ON THE HOMOTOPY RELATION FOR c.s.s.. MAPS! .. ...

By Daniern M. Kax

1. Introduction

A c.s.s. complex (see [2]) may be considered as a collection of sets together
with a collection of maps between them satisfying certain identities. Similarly
a ¢.8.8. group may be considered as a collection of groups together with a col-
lection of homomorphisms between them satisfying the same identities. This
suggests the notion of a c.s.s. object over an arbitrary category €.

Let @ be a category and let €” denote the category of a c.s.s. objects over €.
Then it will be shown that if in @ a notion of sum is defined, it is possible to in-
troduce in €" a homotopy relation in a rather natural way.

Let @ and © be such ca.tegorles w1th sums. Then we will show that- undel‘
certain conditions a functor T': e’ — DY preserves homotopies. This generahzes
a result of A. Dold ([1]).

As an application we prove an analogue for c.s.s. groups -of ;4 theorem of:J.
H. C. Whitehead. 3

2. C.s.s. categories

For every integer n = 0 let [n] denote the ordered set (0, - s, ). By a map

a:[m] — [n] we mean a monotone function, i.e., a(z) < a(j) forO 2i<jsm
Clea,rly the sets [n] and the maps a:[m] — [n] form a cabegory This category
will be denoted by 0.

Derinirion (2.1). Let € be a category. The function category €' (see [3])
will be called the c.s.s. category over €; its objects and maps will be called c.s.s.
objects and c.s.s. maps over €. We recall that an object of €' is any contravariant
functor K:U — € and that for two objects K, L e€” a map f:K — L is a.nat-
ural transformation. Instead of K[n], Ka and f[n] we usually write K,, K.
and f, . '

Exampres (2.2). (a) Let 9 be the category of sets. Then on” is the category -
of c.s.s. complexes ([2]).

(b) Let 9T be the category of sets with a distinguished element. Then 9" is
the category of ¢.s.s. complexes with a base point ([4], §2).

(¢) Let £ be the category of modules (over a ring A). Then £ is the cate-
gory of c.s.s. modules over A ([1]). In particular if A = Z, then £" is the cate-
gory of c.s.s. abelian groups.

(d) Let G be the category of groups. Then G is the category of c.s.s. groups
(14D).

1The author was partially supported by Air Force Contract AF 18 (600)-1494 during the
period when the work on this paper was being done at Princeton University.
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3. Categories with sums

DerintTioN (3.1). Let € be a category and let M be a set. Let C €€ be an
object and for every element u ¢ M let be given an object C, ¢e@ and a map
JutCu — C. Then C is called the sum of the objects C, under the maps j, if for
every object D e and every set of maps du:Cy — D, u ¢ M there is a unique
map d:C — D such that for every u e M commutativity holds in the diagram

¢, I, ¢

dy d

N
D

We then write ¢ = D e juCh oF € = juyCly + JugCy + -+
This definition is a special case of the definition of direct limit of [3], chapter
iI.

DeriniTION (3.2). A category @ is called a cafegory with sums if for every set
M and function T' which assigns to the elements of M an object of €, there are
given an object M T eC and maps u-T(u):T(u) — M-T (zeM) such that
M-T = 3 e (u T(u))T(u).

Exampres (3.3). All categories in example (2.2) are categories with sums.
Using the same notation we have

(a) The sum of a collection of objects of 9N is what is usually called their
union.

(b) The sum of a collection of objects of 97 is their union with identification
of all the distinguished elements. ,
" (¢) The sum of a collection of objects of £ is their direct sum.

(d) The sum of a collection of objects of G is their free product.

DeriniTION (3.4). Let € be a category with sums. Then we define a functor
® :91, @ — € as follows. Let M ¢ 9 and C €@ be objects and let T" be the func-
tion given by I'(n) = C for all u e M. We then define M ® C by

M®C=MT

(ie.,, M ® C is the sum of as many copies of C as there are elements in M).
For maps g:M — N eMand f:C —>DeClet g ® f: M ® C — N ® D be the
(unique) map such that for every u ¢ M commutativity holds in the diagram

c —#C

I 78 f

p #P . ygD
It is readily verified that the function ® so defined is a covariant functor.

MeC
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It should be noted that definition (3.2) and hence definition (3.4) contains an
element of choice. However it follows from [3], chapter II, that if in definition
(3.2) the given object C e @ and maps j,:C, — C are changed, then the functor
® gets changed by a unique natural equivalence.

DzrmviTiON (3.5). Let @ be a category with sums, Then a covariant functor
®:9m”, ¥ — " may be defined by

(K ® 4)s = K. ® 4,
(K ®A)a=K.® Au
G® N =199 fn
for every object K ¢ and 4 ec’ and map g eM” and f ec’.

" It is clear that the use of the symbol ® for two different functors will not
cause any trouble. In both cases we often write ¢ ® A and K ® f instead of
g ®isand ix @ f.

Exampres (3.6). (a) Let K, L e9". Then K ® L is usually called their
cartesian product.

(b) Let K e9m”, A G". The product K ® A then is as in [5], §3.

4. The homotopy relation

DerFiNITION (4.1). Let @ be a category with sums. Let the standard simplices

= A[0] and I = A[1] and the ¢.5.5. maps Ae*:P — I (4 = 0, 1) be as in [5],
§2. Then two maps fo, fi: A — B " are called homotopic (over @) if there exists
amap fr:] @ A — Bec” (called homotopy) such that commutativity holds
in the diagram

AL ® A Ad ® A
_— —

P®A I®A P®A
|1 l, mli
| A fﬂ B fl A

where i:P @ A & A is the natural isomorphism. Notatlon frifo ~ f1 (over @)
or fo ~ f1 (over @).

A map f:t4 — B ee is called a homotopy equwalence (over @) if there exists
a map g:B —~ A ¢€” such that the composite maps gof and fog are homo-
topic (over @) to the identity maps of A and B. The objects 4 and B then are
said to have the same homotopy type (over @).

ExamrLes (4.2). Using the notation of example (2.2) we have:
(a) Two maps of 91" are homotopic over 9 if and only if they are homo-
topic in the usual sense ([4] §2).
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(b) Two maps of 9’ are homotopic over 9t if and only if they are homo-
topic rel. the base point ([4], §2).

(¢) Two maps of £¥ are homotopic over £ if and only if they are homotopic
in the sense of [1]. .

(d) Two maps of §" are homotopic over g if and only if they are loop homo-
topic in the sense of [5].

ExamprEs (4.3). Sometimes several homotopy relations may be defined over
different categories.

(a) As a c.s.s. group also may be regarded as a c.s.s. complex it follows that
on G" there is a homotopy relation over G and one over 9. Clearly two maps
homotopic over G are also homotopic over 9, but the converse need not be
true. This may be seen from the following example: Let z: K(w, n) — K(¢, q)
be a map representing a non-zero element of H(w, n; ¢) which suspends into
zero. Then (see {5]) the c.s.s. homomorphism Gz:G(K(w, n)) — G(K(¢, ¢)) is
homotopic over 9 to the trivial map, but by [5], §11 this is not the case over G.

(b) Let £ momentarily denote the category of abelian groups. As a c.s.s.
abelian group may also be regarded as a ¢.s.s. group or a c¢.s.s. complex there
corresponds for the category £ three homotopy relations (over G, £ and ).
It is however readily verified that the homotopy relations over § and £ are
equivalent. Clearly maps of £° homotopic over £ are also homotopic over 91,
but the converse need not be true.

ReMARk (4.4). It should be noted that the homotopy relation defined in
(4.1) need not be an equivalence relation. For c.s.s. complexes counter examples
can easily be found. However the homotopy relation always has the following

property.

PrOPOSITION (4.5). Let @ be a category with sums. Let f:A — B, go, g1:B — C
and h:C — D be maps of @" and let go ~ gy over @. Then hogyof ~ hogiof
over C.

Proor. Let grigo ~ g1 over @. Then it follows immediately from the defini-
tions that the composite map

h

I®f 1B 9, ¢ *, p

I®A
is the desired homotopy.
Special cases of Propositioﬁ (4.5) are [5], Proposition (2.5) and (3.4).

5. C.s.s. functors

We now define a class of functors involving c.s.s. categories (roughly speak-
ing: functors such that “dimension n of the range’’ only depends on ‘‘dimension
n of the domain”) and show that these functors map homotopic maps into
homotopic maps. This generalizes a result of A. Dold ([1]).
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Let e and :D be categories. A covariant functor I':@ — " induces a functor
D(T):e” — D" given by
~«(D(T)A)n = (T4s)n
(D(T)A)e = (T44)a
(D()g) = (Tgn)a

for every object A ¢’ and map g ¢@’. Denote by Z:@ — @ the constant
functor, i.e. for every object C ¢ € and map c e@

(EC), = C
(EC)a = ic
(Be)n = c.

Then with every coval iant functor 6:€” — D' one may associate the composite
functor 0 o Z:€ — D' and it is readily verified that

Prorosition (5.1). There exists a natural equivalence n:T' — D(T) o &

However-in general the functors © and D(© o ) do not differ by a natural
equivalence. We therefore define

DermNtrion (5.2). A covariant functor 0:€" — DV is called a c.s.s. functor
if there exists a natural equivalence £:0 — D(0 o &)

The theorem now may be stated as follows

TurorEM (5.3). Let @ and D be categories with sums and let 6:6° — DY be a
c.s.s. functor. Then © maps maps homotopic over € into maps homotopic over D.

Proor. It clearly suffices to show that for every object A e@” there exists a
map a:] ® 04 —-06(I @ A) ¢ D’ such that commutativity holds in the diagram

AL @ 64 Ad ® 64
———) (———-

P ® 64 I ® 64 P ® 64
(5.4) Nli / la le
] ) 1
oP ® A) M oI ® 4) 4G(AE—®A)_. oP ® A)

where 7:P ® 04 =~ 6(P ® A) is the natural isomorphism. For each integer:
n=0letail, ® OA), — O @ A))n eD be the (unique) map such that-
for every element u ¢ I, commutativity holds in the diagram

An

©4), 2O 1 o0a), —* (BU ® A)).

- ~ /)
’ T
Y

(0 ° B4, (0 B)udd, (00 E)I ® 4.
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It then follows from the naturality of all functions involved that the function
a:I ® 64 —6(I ® A) so defined is a map in D' and is such that commuta-
tivity holds in the diagram (5.4).

ReMARk (5.5). The above result also holds for categories with jiniie sums
ie. if in definition (3.2) M is restricted to be finite.

6. An application

We now prove the following analogue for free c¢.s.s. groups (see [5] §4) of a
theorem of J. H. C. Whitehead.

Taeorem (6.1). Let A and A’ be connecied free c.s.s. groups and let f14 — A’
be a c.s.s. homomorphism. Let B = A/[A, Al and B’ = A’/{A’, A’] be their abel-
tanizations and let g: B — B’ be the map induced by f. Then f is a homotopy equiv-
alence (over Q) if and only if g s so.

Proor. If f is a homotopy equivalence, then by Theorem (5.3) so is g. In
order to prove the converse consider the commutative diagram

awa 2@, 4

£ L

GWA/IGWA, GWA] —2 B = A/IA, A]

where o (3) is as‘in [5], Theorem (11.3) and p and ¢ are the projections. By [5],

Theorem (11.3) &/(2) is a homotopy equivalence over G and hence by Theorem
(5.3) so is b. Repeating this for A’ we get (see [4], §15) a commutative diagram

_ . 'ﬂ'n—l(b)
H,(WA) = m.(GWA/IGWA, GWA) '~  m,a(B)

L(Wf )% ) l g%

ﬂ—l(b,)
HAWA') = 1 GWA/IGTA, GTWAY) 2 mpa(B)

If g is a homotopy équivalence, then clearly (Wf)s:H.(WA) — H,.(WA’) is an
‘isomorphism for all n. The connectedness of A and A’ implies the simply con-
nectedness of W4 and WA’. Hence the theorem of J. H. C. Whitehead ({6],
Theorem 3) yields that Wf WA — WA is a homotopy equivalence over 9.
That f is a homotopy equivalence over § now follows from [5], §11.
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