivable that similar considerations will show
in some cases either that ind(D) < 0 or ind(D) > 0 (e.g. when
2 is bounded below but Q* is not). For this reason we have

avoided a different method of attack, employed by Atiyah in [1],
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that can only show that an elliptic operator has index zero.

(3) Essentially the same method of proof shows that
if a differentiable manifold M admits a nonvanishing vector
field X then x = ind(D) = ind(D + £ + i) < 0 and > 0 i.e.

= 0. Here D is the operator D = d + §: @ A%P 4 g p2P-1

2. In this section we give a proof of Hurwitz' theorem

cited in Chapter I.

Theorem (Hurwitz-Bochner). If M is a closed 2-manifold

with x(M) < 0, then the isometry group of M is finite for any

Riemannian structure.

Proof: Let g be any metric on M. It will be shown that
X < 0 implies that (M,g) admits no Killing vectors. It then
follows from the compactness of the isometry group that the

group is finite.

Suppose that (M,g) did admit a Killing vector K. Let

def
We = g(K, ) be the covariant form of K, and consider the

0 g 72 gl

differential operator Dk =d + § + zw + iK: A
Since Lw + iK is a differential operator of order zero

Dy is a Fredholm operator of order 1 and ind(DK) = ind (d+6)

= x <0 (cf. Chapter I, Section 3). Now ind(DK) < 0 implies
that dim cokernel Dy = dim ker D; > 0 so that there exists

u € Al such that Dpu = 0. Dp = (@ + 8" (2 +iy"

= § +4 + ix + zm = D since iK is the adjoint of left
multiplication by L, (cf£f.I-1.2). Thus u € ker D; iff u € ker DKD;

iff DKD;u = [(A+6) 2+ (2+1)2+Ai+id+62+26+d2+2d+i6+8i]u =
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t

= (A+L,+L;+A+A + |K|2)u where Au = df A u.

t
X X
By Lemma 2 of Chapter I and the fact that df A u = 0 we have

(A + |K|2)u = 0. Taking the inner product of both sides with u:
0 = (Au,u) + J (|K|2 ) A *u = |du|2 + |6u|2 + I IKlz(u A xu)

It follows that f |K|2u A *u = 0 and since the set zero(K)
on which K vanishes has no interior (since K satisfies an
elliptic equation with A = highest order term [5])

it follows that u A #u = 0 a.e. Since u € C° we have

u £ 0. The proof is complete.

Remark Recall that the Hsiang degree of symmetry of a

manifold M is the maximal dimension of compact subgroup
of Diff(M). Since any such caompact subgroup can be made
to act by isometries it follows that if x(Mz) < 0 the
Hsiang degree of symmetry of Mz is zero. This point of
view is of interest in view of the fact that Atiyah and
Hirzebruch [2 ] have shown that the degree of symmetry of
a 4k-dimensiongl spin-manifold is zero if its ﬁ-genus

is nonzero.

50



[1]

(2]

[3]

[4]

(5]

(6]

(7]

(8}

(91

(10]

(11]

BIBLIOGRAPHY

M. Atiyah, Vector Fields on Manifolds, Westdeutscher

Verlag, Koln, 1970.
M. Atiyah and F. Hirzebruch, Spin manifolds and group

actions, in Essays on Topology and Related Topics,

A. Haefliger, ed., Springer, New York, 1970.

M. Berger, Trois remarques sur les variétés riemannienes
a courbure positive, C. R. Acad. Sc. Paris, 263 A (1966)
76-78.

M. Berger, P. Gauduchon, and E. Mazet, Le Spectre d'une

variété Riemannienne, Lecture Notes in Mathematics $#194,

Springer, New York, 1971.

S. Bochner, Vector fields and Ricci curvature, Bull. Amer.
Math. Soc. 52, (1946) pp. 776-797.

S. Bochner, and D. Montgomery, Groups on analytic
manifolds, Ann. of Math. 48 (1947) 659-669.

R. Bott, Vector fields anrnd characteristic numbers,
Michigan Math. J. 14, 231-244 (1967).

E. Calabi, On Kdhler manifolds with vanishing canonical
class. Algebraic Geometry and Topology, 78-89, Princeton,
1957.

J. Carrell and D. Lieberman, Holomorphic vector fields
and Kdhler manifolds, Inv. Math. 21 (1973), 303-309.

S. S. Chern, The geometry of G-structures, Bull. Amer.
Math. Soc. 72 (1966) 167-219.

P. Dolbeault, Sur la cohomologie des variétés analytiques

complexes, C. R. Acad. Sci. Paris, 236 (1953), 17¢-177.

51



'[12] T. Frankel, On a theorem of Hurwitz and Bochner, J. Math.
Mech. 15 (1966) 373-377.

[13] C. Godbillon, Géometry Différentielle et Mécanique

Analytique, Hermann, Paris, 1969.

[14] S. Helgason, Differential Geometry and Symmetric Spaces,

Academic Press, New York, 1962.

[{15] F. Hirzebruch, Topological Methods in Algebraic Geometry,

3xd rev. ed., Springer, New York, 1966.

[16] H. Hopf and S. Samelson, Ein Satz tiber Wirkungsriume
geschlossener Liescher Gruppen, Comm. Math. Helv. 13
(1940-41), 240-251.

{17] A. Hurwitz, Uber algebraische Gebilde mit eindeutigen

Transformationen in sich. Math. Ann. 5}_(1893) 403-442.

(18] . Uber diejenegen algebraischen Gebilde...
Math. Ann. 32 (1887) 290-308. '

[19] S. Kobayashi and K. Nomizu, Foundations of Differential

Geometry, Vol. I, II, Interscience-Wiley, New York,
(1963, 1969).

[20) K. Kodaira, On Kdhler varieties of restricted type,
Ann. of Math. 60 (1954), 28-48.

[21] Y. Matsushima, Holomorphic vector fields and the first
Chern class of a Hodge manifold, J. Diff. Geom. 3 (1969)
477-480.

(22]  Holomorphic Vector Fields on Compact

Kdahler Manifolds, C.M.B.S. Series Mathematics # 7, A.M.S.,

Providence, R. I., 1971.
[23] J. Milnor, Sommes de variétés différentiables, Bull. Soc.

Math, France, ﬁl (1959) 439-444.
52



[24]

(25]

(26]

(27}

(28]

(29]

(30]

(31]

(32]

(331

(34]

and J. Stasheff, Characteristic Classes, Princeton U.
Press, 1974.

J. Morrow and K. Kodaira, Complex Manifolds,

Holt, Rinehart and Winston, N. Y. 1971.

S. Myers, Riemannian manifolds with positive mean
curvature, Duke Math. J. 8 (1941), 401-404.

S. Myers and N. Steenrod, The group of isometries of a
Riemannian manifold, Ann. of Math. 40 (1939), 400-416.

R. Palais, ed., Seminar on the Atiyah-Singer Index Theorem,

Princeton University Press, 1965.

H. Samelson, On curvature and characteristic classes
of homogeneous spaces, Mich. Math. J. 5 (1958), 13-18.
G. Tsagas, On the second cohomology group of a pinched
Riemannian manifold, Ann. di Mat. 86 (1969) 299-311.

F. Warner, Foundations of Differentiable Manifolds and

Lie Groups, Scott-Foresman, Glenview, Illinois, 1971.

A. Weinstein, Lectures on Symplectic Manifolds,

NSF-CMBS Conference.

R. O. Wells, Jr., Differential Analysis on Complex

Manifolds, Prentice-Hall, Englewood Cliffs, N. J., 1973.
J. Wolf, Homogeneity and kounded isometries in manifolds

of negative curvature, Ill. J. Math. 8 (1964), 14-18.

53



