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Analyse fonctionnelle/Functional Analysis

Index theory and Galois theory for infinite index inclusions
of factors

‘Richard H. HErMAN and Adrian OcNEANU

Abstract — We study inclusions of von Neumann algebras in the case when the index is
infinite. Some of the main notions of the index theory initiated by Jones such as the standard
projections and Pimsner-Popa bases can be extended to this context. The corresponding structural
results, such as Takesaki duality, hold.

We develop in the infinite index context results from the Galois theory for algebra inclusions of
the second author and obtain an intrinsic characterization of twisted crossed products by a discrete
group in terms of the position of the initial algebra in the crossed product algebra.

Théorie de Galois et de I'indice de Jones pour les inclusions de facteurs

Résumé — On étudie des inclusions d’algébres de von Neumann dans le cas o Pindice est infini.
Dans ce contexte on peut généraliser les constructions les plus importantes de la théorie de Pindice de
Jones, telles que les projections standard et les bases de Pimsner-Popa. Des résultats structuraux
correspondants, comme la dualité de Takesaki, restent vrais dans ce contexte.

On étend au cas d’indice infini des résultats de la théorie de Galois pour les inclusions & algébres du
second auteur, et on obtient une caractérisation intrinséque du produit croisé par un groupe discret en
termes de la position de T'algébre initiale dans I'algébre produit croisé.

Version francaise abrégée — On commence par ’étude des inclusions des algébres de von
Neumann d’indice infini. On travaille avec des facteurs semi-finis .# 2 4" 4 predual séparable
ayant des traces tr et T telles qu'il existe un poids opératoriel T avec tr=t°T. Dans ces
conditions il existe une base de .# comme module sur 4", Si .# est un facteur fini et si
Pindice est fini on retrouve la base de Pimsner et Popa.

THEOREME. — I/ existe une collection au plus dénombrable d'éléments {\} de M telle que
chaque x € M vérifie x=) T (x A¥) A,

On utilise un' procédé de type Gram Schmidt par rapport i la forme bilinéaire
(x, ) > T(xy*). Pour v dans . bien choisi, tout élément r de [A v] s’écrit comme
r=T(rA*¥)], avec 7»=T(vv*)_1/2v;

INCLUSIONS DISCRETES ET COMPACTES. — Une inclusion de facteurs semi-finis Mo S M,
est appelée discréte si la trace de .#; se restreint (i un scalaire prés) en la trace de
Mo. L’inclusion Mo S My est appelée compacte si, pour [Dextension canonique
MoS M S M,, Pinclusion A, S M, est discréte. Une inclusion i la fois discréte et
compacte est d’indice fini.

THEOREME. — Soit M, le produst croisé de My par un groupe localement compact abélien
G. Linclusion My < M, est discréte (compacte) si et seulement si G est discrer (compacr).
On caractérise de maniére directe les inclusions compactes comme suit.

THEOREME. — L'inclusion de facteurs semi-finis My S M, est compacte si et seulement si
pour une (et alors pour toute) base { N, } de M, sur My la somme Y Aud; est finie.

L’argument principal est que .# Z,Idéﬁnie comme J,, Mg ], sur Pespace de Hilbert
standard de ./, est égale au produit croisé de .#, avec elle-méme au-dessus de .#,. Avec
ce résultat on montre que dans la tour (.#,) la propriété d’étre discréte (compacte) est de
période 2 par rapport i n.

Note présentée par Alain CONNES.
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APPLICATION AUX PRODUITS CROISES. — On obtient la caractérisation intrinséque suivante
du produit tensoriel par un groupe discret.

THEOREME. — Soient Mo S My une inclusion de facteurs et Mo S M, S My S My son
extension canomique. L’algébre M | est un produst croisé de Mo par une action extérieure perturbée
par un cocycle d'un groupe discrer si er seulement si Mo\ M, est scalaire, My(\ M, est
abélienne et Mo\ M5 est un facteur.

In the first part of this Note we study inclusions of von Neumann algebras for which
the index is infinite. We extend to this framework some of the main results of the
theory initiated by Jones [4] and developed in [10] and [2]. Previous generalizations of
the theory by Kosaki [5] and Phan Loi [6] study the case of general algebras with finite
index. The principal role in our study is not played by the algebras, which are kept
semifinite. Instead we study for the first time what happens when the index becomes
infinite. The main ingredients of the finite index theory, such as the Jones projections,
no longer make sense in this context. We show however, using appropriate substitutes,
that the main relations and technical properties of the finite index constructions can be
generalized to the infinite index setting. Consider as a model the case of a sequence of
inclusions with finite index in which the index tends to infinity. The trace of the Jones
projection tends to zero and the corresponding idempotent does not exist in the infinite
index case. A scalar multiple of the Jones projection, normalized as in statistical
mechanics [15] so that its trace is one, would yield at the limit an operator-valued
weight [3] satisfying an analogue of the Jones relations. We then show that the basis of
Pimsner and Popa [10] can be obtained by a Gram-Schmidt orthogonalization process
with respect to an operator valued inner product and is naturally associated to modules
rather than algebra inclusions. The spanning property of the Jones projections is
replaced by the density of a tensor product construction as in Connes [1] and
Sauvageot [12]. Using these tools, we prove that properties such as discreteness and
compactness of inclusions, which we introduce in this framework, display a period two
occurrence in the tower of extensions which generalizes Takesaki duality [14].

The second part of this Note develops in the infinite index context results from the
Galois theory for algebra inclusions of the second author ([7], [8]). As in that context,
we obtain an intrinsic characterization of the twisted crossed product by a discrete group

.in terms of the position of the initial algebra in the crossed product algebra. We use,
however, a different approach, in which information coming from the tower of relative
commutants is translated into the property that the normalizer of the initial algebra in
the larger algebra is spanning. This yields then the crossed product structure following
Sutherland [12].

GENERAL THEORY. — We take as our setting a pair of semifinite factors .4 = 4 with
traces tr and t related by an operator valued weight T such that tr=toT. Under the
condition that the predual be separable we prove the existence of a basis for .# over N

THEOREM 1. — There exists a collection of elements { A; } in M, at most countable,
such that every x in M can be written as x=Y T(xA*)\;. Given any such basis {\},
the matrix (T (A;A}));; is a projection in the matrices over N, uniquely determined up to
projection equivalence. Moreover if the index is an integer or infinite, the basis can be
chosen to satisfy T (hA})=5;L :
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In the case where .# is a finite factor there exists a projection E, from .# onto A
and corresponding Hilbert space projection e,. In that case the basis is the one
constructed by Pimsner and Popa.

TaeorREM 1'. — Each element x in M can be written as x=Y E, (x A\})\; with respect
to a basis { ; } as in the Theorem 1. Moreover the basis satisfies ) A} e, A =1
The proof of Theorem 1’ relies on the following result.

ProposITION 2. — If n is the left ideal associated to an operator valued weight between
factors M and A on a separable Hilbert space, then the identity can be written as I=Y p,
where the p; are in n.

This proposition is applied to the pair of factors # and ( .#,e, > where the latter is
the fundamental construction of Jones [4]. In the case of infinite index (.4, e, > is a
semifinite non-finite factor.

The proof of Theorem 1 is based on a Gram-Schmidt procedure for choosing an
orthogonal basis in .# as a module over 4 with respect to the bilinear form
(%, ¥) = T(xp*). The argument for a cyclic submodule uses the following idea, which
can be made into a formal argument. For v in 4 carefully chosen, any element r in
the left #-module [A" 0] can be written as r=T(rA*) A, where A=T (vv*)"¥2p. The
proof follows from the equality

T (xo0* T (09*) ™ Y2) T (00*) " Y2 p=x T (00*) T (v0*) " Y2 T (00*) ™ Y2 T (0v*) "2 v=xo.

With additional arguments one gets T (A, A¥)=9;;L
To show the relation between two bases { A, } and { A; }, we express one in terms of
the other as A;=) T(A;A¥)A; Then the matrix (T (A;A¥)),; is a partial isometry W and
=(T(A;A}));; and W* W=(T(A;A}));; are the support projections for the respective
bases.

DISCRETE AND COMPACT INCLUSIONS. — We study two different types of inclusions,
modelled on the idea of crossed products by outer actions of compact and discrete
groups. The test used is whether the trace on the algebra extends to a semifinite trace
on the crossed product. ‘

Given an inclusion. of semifinite factors #, < .#; we call the inclusion discrete if
the trace of .#, restricts (up to a scalar multiple) to that of .#,, or equivalently, if
there exists a conditional expectation of .#, onto .#, preserving the trace. The
inclusion #, < .#, will be called compact if upon forming the standard extension
My S My S M, the inclusion H ;| S A, is discrete. An inclusion is both discrete and
compact if and only if it has finite index, which is shown using the lower bound for
conditional expectations ([11], Theorem 2. 2).

These definitions are justified by the following properties of crossed products stated
below for abelian groups. : :

TuaeEOREM 3. — Supposé that M, is the crossed product of M, by a locally compact
abelian group” G. The inclusion My, < M, is discrete if and only if the group G is
discrete.  The inclusion M, = M is compact if and only if the group G is compact.

To prove that the group must.be compact if the inclusion is, we use the existence of
the conditional expectation from .#, onto .#, to obtain a finite Haar measure. It is
interesting to verify that if u, are the unitaries in the crossed product implementing the
given action, then the corresponding spectral projections serve as a basis, albeit not the
obvious one when the group is finite.
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- We now provide a global condition on the basis for .#, over .#, such that the
inclusion is compact. »

THEOREM 4. — Given an inclusion of semifinite factors My < M ,, the inclusion is
compact if for a given (and hence for any) basis { \; } for M, over My the sum Y ¥ A, is
finite. _

The first argument in the proof is the fact that the extension .#,, defined as
Juy M) 4, on the standard Hilbert space of .4, is equal to a tensor product of .#,
with itself over .#,,.

Suppose that .#, S #, is a pair of semifinite factors with traces t, and t,. Let n,
be the dense ideal in .#, for the operator valued weight T (in the sense of [3]), relating
the traces of .#; and .#,. On the Hilbert space of .#, we consider the operators y ® x
where y, x belong to nr, nf respectively. Their operation is defined by y ® x (z) =y T (xz)
for z in #,. These operators extend to bounded operators on the whole Hilbert
space. Denote the algebra generated by these operators by .#; ® ,, #, extending the
corresponding notion in [2]. Then we have

THEOREM 5. — M= MI=M | ® 4, M, Where =], is the conjugate linear isome-
try such that J M J= M.

To get a trace on the semifinite factor .4, ® ,,.#, we use the basis for .#, over
My In general the element Y A¥ A, is a scalar, which may be infinite.

THEOREM 6. — The map y — Y 1o (T (A, y (\F)) defines a faithful, semifinite normal trace
on M & 4, M. This trace restricts to a multiple of the trace on M, if and only if
Y A¥A,; is finite. Moreover the map Y= (0;(), where ®,;(¥)=T (A;y (A})), provides
an isomorphism between M| ® 4, My and Mat (M ).

Remark. — With { A; } a basis for .#, over .4, it is possible to write down a basis
for M ® 4,M#, over M,. In the finite index case this is ([7], [11]), up to a scalar,
{ e); }, where e is the projection corresponding to the conditional expectation of .# L
onto .#,. In the infinite index case we have no such ¢, but in the tensor product picture
{ p.®; } is a basis, with projections p, chosen as in Proposition 2, and the operator
valued weight T from 4 ® ,,.#, to .# is given by T(y ® x)=yx.

With these comments we do the same construction for the pair 4, S 4.

THEOREM 7. — Following the same construction of the map as in Theorem 6, we obtain
an isomorphism of My with Mat(.#,). Moreover the restriction of this map to M,
coincides with the map of Theorem 6.

This shows that in the tower of extensions discreteness and compactness have period
two. The inclusion #, & .#, is discrete if and only if .#, < ., is compact, and the
inclusion .#, < .# compact if and only if #, € .4, "is discrete.

APPLICATIONS TO CROSSED PRODUCTS. — We give a characterization of twisted crossed
products by discrete groups using the tools developed above. This extends the characteri-
zation obtained by one of us [7] for the case of finite index. '

THEOREM 8. — Let My S M,y be a discrete inclusion. Then M, is a cocycle twisted
crossed product of My by an outer action of a discrete group if and only if My M, is
scalar, Mo\ M, is abelian and My (M M 4 is a factor.

The group is made to appear as unitaries normalizing .#, by using an extension of a
proposition of Pimsner and Popa [10] relating such unitaries to projections in
Mo\ My Of course the necessity of these conditions is well known [14]. More



C. R. Acad. Sci. Paris; t. 309, Série I, p. 923-927, 1989 927

generally we conjecture the following characterisation if we drop the condition that the
relative commutant of # in ./, be abelian.

CONIECTURE. — Let Mo S My be a discrete inclusion. Then M, is a cocycle twisted
crossed product of M, by an outer action of a discrete Kac algebra if and only if
Mo (M is scalar and My (M M 5 is a factor.

Note remise le 21 septembre 1989, acceptée le 25 septembre 1989.
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