
ON c.s.s. CATEGORIES! 

By DanieL M. Kan 

1. Introduction 

A c.s.s. complex (see [2]) may be considered as a collection of sets together 

with a collection of maps between them satisfying certain identities. Similarly 
a c.s.s. group may be considered as a collection of groups together with a col- 

lection of homomorphisms between them satisfying the same identities. This 
suggests the notion of a c¢.s.s. object over an arbitrary category © (see [8]). The 

purpose of this note is to obtain for these c.s.s. objects analogues of 

(i) the homotopy extension and/or covering theorems 
(ii) a theorem of J. H. C. Whitehead ([10], Theorem 1; that, under certain 

conditions, a map is a homotopy equivalence if and only if it induces isomor- 
phisms of all homotopy groups). 

It is often necessary in statements concerning maps of one ¢.s.s. complex into 

another to require that the range complex satisfies the extension condition 

([6], §2), while in the corresponding statements for maps of one c.s.s. group 

into another the domain has to be a free c.s.s. group ([7], §4). It appears that 
in the general case both kind of notions are needed; the domain has to be free 
in some sense, while the range has to satisfy an extension condition. 

Free use will be made of the notation and definitions of [8]. Most results re- 

main valid for c.s.s. objects over a category with finite sums (see [8], remark 

(5.5)). 

2. Function complexes 

Throughout this paper let € denote a category with sums ([8}, definition 
(3.2)). The category of sets will be denoted by 91. 

DerFmnerioN (2.1). For every two objects 4, B eC" let Hom (4, B) be the 
c.s.s. complex (called function complex) defined as follows. For every integer 

n = 0 and every map a:[m] — [n] let the standard n-simplex Afr] and the c.s.s. 
map Aa:Alm] — Aln] be as in [4], §2. An n-simplex of Hom (4, B) then is any 
map o:Aln] ® A — B eR” and for every map «a:[m] — [n] the n-simplex oa is 
the composition 

Alm] @ 4 pa ® 4, Alle A — 2 B. 

Similarly for every two maps a: 4’ — 4, b:B — B' ¢C' let 

Hom (a, b):Hom (4, B) — Hom (4’, B’) 

1 The author was partially supported by Air Force Contract AF-18(600)-1494 during the 

period when the work on this paper was.being done at Princeton University. 
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be the c.s.s. map which assigns to an n-simplex oc ¢ Hom (4, B), i.e. map 

d:Aln] ® A — Bee’ 

the composition 

An] @ A’ _Anl®a Aln] @ A 2, B _b, B’. 

It is readily verified that the function Hom: €”, @" — 9m” so defined is a 
. functor contravariant in the.first variable and covariant in the second. 

Croice (2.2). We now choose an arbitrary but fixed object X, €@. 

Let X ¢@” denote the object given by X, = X, and X. = 4x, for all n and 
«. An important role then will be played by the restricted functor 

Hom (X, ):e”"—an’. 

‘For A eC” and ¢ e Hom (X, 4), let £(¢): X. = Xo — A, eC be the composi- 
tion 

x, =X am eX). 2 4, 
where &, ¢ Aln] is the non-degenerate n-simplex. Then a simple computation 
yields | 

Proposition (2.3). The function & establishes a one to one correspondence be- 
tween the elements of Hom (X, A), and the maps Xo — A, ¢C. 

It follows immediately from Proposition (2.3) that Hom (X, ) is a c.s.s. 
functor ([8], definition (5.2)) and hence by [8], Theorem (5.3). 

PROPOSITION (2.4). The functor Hom (X, ):€" — an” maps maps homotopic 
over C into maps homotopic over IN. | 

The functor Hom (X, ) is closely related to the restricted functor 

® Xm" —e’. 

For every map [1K ® X — A ee” define a c.s.s. map v(f):K — Hom (X, A) 

as follows: For every o¢ ¢ K, the simplex v(f)o e Hom (X, A),, i.e. the map 

v(He:Aln] ® X — A is the composition 

An] @ X $B X K®X LN A 

where ¢,: An] — K is the (unique) c.s.s. map such that ¢.a = oa for all a € Aln). 
A straightforward computation now yields 

ProposiTiON (2.5). The function v establishes (in a natural manner) a 
one to one correspondence between the maps K ® X — A ¢ @" and the maps 

K — Hom (X, A) en’.
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In the terminology of [5] this means that the functor ® X is a left adjoint of 
the functor Hom (X, ). 

"Exampres (2.6). (a) Let K, L ¢ 9’, then Hom (KX, L) is the function com- 
plex in the sense of [7], §2. Choose Pp e¢ MN as a set consisting of one element. 
Then P =~ A[0] and clearly the functors ® P:9’ — am’ and 

Hom (P, ):om” — on” 

are (up to a natural equivalence) equal to the identity functor, 
(b) Let G be the category of groups, and let 4, Be ¢". Then Hom (4, B) is 

the function complex as defined in [7], §5. Let Z; ¢ § denote the groups of the 
integers, then the functor Hom (Z, ):g" — 91" assigns to every c.s.s. group 
its underlying c.s.s. complex. 

(¢c) Let @ be the category of abelian groups and let Z; e @ denote the group 
of integers. Then the functor Hom (Z, ):@" — 9’ assigns to every c.s.s. 
abelian group its underlying c.s.s. complex, while for every c.s.s. complex K, 
K ® Z is the free c.s.s. abelian group generated by K (see [1]). 

3. The extension condition and fibre maps 

The extension condition ([6], definition (2.2)) and the notion of a fibre map - 
([6], definition (3.1)) will be generalized. The definitions will depend on the 
choice of the object Xo € @ (choice (2.2)). 

. DeFiNiTION (3.1). An object 4 e@” is said to satisfy the extension condition 
if the c¢.s.s. complex Hom (X, A) satisfies the extension condition in the sense. 
of [6], definition (2.2). 

DerintTIoN (3.2). A map p:E — Be’ is called a fibre map if the c.s.s. 
map Hom (X, p):Hom (X, E) — Hom (X, B) is a fibre map in the sense of 
[6], definition (3.1). 

It should be noted that a fibre map as defined in (3.2) need not have fibres. 
The extension condition and the notion of a fibre map for c.s.s. complexes 

are closely related. In fact it follows easily from the definitions that 

ProrosiTION (3.3). An object K ¢ M” satisfies the extension condition if and 
only if the (unique) c.s.s. map K — A[0] is a fibre map. 

This may be generalized as follows. Suppose there exists an object Qo e¢ © such 

that for every object C €@ there is exactly one map C — Qo ¢ @. (This 1s no real 
restriction on €, as such an object always may be added to @). Let Q ¢C be 
given by Q, = Qo and Q, = 7g, for all n and «. Then definition (3.1) and (3.2) 
and Proposition (3.3) imply 

.ProrosiTioN (3.4). An object A eC’ satisfies the extension condition if and 
only if the (unique) map A — Q ¢C’ is a fibre map. 

Exampres (3.5). Using the choices of examples (2.6) we have 

(a) An object of 91” satisfies the extension condition in the sense of defini-



, ON C.S.S. CATEGORIES ~ 85 

tion (3.1) if and only if it does so in the sense of [6], definition (2.2). The same 
holds for the notion of a fibre map. 

(b) It was shown by J. C. Moore ([9]) that every object of G" satisfies the 
extension condition. It can be shown by a similar argument that every epi- 
morphism in G" is a fibre map. 

$4. Fibre squares 

In view of Propositions (3.3) and (3.4) the notion “fibre map” may be con- 
sidered as a kind of relativization of the notion ‘object satisfying the extension 
condition”. Repeating the process we obtain the notion of a fibre square. Only 
the case of c.s.s. complexes will be considered here. 

DeriniTION (4.1). A commutative diagram 

kK 2, 1 

Fools 
Mm 2%, N 

of maps in 9" is called a fibre square if for every pair of integers (k, n) with 
0 < k = n, for every n (n — 1)-simplices aq, +, g4—1, ors, -** 02 € K such 

that ¢;6”" = gs" for < jand 7 = k # j and for every n-simplex \ ¢ L and 
su € M'such that s\ = gu and po; = \¢' and ro; = ue’ for ¢ # k, there exists 
an n-simplex o € K such that ps = \, re = pu and ¢&* = 0; for z # k. 

The following generalization of Proposition (3.3) then is immediate. 

ProposITION (4.2). A map p:K — L eM’ 3s a fibre map if and only if the 
diagram | 

K PP, K —— A[0] 

| or equivalently | | 

i) the diagram p 

Al))] ———  A[0] I — 5 AO] 

18 a fibre square. 

The following proposition describes the behavior of fibre square with respect 
to inverse limits. The proof is straightforward. 

Proposition (4.3). Let 
8° s° s° | st 

kk --—- ... °°, KF 4, K —3 K 

- ob 
w 0 £ et A 0 

rr — ve —— IL — LL — LL
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be a commutative diagram in I", let the map p~:K~ — L” be the inverse limit of 
the map p': K' — L*, and let all small squares be fibre squares. Then the big square 
1s a fibre square. 

b. Free objects and maps 

We now generalize and relativize the notion of a free c.s.s. group ([7]), defini- 
tion (5.1)). Again the definitions will depend on the choice made in (2.2). 

DEFINITION (5.1). An object’ 4 e@" is called free if for every integer n = 0 
there exists a (possibly empty) set M, of maps Xo — A, €¢@ such that 

(1) A, = D ven, r.Xo 

(ii) for every epimorphism B:[n] — [z] and every element ¢ e M, there exists 
an element v ¢ M, such that commutativity holds in the diagram 

Xo — 4, 

Nu 

A. 

The graded set M = U3_¢ M, then is called a basis of A. _ 

ExampLEs (5.2). (a) the object X e@ is free; the identity maps i: Xs — Xn, 
form a basis. : 

(b) If A ec’ is free and K en’, then K ®. A is free; if M is a basis of 4, 
then the composite maps 

v c-A, 
Xy —— A. —— K.Q® 4. 

where » e M,, and o ¢ K,, , form a basis. 
(c) Let &o eM denote the empty set and let &F eM” be the empty c.s.s. 

complex, i.e. Fn» = Foand J. = ig, for all n and «. Then J ® X is free and 
has an empty basis. 

DerFNITION (5.3). A map f:B — A eC’ is called free if for every integer 
n = 0 there exists a (possibly empty) set M, of maps Xo — A, ¢@ such that 

(1) A, = fuBa + D vert, vX, : ’ 

(ii) for every epimorphism 8:[n] — [2] and every element ¢ ¢ M, there exists 

an element » e M, such that commutativity holds in diagram (5.1a). 

The graded set M = U5—o M, then is called a baszs of f. 

Exampres (5.4). (a) Let A ec”. Then the identity map ¢, is free; it has 
empty basis. | oo 

(b) Let A eC” be free, let K eM’, let H  K be a subcomplex ‘and let 
1: H — K denote the inclusion map. Thenthe map ® A: H A - K ® A
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is free; if M is a basis of 4, then the composite maps 

X, —~ 4, 04a K, ® A, 

where v e M,,0e¢K,,c¢ H,, form a basis of 71 @ A. 

The notions “free map’ and ‘free object’” are similarly related as the no- 

tions “fibre map’ and ‘‘object satisfying the extension condition” (see §3). Let 

Zo and OF be as in example (5.2¢). It follows from [8], definition (3.2) that for 
every object C eC there exists exactly one map Jo ® Xo — C eC. Hence for 

every object 4 eC" there exists exactly one map & ® X — A ec’ and it now 

follows easily from the definition that 

PROPOSITION (5.5). An object A eC’ 1s free if and only if the (unique) map 

FRX — A eV is free. 

ExampLES (5.6). Using the choices of example (2.6) we have 
(a) Every object in 9" is free and. every monomorphism in 9M" is a free 

map. Clearly 0 ® P = &. | 

(b) An object in §” is free in the above sense if and only if it is free in the 
the sense of [7], definition (5.1). The c.s.s. group @ ® Z consists in every di- 

mension of one element. 

(¢) A c.s.s. abelian group 4 ¢ @" is free in the above sense if and only if for 

every integer n = 0 the group 4. is a free abelian group. 

6. Homotopy extension and/or covering theorems 

We state a general theorem on function complexes and derive from this sev- 
eral homotopy extension and/or covering theorems. 

THEOREM (6.1). Let f:B — A eC" be a free map and let g:C — D eR" be a 
fibre map. Then the diagram 

Hom (4,0) —20™40 pom (4, D) 

Hom (f, ©) | Hom (, D) 
A 4 

Hom (B,¢) 2925.9, Hon (B,D) 

1s a fibre square. | 

The proof will be given in §10. 

CoroLLARY (6.2). (Homotopy extension covering theorem). For every map 

00:4 — C' and homolopies tiooof ~ 71 and pigo age ~ pi such that gor = 

po (I & f), there exists a homotopy a:oy ~ a1 such that + = co (I @ f) and 

p= goo.
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This follows immediately from Theorem (6.1) by observing that oo « 
Hom (4, C)o, re Hom (B, C); and p e Hom (4, D), . 

TuEOREM (6.3). Let f:B — A ¢@” be a free map and let C eC satisfy the ex- 
tension condition. Then the map Hom (f, C):Hom (4, C) — Hom (B, C) is a 
fibre map. 

Proor. This follows immediately from Theorem (6.1) by taking D = @ (see 

§3) and applying proposition (3.4) and (4.2). h 

CoroLLARY (6.4). (Homotopy extension theorem). For every map oo: A — C 
and homotopy rtiago0f ~ 71, there exists a homotopy o:oq ~ o1 such that r = 

co (l ® f). a 

"THEOREM (6.5). Let A CV be free and let g:C — D eC" be a fibre map. Then 

the map Hom (4, g):Hom (4, C) — Hom (4, D) is a fibre map. | 

Proor. This follows immediately from Theorem (6.1) by taking B = && ® X 

(see §5) and applying Proposition (5.5) and (4.2). 

CoroLLARY (6.6). (Homotopy covering theorem). For every map go: A — C 

and homotopy p:g o oo ~ p; there exists a homotopy o:co ~ oy Such that p = go a. 

THEOREM (6.7). Let A eR" be free and let C eR" satisfy the extension condi- 
tion. Then Hom (A, C) satisfies the extension condition. 

Proor. Theorem (6.7) follows from Theorem (6.5) in the same manner as 

Theorem (6.3) followed from Theorem (6.1). ~ 

CoroLLaRY (6.8). The relation ~ is an equivalence relation on the maps 
A— Cee’. 

Most of the above theorems for c.s.s. complexes are contained in [3]. Theorem 

(6.7) for c.s.s. group may be found in [7], §5. | 

7. J. H. C. Whitehead’s theorem 

We first define the homotopy groups of an object 4 ¢@" as those of the c.s.s. 
complex Hom (X, A) (see [6]). 

DeriNiTION (7.1). Let A e@” and let :X — A ¢@’ be a map. Then we 
define 7.(4; ¢), the n™ homotopy group of A rel. ¢ by 

m(4; ¢) = m(Hom (X, A); ¢). 

Clearly a map f:A — B e¢@" induces a map n,.(f):m(4; ¢) — m.(B; foe) de- 
fined by 

ma(f) = ma(Hom (X, f)). 

We now state the analogue of J. H. C. Whitehead’s theorem ([10] theorem 1).
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TuEOREM (7.2). Let A, B ¢@” be free and: satisfy the extension condition. Then 

a map f:4 — B eC’ is a homotopy equivalence (over @) if and only if f induces 

isomorphisms of all homotopy groups, i.e. tf for every map ¢:X — A and every 

integer n = 0 

Ta(f)1mn(4; ¢) RF ma(B; [0 ¢). 

Proor. Using corollary (6.8) and [8], proposition (4.5) it may be shown by 

same argument as was used in [7], that Theorem (7.2) is a consequence of the 

following lemma. 

LEMMA (7.3). Let A, B eC” satisfy the extension condition, let B be free and 

let f:A — Be" be a map which induces isomorphisms of all homotopy groups. 

Then there exists a map g:B — A e CY together with a homotopy h:gof ~ ip. 

The proof of Lemma (7.3) will be given in §11. 

8. Skeletons 

Throughout this section let f:B — A ¢@’ be a free map and let M be a basis 

of f. 

DeriNITION (8.1). An element v e M, is called degenerate if there exists an 

integer z < 7, an epimorphism B:[n] — [2] and an element { ¢ M, such that 

commutativity holds in diagram (5.1a); otherwise it is called non-degenerate. 

ProrosiTioN (8.2). Let v e M, . Then there exists a unique inieger z =< n, a 

unique epimorphism B:[n] — [2] and a unique non-degenerate element ¢ e M, such 

that commutativity holds in diagram (5.1a). 

The proof is similar to that of the corresponding result for c.s.s. complex 

(see [2], §8). 
In view of Proposition (8.2) one may define 

DeriNiTION (8.3). An element » € M, is said to have rank z if there exists an 

epimorphism B:[n] — [2] and a non-degenerate element { ¢ M, such that com- 

mutativity holds in diagram (5.1a). 

DEFINITION (8.4). We now define for every integer ¢ = —1 

(i) an object A? e @" (g-skeleton of A rel. f) 

(ii) a free map a®:4? — A ec” / 
(iii) a free map a? 4% — A" ee” 

such that commutativity holds in the diagram 

q.qt1 
Al a Att 

(8.4a) ) NN un 

NS 
A
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Let M7. C M, be the subset of the elements of rank =< g. Then we define 

(see [8] §3) 

Ar = (fru MY).T Ve 

where I'(f,) = B, and T'(v) = X, for v e M3 (i.e. A} is the sum of B, with as 
many copies of X, as there are elements in M1). The maps a%:4% — A, are 

the unique maps such that commutativity holds in the diagrams 

B, _JuBa | Al X, _vXo AL 

/ AN Ns N.S 
No N 
4, A, 

where » e M%. For every map a:[m] — [n] the maps A%:4% — A% are 
uniquely determined by the condition that commutativity should. hold in 
the diagram 

q 

Al _Aa AL 

Jat Jat 

A, L Aa A, ) - 

and finally the maps a®?":4% — AZ" are the unique ones such that com- 
mutativity holds in diagram (8.4a). It is readily verified that the collections 
A? a% and a?*"* so defined are indeed objects and maps in @”. 

As M7! is empty for all n, it follows that 

ProposiTiON (8.5). There ts a unique isomorphism i:B =~ A™" such that 

a oi =f. 

REMARK (8.6). The above definition of g-skeleton involves the basis M. It 
may, however, be shown that the g-skeleton is essentially independent of the 
basis chosen; in fact there exists a canonical isomorphism between any two 

g-skeletons corresponding to different bases. : 

In view of Proposition (5.5) one may define. 

DEFINITION (8.7). Let A e@' be free. Then the g-skeleton of A is defined as 
the g-skeleton of A rel. the unique map J ® X — A. | 

ExamrLES (8.8). Using the choices of example (2.6) we have 
(a) The g-skeleton of a c¢.s.s. complex K in the sense of definition (8.7) is 

canonically isomorphic with the usual g-skeleton of K, i.e. the subcomplex 

generated by KX, . - 

(b) The g-skeleton of a free c.s.s. group A in the sense of definition (8.7) is 
canonically isomorphic with the usual ¢-skeleton of 4, i.e. the subgroup gen- 
erated by 4, . |
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9. Two lemmas 

We now state two lemmas which will be used in the proofs of Theorem (6.1) 

and Lemma (7.3). Their proofs are straightforward, although rather long, and 
are left to the reader. We use the notation of §8. 

LEMMA (9.1). Let C CY, let K ¢ M and for every integer ¢ > —1 let be given 
amap kK @ A" — C e@” such that commutativity holds in the diagram 

a—l.q 

Koa EB 7, rea 

(9.13) 
N A 

AN . 

NY 
C 

Then there exists a unique map k:K ® A — C such that commutativity also holds 
in the diagram | | 

q—1 

K® A" _K®ad "| K® A 

N\ yd : 
PN ys 

No 
C 

Let Alg] C Alg] denote the (g — 1)-skeleton in the usual sense (see example 
(8.8a)) and let j:A[g] — Alg] be the inclusion map. For an element » ¢ M, (i.e. 
map v: Xo — A4,) let £7 (vn): alg) ® X — A be as in §2. Then we shall denote 

by v":Alg]l ® X — A%and v”:Alg) ® X — A" the unique maps such that the 
following diagram is commutative 

Al) ® X 9X, Algl ® X 

y N 
E |» NE) 
1% Ny / 

q—1.q q 

AT 42,4 

Lemma (9.2). Let K eM’, let H C K be a subcomplex and let i: H — K de- 
note the inclusion map. Let C eC’ and let h:H ® A -» Cand kK ® A" — C 
be such that commutativity holds in the diagram 

H ® ATT ) XD ATH K ® AT 

(9.2a) | H® a Je 

Heda —"  ¢
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For every non-degenerate element v ¢ M* let be given a map k,: K ® Alg) @ X — C 

such that commutativity holds in the diagram 

. LQ A 
K® All ® X K®j®X K® Alf @ X SQA X H®Agl @ X 

020) |K © |. |H © 0) 
g—1 

Kod™ —*F | C _* Hea 
Then there exists a unique map k*:K ® A* — C such that commutativity holds 

(i) 2n diagram (9.1a) / 

(ii) in diagram (9.2a) with q instead of ¢ — 1 
(iii) ¢n the diagram 

/ 

K® Ag  X Key, K ® A* 

Ny vd 
C 

10. Proof of Theorem (6.1) 

It follows from Propositions (4.3) and (8.5) and Lemma (9.1) that it suffices 
to consider the case that A = 4% B = A“ and f = a7! = a" 1" 

For every pair of integers (k, n) with 0 £ k < n let Ay C An] denote the 

subcomplex generated by the n (n — 1)-simplices &5 , «+, eo, eat, «or, 

en € Aln] (see [7], §2). It then follows from Lemma (9.2) that we must show 

that given ’ 
(i) commutativity holds in diagram (9.2a) with H = As and K = Aln], 

(i1) commutativity holds in the diagram = 

q—1,q . q 

An] @ a A ®@ aT ear EBA (kg ye 

La |" | 
C — D ££ __ c 

(iii) a non-degenerate element » ¢ M, there exists a map 

k,:Aln] ® Algl @ X —» C 

such that commutativity holds 

(a) in diagram (9.2b) with H = A; and K = A[n] 
(b) in the diagram |
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A / 

An) @ alg © X ABV. Ay @ af 

! - 
C — J D. 

In view of Proposition (2.5) this is equivalent with the existence of a map 

v(k,): A[n] X Algl — Hom (X, C) eon” 

satisfying the following condition: 
Let A = (A[n] X Alg]) u (AY X Alg]), let j: A — A[n] X Alg] denote the in- 

clusion map and let £: A — Hom (X, C) be the map given by 

t| (Aln] X Alg)) = v(§* o (Aln] ® »")) 

£] (An X Algl) = (ho (A% ® £7(») 
then commutativity holds in the diagram 

A — Al X Alg) 

y yd | 

4 yao v(mo (Aln] Xv )) 

/ 
vd 

Hom (X, C) Hom (X, g) Hom (X, D) 

As Hom (X, g) is a fibre map, the existence of such a c.s.s. map y(k,) follows 

from the main lemma of [3]. This completes the proof. 

11. Proof of Lemma (7.3) 

Use will be made of Theorem (7.2) for c.s.s. complexes (see [7]), 

Let N be a basis of B. In view of Lemma (9.1) it suffices to show.that, given 

a map ¢* :B*" — A and a homotopy A* ':fo gg?" ~ b?", there exists a map 
g°:B* — A and a homotopy h%:fo g* ~ b® such that commutativity holds in 
the diagrams 

g—1l,q 2—1l.q 

pt YT, gp repr 18Y "gp 

Ne N d g= g 
(11.1) \y ha—1N\ pe 

A NN. 
NY 
B
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This is done as follows. Let » ¢ N; be non-degenerate. Because the map 

Hom (X, f):Hom (X, 4) — Hom (X, B) eM’ 

is a homotopy equivalence it readily follows that there exist maps a,:A[q] — 
Hom (X, A) and b,:1 X Alg] — Hom (X, B) such that commutativity holds in 
the diagrams 

: Ae® X A 
Alg]l =~ P X Aq] A” X Alg] | I X Alg] 

lo | | Jb 

Hom (X, 4) —222& 0) | fom (x, B) 
. I ) 

I X Alg) XI rx Alg] 

| 7) Jb 
_ H xX g—1 { | 

Hom (X,I ® B™™) Hom (X, p77) pon (X, B). 

Define maps ¢,: Ag] ® X » A and h,:I ® Alg] ® X — Bbyg, =v (a) and 

h, = v '(b,). Doing this for all non-degenerate elements » ¢ M, and applying 
Lemma (9.2) we get maps ¢?: B* — 4 and h:1 ® B? — B such that commuta- 
tivity holds in the diagrams (11.1). A straightforward computation now yields 
that £%:f oc g? ~ b°. 
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