
ON THE HOMOTOPY RELATION FOR c.s.s.. MAPS... 

By Danien M. Kan Co or 

1. Introduction | RA 

A c.s.s. complex (see [2]) may be considered as a collection of sets together 

with a collection of maps between them satisfying certain identities. Similarly 
a ¢.8.8. group may be considered as a collection of groups together with a col- 

lection of homomorphisms between them satisfying the same identities. This 
suggests the notion of a c.s.s. object over an arbitrary category C. 

Let © be a category and let @” denote the category of a c.s.s. objects over €. 
Then it will be shown that if in € a notion of sum is defined, it is possible to in- 
troduce in @" a homotopy relation in a rather natural way. a 

Let € and © be such categories with sums. Then we will show that undef 
certain conditions a functor T:€" — D” preserves homotopies. This generalizes 

a result of A. Dold ([1]). a 
As an application we prove an analogue for c.s.s. groups of :4 theorem of: J. 

H. C. Whitehead. : 

2. C.s.s. categories . 

For every integer n = 0 let [n] denote the ordered set (0, ---, n). By a map 

a:[m] — [n] we mean a monotone function, i.e., a(t) < a(j) for0 £ ¢ £ j= m. 
Clearly the sets [n] and the maps a:[m] — [rn] form a category. This category 
will be denoted by 0. | | i 

DeriniTioN (2.1). Let @ be a category. The function category €' (see 31) 
will be called the c.s.s. category over €; its objects and maps will be called c.s.s. 
objects and c.s.s. maps over @. We recall that an object of @ is any contravariant 
functor K:U — € and that for two objects K, L e@" a map f:K — L is a. nat- 
ural transformation. Instead of Kn}, Ka and f[n] we usually write K,, K. 
and f,, . | | 

ExaMpLEs (2.2). (a) Let 9M be the category of sets. Then on” is the category - 

of c.s.s. complexes ([2]). 
(b) Let 9T be the category of sets with a distinguished element. Then 9" is 

the category of c.s.s. complexes with a base point ([4], §2). 

(c) Let £ be the category of modules (over a ring A). Then £&” is the cate- 
gory of c.s.s. modules over A ([1]). In particular if A = Z, then £" is the. cate- 

gory of c.s.s. abelian groups. 

(d) Let G be the category of groups. Then G" is the category of c.s.s. groups 
(14). 

1 The author was partially supported by Air Force Contract AF 18 (600)-1494 during the 
period when the work on this paper was being done at Princeton University. 
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3. Categories with sums 

DEriniTION (3.1). Let © be a category and let M be a set. Let C' ¢@ be an 
object and for every element ue M let be given an object C, ¢@ and a map 
Ju:Cy — C. Then C is called the sum of the objects C, under the maps j, if for 
every object D eC and every set of maps d,:C, — D, u ¢ M there is a unique 
map d:C — D such that for every u e M commutativity holds in the diagram 

c, —*, ¢ 

NY 

Ny 
D 

We then write C = 2 ux 5,0, of C = ju, Coy + §ugChy + + 
This definition is a special case of the definition of direct limit of [3], chapter 

II. 

DEFINITION (3.2). A category € is called a category with sums if for every set 
IM and function I' which assigns to the elements of M an object of ©, there are 
given an object M-T eC and maps pu -I'(n): T(x) — M-T (up eM) such that 

M-T = ) per (u T())T(n). 

ExampLEs (3.3). All categories in example (2.2) are categories with sums. 
Using the same notation we have 

(a) The sum of a collection of objects of 9M is what is usually called their 
union. 

(b) The sum of a collection of objects of IT is their union with identification 
of all the distinguished elements. | 

(¢) The sum of a collection of objects of £ is their direct sum. 
(d) The sum of a collection of objects of G is their free product. 

DerFINITION (3.4). Let € be a category with sums. Then we define a functor 
® : 9M, @ — C as follows. Let M 9 and C €C be objects and let T be the funec- 
tion given by T(x) = C for all u e M. We then define i ® C by 

M®C=M-T 

(ie., M ® C is the sum of as many copies of C as there are elements in M). 
For maps g:M —- N eM and f:C —DeClet g ® fr: M ® C — N ® D be the 
(unique) map such that for every u e M commutativity holds in the diagram 

¢c *C, mec 

If 7 Q f 

p DN ® D 

It is readily verified that the function ® so defined is a covariant functor.
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It should be noted that definition (3.2) and hence definition (3.4) contains an 
element of choice. However it follows from [3], chapter II, that if in definition 
(3.2) the given object C ¢@ and maps 7,: Cy — C are changed, then the functor 
® gets changed by a unique natural equivalence. 

DermviTioN (3.5). Let @ be a category with sums, Then a covariant functor 

®:9m”, ¢” — e¥ may be defined by 

(K® 4), = K, ® A, 

(K® A)a=K.® A. 

(g ® fa = gn Q fn 

for every object K eM" and 4 ec” and map g eM" and fe@’. 

It is clear that the use of the symbol ® for two different functors will not 
cause any trouble. In both cases we often write ¢ ® A and K ® f instead of 
gd 14 and ix ® f. 

Exampres (3.6). (a) Let K, Le’. Then K ® L is usually called their 
cartesian product. 

(b) Let K ean’, A e Gg". The product K ® A then is as in [5], §3. 

4. The homotopy relation 

DermviTiON (4.1). Let © be a category with sums. Let the standard simplices 
P = A[0] and I = A[l] and the c.s.s. maps Ae*:P — I (z = 0, 1) be as in [5], 
§2. Then two maps fo, fi:A — B eG’ are called homotopic (over @) if there exists 

a map fri] ® A — Bee” (called homotopy) such that commutativity holds 
in the diagram 

0 1 
PRA Ae ®4 I®A Ae ®A4 PRA 

~ |i Js mi 

| 4a —h , Bp By 

where 7:P ® A ~~ A is the natural isomorphism. Notation fr:fo ~ fi (over @) 
or fo ~ fi (over @). | | 

A map f:4 — Be ec” is called a homotopy equivalence (over @) if there exists 

a map g:B — A ec’ such that the composite maps go f and fo g are homo- 
topic (over @) to the identity maps of A and B. The objects 4 and B then are 
said to have the same homotopy type (over @). 

ExampLES (4.2). Using the notation of example (2.2) we have: 
(a) Two maps of 9M” are homotopic over 9M if and only if they are homo- 

topic in the usual sense ([4] §2).
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(b) Two maps of %” are homotopic over 9 if and only if they are homo- 
topic rel. the base point ([4], §2). 

(¢) Two maps of £" are homotopic over £ if and only if they are homotopic 

in the sense of [1]. | 
(d) Two maps of G” are homotopic over G if and only if they are loop homo- 

topic in the sense of [5]. 

ExamprEs (4.3). Sometimes several homotopy relations may be defined over 
different categories. 

(a) As a c.s.s. group also may be regarded as a c.s.s. complex it follows that 
on G' there is a homotopy relation over G and one over 91. Clearly two maps 
homotopic over G are also homotopic over 9, but the converse need not be 
true. This may be seen from the following example: Let z: K(w, n) — K(¢, q) 

be a map representing a non-zero element of H(w, n; ¢) which suspends into 

zero. Then (see [5]) the c.s.s. homomorphism Gz:G(K(w, n)) — G(K(¢, ¢)) is 
homotopic over 9 to the trivial map, but by [5], §11 this is not the case over G. 

(b) Let £ momentarily denote the category of abelian groups. As a c.s.s. 

abelian group may also be regarded as a ¢.s.s. group or a c.s.s. complex there 

corresponds for the category £' three homotopy relations (over §, £ and IN). 
It 1s however readily verified that the homotopy relations over G and £ are 
equivalent. Clearly maps of £° homotopic over £ are also homotopic over IN, 

but the converse need not be true. 

REMARK (4.4). It should be noted that the homotopy relation defined in 
(4.1) need nof be an equivalence relation. For c.s.s. complexes counter examples 

can easily be found. However the homotopy relation always has the following 
property. 

PROPOSITION (4.5). Let @ be a category with sums. Let f:A — B, go, g1:B — C 
and h:C — D be maps of C' and let go ~ gy over C. Then hogoof ~ hogiof 
over C. 

Proor. Let g;:g0 ~ g1 over @. Then it follows immediately from the defini- 

tions that the composite map 

rea L185, 198 9%, ¢ 2, p 

is the desired homotopy. 

Special cases of Proposition (4.5) are [5], Proposition (2.5) and (3.4). 

5. C.s.s. functors 

We now define a class of functors involving c.s.s. categories (roughly speak- 
ing: functors such that “dimension n of the range’’ only depends on ‘‘dimension 
n of the domain”) and show that these functors map homotopic maps into 
homotopic maps. This generalizes a result of A. Dold ([1]).
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Let © and © be categories. A covariant functor T':€ — ©" induces a functor 
D(I):e" — D" given by 

~(D(T)A)s = (TAz)n 

(D(T)A)e = (T4a)e 

(D(T)g)n = (T'gn)n 

for every object A ¢@” and map g e@’. Denote by Z:¢ — €" the constant 
functor, i.e. for every object C eC and map c eC 

(ZC) = (C 

(EC) a = ic 

(Ze), = c. 

Then with every covariant functor 6:€7 — D" one may associate the composite 
functor © 0 5:@ — D" and it is readily verified that | 

Proposition (5.1). There exists a natural equivalence n:T' — D(T') o E. 

However in general the functors © and D(O o =) do not differ by a natural 
equivalence. We therefore define 

DerFiNtTION (5.2). A covariant functor 0:7 — DV is called a c.s.s. functor 
if there exists a natural equivalence £:0 — D(0 o E) 

The theorem now may be stated as follows 

THEOREM (5.3). Let @ and D be categories with sums and let 0:€°7 — DY bea 
c.s.8. functor. Then © maps maps homotopic over © into maps homotopic over D. 

Proor. It clearly suffices to show that for every object 4 ¢@" there exists a 
map a:] ® 604 —6(I ® A) ¢ D” such that commutativity holds in the diagram 

0 1 
Pood —2®0% | 1904 ~2%%  pges 

(54) =~ |! » lo = Is 

0 1 
op 4) —28 84) grg4 OBA gpg y 

where 7:P ® 04 =~ 6(P ® A) is the natural isomorphism. For each integer: 

n=0let al, ® OA), — OI ® A)). ¢D be the (unique) map such that. 
for every element pu eI, commutativity holds in the diagram 

04), 2, 1 o'ea), =, (0 ® A). 
. ~ / 

R SUC I 

pt Oo = ‘4, n ye (0°24), —CBwAD,  (g.m)1, © 4).
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It then follows from the naturality of all functions involved that the function 
a:] ® 64 —-6(I ® A) so defined is a map in D' and is such that commuta- 
tivity holds in the diagram (6.4). 

REMARK (5.5). The above result also holds for categories with finite SUMS 

1.e, if in definition (3.2) M is restricted to be finite. 

6. An application 

We now prove the following analogue for free c.s.s. groups (see [5], §4) of a 

theorem of J. H. C. Whitehead. 

TaEOREM (6.1). Let A and A’ be connected free c.8.s. groups and let fi 4 — A’ 
be a c.s.s. homomorphism. Let B = A/[A, A] and B' = A’'/[A’, A'] be their abel- 
tantzations and let g:B — B’ be the map induced by f. Then f is a homotopy equiv- 
alence (over GQ) if and only if g is so. 

Proor. If f is a homotopy equivalence, then by Theorem (5.3) so is g. In 
order to prove the converse consider the commutative diagram 

awa 20, 4 

| 4 | q 

GWWA/IGTWA, GWA] —2 B = AJA, A] 

where o'(2) is as in [5], Theorem (11.3) and p and ¢ are the projections. By [5], 
Theorem (11.3) o/(2) is a homotopy equivalence over G and hence by Theorem 
(5.3) so is b. Repeating this for A’ we get (see [4], §15) a commutative diagram 

— — _ Tn_1(b) 

H,(WA) = m,2(GWA/IGWA, GWA] ‘=~  maa(B) 

— — — Ta—1(b") 

H,(WA") = 7,_1(GWA'/[GWA’, GWA") ~~ Ta1(B’) 

If g is a homotopy equivalence, then clearly (Wf)x:H.(WA) — H,(WA’) is an 
‘isomorphism for all n. The connectedness of A and A’ implies the simply con- 
nectedness of W4 and WA’. Hence the theorem of J. H. C. Whitehead ([6], 
Theorem 3) yields that Wf:WA — WA’ is a homotopy equivalence over IN. 
That f is a homotopy equivalence over § now follows from [5], §11. 
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