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A GENERAL SUMMARY 

We set out here, under lettered heads, the general 

properties of CW-spectra, which are designed to overcome 

the objections to previous theories of stable homotopy. 

They are closely analogous to CW-complexes in ordinary 

homotopy theory; and it is this analogy that gives then 

their favourable properties. 

A. Topological categories 

In any category A we write lor, (X, Y) or Mor(X, Y) for 

the set of morphisms from X to Y. - 

A.1. We say that A is a topological category if 

a) Mor(X, Y) is a topological space for all objects 

X, Y, 

b) The composition map 

Mor(X, Y) x Mor(Y, Z) = Mor(X, 2), 

which we write £f x g ~ g °f, is separately continuous for 

all objects X, Y, Z. 

In practice our topological categories satisfy the 

extra axiom:
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A.2. The composite g°f is jointly continuous in f x g 

if we restrict f or g to lie in a compact subset. 

For example, the category T of topological spaces and 

continuous maps becomes itself a topological category if we 

endow Mor(X, Y) with the compact-open topology. In this 

example composition is not always jointly continuous. 

If A has a zero object, we may take the zero morphism 

(which we write as o) as base point of Mor(X, Y). 

Let F:tA » B be a functor between topological categories. 

A.3. We call F continuous if F:Mor(X, Y) -» Mor(FX, FY) is 

continuous for all objects X, Y¥ in A. 

Now let A be a topological category. 

AL, A homotopy from the morphism f£:X -» Y to the morphism 

g:X » Y is a path from f to g in Mor(X, Y). We write f = g. 

This enables us to define the usual homotopy-theoretic 

concepts, such as homotopy equivalence (written £:X = Y), 

deformation retract, and homotopy type. In particular assume 

A has a zero object. Then the object X is contractible if 

either of the equivalent conditions holds: 

A.5. X has the homotopy type of a zero object, 

A.B. The identity and zero morphisms of X are homotopic. 

In general, 

A.7. The homotopy category A; has the same objects as A, 

ts morphisms are the homotopy classes of morphisms of A, and
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composition is induced from that in A. 

Let F:A = B be a continuous functor. 

A.8. Then F induces the homotopy functor, F,:A ~ B, . 

B, CW-complexes 

Our CW-complexes are assumed to be given a particular 

cell structure and a base point o, which is a 0-cell. We 

consider only those maps that respect base points; in 

particular, we consider only those subcomplexes that contain 

the base point. 

B.1. We have various categories C, F, 1(C), I(F) of 

CW-complexes, with objects and morphisms as follows: 

GC: arbitrary CW-complexes, continuous maps. 

F: finite CW-complexes, continuous maps. 

I(C): arbitrary CW-complexes, inclusions of subcomplexes. 

I(F): finite CW-complexes, inclusions of subcomplexes.
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Thus I(F) = I(C) nF, and F and I(F) are full subcategories 

of C and I(C) respectively. We write an inclusion 

A -»X as A c KX. 

Ve generalize this situation. Suppose given a category 

A and any subcategory I(A) satisfying 

B.2. a) I(A) has the same objects as A, 

b) Every morphism in I(A) is a monomorphism in A. 

We can construct new categories, by a double limit process, 

B.3. Ao and I(4y) c Ay» satisfying B.2., and containing 

the pair I(A) c A as full subcategories. 

Suffice it to say that the objects of Ay are the 

directed non-empty (commutative) diagrams over I(A), and that 

we recover (essentially) the pair I(C) c C from I(F) c F as 

follows. From I(E) c E we construct L(E,) c Ey. We assign to 

a CWV-complex X the diagram of all its finite subcomplexes;:; this 

yields a functor G - EF, taking Z(G) to L(Ey) 

Bol, The functors C — Ey and 1(Q) - I(Ey) are equivalences 

of categories. 

B.5. Moreover, 1f A is a topological category, so “8s Aye 

B.6. F is a topological category, under the compact-open 

topology, and by B.4. and B.5., C is also a topological category. 

(However, the topology received in this way by C is not the 

compact-open topology.)



- 5 =~ 

We therefore have 

B.7. The homotopy category G, - We write [X, Y] for the 

set of morphisms from X to Y in Gy» 

B.8. An equivalence of categories GC, — Ey, - 

The category Cp is the subject of homotopy theory. 

Equivalently we may study Fyn, Note that we have not even 

defined EF, y- 

We review briefly those constructions in homotopy theory 

that we need for our present purposes. The requisite formal 

properties are well known, and omitted, and will be reflected 

in the properties of CW-gpectra. 

B.9. The CW-complex consisting of one point, which we also 

write as o, 1s a zero object in F or C. 

B.10. For any n > 0, we define an n-sphere 3" as any CW-complex 

having just one n-cell and no others, apart from o. This 

determines 3 up to isomorphism in I(F). 

B.11. Given A c X, we have the identification map p:X - X/A, 

and the natural cell structure on X/A. 

Let (%,) be any family of CW-complexes. 

B.12. We have the wedge, or one-point-union, VX, in I(C) 

or C. It is a sum in the category C, and contains each Xs as 

a subcomplex. We write AvB if the family has two members A 

and B.
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The smash product, or reduced join, XAY of X and Y is 

defined as XAY = (X x Y)/(X vY), retopologized as a CW-complex, 

and given the usual cell structure. 

B.12. We have the smash product functor C x C —- GC, which is 

separately continuous. It induces functors F x F —» F, 

(8) x I(Q) -» 1(Q), and I(E) x I(E) -» I(B). 
The suspension SX of X is defined by SX = s1. x, and we 

put Sf = 1 Af for a map f. 

B.14. We have the suspension functor S:C -» GC. It is continuous, 

and induces functors S:F -+ F, S:I(C) -» I1(C), and S:I(F) -» I(F). 

We denote by s™ the functor S iterated n times. It is not 

to be confused with =, the n-sphere. 

C. The stable categories 

Take a copy EK, of the category I for each integer n. Then 

we consider the sequence of categories and functors 

c.1. ...-FE, gE, 8% 8 & 8 & ---
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In terms of this sequence, we obtain the suspension category 

Eq (a '1imit' in a highly technical sense only). 

C.2. An object of Eg is uniquely an object of some X  . If 

X cE and Y cE,» the morphisms from X to ¥ in Bq form the 

set 

im ory (847%, sE~ By , 

“ie note that in Eq» X eX, is isomorphic to SX € Ena 

it is not necessary for categorical purposes to identify these 

two objects, 

C.3. The subcategory I(Eg) Cc Eq is obtained similarly, with 

I(F) in place of F throughout. 

Cul. The pair of categories I(Eqy) C Egy 1s obtained from 

the pair I(Eg) © Eg by means of B.3. 

C.H5. The category of CWV-spectra S is defined as Boye Its 

objects are called CV-spectra or simply spectra. We shall call 

its morphisms maps of spectra. 

C.b. The maps in the subcategory I(S) = 1(Egw) are called 

inclusions of spectra; we write an inclusion A -» X as A c X, 

and say (by abuse of language) that A is a subspectrum of X. 

C.7. A finite spectrum is a spectrum which is isomorphic 

in I(S) to some object of Es - 

c.8. The category S is a topological category. The space 

Morg (X, Y) is Hausdorff, and normal when X is a finite spectrum.



- 8 = 

C.9. The homotopy category of CW-spectra is the homotopy 

category §, of 8. We write {X, Y} for the set of morphisms 

from X to Y in 5s these are the homotopy classes of maps in S. 

The category BS, is the ultimate object of study in our 

stable homotopy theory. 

Remark Sy has as subcategory Eq, . The latter appears to be 

absent from the literature, in spite of the fact that it is the 

most natural category for expressing Spanier-VWhitehead duality, 

and that it is easy to set up directly: in obvious notation 

Esn = Eps 
Suppose X ce X and Y eK are objects of Fg. Then 

C.10. (x, Y} = im [s¥7™x, s°7Pv]. 

The inclusion of PF in Fg as the copy Xj, of F induces 

functors 

C11. EB cB IE) cig) ScFBycByy=5 Gy 5» 
which are usually oulitted from the notation. 

In terms of the functor Cc S in C.11., let X and Y be 

CW-complexes, and suppose that X is finite-dimensional. 

C.12. Then (X, Y} = lim, s¥x, sky]. 

This result is false in general if X has infinite dimension, 

which shows where our theory diverges from the S-category as 

originally proposed. 

The sequence C.1. has an obvious automorphism, given by
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moving one step to the left; for each object X in F we take 

its copy in EK to its copy in BE _4» for each n. This 

automorphism induces the following translation suspension 

functors, which all have the obvious inverses: 

C.13. §':Eg ~» Eg» IE) ~» IE), 8-8 18) ~ 18), § ~ Sp- 
We have the point CW-complex o in KF, from B.9. 

c.14., By C.11., the CW-complex o gives rise to a spectrum, 

also written o. We call this, and any isomorphic spectrum, a 

point spectrum. The point spectra are the zero objects of 5S, 

Suppose given spectra and subspectra, A c X, Bc ¥Y. 

C.15. The subspace Mor((X, 4), (Y, B)) of Mors(X, Y) is 

defined as the set of all maps f:X - Y such that flA:A » Y 

factors through B, and is given the subspace topology. 

C.16. We write {(X, A), (Y, B)} for the set of homotopy classes 

(path components) of Mor((X, A), (Y, B)). 

C.17. In particular, Morg (X, Y) = Mor((X, o), (¥, B)), and 

ix, Yi = {(X, 0), (Y, B){. 

Thus C.17. includes the absolute case in the relative. It is 

clear that C.15., C.16., and C.17. extend to more complicated 

configurations, so that we can define maps of triads, triples; etc. 

C.18. Every inclusion A cc X has the homotopy extension property. 

C.19. If the inclusion A Cc X is a homotopy equivalence, then 

A is a deformation retract of X. 

Now let (X05 en be any family of spectra.
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C.20. We can define the wedge VX, 5 uniquely in I(S). 

It is a sum in § or in Sy. It contains each x as a 

subspectrum. The inclusion C c¢ S respects wedges. 

C.21. If A cX, for all A € A, then A C WX. 

C.22. We can define the product spectrum I, x, up to homotopy 

type, as a product in §, 

C.23. The homotopy category S, has an additive structures. 

This additive structure is unique, as always. Apart from 

c.14., C.20., C.22., this assertion amounts to C.24: 

C.2L, {X, Y! can be given a natural abelian group structure, 

for any spectra X;, YY, for which composition is bilinear. 

C.25. Hence wedges and products of finite families of spectra 

coincide in Sy - 

C.26. If A is finite, we have, generally, {A, WX, | = @ fA, X, 4. 

C27. If AcX,BcY, {(X, A), (Y, B)} can be given a natural 

abelian group structure. Similarly for more complicated 

configurations.
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D. Smash products 

The smash product functor A:C x C -» C can be extended to 

give a smash product functor on S: 

D.1. We have a separately continuous smash product functor 

AS x §S » 8, which takes I(8) x I(8) to I(8). 

D.2. The homotopy functor Ai 8y x Sy - Sy is bilinear, and 

coherently commutative and associative. 

Note. The functor D.1. is not quite canonical, since it 

involves certain choices; but these choices become equivalent 

when we pass to homotopy. 

Por any spectrum X, we have the natural isomorphisms in 

1(8): 
D.5. orX x 0, X AO =~ O. 

D.li.  3°AX » X, Xa3¥ » X, where the O-sphere 3° is inherited 

from I(F). 

Take any family (X,) of spectra, and any spectrum A. Then 

we have natural isomorphisms in I(S) 

D.h. V. (AnX, ) aS MANX, and Vy (Xy a4) a (Vy X, ) AA. 

Choose a 1-sphere st, inherited from I(F). Parallel to 

B.14, we define the suspension SX of the spectrum X by 

SX = 5! Ax, and Sf = 1af:37 Ax UN for a map £:X =» YY, 

D.6. This defines the suspension functor S:S —» S, which 

takes I(S) to I(8), and induces S:8y ~ 8
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We have already defined an invertible translation 

suspension functor S'. Exceptionally, let us write J:C c S 

for the functor in C.11. 

D.7. There is an isomorphism SJ =~ S'J of functors from C to S. 

Unfortunately, this natural isomorphism cannot be extended 

to the whole category S. However, we do have: 

D.8. There is an isomorphism S ~ S' of the homotopy functors 

from Sy to 8,» compatible with D.7. We write it in the form 

o:s' 1s ~ 1. 

D.9. The functor S98 = Sy is an equivalence of categories, 

and induces isomorphisms S:{X, Y}! 2 {SX, SY} for all spectra X, Y. 

D.10. The additive structure on Sy may be induced by track 

addition and the isomorphisms D.9. 

Let B be the closed interval [0, 1] of the real line, with 

0 as base point and two other cells. We can repeat D.6. with B 

instead of 51, 

D.11. The cone functor T is defined by TX = BaX, Tf = 1af. 

D.12., The cone TX is contractible; for all spectra X. 

D.13. We have the canonical natural inclusion X ¢ TX, for any 

spectrum X, by D.hL. 

Let X and Y be spectra, and A a CW-complex. Then we have 

the natural isomorphism 

D.1L. [A, Morg (X, Y)] = {AAX, Yi.
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On the left we have the set of homotopy classes in the 

ordinary sense of maps from A to the space Morg (X, Y). This 

property has a well-known analogue for CV/-complexes. 

This result is useful for constructing secondary operations. 

For example, one can define Toda brackets directly by it. 

BE. The graded category 

We have the additive category By» on which the translation 

suspension functor S' is an automorphism. Take any spectra, X 

and Y. For each integer n, we put 

E.1. (x, Yi = x, Yi7% = {s'™X, Yl, and call the elements 

the graded homotopy classes from X to Y of degree n, or 

alternatively of codegree - mn. 

E.2. The graded category Sy. has the same objects, spectra; 

as Sy» or S. The morphisms from X to Y form the graded group 

(X, Yi, = {X, vi, whose components are the abelian groups 

iX, Yi = {X, Y}™™., Composition is evident.
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E.3. The bigraded category By. ® Spx has as objects the 

ordered pairs X @ ¥, where X and Y are objects of By. The 

morphisms from X @ ¥ to X' ® Y' of bidegree (m, n) form the 

group {X, Xt ® {Y, Y's which is thus generated by the 

morphisms a ® B, where a € {X, X'} and g e {Y¥, Yj . We also 

give a ® B the total degree m + n. Composition is defined by 

the formula 

(a' ® 8") ° (a ®B) = (1)™ (a'°a) ®(p'°p), 
where a and B' have degrees m and n'. 

EL. The bigraded category Si. ® Spx has the canonical 

involution taking X ® Y to Y ® X and a ® 8 to (=)™ 8 ® a, 

where m and n are the degrees of a and £. 

We can obviously repeat the construction in E.Z%. 

E.5. We have canonically (Sy ® Spx) ® Spx = Spy © (Spx ® Sp)» 

where (X ® Y) ® Z corresponds to X ® (Y ® Z) and 

(a ®B) ® vy to a ® (B® vy). 

Our purpose in introducing these multigraded categories 

is to express the properties of the smash product more succinctly. 

E.6. By use of D.2. and D.8., the smash product functor 

AS x Zn 78, extends to an additive graded functor 

AiDpx © Spx — Spe 

E.7. The functor E.6. is commutative and associative with 

respect to E.4. and E.5.



- 15 = 

This formulation takes care of the signs introduced in 

computations involving smash products and suspensions. 

We may also rewrite D.8. in graded form. 

E.8. There is a natural isomorphism (in the graded sense) 

oX:5X ~ X, 

of degree - 1. It satisfies 

f° oX = (=)? oY © sf 

for a morphism f:X —-» Y of degree n. 

More generally than in E.1., given pairs Ac X and Bc ¥Y 

of spectra, we define, for any integer n, 

2.9. {(X, A), (Y, BY} = {(X, &), (Y¥, B)}™" = {(8'7X, 8'74),(Y, B)}. 
These form a graded group. It is clear that this 

definition extends to triads and other configurations.
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F. Cells 

We need to express the fact that CW-complexes have cells 

in a categorical form, so as to gpply also to spectra. They 

are needed, for example, in proofs by induction on cells. We 

do this by introducing an auxiliary space. 

Fol. A cell space consists of a topological space V, whose 

points are called cells, in which each cell is assigned an 

integer (possibly negative), called its dimension. A cell of 

dimension n is called an n-cell. These are subject to the 

axioms: 

a) The closure of a single cell is a finite subset of V. 

b) For any n-cell a, every cell in its closure a, other than a 

itself, has dimension strictly less than n. 

¢) A subset of V is closed if it contains the closure of each 

of its points. 

Let X be a ClV-complex, with base point o. 

F.2. The cell space QX of X is obtained from the space X-o 

by identifying each open cell in X-o0 to a point, and giving X 

the identification topology. An n-cell is &5signed dimension n. 

Thus o does not count as a cell. 

F.3. The category V of cell spaces has cell spaces as objects, 

and a morphism of V 1s a dimension-preserving embedding onto a 

closed subspace.
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F.U4. From F.2. and F.3. we deduce the functor Q:I(C) -» V. 

In any category, denote by Sub(X) the set of equivalence 

classes of subobjects of X. Then for any CW-complex X; the 

functor Q in F.4. induces an isomorphism 

F.5. Q:Sub(X) = Sub(RX). 

This is the formulation we seek. 

F.6. The functor Q on I(C) extends canonically to a functor 

Q:I1(8) —» V which satisfies F.5. for any spectrum X. 

This expresses in a very precise and accessible form the 

information we need about the pessible subspectra of a spectrum. 

It also enables us to extend more of the language of CW-complexes 

to spectra. 

F.7. For any spectrum X, Sub(X) is a complete distributive 

lattice. 

F.8. Given any family (4) of subspectra of X, we can use F.7. 

to define the union U, A and intersection nA, uniquely in 

Sub(X). If the family consists of A and B only, we write A U B 

and A n B. 

Conversely, we can also build new spectra out of inclusions. 

F.Q. Given any directed non-empty diagram (4) of inclusions 

of spectra, we can extend the diagram so as to include a spectrum 

X containing the Ay as subspectra, such that X 1s the union of the 

Ay. The spectrum X is unique up to isomorphism in I(8).
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F.10. Given inclusions of spectra A c B, and A c C, there 

exists a spectrum D containing B and C, unique up to isomorphism 

in I(S), in which A= Bn C and D = B yu C. 

The process in F.10. is called gluing B to C along A to 

form D. 

Let (%,) be a directed system of subspectra of the spectrum 

X whose union is X. Let A be any finite spectrum. Then 

F.11. (A, X} = 1im {A, X, 1. 

There are various ways of constructing new cell spaces from 

old. 

F.12. Given a family (V,) of cell spaces, their disjoint union 

Uy Vo 1s the topological disjoint union, with the obvious dimension 

function. 

F.13. The product Vi x Vg of the cell spaces V4 and Vy is the 

topological product; the cell a x b is given dimension m + n, 

where m and n are the dimensions of & and Db. 

F.1L. The n-fold suspension S™V of the cell space V is the same 

topological space, with the dimension function increased by n, 

for any integer n. 

F.15. Given Vy, c V4, the difference cell space V4/Vz 1s the 

space V4 = Vo with the subspace topology, and the restricted 

dimension function. 

All these occur for spectra. Let (%) be a family of
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subspectra of X. 

F.16. Then X =x, if and only if QX 1s the disjoint union of 

the QA 

F.17. We have Q(XAY) ~ QX x QY, for any spectra X and Y. 

F.18. For any spectrum X, QSX ~ SQX, and QS'"™X »~ S™QX. 

F.19, X is a point spectrum if and only if QX is empty. All 

point spectra are isomorphic in I(S). 

F.20. The spectrum X is finite if and only if QX is finite. 

F.21. We call the spectrum X an n-sphere if and only if QX 

consists of a single n-cell. 

F.22. For each n, n-spheres exist and are all isomorphic in 

I(8). We therefore write 3" for any n-sphere. We inherit an 

n-sphere from I(F) if n > 0. 

F.23. For any m and n, we have ss = zi+1 stil » +0 

and 37A3D = sR,
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G., Jdentification 

Let 1:A ¢ X pe an inclusion of spectra. 

G.1. We can construct canonically a map p:X —» X/A of spectra, 

such that a) p is a cokernel of i, in S, 

b) i is a kernel of p, in 8, 

¢) This extends the notion of identification for 

CW-complexes in B.11. 

G.2. The subspectra of X/A are the spectra Y/A, where 

acY¥YcX. 

G.3. We have Q(X/A) ~ QX/QA, which was defined in F.15. 

G.4. Suppose A is contractible. Then p is a homotopy equivalence. 

Suppose A, B, C are subspectra of X. 

3.5. Then (A u B)/A = A/(A n B). 

3.6. Suppose A > B > C. Then (4/C)/(B/C) = A/B (excision). 

Suppose A ¢ X and B ¢ Y are subspectra. 

3.7. Then (XvY)/(AvB) = (X/A) v(Y/B). 

3.8. Then (X/A) A (Y/B) = (XAY)/(XAB.U AAY), and 

XAB) Nn (AAY) = AAB. 

3.9. We have S(X/A) = SX/SA, and S'™(X/A) = s'™x/sta. 

2.10. The inclusion D.13. X c TX yields TX/X =~ SX. 

“here 1s a natural exact sequence of abelian groups 

ZA. FUX/A, Yi» (X, A),(Y, BY}, ~ {4, Bl ~ {X/A, Y} _- ... 

Suppose X 1s contractible. Then identification induces an 

Zsomorphism
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G.12. {(X, A), (Y, B)} = {X/A, Y/B}. 

Thus in one very important case the relative groups 

are easily expressed in terms of the absolute groups. 

H, Filtrations 

Filtrations of spectra are of crucial importance both 

in the abstract theory and in applications. 

H.1. A filtration of a spectrum X is an increasing sequence 

(X,) (ne Z) of subspectra of X whose union is X. 

Thus a filtration of X corresponds precisely to a 

filtration of the ccll space WX of X by a sequence of closed 

subspaces whose union is QX, and conversely. Note that we do 

not insist on xX, = 0, a condition that has no significance 

in homotopy theory. 

Let (X,) be a filtration of X, and Y any spectrum. Then 

Hoe2. (A, X} = lim {4, x} for any finite spectrum A.
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H. 3. lin {X/X , Yi = 0. 

H.l. We have a natural short exact ecquence 

0 —» Rlim {SX Y} - {X, Yi -» 1lim LX 5 Y{ -» 0, 

where Rlim denotes the first right derived functor of lim, as 

applied to a sequence of abelian groups and homomorphisms. 

Suppose given any sequence of spectra and maps 

con Y , + Y_, = ¥Y, - Y, ~ Y, cose 

H.b. Then there exists a filtration (X,) of a spectrum X 

and a homotopy equivalence xX, ov Y. for each n, such that the 

diagram 

coo X 5 Cc X_y Cc Xs C x, Cc xX, ¢oo 

® @ oo @ Y ,»Y_, X52 7Y, - ¥, eo o 0 

commutes up to homotopy. Moreover, the homotopy type of X is 

uniquely determined (but not up to unique homotopy equivalence). 

Suppose given filtrations (X,) of X and (Y,) of Y. 

The product filtration (2) of Z = XAY is defined by 

H.7. Then Zz, /Z = Vi43en (Ry 7%s dA (Y/Y 4) 

Take any spectra X and Y. 

H.8. The n-skeleton X of X is the subspectrum of X such 

that x is the set of all cells in QX having dimension at most 

n. The skeletons form the skeleton filtration of X.
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H.9. Then x is a wedge of n-spheres. 

H.10. The product filtration of the skeleton filtrations 

on X and Y is the skeleton filtration on XAY. 

H.11. We call the map f:X - Y skeletal (or ccllular) if 

£]X Xx" » Y factors through Y" for all n. 

He12. Every map is homotopic to a skeletal map. 

H.13, Given a subspectrum A c X and a skeletal map f:A - C, 

there exists a spectrum 2 and a map g:X —-» Z such that: 

a) C is a subspectrum of Z, 

b) g extends f, 

¢) The inclusion maps, with f and g, form a pushout diagram 

in S, 

d) The isomorphism X/A = Z/C induced by f and g lies in I(S). 

H.14. Given a skeletal map f:X -» Y, we have the mapping 

cylinder M of ff, and maps i:X c M, j:Y cc M, p:M -» Y such that 

a) By j, Y is a deformation retract of M, with retraction 

map p, 

b) £=p°i. 

H.15. In H.14., the mapping cone of f is the spectrum M/X. 

H.16. Any map f can be expressed as a composite, f = hog, 

where g is an inclusion and h is a homotopy equivalence. 

The above mapping cylinder and cone correspond to the 

reduced mapping cylinder and cone in ordinary homotopy theory.
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Older theories of spectra are based essentially on 

the following definitions: 

H.17. A CW-prespectrum (or simply prespectrum) consists of 

a sequence (A) of CW-complexes and inclusion maps 

a, SA. C Aq of CW-complecxes. 

H.18. The prespectrum A = (A a_) is a Q-prespectrum if 

each adjoint map a, thy - QA is a homotopy equivalence. 

Given a prespectrun (As a) we may, by C.11., regard 

each Ay as a spectrum, then, by D./., obtain an inclusion 

t . ? a, ts A Cc Ap of spectra. 

H.19. Each prespectrum (A; a) determines a spectrum X with 

filtration (X,) such that, for each integer n, 

_ gr i a) X, = 8" "As 

. . . ¢ ——1 1 
b) The inclusion X, c X 4 is 8 a' 

H.20. Any spectrum is isomorphic in I(S) to the spectrum 

determined by a suitable prespectrun. 

H.21. Any spectrum has the homotopy type of a spectrun 

determined by a suitable Q-prespectrun. 

Let X be the spectrum determined by the prespectrun 

A —_ (A; a). 

H.22, Then §B, Xi, = lim, [sh B, Ay] for any finite 

CW-complex B. 

n H.23. Further, {B, x}, = {B, X}" = [B, A ] for any
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ClN-complex B, provided A is a Q-prespectrum. (Homotopy classes 

are taken in § on the left, in G on the right.) 

These are the properties that relate our spectra to 

previous notions of spectra. There is little worth saying about 

maps of prespectra. 

J. LXact triangles 

In this section, let us write |f| for the degree of a 

morphism f in SI 

Suppose given an inclusion i:A c X of spectra. 

Jed The boundary morphism 6:X/A -» A in SN of degree - 1, 

is defined as the composite 

X/A = (X u TA)/TA —p Xu TA 35> (XU TA)/X ~ TA/A = SA So A 

(The morphism p~ exists in D4 by G.4. E.8. provi“cs g.) 

Jel The standard exact triangle of the inclusion A c X is 

the triangle
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A —3—X —5 X/A 5A. 

(It has a distinguished vertex at A.) 

Given two triangles in 3 

AA — B —5— GC 5 A 

A' AT ——B PX Cc! <A , 

we define a morphism from A to A' as a triple (a, b, c) of 

graded morphisms such that in the diagran 

Jods. EN | 5° 3 A 

EK: Re Je Ja 
v v 
Al 7 B' = C ooh 

the three squarcs commute up to the signs (=)®, (=)Y, ana (=), 

where 

lal] + |p] + |e] + u+v +w 

is even. 

Thus the triangles in By, 5 and these morphisms form a 

category, under the obvious composition. 

Jel We call the triangle 

A —-—sB —C —3A 
h f g 

an cxact triangle if it is isomorphic in the sense of J.3. to 

sorie standard exact triangle. 

A slight modification of exactness is frequently useful,
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Jeb. We say the triangle 

Ae —3( ———A 
h f g 

is an anti-exact triangle if and only if 

A-———b>B ——C —3A 
-h ~f -g 

is an cxact triangle. By (anti)-exact we mean cxact if n 

is even, anti-cxact if n is odd. 

J.6. Suppose 

A——>B ———= 0 ——A 
h g 

is an exact triangle. Then 

A—-nw-3sB —m>3C ——A 

th +f 8 
is (anti)™-exact, if we choose n minus signs. 

We have the class of exact triangles in § ;. It 

satisfics the axioms of Puppe: 

Joel. In any exact triangle 

Ae——emem——B —— (CC ——A, 
h IY g 

we have |f| + |g| + |h] = -1. 

J.8. Any triangle isomorphic to an exact triangle is an 

exact triangle. 

Jd.9. If 

A—-—>B —-—->3( —A 
h iy g 

is an exact triangle, so is 

B———=(C ——2A—B. 
T g h
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Hence exact triangles no longer need distinguished vertices. 

J.10. For any spectrum A, 

Arh —> 0 —— A 

is an exact triangle. 

d.11. Every morphism h:A -» B in By can be included in some 

exact triangle 

Ag B50 4 
in which the degree of ff is arbitrary. 

Jde12. Given thc diagram, in which the rows are exact triangles 

and the squarc commutes up to sign, 

SRP TE 0 Ted 
a |" |a 
v 
MB mC AL 

we can fill in c:C -» C' to form a morphism of triangles. 

The axiom of Verdier also holds: 

Jd.15. Given three exact trianglcs 

B——r—>C——4A'—>B, 

h——C—B 4, 

A ——B —C'-—4, 

such that g = f° h, there exists a fourth exact triangle 

A' > C'—B' —3A" 

which makes the diagram
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A——0 -——2h —.0' 
& J. NL p \ . 

ny, TY / y_ 
¢ oo 0 B B' B ®o oo 0a 

+1 

/ \ / \, / \ 

A' — 5C'"——n A ——— C 

commute up to sign; and these signs are such that this diagram 

yields four morphisms of exact triangles: 

A——sB —>C' —A 

A——3C —>B' si 
Lob 
B——>C —sA'-——B 

Ly | 
ar aB' AY c! 

4 

or 
C'—asA ——»B —C', 

Ixact triangles enjoy various propertics, most of which 

arc casy deductions from the above axioms. Take any exact 

triangle 

A——B—C ——=2A. 
h f g 

Then for any spectrum X, the scquences 

Jelll, seo 0 {X, AY it % Bf y—ps {X, Clg 1%, Al. eo eo 

6 a 3 a 

Jel © {A, X} Tog iC, X} TSF {B, X3 > 14, X} cee 

arc exact sequences of graded abelian groups, in the ordinary 

SCILSC. 

J.16. For any n, 

§t0y — sg ——5'7%C ——»s'"A 
5h stir Sh
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is an (anti)"-exact triangle. 

Also 

Jel. XAA —=3>XAB > XAC —— XAA 
Sad Le "CAA TNT Tar TT qa MY 

Je18. AAX — BAX —~——3 CA X ———> AX, 

hal Al gal 

are exact triangles. In an obvious sense, 

J.19, The smash product functor is exact in each variable. 

Note J.16. and J.17. do not contradict D.8., because E.8. 

introduces a sign. 

Suppose that we have a family of exact triangles 

=m OM 
A A A 

in which the degrces £5 15 |g, 15 and |h, | are cach independent 

of A. Then the triangles 

Lo20. Vy gi Vo By Vio AVA iy 7% Ata Va 8a 

dels LA —ga— hE ~~ Lo 1m Lia 
ANA AA ACA 

are defined, and are exact triangles. 

Finally, we give two methods of deciding whether a 

given morphism is an isomorphism. 

J 22. Given the exact triangle 

A——=2B —20 —=A4, 
h f g 

C is contractible if and only if h is an isomorphism (possibly 

of non-zero degree) in § ,.
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J.23. The 'five lemma'. If in the morphism of exact 

triangles 

A—r—>sB —~—->C ——3A 
| h | T g 

Ee [° . . 

A — 8 —c — Ok 

a and b are isomorphisms, then c¢ is also an isomorphism. 

K. Homology and cohomology 

Let G be the category of abelian groups and homomorphisms, 

and G° the category of graded abelian groups and graded 

homomorphisms. 

Kod. A contravariant (respectively covariant) additive 

functor K:§, - @ is a cohomology (resp. homology) theory if: 

a) K respects sums: for any wedge X = \, X, of spectra, the 

inclusions NN c X of the factors induce an isomorphism 

KX = I, KX, (KX = o, KX, ),
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b) For any inclusion i:A c X, the induced sequence 

K(X/A) 5K ~~ KA (BA ———s KX 5 K(Z/A)) 

of ebclian groups is cxact. 

Ke2. Then, given any spectrum A, the functor XK defined by 

KX = {X, Al} (respectively KX = (50, XAAY) 

is a cohomology (homology) theory. For these theories, A is 

called the coefficient spectrum. 

Given a contravariant (resp. covariant) functor 

Kid + G, as in K.1., we cxtend to a functor 

K 8, , ~ Gg" (Ky:8, -» G) by sctting 

K.3. a) For any spectrum X, K'X = K8' 7X (XK X = KS'7x), 

b) For any morphism £:X -» Y in $y,» of codegree p 

(recep. of degree q), so that £:8' PX 5 Y 

(£:8'9% 5 Y) in SH 

Kf = (<-)"Pks' PeixPy » x¥¥Px  (X,.f = kS'PTIE Xo KY). 

Kell o If X is a cohomology (resp. homology) theory, and 

A——5DB —5—>C pg TOA 

is any cxact triangle, then the sequecncc of graded groups 

voi KA ———3K'C —35— KB ——5K A ... 
K'g Kf Kh 

(resp. +... K A RET X.B xT XC “TE Koh ooo) 

is cxact. (Conversely, this condition clearly implies b) of XK.1.)
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Keo In the case of the theories of K.2, wc write 

HY(X; 4) = K°X = {X, A" (resp. H_(X; A) = KX = (2°, Xan). 

Cohomology theories can be classified: 

K.b. Every cohomology thcory on §, is represcntable, i.e. has 

the form { , A}, for some spectrum A. 

Ke/o Every cohomology theory defined only for finite spectra, 

and such that KO is countable, can bec extended to a cohomology 

theory on thc whole of Sp 

K.8. Given any spectra X and ¥Y, there exists a spectrum 

F(X, Y), called the function spectrum of X and Y, and a natural 

isomorphisn 

{Z, P(X, Y)} ~ {XaZ, YI. 

K.9. The spectrum F(X, Y) is functorial, and is anti-exact 

in X, and exact in Y. (Compare J.19.) 

K.10. The functional dual DX of thc spectrum X is defincd as 

DX = F(X, 3°). 

Then K.8. yields the evaluation morphism 

K.11. ¢ :XADX - 30, 

Assume from now on that X is a finite spectrum. 

K.12. Then X ~ DDX, and we may take DX to bc finite. 

Ke15. The cvaluation morphism e induccs an isomorphism, for 

any spectra A and B, 

{L, BaX}, = [AADX, B},,
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which takes f:A - BaX to (1ae)°o(fal1), followed by Baz’ ~ B. 

K.14. Composition induces 

F(A, B) =~ DAAB, 

if A or B is finite. 

K.15. By K.13., there is a canonical morphism 

u:30 - DXAX. 

K.16. Then u induces, for any spectra A and B, an isomorphism 

{XAA, Bl, = {A, DXAB},. 

XK.1/. Conversely, suppose given a map vez? -+ YAX which 

induces an isomorphism 

(x, Al, = (2°, Yaal, 

for all spectra A. Then we may take Y as DX, and v as u in K.15. 

It is sufficient to be given the isomorphism when A = 59, 

The last result enables us to recognise functional duals 

when we meet them.
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L. Homotopy groups 

L.1. For any integer n, the nth homotopy group = (X) of the 

spectrum X is defined by 

x (x) = (3°, x} = (3%, x]. 

(Of course, if X is a CW-complex, this must be interpreted as 

the stable homotopy group, in the usual sense, by C.12.) 

L.2. We say the spectrum X is n-connected if ms (X) = 0 for 

all i <n, We say X is highly connected if it is n-connected 

for some finite n. (Of course, n may be large and negative.) 

Leds Any n-connected spectrum has the homotopy type of a 

spectrum whose n-skeleton is o. 

L.L. If X is (m-1)-connected and Y is (n-1)-connected, then 

XAY is (m+n-1)-connected, and 

Topp (KAY) 2 m (X) ® n, (Y). 

L.5. If 7, (X) = 0 for all n, then X is contractible. 

L.6. If the map £:X =» Y of spectra induces isomorphisms 

foimg,(X) 2 =, (Y), then £ is a homotopy equivalence. 

L.7. Given the family (X,) of spectra, the canonical morphism 

xt VX, » LX 

is a homotopy equivalence if and only if for each integer n, 

the number of indices A such that m (X5) Z 0 is finite. 

L.8. The filtration (Y ) of the spectrum Y, with decreasing 

indices (... Y oY ...) is called a Postnikov filtration
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of ¥ if for each n; 

a) Y is (n - 1)-connected, 

i. : ~ _ . 
b) Y © Y induces 7s (YT) ~ mn; (Y) for all i >» n. 

Le9. Any spectrum X has the homotopy type of a spectrum Y 

having a Postnikov filtration. The boundary morphism 

v/ In nd 4 Ln 

is called the (n+ 1)th k-invariant X71 (X) of X. 

M1, Bilenberg-iiaclLane spectra 

Let G be an abelian group. 

ites We say the spectrum X has type G if: 

a) 7, (X) = 0 for all n # 0, 

b) We are given an isomorphism my (X) =~ G. 

Me2o Spectra of type G exist for any group G, and any two 

are canonically homotopy-equivalent. We therefore write XK(G) 

for any such spectrum.
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M.S. The functor Ty induces an isomorphism 

{K(G), K(H)} = Hom(G, H). 

Hence K(a):K(G) - K(H) is defined, for any homomorphism 

a:G — H. 

Mol. The Steenrod algebra for the group G is the graded 

ring {K(@), K(e)}, with composition as multiplication. 

MaDe Given a short exact sequence of abelian groups 

0 —3>A —g > B —> C —0, 

there is a unique morphism B:K(C) —» K(A), of degree -1, such 

that 

K(A) x) L(8) 0) K(C) —5 K(A) 

is an exact triangle. The morphism 8 is called the Bockstein 

of the given exact sequence. 

E.6. There is a natural morphism 

K(G) A X(H) -» K(G ® H). 

fie [a Given the coefficient group G, we define the ordinary 

cohomology Hq and homology theory H, of the spectrum X by: 

HX; 6) = {X, KG)" 5 H(X; 0) = {3°, xaK(e)},; 
so that in the notation of X.5., 

HY(X; G6) = HX(X; K(6));  H (X56) = H (X; K(a)). 
(When X is a CW-complex, these theories give the reduced 

cohomology and homology. To recover the 'absolute' theories, 

we adjoin a new base point o to X to form x7, and use xY instead 

of X.)
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Let X _, be the spectrum Y/Y in L.9., obtained from X 

by 'killing the homotopy groups above Tog e 

u.8. Then x" (X) e E(x, n, (X)). 

Take any spectrum X, and let (X°) be its skeleton 

filtration. We define the cochain complex (c™ (x; G); &) and 

chain complex (C.(X; G); 9), for a given coefficient group G, by: 

5.9. CNX; 0) = BNXP/XNTN; 6); cp(x;5 @) = H (Xx 6), 
and boundary homomorphisms 

5:0%(x; 6) » A™*N(x; 6); e:c,(X; @) ~ Cc (X; @) 

induced by the boundary morphisms 

y+] Vos — 0 —— x xe 

with a sign (-)" in the case of cochains. 

¥X.10. The chain groups Cc, (X; Z) are free abelian, and as 

complexes, we have 

c*(%; G) = Hom(Cu(X; Z), G);  Cul(X; G) 2 Cu(X; 2) ® GC, 
There are canonical isomorphisms 

M.11. HX; 6) x HMC (X; 6), 8); H_(X; 6) = H_(Cu(X; G), 0) 

between the homology groups of these complexes and the cohomology 

and homology groups of X. 

Let ¥Y be another spectrum, and G and H abelian groups. 

Then there is a canonical isomorphism of chain complexes 

M.12. C.(X; G) ® C,(Y; H) = C(XAY; G © H), 

where the left hand side is equipped with the usual differential,



- 39 - 

Thus M.10., M.11., and M.12. entitle us to use the 

theory of chain complexes, and obtain results such as the 

Kinneth formula. In particular, we have the universal 

coefficient theorems: there are natural short exact sequences, 

which split, 

H.13. 0 - Ext(H__,(X; 2), G) » H'(X; G) ~ Hom(H_(X; 3), ) = 0, 

M.1k. 0-H (X; 2) ® G » H (X; @) » Tor(H,_,(X; Z), G) ~ 0, 

For any spectrum X, and any integer n, we have the 

natural Hurewicz homomorphism 

11.15. him (X) 5 H (X; 7). 

i..16. Then hin (X) ~ H (X; Z)s whenever X is (n-1)-connected. 

£.17. Suppose X is highly connected, and H,(X; Z) = 0. Then 

X 1s contractible. 

¥.18. Suppose the map f:X — Y induces fH (X; 2) = H.(Y; Z), 

and that X and Y are highly connected. Then f is a homotopy 

equivalence, 

Note M.17. and M.18. are false without the hypothesis that X 

and Y are highly connected. For example, let X be the spectrum 

that represents the modulo p complex K-theory; then H_ (X; Z) = 0, 

put X is clearly not contractible. 

A slight generalization of the notion of Eilenberg-MacLane 

spectrum is frequently useful. Let G, be a graded abelian group. 

¥.19. We say the spectrum X is a graded Eilenberg-MacLane 

spectrum of type G, if:
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a) X has the homotopy type of Vo S5'7K(G,) =~ II s'Uk(c,), 

b) We are given an isomorphism 7, (X) = G for each n. 

We write X(@,) for such a spectrum. Then m.(K(G,)) = G. 

We have the somewhat surprising result: 

M.20. For any spectrum X and any abelian group G, the spectrum 

XAK(G) is a graded Eilenberg-Maclane spectrum. 

N. Snectral sequences 

Let X be any spectrum, with arbitrary filtration (X,)» 

and Y any swnectrum. Then we have two natural spectral sequences, 

which arise from H(p, g)-systems. In each, the differentials 

are homomorphisms 

a,:504 5 RYT, Ard, 

N.1. The 'contravariant' spectral sequence (contravariant 

in filtered spectra X), (EL (Xy» Y)), in which
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BP 9 = (X/%_,Y}Pre mre = FRx, yiP*ra ppl yiP+d 

where the filtration (FP{X, v1") is defined by 

Pix, v}" = Ker[{X, y}® - 1X,_qs v1 7. 

N.2. The 'covariant' spectral sequence (covariant in 

filtered spectra X), (E.(Y, X.)), in which 

EF = {Y, X /X_, - g Prd = FX, Yo Fog IY Xo 

where the filtration (FX, Y},) is defined by 

FIX, Yh, = Im[{Y, X13, = IY, Xi]. 

In N.2., it is frequently (but not always) convenient 

to change the signs of the indices by writing Eo = E274. 

Let X' be another filtered spectrum, and Y' and Z be 

spectra. Then the above spectral sequences have natural products, 

with respect to which the differentials are derivations, 

No.3. E(Xy» ¥) @ EL(X, Y') =» EB ((XaX'),, YaY'), 

Holi. EL(Y, X,) @ EL(Y', Xi) » EL(YAY', (XaX')y), 

N.5. E.(Y, X) © E(X,, 2) » {Y, Z},, by composition. 

The spectral sequences N.1. and N.2. include all the 

usual types of spectral sequence in algebraic topology, which 

are obtained by constructing suitable filtrations of X, c.g. the 

Adams spectral sequence. For these particular cases, we can 

write down the Es; term. 

Let X have the skeleton filtration; then for any spectrum 

A we filter Xah dy (Rad) = X ah. In this case, 

2.6. Bp’ (Xu A) = BO (X; m_g (A),
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N.7. Bo (30, (Xab),) = H_(X; 7 (4). 
p,q D q 

Let p:E -» B be a fibrc bundle of CW-complexes, with 

fibre ¥, a CW-complex. Let B® be the n-skeleton of B. Then 

filter E by putting E_ = p~ (B_), a CW-complex. This 

filtration gives rise to the Leray-Serre spectral sequences. 

For these, we have 

n.8. ER Yel, a) = #R(8%; (F°, A}%) = vP(B, £; HUF, £; 4). 

N.9. BE (2%&"an),) = H (BY; (2°, FOaAl)) = H_(B, #5 Hy(F, #; A), 
for any spectrum A. We had to take the disjoint union g’ of KE 

with a base point o, etc. The coefficient systems H (TF, ag; A) 

and H,(F, fg; A) are twisted in general. 

There are also cap products in the spectral sequences, of 

which N.5. is a special case. Let X and Y be filtered spectra, 

and A and B any spectra. Then we have natural products, with 

respect to which the differentials are again derivations, 

Ka10. BE (4, (XY),) @ E(Y,, B) » E (4, (XB),), 
N11. EL(4; Xu) © EL((XAY) ys B) = E,((AAY),, B). 

In using these products, it is frequently useful to 

filter a spectrum C trivially, with Cy = C and C_, = 0.
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In this chapter we consider the formal properties -of 

Thom spectra, and how they arise in Spanier-Whitehead duality. 

There are many peculiar homomorphisms in algebraic topology, 

defined in widely differing ways; one of our objects is to 

unify several of these under the name 'transfer homomorphism'. 

We also introduce the bordism homology and cobordism 

cohomology theories (see [C5]). We show how to define generally 

the cobordism characteristic classes of a vector bundle over a 

CW-complex; these take values in the cobordism cohomology 

ring of the base space. 

This chapter comprises the sections: 

1. Thom spectra 

2. Combinatorial Pdincaré duality 

5. The Thom construction 

lt. Thom isomorphisms 

Hb. Bordism and cobordism theories 

6. Transfer homomorphisms 

7. Riemann-Roch theorems 

8. Characteristic cobordism classes 

9. Some geometric homomcrphisms.
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$1. Thom spectra. 

In [A6], Atiyah considered the Thom complex of a vector 

bundle over a finite CW-complex from the stable point of view, 

and observed that its stable homotopy type depended only on 

the stable class of the bundle. Now that we have the correct 

stable homotopy theory to work in, we can carry this through 

for vector bundles over arbitrary CW-complexes, and indeed for 

virtual vector bundles, 

We shall assume that all our vector bundles have been 

given an orthogonal structural group. Those with fibre dimension 

n are classified by means of a universal bundle Yq over a 

classifying space BO(n). We shall assume that for the various n 

these fit together nicely: 

(a) Ve have a CW-complex BQ filtered by subcomplexes 

.».B0(n) c¢ BO(n+1) ..., 

(b) We have a universal vector bundle Y, over BO(n), with 

fibre dimension n, 

(c) We have for each n a bundle isomorphism 

Y,,q | BO(n) = Yn ® 1, where 1 stands for the trivial 

line bundle, 

(Ad) We have bundle isomorphisms TI 2 Yn X Tg (cross 

product of vector bundles, over BO(m) x BO(n)), 

where W:BO(m) x BO(n) -» BO(m+n) is induced by 

O(m) x O(n) c Q(m+n),
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(e) The bundle isomorphisms in (c) and (d) are compatible. 

This can conveniently be done by using the universal 

bundles constructed by Milnor [ML]. 

Bundles are determined by their classifying maps. We 

shall work with spaces over BO(n) rather than with vector 

bundles themselves. Let Z be the additive group of integers, 

with 0 as base point. 

1.1 Definition The category A of finite CW-complexes over 

BO x Z has as objects pairs (X, f), where X is a finite CW-complex, 

without base point, and £:X »- BO x Z 1s a map. A morphism from 

(X, £) to (Y¥Y, g) is a map h:X =» Y such that g © h = TF. 

Composition is evident. We have also the subcategory L(A), 

with the same objects, which contains the morphism h if and only 

if h is an inclusion of CW-complexes. 

1.2 Definition The category A, of Cill-complexes over BQ x Z, 

with the subcategory ICA) is the W-extension of the pair of 

categories L(A) c A (see Chapter I). 

We observe that A, and hence Sry isa topological category. 

By means of p:BO x BO =» BO and group addition in Z, we have a 

multiplication on BO x Z. The definition of pu is not obvious 

(see Chapter II). Given a vector bundle E over X, with fibre 

dimension n, we take f:X » BO x Z to have a classifying map as 

first component, and n as second. If the fibre dimension



- 4 - 

varies, we treat each component of X separately. 

1.35 Definition We define 

Ko(x) = [x°, BQ x 2]; 
the set of unbased homotopy classes of maps from X to BO x Z. 

It is an abelian group. Ve call the elements virtual vector 

bundles over X. The projection X =» Z is called the rank of the 

virtual vector bundle. 

when X is finite, this 1s the usual Grothendieck group of 

vector bundles over X. When X is infinite, KO(X) is much bigger 

than the Grothendieck group - a virtual bundle is not in general 

the difference between two honest bundles, else the universal 

Stiefel-Whitney classes would not be algebraically independent. 

Our object is to construct the Thom spectrum of a virtual 

vector bundle. Given £:X -» BQ(n), the Thom complex of & = f£ v_ 

is obtained from the unit disk bundle in & by identifying the 

boundary sphere bundle to a base point o., It has a natural cell 

structure. We follow [AG], and write X% for this space. Also, 

adding a trivial line bundle to & simply suspends xe, In particular, 

xY is the disjoint union of X and o, as before! If we write n 

for the trivial bundle of fibre dimension n, and 2 for a point, 

we see that 2 is an n-sphere! 

Write 4 Tor the category of finite CW-complexes over BO, 

and 4 for the subcategory of complexes over B0(n). By
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compactness, A 1s the union of the subcategories Ae We can 

multiply (X, £) e A With (Y, g) A by means of 

L:BQ x BO = BQO to form (X x Y, uo (f x g)); this induces a 

functor AX 8A. The elementary information about Thom 

complexes is summarized in: 

1.4 Temma For each n > 0, we have the Thom complex functor 

TA EB, L(A) ~» IE), 

where F is the category of finite CW-complexes with base point. 

We have natural isomorphisms 

a) ST ~ Th 38y - BF, 

b) Taal Bw~T (ax), (ach, Bei) 

which yield the commutative diagram 

ST a | TB ~ a A TB) ~ IT, A ST 8 

| 

Vv 

l ST 4m (0x8) | 

N 
That? A TB ~ To neq (0x8) RS To A T,.18 . 111] 

We now feed all this material into the categorical 

machinery developed in Chapters 1 and II. We recall that the 

suspension category Fo was defined as the 'limit' of the 

sequence 

eo 0 0 Eo 35> Lg Yo Tg EF, 5 Yo eo 00 

in which each EF, 1s a copy of XK.
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1.5 Lemma We have the Thom spectrum functor 

T:4 - Eqs L(A) - I(Eg), 

and a natural isomorphism 

T(a x B) = Ta A TB (ay B € 4). 

Proof Take a map f:X -» BO x Z, where X 1s a finite 

CW-complex, which is an object of A. By compactness of X, 

there exists a least n such that f factors through 

£':X -» BO(n) x Z. We assume X is connected, for the moment. 

Then f' has first component £4 :X — BO(n) and second component 

r € Z, say. We define the functor T on this object of A to 

be T, (X, ff.) F _.» an object of Fs. Now suppose g:Y - X, 

where Y is also finite, connected. Then f © g:¥Y =» BO x Z 

factors through BO(m) x Z, say, where m <« n. We require a 

map Tg:T_(Y, ff, © g) ~ T, (X, f,) in Fs. Now T (Y, ff, °g) «cE _. 

is isomorphic in Fg, canonically, to sth (Y, ff, 2g) e FE pe 

Since Tis a functor, we have a map T, (Y, fog) T, (X, £,) 

in §, _,- Naturality in 1.4 yields a map 

sth (Y, ff, °c g) ~ T, (Y, fs © g). The required map Tg is the 

composite of these three. One can verify that T 1s a functor, 

defined so far for connected X. 

If X is not connected, we treat each component of X 

separately, and take the wedge in Eos so that T respects sums. 

If a, B € A, the natural isomorphisms of 1.4 yield a
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natural isomorphism of T(ax 8) with the smash product 

Ta A TB (see II). Care is needed at this stage, but the 

machinery of II is equal to the task. ]]] 

1.6 Lemma Suppose the maps f, g:X —» BQ x Z are homotopic, 

Then the Thom spectra of (X, £) and (X, g) are isomorphic, 

in I(Eg)- 

Proof This derives from the covering homotopy property 

for bundles. ]]] 

We can now take W-extensions of everything (see I). Also, 

our functors are all continuous, and we may take homotopy classes. 

1.7 Theorem We have the Thom spectrum functor 

Thy — Eqw = 3, I(4y) -» I(8), Kirn — Spe 

We ~srite the Thom spectrum of the virtual vector bundle a over 

the CW-complex X as %*. There are canonical natural isomorphisms 

(X x YB» x% A vB, gTx® » xB 

for each of the above three functors. The first is coherently 

commutative and associative. ]]] 

In particular, when Y = X, the diagonal map A:X -» X x X 

induces from a x B over X x X the Whitney sum a + B, which makes 

KQO(X) an abelian group. 

1.8 Corollary There is a canonical natural diagonal map 

AXOB Lox, xP, 

which is commutative and associative. 1]]
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Given a topological group G and a continuous orthogonal 

representation G -» O(n), or G - QO, we have the Borel map 

BG —» BO(n) or BG - BQ (see [B2] or [M4]). Hence a map 

BG -» BO x Z, with second component n in the first case, 0 in 

the second. 

1.9 Definition The Thom spectrum MG is the Thom spectrum 

of the virtual vector bundle BG -» BO x Z. In particular iQ 

is the Thom spectrum of the identity representation of 0. 

1.10 Definition Denote by y¥ the universal virtual vector 

bundle of rank 0, so that BQ' = MQ. Then any virtual vector 

bundle over X, a say, of rank 0, is induced from ¥ by a 

classifying map X -» BQ, unique up to homotopy. The Thom 

spectrum functor applied to the classifying map of ao yields 

the classifying map x% > MO. 

More generally, a virtual vector bundle a over X of 

constant rank n has a classifying map of Thom spectra x® - MO 

of degree - n. 

We have observed that a genuine vector bundle Eg over X 

gives rise to a (homotopy class of) virtual vector bundle over 

X whose rank is the fibre dimension of £. By convention, we 

write xe for its Thom spectrum; this is consistent with what 

we already have. 

1.11 Theorem Given a genuine vector bundle E over X, let N
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be its unit disk bundle, oN its unit sphere bundle, and 

%:N -» X the bundle projection. Then for any virtual vector 

bundle a over X, we have an isomorphism of Thom spectra 

3 &+a ~ WE Oa 

in 8, I(8), or SE 

Proof, Our categorical machinery requires simply a natural 

isomorphism of CW-complexes defined when X is a finite 

CW-complcex and ao is a genuine vector bundle, and this isomorphism 

must commute with the suspension operations on a, nN” a and 

X5*% We do this canonically in each fibre. This amounts to 

finding for each p, gq, a O(p) x 0(g)-equivariant homeomorphism 

DP x DY/o(DP x DY) = pP*Y/5DP*2) which has to be associative. 

This becomes a trivial matter if we first choose for each p 

an equivariant homeomorphism of RP with the interior of DP. ]]] 

As an application, suppose given genuine vector bundles 

E, m over XX, Y respectively, having unit disk bundles M and N. 

Then X° = M/OM, and Y = N/ON. Suppose we are given an embedding 

of NI in kM as a tubular neighbourhood of Y c¢ M, not meeting oM. 

Then identification induces a map of Thom spaces 0:X5 > YN, 

1.12 Theorem Under these conditions, we have also a canonical 

map of Thom spectra 

x&+a HE a 

for any virtual vector bundle a over X, where f:¥ - X is the
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composite Yc Nc MM » X. This map 1s compatible with the 

diagonal maps, in the sense that the diagram 

x5+a _—_ XE Ax® 

| | pa 
Los . d 

yN+T Os YAY YE YA 

commutes. ]]] 

§2. Combinatorial Poincaré Duality 

In this section we translate G.W. Whitehead's duality 

theorem [Wh] into our theory, with the various simplifications 

possible. 

Let X be any finite triangulated simplicial complex. 

Given any subcomplex K, the supplement K of K is the union 

of 211 simplexes of the first derived complex X' that do not 

meet K. We observe that 

(KUL) =K nL, (KnL) =K ul, Kcl implies IL”  c XK . 

There is a unique simplicial map X' - K™*K (the join) extending
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the inclusions of X~ and K. Let s:K #K — [0, 1] be the 

simplicial map taking K~ to 1 and XK to 0. Then we set, as [Wh], 

N(K) = s'[0, £1, NK) =s" [4 1], 
which are triangulable subspaces of X. We see that we have 

homotopy equivalences 

2.1, KT c NK") cX-XK, KcHNEK) cX-K, 

K/L « N(X)/N(L), K/L” =~ N(K7)/N{(L7). 

If L ¢ X, we can define a map 

px? o> (W(L7)/N(EKT)) A (N(K)/N(L)) 

in the obvious way on N(L7) n N(K), and zero elsewhere. 

2.2 Definition Given subcomplexes L c K of X, the diagonal 

map 

a:x° = (L7/KT) a (K/L) 
is defined from the above map up to homotopy, by using the 

homotopy equivalences 2.1. 

2.3 Remark When XK = X, L = fg, A is the usual diagonal 

p:x% » x0 A x (recall X/4 = x%y. 

The diagonal has the expected naturality properties. 

Given subcomplexes K 5 L oD M of X, we have i:L/M c K/M, 

p:K/M -» K/L, and in 8, x the boundary map &:K/L » L - L/M of 

degree - 1, and similarly for XK, IL”, M . We consider the 

diagrams
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(a) Ks (W/L) A (1/2) 
IA APS! 
- 4 

(M /K) a (BM) gm (M™/L7) A (K/M) 

(b) KD ees (MT/KT) A (K/M) 
[2 ap 

(L™/K) a (K/L) ——gm—> (U7 /K") . (K/L) 

(c) Xe (LRT) a (B/D) 

[8 445 

(M~/1L7) a (LM) ——5g— (L~/K7) Y (L/M) 

2.4 Lemma The diagrams (a) and (b) commute, and (c) 

anticommutes, up to homotopy. 

Proof (2) and (b) are obvious. Although (c¢) looks forbidding, 

it is sufficient, by (a) and (b), to take K = X, M = Fg. ]]] 

The diagonal induces cap products. Given a map 

W:A A B =» C of spectra, and z H_(X; A), we have the cap 

product 

z 0: H(L/K"; B) ~» H__, (X/L; C). 

The naturality of the diagonal in 2.4 shows that we have 

the diagram, for any subcomplexes K DL o> M of X,
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2.5 

gt (M~/L"; B) » HY (M/K"; B) » HNL /&"; B) - ui*tau 1; B) ... 

zn lzn lzn lzn 

H ;(L/M; C) >» H (KM; ©) »H (K/L; C) »H , ,(L/M; C) ... 

in which the first two squares commute and the third commutes 

up to the sign (=), 

Now suppose that K and L differ by one simplex P; 

K =L uP, and the boundary oP of P lies in L. Let c be the 

barycentre of P, and V = V_, the closed star of c¢ in X', the 

union of e2l1l simplexes containing c. Let Q be the union of all 

simplexes of X' that meet P only in c¢, and R the subcomplex of 

Q consisting of those simplexes not meeting P, the 'link' of 

P in X'. Then K/L = P/0P, L°/K = Q/R, and V/oV = (Q/R) A (P/opP), 

where oV is the frontier of V. 

2.6 Lemma Under these conditions, the diagonal 

A:x° = (L7/K7) A (K/L) 2 (Q/R) A (P/8P) = V/av 

agrees, up to homotopy, with the identification map 

p,:X? » X/CL(X - V) = V/ov. 11] 

Homology manifolds 

2.7 Definition We say X is a combinatorial homology n-manifold 

if it is a triangulable space having the same local homology 

groups as an n-sphere.
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We shall always choose a fixed triangulation, Various 

facts are more or less immediate from the definition. Assume 

¢ for simplicity that X is compact and connected, for the moment. 

Then H(X; Z) 2 Z or Zs. Every simplex is contained in some 

n-simplex. Let Vv, be the closed star of c¢ in X', for any 

vertex ¢ of X', and pix" — V/V, the identification map; 

then Vv /oV, is a homotopy n-sphere (being a suspension), and 

p :HYNV_/oV_; 7) - HM (X; Z) is epi. We write q 1X" + 30 for 

the desuspended composite x -> v/v, ~ 3% of degree -n, 

determined up to sign. Then by a theorem of Hopf, 

HY (X; Z) 2 (x0, 5032, and is generated by gq, for any c. 

Orientability 

Let X be any triangulated ccmpact combinatorial homology 

manifold. Suppose given a spectrum A, and a 'unit' map 

i:3Y 5 A, of degree 0. 

2,8 Definition We say z € H (X; A) is a fundamental class 

of X if for every vertex c of X', (z, a) = Iie ny (A). We 

then say X is A-oriented. 

Duality 

We suppose given i350 -~ A as above. 

2.9 Definition We say the spectrum B has A-actlion if we are 

given a morphism, u:A A B -» B, such that the composite 

Br 3 A B—r——3A A B > B 
ial 

is the identity morphism of B.
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Remark From IV, the only spectra with K(Z)-action are the 

graded Eilenberg-MacLane spectra. 

2.10 Theoren Let X be a triangulated compact combinatorial 

homology n-manifold, A-oriented by z € H (X; A). Then for 

any subcomplexes K OD L of X and any spectrum B with A-action, 

zn:HY (L7/K"; B) « H (K/L; B), H (K/L; B) 2 H _(L7/K7; B). 

Proof If K and L differ by one simplex, the theorem holds 

by 2.6 and the definition 2.8 of orientability. If the result 

is true for K/L and L/M, it is true for X/M by exactness, 

commutativity of 2.5, and the five-lemma. The result therefore 

follows by induction. ]]] 

We may take XK = X, L = 4. 

2.11 Corollary zo: B(x°; B) = H___(X°; BY. 1] 

There is no longer any need to work with a fixed 

triangulation. 

2,12 Theoren Let X be a compact combinatorial homology 

n-manifold, A-oriented by z H_(X; A). Let K o L be closed 

subsets of X which are subcompleXes in some triangulation 

of X, and K' ¢ L' a pair of closed subsets of X homeomorphic 

to a CW-complex and a subcomplex, such that X' and L' are 

deformation retracts of X - K and X - L respectively. Then 

Zz N induces 

BH (L'/K'; B) = H_ (K/L; B), H (K/L; B) = H__(L'/K'; B), 
for any spectrum B with A-action. ]]]



- 16 — 

Clearly the n-sphere 0 is 5% orientable, and any spectrum 

B has a unique 59 action. Then given subcomplexes K o L 

such that K £ 3%, L #£ #, the diagonal map A:3" = (L7/K”) A (K/L) 

induces the isomorphisms of 2.10 for any B. After desuspending, 

our recognition result (see IV) for dual spectra shows that we 

have duals here. We have 

2.13 Theorem Given subcomplexes K o L of sh Kk £30, L Ad, 

we have, as spectra, IL /K «~ s"D(X/L). The hypotheses may be 

weakened as in 2.12. 11] 

In particular, take L to be a point; then &:L /K =~ SK . 

2.1 Corollary k~ ~ 8% Tok. 17] 

Historically, 2.14 was used [S3] as the definition of the 

dual, 

We may also add duality isomorphisms (see IV) 

5 (x7; B) = H_ (DX; B) and H,(x°; B) = iT (px°, B) to 2.11 

to give a new form to Poincaré duality. 

2.15 Theorem Let X be a compact A-oriented combinatorial 

homology n-manifold. Then we have isomorphisms, for any spectrum 

B with A-action, 

r(x"; B) = BT 2(px?; B), H (x7; B) = H,__(Dx’; B). ]]] 

Remark The proof of 2.10 did not make essential use of spectra. 

It could have been expressed entirely in terms of half-exact 

functors.
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$3. The Thom construction 

We give the elementary facts about the Pontryagin-Thom 

construction, expressed in a form suitable for our applications. 

In this section, all manifolds shall be smooth C=. 

Triangulation theorems show that we may freely use the results 

in $2. We again write n for a trivial vector bundle of fibre 

dimension n. 

5.1 Lemma (Milnor, Spanier [M5]). Let M be a smooth compact 

manifold, and o any virtual vector bundle over M. Then the 

dual spectrum DM® = M™""%, where © is the tangent bundle of M. 

In particular, pi’ ~ M~T. These equivalences are canonical. 

Proof Since DS'X = s'Tpx for any spectrum X, and M is 

compact, by suspending we may assume o is a genuine vector bundle. 

If n is large enough, we can embed M in si smoothly, and the 

bundle a in the normal bundle v to M in 3, so that v = a @ B, 

say. Then the disk bundle, with total space K, boundary IL, 

of a, is embedded in a tubular neighbourhood of M in 5Y. We 

have M% = K/L. We see geometrically, for suitable representatives, 

that in the notation of 2.12 L'/K' = MP. Hence, by 2.13, 

DM® = st7P & MPR = umT"% provided o # 0, since T © a ® B = n. 

If we take B = 0, we find DM~' = 1’. 11] 

Let ©: X c rR" x ¥ be a smooth embedding, where X and Y are 

compact, with normal bundle v. Then the Thom construction [T1]
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yields a map rR" x Y xY, which, compactified, gives a map 

gy 0 — xV, or YTV o XY. 

3,2 Definition The Thom map T(f) of f is this map Y  - X’, 

or any map T(f):Y? - xv-m+fia constructed from it by 1.12, 

where a is a virtual vector bundle over Y, and f,:X =» Y is 

the composite of f with projection. 

In particular take - a = 7(Y), the tangent bundle of Y. 

Then over X we have £,5(Y) om = 1(X) ® v. Hence a Thom map 

re) x=" (¥) o x~v(X) 

5,3 Lemma Under the identifications of 3.1, the Thom map 

r(£) y= TY) ~ x= (X) agrees with the dual Df, :DY" » Dx. 

Proof Let N be the disk bundle over Y having rR" x Y as 

interior. Let M be a tubular neighbourhood of X in N. We 

embed N smoothly in 5K, Then we find tubular neighbourhoods 

QAof Y, P of X, in 35, P « Q. By definition the identification 

map N/ON - M/OM is the Thom map T(f), and we see from 41.412 that 

Q/0Q -» P/oP is an associated Thom map T(f). Comparison of 

2.4(a) with the definition of Dfy shows that the latter map, 

after desuspension, gives Dfyi. ]]] 

3.4. Corollary The stable homotopy class of T(f) depends 

only on the stable homotopy class of f. ]]] 

This was clear anyway. 

5.5 Lemma Under the above hypotheses, the diagram commutes



- 19 - 

for any virtual vector bundles a and 8 over Y: 

yop - YY, ¢B 

20) (5) A 
Yoox ou 2 = Yo 
gV+T1a+T4 gp XV xP pe x RE N vB i 

Proof This is clear for genuine vector bundles... By ---- 

compactness of Y¥ the virtual bundles may ove suspended to give 

genuine bundles. ]]] 

Now suppose we have a second smooth embedding, 

g:Y Cc Rr" x 7, with normal bundle pu. Then (1 xg) °f:X c gia xX Z 

is a third, with normal bundle v & £1, 

3.6 Lemma Under these hypotheses, a 

oo T((1 x g) of) = T(£) ° T(g):2% » xF1B10 + V + fon, 

f'or any virtual vector bundle qo over Z. 

Proof Directly, or from 3.3. ]]]
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S4. Thom isomorphisms 

We give in this section the abstract theory behind the 

Thom isomorphisms, which applies regardless of the honesty 

or otherwise of the bundles involved. We deduce that a 

smooth manifold is A-orientable if and only if its stable 

normal bundle is A-orientable. 

Let us take a CW-complex X, and a virtual vector bundle 

a over X, having constant rank n. Take also a spectrum A 

with a 'unit' 1:3° - A. 

4.1 Definition We say u:x* »> A (of codegree n, i.e. degree 

-n) is a fundamental class of X% or of a if for every point 

X € X, the composite 5H = x0 |x C X*—=—4A is Yi. We then 

say that X% and a are A-oriented. 

L.2 Definition Given a fundamental class u:X% » A of Uy 

and w:A A B » GC, we have the Thom homomorphisms 

o% _ wus §xP, BT 5 PGALS con 

2 = (-)™( nu): (20, am} + (2°, xP acy 
induced by the diagonal map (1.8) 

xP xP, xe —— xP, a, 

where B is any virtual vector bundle over X. 

Also, by means of the diagonal Asx Bra -» (x®/LBY A x2, 

we can define useful Thom homomorphisms
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bh.3 s%:§xB/1P, 31 o (xPrasBre gpm 

0 :(27, (Profan) (37, (PAP) ao 
for any subcomplexes L ¢ X of X, natural in K and L, 

including boundary maps. 

I. Theorem [Dold] Suppose given 3:30 -» A, and a spectrum 

B with A-action (see 2.9) pw:AAB —- B. Suppose the virtual 

vector bundle aq over X is A-oriented. Then 

3%: §xP, BID z {xP+o pt 

® :{3’, xPTe AB} = i359, xP AB} 

arc isomorphisms, for any virtual vector bundle B over X. We 

also have Thom isomorphisms li.3 for any, subcomplexes L c K of X, 

Proof By induction on cells. Suppose first that L < XK c X, 

and K = L vu e i.e. K is obtained from L by adjoining one 

k-cell. Let 5: DF -» K be its characteristic map; then to prove 

lL. for K/L we need only prove 4.4 for DX /ap% for the virtual 

bundles or and « B, which are trivial. For either Thom 

homomorphism, this result follows from 4.1 and the hypothesis 

on UY, by suspending. 

Let x, be the r-skeleton of X. Then by additivity, from 

the previous case, we have L.4 for XX, qe Suppose, by 

induction on r, that L.4 holds for X, 1° Then by naturality 

of L.3 and the five lemma, we deduce the isomorphism for Xe 

Hence we have the Thom isomorphism for xX. for all r, by
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induction. By Milnor's lemma (IV), we therefore have the 

isomorphisms for general X. 

In particular, we have isomorphisms for the restricted 

bundles a|K and ao|L, whenever L c¢ K c X are subcomplexes. 

The theorem for K/I. now follows from the five lemma. ]]] 

Remark Again, when the vector bundles are genuine, this 

theorem does not make essential use of spectra, and could be 

expressed in terms of half-exact functors. Theorem L.4 is in 

some sense ‘dual’ to 2.10. 

Because we have allowed for the possibility B # 0, Thom 

isomorphisms can evidently be composed. 

L.5 Lemma Suppose given spectra jo5Y -> A, i530 -+ B, and a 

spectrum C with A- and B-actions pn:AaAC =» CG, u:BaC » C that 

commute, in the sense that they yield only one (AA B)-action 

LWsAABAC =» C on C. Suppose given virtual vector bundles 

a, B over X, such that a is A-oriented, and 8 is B-oriented. 

Then we can (A A B)-orient a +B canonically. With these 

orientations, we have pth = 3%P, DB = 2.25" 

Proof Let u:X® » A and v:XP » B be the given orientations 

of a and B. We orient a + 8 by 

x¥*P — x A xP ——> AB. 

The commutativity and associativity of A yield the composition 

laws. ||]
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We always orient the zero bundle by means of the 

obvious projection x0——5° a. 

L.6 Lemma Then aY and ®, are identity homomorphisms. ]]] 

These two results yield a simpler proof of the Thom 

isomorphism, in the common cases. Given an A-action cn A, 

WeA AA => A, commutative and associative, one deduces from 

h.5 and 4.6 that © F is inverse to oY, and that ®_. is inverse 

to 

Let X be a compact smooth n-manifold with tangent bundle 

T, and ix? -» A a map of spectra. We can consider 

A-orientability of X, or of v. 

L,7 Theorem With X and A as above, X is an A-orientable 

manifold if and only if -7T is an A-orientable bundle. The possible 

fundamental classes correspond, under the isomorphisms 

px’ = XT (see 3.1), and {Dx°, A} =~ §3°, x0 AA}, (see IV). 

The Thom isomorphisms 3%. 1x0, Bl" =~ {x77 Bl" and 

o_ :{z’, X"* AB}, = (50, x° AB}. agree with the isomorphisms 

2.15, for any spectrum B with A-action. 

Proof We have the stated isomorphisms. We must check that, 

if u:X~" -» A corresponds to 7:30 > x° A A, the local conditions 

on u and z for these to be fundamental classes are equivalent. 

We embed X smoothly in sBHE with normal bundle v. Then 

we may conveniently take ux’ - A, of degree -k, instead of the
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given map X ° — A, by suspending, since tT + v =n + k. The 

Thom construction gives a map 5K + XY. Then z is obtained 

from u as the composite 

BPE xY x0 a xY =X) aa, 

desuspended as necessary. The assertion about Thom isomorphisms 

follows. 

Take any point x of X. Then we have the composite 

visE —- A, defined by inclusion of a fibre; 5K = xv Ix C XY —— A. 

Take a disk neighbourhood D® of x in X, and let q:X° - 3 be 

the Thom construction applied to this disk neighbourhood pt 

of B in X. Then our two local conditions are that for all 

Xx € X, the maps visk -» A and (qa1)° 7:3 + 3% AA are each 

*i, apart from suspensions. But it is immediate from the 

diagram below that these conditions are equivalent. This 

diagram is made up of Thom constructions, and commutes up to 

homotopy (compare 1.11). 

2 Xm X AXY pe x AA 

ls Jan jan 
22s 5PXY rh aA, 11] 

Multiplicative structure 

Take 1:30 -» A, and let B and C be spectra with A-action, 

such that B AC inherits a well-defined A-action us:AA BAC =» BAC. 

Let & be an A-oriented virtual vector bundle of rank r over X.
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Then we have seen that the diagonal X®——s XO A XX" A A 

induces Thom isomorphisms. Also, the diagonals 

A:xE — xV A x5 and A: x0 > xY A xY induce cup and cap products. 

Then by commutativity and associativity of cup products and 

diagonals A (see 1.8), and the mixed rule for cup and cap 

products, we deduce the multiplication formulae 

4.8  o%(aup)= ca uB = (=) qus®p (aeix?, BI", peix’, cI) 

4.9 2 (xna) = (=) Xn 6% = 2.x na 

(x (50, X° AB}, = (x0 city. 

Naturality | 

Consider the Thom maps T(f):Y? - y+ a induced by a 

smooth embedding f:X cc Y x gE of smooth manifolds, as in 3.2, 

where ao may be any virtual vector bundle over Y. 

L.10 Lemma Let B be an A-oriented virtual vector bundle 

over Y. Then the Thom maps T(f) and Thom isomorphisms oP yield 

commutative diagrams, for any spectrum B with A-action, 

(Tie gt TE) ge py 

~ | oti o |° 

(EL rE 8 Bl". T(£)" {YOR Bl" 

and i570, v@*B 8}, RN 3 150 gts a+fy B AB}. 

* | 2 =| ol | 

(2°, v% AB], Ey (59, x¥+fa 0 AB}, 
= % 

Proof Both parts are immediate from 3.5. ]]]
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§5. Bordism and cobordism theories 

Thom's fundamental lemma [T1] relating cobordism classes 

to homotopy classes shows that the use of Thom spectra as 

coefficient spectra gives rise to geometrically interesting 

homology and cohomology theories. 

Let E be any vector bundle, rank k, over a CW-complex B. 

Let M be any smooth (n + k)-manifold, and M_, its one-point 

compactification. 

5.1 Definition A E-submanifold, or submanifold with 

E-structure, is a smooth compact submanifold v2 oof M, with a 

bundle map from its normal bundle v to £§. Two E-submanifolds 

V4 and Vg are cobordant if there exists a &-submanifold W of 

M x I, with boundary V, = W n (Mxi) (i =0, 1), where W meets 

M x 0 and M x 1 transversely, and the E-structure on W extends 

that on Vo and Vi, under the natural identifications 

aA = vy (1 = 0, 1), where v, vo, vi, are the normal bundles 

of Win M x I, Vo in M, V4 in M. 

In particular, if the same submanifold V is given two 

homotopic structure maps v =» E, the two resulting E-submanifolds 

are cobordant. Cobordism is an equivalence relation. 

The Thom construction applied to the E-submanifold V of 

M yields a map M =~ B& with compact support, and therefore a 

map M, ~ BS. Uniqueness of tubular neighbourhoods and the
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definition of cobordism show that this construction yields 

a well defined map from the set of cobordism classes of 

£-submanifolds of M, to [M_, B®]. 

5.2 Lemma [after Thom] The Thom construction induces an 

isomorphism 

L(u; &) = [u, B®], 
where L(M; £) denotes the set of cobordism classes of 

E~-submanifolds of M. 

Proof The method of proof in [T1] is valid for the case when 

£€ is a smooth vector bundle over a smooth manifold B. We reduce 

the general case to this case. 

Since any E-submanifold V of YM is compact, its structure 

map v —» E factors through £|C, for some finite subcomplex C of 

B. Similarly for the structure map of a cobordism manifold 

between two E-submanifolds. Hence 

L(M; E) = 1im L(M; E|C); and [M,,> B®] = lim [M,, E10, 

as C runs through finite subcomplexes of B. Thus we need 

consider only the case when B is a finite CW-compleXx. 

We may clearly replace B by any space B' of the same 

homotopy type, and E by the induced bundle E' over B'. We can 

choose B' to be a smooth manifold (e.g. an open neighbourhood 

of B in RY for some suitable m), and give E' a smooth structure. ]]] 

Remark The condition on B can be removed.
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We now stabilize. We shall be concerned only with the 

case NM = gH, then M, = stk a sphere. We may replace B 

by its (n+ 1)-skeleton without loss of generality; then if 

k > n any virtual vector bundle & over B of rank k is isomorphic 

to a genuine vector bundle. Also, if k > n +1 the particular 

embedding of V in RAH becomes irrelevant, and we ignore it. 

We next give the stable version of 5.1. Let E be a 

virtual vector bundle with base B (i.e. a map £:B -» BQ), of 

rank 0. 

2:2 Definition The smooth n-manifold V© is a E-manifold 

if we are given a map - tv » ££ -n of virtual vector bundles, 

where ¢ 1s the tangent bundle of V. Two compact E-manifolds 

without boundary va and vi are said to be cobordant if there is 

a compact E-manifold i+] with boundary Vo U Vi, whose 

E-structure extends those of Vo and Vy. We define L (E) as 

the set of cobordism classes of compact smooth E-manifolds 

without boundary. 

The word 'extends' needs amplification. In comparing the 

structures of W and Vv, over V, (1 = 0, 1), we need to make use 

of bundle isomorphisms ©| V4 = 1, © 1, where ©, To, Ti, are the 

tangent bundles of W, V,, V,, respectively, and the extra 

trivial bundle 1 represents the inward normal bundle of Vy, in W 

or the outward normal bundle of V, in W.



- 29 - 

With the help of thc remarks preceding 5.3, we apply 

= A es - n+k \ . 
5.2 with ¥ = R s Kk 2n + 2, to & + kX, vhich bundle nay be 

assumed honcst. 

5.4 Theorem Let & be a virtual vector bundle over B, and 

L,(E) the set of cobordism classes of E&-manifolds of dimension n. 

Then the Thom construction induces the isomorphism 

0 LE L = . ] L(E) {z°, B So 11] 

This theorem leads to the computation of L,(E) in various 

well known cases [T1, M1, A5). As examples, we have: 

g g-manifolds L..(E) 
er ees 

j ZeT0 bundle over point i stably framed manifolds | framed cobordism 
| | groups 

A tree. “Bete. oe e~b <h  ~8  eh: Senep - ree fmm rt a. co aw + TT re rb Bama we © moe moos » ee rom wmf sme rt + eh bos Wn Ee PTO Som pr p=: 

bo , Co : : 
cidentity virtual | unoriented manifolds lw, 
J i | = 

| 
, bundle over BQ (i.e. no extra structure) | 

universal virtual oricnted manifolds | $1, | 
! i 

| bundle over BS0 | | 
Vv ie ¢ EPI SP wns Eg os WES: “elie Slr EEPA  - - + TT rr. ET Arr Yoel Et ps i «+ + SA AP 0 Aepirt— © 52g TT rn ht PTR Bam 8 i © tr © + ld Sy 

| universal virtual | ‘unitary! manifolds | Us 
o- ¢ 

’ : { 

, bundle over BU | i | 
ta + Aa eo +. rset eden rom ere erate me ee ee ee ee eee 

| universal virtual | spin manifolds . spin cocbordism 
: | 
' . ‘ I 
: bundle over B Spin | groups | 
eee eee ee 

The 'unitary' manifolds are commonly called 'weakly almost 

complex' manifolds. Spin cobordism appears not to have been 

properly defined until [M6].
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Track addition in L. (8) in 5.4 is clearly expressed 

geometrically by disjoint union of &-manifolds. If we are 

given a bundle map & x & =» gE, we can introduce multiplication 

into L,(E) in the obvious way, which corresponds under 5.4 to 

that induced by the map of Thom spectra 85 A 85 = (B xB)*5 — B® 

(from 1.7). 

Singular manifolds 

Suppose we are given a space X and a virtual vector bundle 

& over B of rank 0. 

5.5 Definition A singular &-manifold of X is a pair (V, fF), 

where V is a &-manifold and f£:V —-» X is an (unbased) map. Two 

singular manifolds (V, £) and (V', £') are bordant if there is a 

cobordism E-manifold W between V and V', and a map g:W =» X 

extending ff and f'. Denote by B (X; £) the set of bordism classes 

of singular E-manifolds of dimension n. (Compare [C5].) 

Thus the structure of a singular &-manifold (V, f) of X 

consists of a bundle map -T—> & -n and a map V =» X, We may 

combine these into a single virtual bundle map _Ton-n, where 

MN is the virtual bundle over X x B induced from & by projection. 

So singular E-manifolds of X correspond to mM-manifolds, and 

cobordism classes correspond. We have, therefore, B, (X; §)= L,(n). 

By 1.7, (X x B)" ~ x0 A BE. 

5.6 Theorem The Thom construction induces an isomorphism,
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natural in X and &, 

B(x; 8) = (29, x0 1 B%},, 

between the graded group B.(X; &E) of bordism classes of singular 

E-manifolds of X and the stable homotopy groups of x0 A 5, 11] 

Thus B,( ;E&), apart from reduction, is the standard 

homology theory (see IV) with p& as coefficient spectrum. It is 

therefore prudent to introduce the associated cohomology theory. 

In accordance with general policy, we define all homology and 

cohomology theories in the reduced form. 

5.7 Definition N (X) = (50, X amo}, N*(X) = {x, Moi" 

U(X) = (2°, x amyl, URX) = ix, ug” 

a (X) = {20 xausQd , a(x) = {X, usQ}” 

(see 1.9 for MU and MSQ). 

Then Iw, (x°) are the bordism groups of X; but N, and Nn are now 

defined on all spectra. The products MO A MQ - MQ, etc. from 

1.8. induce commutative and associative products in all the 

above pairs of theories. In particular, these are modules over 

the coefficient rings N = (50, MOS ,., ete. 

Conner and Floyd show in [C5] that when A is a subspace of 

X, the relative bordism group N (X, 4) = (3%, (x/8) « MOS.» ete., 

can also be given a geometric interpretation. Elements are 

represented as equivalence classes of singular manifolds with 

boundary, f:(V, OV) =» (X, A), under a rather artificial equivalence
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relation. This has some uses. For purely homological 

considerations, relative groups are superfluous: instead a 

Mayer-Vietoris boundary homomorphism is all that is required. 

Berstein has given an elegant method of doing this. Let 

X = AU B, where A and B are open subsets, and let £f:M =» X 

be a singular manifold of X. Then r(x - A) and = (x - B) 

are disjoint closed subsets of M. Take a smooth Urysohn 

function ¢:M =» R, 0 on r(x - A), 1 on £1 (x - B), and transverse 

to 2. Then N = (1) is a smooth (n -1)-manifold, and the class 

of the singular manifold g = £|N:N » A n B is the required 

boundary. 

Trivially, any virtual bundle over any CW-complex X is 

MO-oriented (L.1) by means of its classifying map X - MQ 

(assuming it has constant rank), where i330 = MO is the 

classifying map of the zero bundle over a point. Hence we 

always have Thom isomorphisms for the MQ theories. Let us give 

the geometric interpretation in terms of singular manifolds, 

5.8 _ Lemma Let € be a smooth vector bundle over the manifold 

X. Let f£:(11, oM) - (x5, 0) be a singular manifold of (x5, 0), 

smooth near and transverse to X C x5. Put N = #1 (x), and 

g = £|N, so that g:N = X is a singular manifold of X. Then the 

Thom isomorphism ©, iN, (X°) + W(x") is given by [u, £] = [N, gl. 

Proof In effect, 2 is induced by the map of Thom spectra
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X° —5-%0 A x° + x0 AN 

over the map of base spaces X + X x BO. This, composed with f, 

is homotopic to the map M - x0 A 10 obtained by applying the 

Thom construction to N in M. JJ] 

In particular, let X be a smooth submanifold of the 

smooth manifold Y with normal bundle v, f:M 2 Y a singular 

manifold of Y transverse to X, N = r(x), and g = £|N, so that 

g:N »>Xc¥Y is a singular manifold of Y. We recall that the 

Thom isomorphism is a cap product. Let a:X —- MQ be the 

classifying map of v. Then naturality of Thom spectra yields 

the geometric interpretation of cap products: 

5.9 Lerma We have [M, £] n a = [N, g]. 11] 

Again, any smooth manifold is canonically MO-oriented by 

means of the identity singular manifold. One can deduce that in 

this case Poincaré duality is given by the Thom map (see 3.2) 

given ©: M < X x RY, we use the map x Eye MC = MO. 

Evidently, everything we have done for the MO theories 

carries over to the other theories, provided the bundles and 

manifolds have suitable structures. 

It is well known when bundles are orientable for ordinary 

cohomology. 

5:10 Definition 

We have the fundamental classcs 

On MQ + K(Z2), Og M3Q + K(2), hence Oy :MU, K(Z), 

defined in the usual way (e.g. [T1]). -
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$6. Transfer homomorphisms 

There are certain well-known important homomorphisms 

in algebraic topology which do not quite fit into the usual 

functorial framework. We propose to call them transfer 

homomorphisms, by analogy with the representation theory of 

groups. There is one for each homology and cohomology theory. 

The transfer homomorphism is defined like a function on 

a manifold - we define it locally, on various domains of 

definition, and show that it is well defined on the intersection 

of any two of these domains. We shall content ourselves with 

eight types of transfer homomorphism; there are many more in 

common use. 

Since our applications are to smooth menifolds, we shall 

of'ten restrict attention to this easy case, even though it is 

well known, and sometimes obvious, that the definitions work 

much more generally. We also say nothing about manifolds with 

boundary. We give bordism transfer homomorphisms only for the 

theory Nis but again the definitions hold for other bordism 

theories, under the obvious orientation conditions. 

We shall usc the same symbol 4 for all transfer homomorphisms, 

however defined, to distinguish them from ordinary induced 

homomorphisms (this differs from some current practice). 

Axiomatic description 

We recall that x? = X/#. TFor certain maps £:X =» Y of
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spc ces with additional structure, in addition to the ordinary 

inrluced homomorphisms 

Cedy?, BY» x0, BY £0020, x0 AB], -» (3°, v0 AB], 

wi: have transfer homomorphisms, both of the same generally 

ron-zero degree, m say, 

£,:{x°, B1* » {¥0, 81" 27:20, ¥0aBl, ~» 20, x0 a Bf, 
These are functorial to the extent that 1, and 1° are identities, 

and that if we have gy, and a, where g:¥ = Z, then 

6.1 (g° 1), = 84T, (gor) = (-)™¢7g", 
where fps Es and (got), have degrees m, n, m+n. Under the 

conditions favourable to cup and cap products, we have 

6.2 (a) f(a UE B) = £0 UB (a:x° » B, B:Y° = 0) 

(b)  f£.(fauB) = (yelel oy 2,8  (a:x? » 8, B:x° = 0) 

(¢) fHxoa) = £20 fa (2:22 1°48, a:x? > 0) 

(a) £,.(f x Nn 0) = (=)mIx] XN £0 (x:3Y > v0 A B, asx’ -+ C); 

in particular, for Kronecker products, 

(e) (£7x, a) = (ym Ix] (x, £,0) (x:3° - vV A B, a:x° - C). 

If we are also given C = B = A and a multiplication w:AA A = A, 

then f, and £7 are homomorphisms of {3° A} ,-modules. We shall 

give the products in the simplest forms available; they may all 

be embellished with suitable multiplication maps B A C = D, etc. 

Various transfer homomorphisms 

We shall always need a spectrum A with a map 5:30 => A, and 

a spectrum B with A-action W:AAB-= B (see 2.9).
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(a) Poincaré duality transfor 

Let X and Y be A-oriented combinatorial homology manifolds, 

of dimensions m and n, with fundamental classes Zi 0 - x0 A A, 

and 7130 > YA A. Then | 24 | = 1m, | zy | =n, Take f:X =» Y. 

6.3 Definition We define the Poincaré duality transfers 

£.:0%0, BI» {¥0, B1®  £7:(30, v0}, -» (2°, 2° A BY, 

by the formulae Zy 0 Tp0 = ful(zy 0 a) (a:X" -> B) 

£7 (2, ng) = (=) (m-n)n Zr neg (Bry) B). 

Then fy and £1 have degree m - n, and the diagrams 

(x%, B}) ——1¥°, BY" iv? 8B} ——— 1x’, 8} 
H f 

= [zn 2 [zn = zn = |z.n 

(29, x04 8} ,5= 29, ¥0a 8), 130, ¥0aBl,—5—130, x°4 Bi, 
commute up to sign. The definition works in virtue of the 

duality isomorphisms 2.11. 

For these transfers, 6.1 is trivial. 

Suppose we have also a spectrum C with A-action A A C = C, 

such that the two resulting A-actions on B A C coincide. Then 

the multiplicative formulae 6.2 follow from the standard formulae 

(IV) for associativity, commutativity, and induced homomorphisms 

of cup and cap products, by algebraic manipulation or commutative 

diagrams, according to taste. (To prove (a) and (b), apply 

ZyN to each side. To prove (c) and (4d), express x in the form 

Zy Nn B.)
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Next, assume that B= C = A, and put B = 1 € iv0, Bl, the 

'unit element', in 6.3. Then 

6.4 £1 Zy = (=) (m-n)n Zig 

IT we put x = z, in 6.2 (4) and (c¢) and substitute from 6.L, 

we rccover the formulae of 6.3. Thus 

6.5 Lemma In this case, 6.4 and the multiplicative formulae 

6.2 characterize ef and f,. 11] 

Remark The Principle of Signs breaks down in 6.3, because Zy 

and Zr hove non-zero degree. In any case, we coamot regard £1 

or Ty os being obtained from f by a unery operation. We have 

chosen the signs to make 6.1 hold. 

(b) Spanier-Whitehead duality transfer 

Let X and Y be A-oriented combinatorial homology manifolds, 

of dimensions m and n, with fundamental classes 2:3" — x9 A A, 

2,13" — v0 An A, Let £:X = Y be a map. 

6.6 Definition We define the Spanier-Whitehead duality transfers 

£00, B} - {v0 B17, £7:420, v0 4 B}, -» {29 x0 A BI, 

by requiring the diagrams 

(x0, BIP FY pj P+ (50 v0. Bly 127, x0 A BJ, ymon 

{px?, BIPM aa Pr BJP (3°, oY" a Bly Tm? (2%, ox’asl 
to commute up to the signs + 1 and (=) (m-n)n respectively, in
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which D denotes dual as in IV, and the vertical isomorphisms 

are provided by 2.15. 

6.7 Lemma The Spanier—Whitehead and Poincaré duality 

transfers agree. 

Proof We recall from 2.15 the definition of the vertical 

isomorphisms. This shows that the first diagram of 6.6 can be 

expanded to give the commutative diagram 

fx, B}P — (vY, g}P-m+n 

~ Lz = Lzyn 

(2°, x°aBl, — (2°, ¥OB, 

=] = 
px’, BJP ——— {DY?, BPE, 

which shows the result for £0) Similarly for £7 11] 

(c) The transfer of rn oriented map 

Let £:X 2 Y be a map of CW-complexes, which need not now 

be finite. 

6.8 Definiticn We say f is an A-oriented map if we are 

given a map of spectra fy! —> x" Aa, of degree n, say, such that 

v0 pee v0 A v0 

LE L1Af 

X08 a pKa x0A A mo — Yaz an 

commutes (up to homotopy). It induces transfers 

£,:0%%, B}Y » {¥°, BY, 17:37, 0a}, » 2°, x0 aml,
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as follows: Given a: x" - By, we have LK AA anT CBA AB, 

and we define fa = (nla, © (a a1) of. Given x:3° - v0 A B, we 

have 59 5v0 8 3X A A AB sx" AB, and we define 
5 X _ al 1A _ 

fx = ((1ap) ° (fa1)e°ox. (One could always take f = 0, which 

would make f, and £1 ZETO. ) 

Suppose that we arc also given a spectrum C with A-action, 

such that the two resulting A-actions on BAC agree. Then the 

deduction of the multiplicative formulae 6.2 from the commutative 

dingram of 6.8 is another exercise in manipulating commutative 

diagrams or algebraic formulae, according to taste. 

The multiplicative properties of the Thom isomorphisms 

(see 4) are included as a special case. 

Now assume that we are in the simplified multiplicative 

situation with A = B = C, 2nd we have a commutative and associative 

map MiA AA > A, Then given maps £:X = ¥Y, g:¥ =» Z, A-oriented 

by £:v° — xY A A, 5:7" - vOA A, we can A-orient g © £:X = Z by 

putting 

6.9 57 = (2) (1ap)e(Fa1)°8:2” » van > x% ana o> x04 a, 

where m and n are the degrees of f and g. The commutative diagram 

of 6.8 for goof follows immediately. 

We next compare this transfer with the Poincaré duality 

transfer. Let X and Y be A-oriented manifolds, of dimensions 

m and n.
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6.10 Definition We say the A-orientation of £:X - ¥Y is 

compatible with the A-orientations of Z and Y if f has degree 

m-n, and the transfer induced by f gives £2, = (-)(m-n)n Zor 

where Zr ond Zy Ore the fundamentai classes of X and Y. 

6.11 Lemma Suppose the map f:X = Y of A-oriented manifolds is 

A-oOriented compatibly, by a — xV A A, where LWiAA A => A is 

commutative and associative. Then the transfer induced by fF 

agrees with the Poincaré duality transfer. If also Z is an 

A-oriented manifold, ond g:¥Y =» Z is oriented compatibly, then the 

A-orientation of goof is compatible with the A-orientations of 

X and Z. 

Proof It is immediate from 6.5 that the two transfers agree, 

for they agree on z, by 6.4 and 6.10, and are both multiplicative. ]]] 

(d) The Grothendieck transfer 

Let £:X =» Y be a map of compact smooth manifolds, whose 

tangent bundles are T(X) and T(Y). We suppose that the virtual 

vector bundle £7 (Y) ~-T (X) over X is A-oriented, and deduce a 

transfer. 

We 1ift f, up to homotopy, to a smooth embedding 

f1:X cc YY x RF, Let v be the normal bundle. Then 

Vv = k + £75(Y) -7(X) is A-oriented. The Thom construction (3.2) 

yields a map T(£):y" + XY, of degree k, and hence, by using 

diagonals (1.8), a map of spectra .y0 —> x’ —x =x" a x ~> x° A A.
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This A-orients the map f (the commutative diagram of 6.8 is 

immediate), and hence induces transfer homomorphisms Ty and £7, 

However, we can express these transfers slightly differently, 

as being induced by the composites of the ordinary homomorphisms 

induced by T(f) with Thom isomorphisms. 

6.12 Definition In this situation, the Grothendieck transfers 

£,:{X°, Bl” iv? B}”, £7.19, Y? AB}, > (59 x° AB}, 

arc the composite homomorphisms 

(x0, BY ms ix”, Bs (v0, sl* 

® T(f) 
and 

iz9, vA Bw 5 (Fy. (20, Xx” A Bly—g 127, x0 A B ,. 

We see from 3.4, or by direct geometric construction, that 

these transfers are well defined. We deduce the multiplicative 

formulae 6.2 from those for Thom isomorphisms (4.8 and 4.9), and 

the composition law 6.1 from 3.6. 

We have already observed that the Grothendieck transfers 

are specclal cases of transfers induced by an oriented map. 

6.13 Lemma Suppose that X and Y are also A-oriented manifolds, 

and that we are given UW:AA A = A, commutative and associative. 

Then there is a canonical A-orientation for £ (7) - T(X), and 

with this orientation the Grothendieck and Spanier-Whitehead 

duality transfers agree. 

Proof Write v = £75 (Y) -t(X). By 4.7, we have A-orientations 

vey (Y) —-» A and wax TX) + A. We choose u:x’ - A corresponding
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to w under the Thom isomorphism 

oT TV) ixY, A)" = (x= F(X) als 

naturality of Thom isomorphisms for the inclusion in X of any 

point shows that u is an A-orientation of the virtual bundle v. 

Further, by means of 4.5 and wu, the orientations u and v give 

back the orientation w, and p~T(X) — s=f T(¥) d”. We consider 

the diagram 5 

(x9 B} ——-{x", pit ef =) Sixx) gy* 
® ) . 

lee)” lee)” 

(v0, BY ———gy— ly" Y) BY” 
o~7(Y) Co 

which commutes by 4.10. From 4.7, the Thom isomorphisms of 

-T(X) and - (YY) are the Spanier-Whitehead duality isomorphisms 

2.15 for X and Y, apart from putting px’ = x~7(X) and DY = yo) 

and from 3.3 Tf)" = (DE) 5 we are back to 6.6. 

Similarly for homology. ]]] 

(e) Integration over the fibre 

We now consider a fibre bundle ®:E — B whose fibre F is a 

compact n-manifold, with fundamental classes zp € H (F; G) and 

Up € H(F; G), where G = Z or Zz. In the case G = Z we also 

require the fundamental group of B to act trivially on H (F; G). 

Then we have transfer homomorphisms (see e.g. [B3]) known as 

integration over the fibre'. The picturesque name arises from 

the case when B, E, and F are smooth manifolds and ® is a smooth
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bundle, in which the cohomology transfer can be eXpressed in 

terms of integrating differential forms. 

We shall also call these transfers the spectral sequence 

transfers, and use the definition [B3] in terms of the Leray-Serre 

spectral sequences of Tw. 

5.14 Definition We define the spectral sequence transfers, 

or integration over the fibre, x, HT (E) - 1:2 (B), x :H, (B) - Hy n(B)s 

in terms of the spectral sequences of ® as follows: 

Tp, is the composite HY (7) > gion C gi RD = HRB), 

x is the composite H, (B) £ ES, —> EY a C H, (BE), 

w¥here the isomorphisms are ®u and ® z. 

We know (from IV) that we can put cup and cap products into 

these spectral sequences. It is easy to deduce from this fact 

the multiplicative formulae 6.2. 

It is clear that Ty and x” are natural for maps of bundles 

with fibre F, because thc spectral sequences arc natural. 

6.15 Lemna (Chern [C2]) Suppose B is a manifold. Then E 

is also a manifold, and the spectral sequence transfers agree with 

the Poincaré duality transfers. 

Proof Both pairs of transfers are multiplicative, and hence, 

by 6.5, we need only check x Zp = x Zo This is evident from the 

definition 6.14, assuming we choose the correct orientation Zp 

for BE. ]]]
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(£) The pullback transfer 

Cne would expect that for a geometrically defined homology 

theory such ns bordism theory v-rious transfers could be defined 

geometrically. This is indeed the case, although we shall 

restrict attention to the theory N.. for simplicity. 

Suppose we are given a smooth map f:X = Y of compact 

smooth manifolds, of dimensions m and n. Given a singular 

manifold h:N =» Y of Y, we can construct the pullback space ¥ 

and a map g:M —» XX. Under a suitable transversality condition 

(viz. £ x h:X x ¥N = Y x Y transverse to the diagonal of Y¥ x Y) 

g:¥ =» X is ~ singular manifold of X. 

6.16 Definition The pullback tronsfer £7. (v9) - N, (x0) 
a = En mi me =1 =i+m-n 

is defined by toking the class of h:N = Y to the class of g:¥ -» X. 

One cnn show directly that £1 is well defined. 

6.17 _ Lemna The pullback transfer agrecs with the Grothendieck 

transfce. 

Proof We 1ift £ to a smooth embedding f':X © ¥V x rR", Then our 

asscrtion is evident from two applications of 5.8. 1]] 

(g) Ths bundle tronsior 
There is anothor case, very similar to the previous, in 

which a geometric definition can be given. Suppose ®:E = B is 

2 fibre bundle whose fibre F is o smooth compact n-manifold, and 

whose structure group is a Lie group G acting smoothly on F.
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Then given a singular manifold f:M —-» B of B, we construct the 

induced bundle ¥ —- M over M and a map £:M » BE. We may give this 

induced bundle a smooth structure, which makes PM» FE a 

singular manifold of E. 

6.18 Definition The bundle transfer xi, (8%) 5 N,. (BE) 

is defined by taking the class of f:M —- B to the class of 

f:M - EB. 

Again one can show that x” is well defined. It obviously 

agrecs with the pullback transfer when B is a smooth manifold. 

It is also trivial that x is natural for maps of bundles with 

fibre F. 

(h) The Grothendieck bundle transfer 

A serious disadvantage of the two previous transfers is 

that there is no obvious way to define the corresponding cohomology 

transfer, because Ny is not a geometric theory. We should like 

to have multiplicative trensfers. Again, integration over the 

fibre has only been defined for ordinary homology and cohomology. 

We fill this gop by constructing another transfer, available for 

general cohomology and homology theories. 

Let w:E =» B be a fibre bundle whose fibre F is a smooth 

compact n-manifold, and whose structure group is a compact Lie 

group acting smoothly on FF. %e shall need the bundle T of 

tangents along the fibre (see e.g. [B3]); this is a vector bundle
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over BE whose restriction to a typical fibre F is the tangent 

bundle of PF. 

6.19 Lemma Let F be a smooth compact manifold, and G a compact 

Lie group acting smoothly on F. Then therc exists a finite- 

dimensional representation space V for G, and a smooth G-equivariant 

embedding ¥ cc V,. 

Proof We use a useful lemma of Mostow [M7], based on the 

Peter-Weyl theorem. Let S be the algebra of smooth real functions 

on FF; then G acts on S. Take a finite set of elements ih, of S 

which separate points of F. By [M7] we can approximate these 

by thli, still separating, such that for all i Gh is contained 

in a finite-dimensional subspace of S. Let W be the subspace of 

5S spanned by all the sets Gh; ; it is finite-dimensional. Put 

V = Hom(W, R). Then evaluation of W at each point of F yields 

the required equivariant embedding F c V. ]1]] 

Given a representation space V as in 6.19, let mn be the 

vector bundle over B with fibre V associated to ® [S5]. Then 

6.19 yields an embedding of E in the total space of Mm. Choose an 

equivariant metric on V, and let U be a metric tubular neighbourhood 

of F in V. Then U gives rise to an associated subbundle of 7 

having fibre U, total space N, say. We have a tubular neighbourhood 

disk bundle N of E in mn, with normal bundle v, say. Without loss 

of generality N is contained in the unit disk bundle of Mm. The
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Thom construction now gives a map B' —* EY, and hence a map of 

spectra pN+s - g*% & by 1.12 for any virtual vector bundle & 

over B. In particular, we have a map of spectra 

6.20 D(x) :B" —» ET, 

since xm © T@® v. The Thom map 6.20 is well defined (for if Z 

is another bundle containing ®, adding ¢ to mn does not affect 

T(x), and we then have to compare two isotopic embeddings of E 

inne %g). 

Now we suppose that -T is A-oriented, and that C is a 

spectrum with A-action. 

6.21 Definition We define the Grothendieck bundle transfers 

n:{m”, co} » (8°, ¢}7, a":{3°, Bacy, - (2°, EPA Cl, 

as the composite homomorphisms 

(2°, ¢}" ——{57", o}" ———5—18°, c}” 
® T(r) 

(50, BY A Cl, TER (50, acl 12, E’ AC}, 

Formally we have exactly the same situation as for the 

Grothendieck transfers, and we shall not trouble to repeat the 

details. These transfers are multiplicative, i.e. satisfy 6.2. 

It is clear that they are natural for maps of fibre bundles with 

fibre I. As before, we have here a particular case of an oriented 

map. 

If B is in fact a smooth manifold, we can choose mn to be a
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trivial vector bundle (it does not have to come from a 

representation space). Then these transfers agree with the 

Grothendieck transfers 6.12. 

Again, naturality and two applications of 5.8 show that 

our transfer includes the transfer 6.18 in bordism groups. 

6.22 Lemma If the spectral sequence transfers 6.14 are also 

defined, they agree with the Grothendieck bundle transfers. 

Proof We observe that we can relativize the transfers 6.21 

as we did Thom isomorphisms, by constructing a map of spectra 

6.23 T(%):By/Be — (Bi/Bz) aE" 
for subcomplexes Be © By © B, where Es = x (B,) The spectral 

sequences of mm can also be relativized. By using naturality of 

both pairs of transfers, we quickly reduce to the case of =a 

trivial bundle over (D°, oD"), which is clear. ]]] 

Summary 

Let us gather together what we have. For the map £f:X =» Y 

off CW-complexes, under the respective orientation conditions, we 

have various transfer homomorphisms ry and £7, 

(a) Poincaré duality - X and Y A-oriented manifolds. 

(b) Spanier-Whitehead duality - X and Y A-oriented manifolds. 

(c) Oriented map - A-orientation FyY — x° A A. 

(4) Grothendieck - X, Y smooth manifolds, f T(Y¥)-7(X) 

A-oriented.
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(e) Integration over the fibre - f a bundle, fibre a 

manifold. 

(f) Pullback - X and Y smooth manifolds. (Only in bordism, ) 

(g) Bundle - f a bundle, ribre a smooth manifold, 

group a Lie group acting smoothly. (Only in bordism.) 

(h) Grothendieck bundle - £ a bundle, fibre a smooth 

manifold, group a compact Lie group acting smoothly, 

- T A-oriented. 

6.24 Theorem Under suitable conditions, these transfers are 

multiplicative. If two transfers arc defined for ff, and the 

appropriate compatibility conditions on the orientations hold, 

the two transfers agree. 1]]



- 50 - 

37. Riecmann-Roch theorems 

We give here the formal theory (compare [D2]) of 

Riemann-Roch theorems for smooth manifolds (e.g. [A8]) and other 

situations in which transfer homomorphisms arc available. 

We shall suppose throughout this section that we are given 

two coefficient spectra A and C, with maps i350 -> A, 1:30 = C, 

and commutative and associative multiplication maps H:A AA = A, 

L:CAC =» CGC, such that A ~ 504 A TAT ANA A and similarly 

C » C are identity maps of spectra. We suppose also that we 

have a 'homomorphism' 6:A —» C, such that 0°u =puo (6A 0) :AAA > C, 

and 6° 1i = iz" = C, 

If £ is a virtual vector bundle over X, with A- and C- 

orientations, there is no reason for expecting the diagram 

(xY AX, cl” 

=| 0% =| 25 

(x°, A} —p— (x5, c}” 

to commute. Indeed, we use this diagram to define a new 

homomorphism. 

7.1 Definition We define a homomorphism 

6,:{x°, a1" » (x, ol” 
by putting ©, a= (25) 16,25 a. 

Associativity of cup products yields the formula 

7.2 6, (a UB) = 6 aU 8,8. (a, Be §{X°, a17).
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Next, we suppose that X and Y are smooth manifolds, each 

A- and B~- oriented, and £:X + Y a map. Then the transfer 

£5: {X, Al” -» {v, INN may be defined (6.6 and L.7) by Thom 

isomorphisms and the Thom map y= (¥) — x~T(X) (essentially the 

dual of f by 3.3), where T(X) and T(Y) are the tangent bundles 

of X and Y. Then naturality and 7.1 yields the formula 

7.3 £481 (x) = 6_ iy) eA: 1x0, al” - (v0, a”. 

Take o:Y’ = A, 3.x’ -» A, Then 6.2, 7.2, and 7.3 give 

£o(6_ x) 0 U 6:8) = £06__ oy (£10 U 8) = 6_yyTa(ea UB) 

= O_z(y)(@ U £46) = O_z(v)® U 0,78, 

i.e. 

7.L £o(6_g(x)T © U 8,8) = ©__ (ya U 0,058 (ary? » 4, g:x0 > 4). 

In the cohomology ring {xY At” of X we have the identity clement 

1, given by x —> 204A, where the first map is induced by 

projecting X to a point. 

[5 Definition We put 4(X) = O_t(x)’ e {x Cc}. 

7.6 Theorem £9(8(X) u 8,8) = 8(Y) U 6,808 (B:x° - A). 

Proof We put a = 1 in 7.4, and use 7.5. 1]] 

The proof of this 'Riemann-Roch' theorem is trivial. It 

is the verification of orientability and computation of A(X) 

and 4(Y) that are liable to cause difficulties (e.g. [A8]). 

More generally, we need only thc difference bundle 

2 0(Y)- 7 (X) to be oriented, if we use the Grothendieck transfer 

6.12.
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7.7 Definition If v = £7 (Y) = 5(X) is A- and C- oriented, 

we put 

a(f) = 061 (xY, cl. 

If also X and Y are oriented as before, and the dif ference bundle 

v is oriented according to 6.13, it is not difficult to prove 

7.8 a(x) = £ a(Y) vu a(f), 

and that &4(Y) is invertible in {Y°, C}, so that in this case 

a(f) can be determined from this formula. 

In the same way as for 7.6, we obtain 

7:9. Theorem £2(8(£) U 6,8) = 8,008 (B:x° » a). 11] 
Again, suppose we have a fibre bundle w:E = B as in the 

context of the Grothendieck bundle transfer 6.21, and let 7 be 

the bundle of tangents along the fibres. Formally, the situation 

is exactly that of 7.9. Suppose -T is A- and C- oriented. 

[+10 Definition We put A(x) = 0_.1 € ie’, Ct. 

[.11 Theorem ny (&(x) u 6,0) = 0,7 (a:8° - A). 11] 

Thus if 6, is mono, and we know ny and 4(x), we can compute 

Te. It is this case that will concern us. 

One could, of course, derive Riemann-Roch-type theorems for 

homology and cap products, along the same lines. There are 

obvious advantages, however, in arranging the computations so 

that they only involve cohomology and cup products.
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$8. Characteristic cobordism classes 
Given a complex vector bundle & over a CW-complex B, 

we shall define natural characteristic classes of &, called 

the Chern cobordism classes of &, taking values in u" (8°). 

(Recall that p’ = B/f, and that all cohomology is taken reduced.) 

Similarly we obtain Whitney classes in the real case, and an 

Euler class. For the Chern cobordism classes, this has been 

done by Conner and Floyd, under the restriction that B is finite, 

Now that we have u ( ) defined satisfactorily for arbitrary 

CW-complexes, this restriction is irrelevant; also we may 

parallel Borel's approach [B2] and work only with the universal 

bundle over BU(n), thus guaranteeing naturality. Finally, we 

show that our definition agrees with that of Conner and Floyd. 

The importance of these classes in U (8Y(n)?) and nN" (Bo(n)”) 

is that they pick out canonical elements, which makes more 

precise investigations possible, as we shall see in VI. Further, 

we shall find in S9 some geometric properties of these classes. 

For any honest vector bundle & over B, there is a canonical 

inclusion of pV in the Thom complex B®, as the zero section 

(apart from base point). In particular, wc have By(1)Y c MU(1), etc. 

8.1 Definition The first universal Chern cobordism class 

Ci € u%(Bu(1)") is the composite By(1)" c MU(1) - MU. 

The first universal Stiefecl-Whitney cobordism class Wi € n'(B9(1)")
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is the composite 3o(1)° Cc MO(1) - MQ. 

The n th universal Euler cobordism class £ € {B3O(n)”, uso} 

is the composite B30(n)" C MSO(n) - MSO. 

In each case, the sccond map of spectra is the classifying 

map of a Thom spectrum. 

These are our initial characteristic classes, from which 

we shall construct the others. We do this by using the 

fundamental classes (see 5.10) OL3iMQ = K(Zz) and Op tMY, K(Z) 

observing that they induce ring homomorphisms from cobordism to 

ordinary cohomology, and using the results of Borel [B2]. 

Denote by T(n) the usual maximal torus of diagonal 

matrices in U(n), and Q(n) the diagonal subgroup of O(n). Then 

T(n) 2 (1) x T(1) x «.e x T(1), and we may therefore take 

BT(n) = BT(1) x BT(1) x ... x BT(1), and similarly for Q(n). 

Define the cobordism classes S; € U%(BL(n)°) (1 £1 € n) induced 

from Ci € U%(BT(1)°) = u%(By(1)°) by projection BT(n) - BT(1) 

to the ith factor; similarly we obtain T, € v' (Bg(n)?). 

In cohomology we have the corresponding cohomology classes 

8, and tis and by Borel we have 

8.2 H (BD(n)"; 2) = zle1, 82, «uv, 8], 
H (Ban); Zz) = Zalti, t2, ..., t 1, 

graded polynomial rings. 

8.3 Lemma (a) U (80(n)°) = ul sy, S25 easy 5,1" and Oy ° 84 = 8.
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(6)  § (B(n)”) = N[Ts, Taz, ..., 7.1", and 0, °T; = t,. 

xn each case, completion "is with respect to the skeleton 

topology (see IV), which here is the augmentation ideal 

generated by the Ss or the To and its powers. 

roof We see from 8.1 that 0, °Cs = ci, the first cohomology 

Chern class, from [B2] or [81], and hence oy °8; = s,. (We may 

take the inclusion BU(1) Cc MU (1) as inclusion of a hyperplane in 

? (C).) By IV we have a spectral sequence with Es term 

22°? = #P(3r(n)?; UY), where we write UY = U_,- Milnor has 

shown that U 1s a graded polynomial ring over Z, with one 

generator in each even negative codegree, and in particular is 

free abelian [M1]; hence by 8.2 all the differentials vanish. 

Therefore the derived term RE , vanishes, and the spectral scquence 

converges (sec IV; this is a fourth quadrant spectral sequence) 

to E_, associated to a complete Hausdorff filtration of 

3 (Br(n)?). The homomorphism induced by Oy appears here as an 

edge homomorphism UP (BI (n)°) »> 552 Y, Since oy °8, = s;, and the 

spectral sequence has products and U-module structure, U (31(n)?) 

nust be as stated. 

Similarly for BQ(n), except that we have to invoke the 

fact (compare [C5]) that again the differentials vanish, because 

as we shall see in VI, MQ is a graded Eilecnberg-MacLane 

spectrum. JJ]
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Still following Borel, we consider the map p:BT(n) - BU(n) 

induced by inclusion T(n) c U(n). 

2.4L Lemma (a) Inclusion induces the monomorphism 

27:0" (30(n)°) - u” (BL(n)"), whose image is the symmetric 

subalgebra of u” (BL(n)") = Ul Sq, SS eee 5,1". 

ib) Inclusion Q(n) < O(n) induces the monomorphism 

=": (Bon) 0) > Nn" (Ba(n)?), whose image is the symmetric 

subalgebra of N (BQ(n)”) = N[T4, Toy eves T, 1%. 

roof The symmetric group G of permutations of n objects acts 

on T(n) by permuting the factors, and hence also on BT(n). 

aowever, each permutation can be expressed as conjugation by an 

element of U(n), which is path connected. It follows that G acts 

on u" (BI(n)?) = Ul Sq, Soy eee, 1" by permuting the S,, and 

that the image of 0" is contained in the symmetric subalgebra of 

281, co ey 5.1". Consideration of the spectral sequences for 

J (BI(n)") and U (BU(n)°) and of the map between them induced by 

D shows that 0 must be mono and its image the whole of the 

symmetric subalgebra, since 5 (BU(n)") = Zlei, c2, oo. c, and 

>"H (BU(n)?) is the symmetric subalgebra of Z[si, sz, ..., s, 1. 

Similarly for BO(n). 1]] 

The situation is therefore exactly as we would expect from 

that in cohomology, apart from the necd for completion. We can 

therefore proceed.
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5.5 Definition We define the universal Chern cobordism 

cizsses ©; € US(BU(n)”) (1 <i <n) so that pC, is the 1 th 

g_ementary symmetric function of the S 5 

¥z define the universal Stiefel-Whitney cobordism classes 

¥, € wl (80(n)°) so that ow, is the i th elementary symmetric 

Zanction of the T.. 

This definition is permitted by 8.L. 

2emark We can now complement 8.1. 

3.6 Cc, € U“™(8y(n)”) is the composite y(n)" Cc MU(n) — MU. 

Ww, € ¥(Bo(n)") is the composite BO(n)" c Mo(n) - MO. 

We are ready for the main theorcm. 

2.7 Theorem 

(a) U (BY(n)") = U[Cs, C2, ..., c, 1"; nN (BO(n)") = Nlwy, Wa, ouy W_ 17 

{v) oy °C = Cy; Og © W; = Ww. 

{c) Inclusion U(n) < U(n + 1) induces the homomorphism 

U”(BU(n +1)7) = ulCs, «voy Cc , 1" - U"¢By(n)°) = g[Cs, ..., C17, 

¥nich takes Cs to Cs for 1 €£ 1 €£ n, and Chia to 0. Similarly 

Zor O(n) c O(n + 1). 

(d) By (c), we may define C, € ut 8g”) as the inverse limit of 

the elements C, € ut (By(2)?) (r > i). Similarly W, € nt (8g). 

(e) u”(8y°) = U[C1, Czy «ve. ]’; (80°) = N[Ws, Tz, ...]". 

(f) Inclusion U(m) x U(n) © U(m + n) induces the homomorphism 

U (8u(m + 0)°) » U ({BY(m) x BU(n)}") 
Ul Cy, oh, ees C17 = oleh ®1, C2 ®1,..., C.®1,1®0C1,..,18C,]"
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in which 

Cs ~—> Cs ® 1 + Cs _y ®@ C4 + Cs» ® Co + see + 1 ® Css 

with the convention that Cy = 0 in u”(8U(r)”) if J > pr. 

Similarly for O(m) x Q(n) < O(m + n). 

Proof We give only the unitary proofs, as the orthogonal 

proofs arc similar. By 8.4, u (BU(n)”) is isomorphic by 0 

to the symmetric subalgebra of ulss, Soy eee s, 17, which is 

known (Newton?) to be a completed graded polynomial algebra on 

the elcments oC, - We have (a). Since Cs and Cs are both 

defined in terms of elementary symmetric functions, (b) follows 

from 8,3. The inclusion T(n) c T(n + 1) induces a homomorphism 

taking S. to S, (1 £ i €£n) and S,,4 to 0, clearly. Hence (c), 

by 8.4 and 8.5. By Milnor's lemma (see IV) u* (By) = lim U (Bu(n)?), 

since we have here a sequence of epimorphisms; hence (4d) and (e). 

In (f), we need only work with maximal tori, T(m) x T(n) = T(m + n), 

by 8.4. For these, we have §, ~» 5, ® 1 (if 1 £1 € m) or 

8, ~»1® 8, (if m <i £m +n). The result follows from 8.5. ]]] 

8.8 Corollary The comultiplications in U (BU") and N (BQ") 

are given by 

C, ~> GC, @ 1 + Cs ® C1 + C; 5 ®@ Co + eo + 1 ® Cs 

We => Wool + W, 0M + W, ,0We + ov + 10W,. 11] 

8.9 Definition Given a virtual vector bundle & over the 

CW-complex X, its Stiefel-Whitney cobordism characteristic classes
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7, (8) € wt (x°) are defined by Ww, (8) = gw, (recall that by 

definition 1.3% we have £:X — BO). Similarly, C; (&) e r=? (x0) 

is defined, if & is factored through BU. 

8.10 Corollary Let & and Mm be virtual vector bundles over X. 

Then wn, (E + 1M) = 25 43x31 (8) Wyn). 11] 

Finally we give an alternative description of the Chern 

(and equally of the Sticfel-Whitney) cobordism classes, which is 

the version adopted by Conner and Floyd. 

Suppose & is an honest complex vector bundle over the 

finite-dimensional CW-complex XX, with complex fibre dimension n. 

Let Y be the total space of thc associated projective bundle 

with fibre P,_4(C), projection ®:Y —» X, and let Z be the unit 

sphere bundle in £. Then the map Z —» Y is a principal U(1)-bundle, 

with Chern class C ue (¢Y), say . 

8.11 Thcoremn By means of ry (x0) = u (v0), u (v°) is a 

free {U” (2°) }-module with base {1, C, a2, coos cB, 

dultiplicatively, there is one relation 

8.12  ® - ¢™ acu (8) + PTE Ca(E) - oo. + (5)PRC_(B) = oO. 

Proof We first consider the universal example W:E — B. When 

we have unravelled the various definitions, we find we are to 

investigate thc Borel bundle [B2] 

8.13  U(n)//{u(n - 1) x y(1)} = BY(n-1) x BU) = E 2 By(n) = B 
induced by U(n -1) x U(1) © U(n). The class C is induced by
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projection from Cy € u%(By(1)"). Write 

yg (BU(n-1)") = ylcl, ci, ..., Cr _417 by 8.7. Then we know 

(from the usual spectral sequence) that 

(8°) = ulc, Ci, Ci, ..., cl 417. From 8.7, the homomorphism 

x is given by 

"Cy = Cl +C, mC, =0C! +0C!_, (1<i<n), xc, =CCl,. 

Eliminating the Cs yields the relation 8.12. We also note that 

for the fibre F = P__,(Q) = U(n)//iU(n-1) x u(, U (F°) is 

U-free with base {1, C, c?, cons cy, and therefore a free 

abelian group. 

Let us now return to w:Y =» X. Certainly 8.12 holds, by 

naturality. We must show therc are no new relations. 

Consider the Leray-Serre spectral sequences of ®:Y =» X and 

1:X = X, with MU as coefficient spectrum. Let us write them as 

(E,(Y)) and (E_(X)) respectively, and x :E_(X) + E_(Y) for the 

map induced by ®. Now =4(X) acts trivially on uy (Fy, and 

Bz (X) = H (X; 7) ® i E2(Y) = H (X; Z) ® u(r), 

since these facts are true of 8.13. Now these are graded rings, 

and by means of x E2(Y) is a free Ez(X)-module, with base 

f1, C, G2, cee 13, Moreover, the differentials are all 

derivations, and vanish on C since they do for 8.13. It follows, 

by induction on r, that E.(Y) is a free E,.(X)-module with base 

1, C, G2, ceo 11. The spectral sequences converge without
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difficulty, to show that U (Y°) is a free U (X')-module with 

base {1, C, C2, ..., 1. 11] 

The dimensional restriction on X can be removed. 

$9. Some geometric homomorphisms 

We consider here two geometrically defined homomorphisms 

in cobordism theory discussed by Conner and Floyd [C5], and called 

by them the Smith homomorphism and J. The second is of crucial 

importance in the study of fixed points sets of involutions on 

manifolds, as we shall see in VI. We show here that both 

homomorphisms are special cases of homomorphisms already considered. 

We know [C5] that N,(BG") classifies equivariant cobordism 

classes of manifolds with free smooth G-action, where G is a 

Lie group (by considering the orbit spaces). Take a manifold
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M with free involution, representing x € Ww. (B0(1)°). Its orbit 

space is a singular manifold £:M - BQ(1). We take BQ(1) = P_(R). 

Since M is compact, we may assume fM C P,(R) c P_(R), for some 

large q, and that f is smooth and transverse to Po in Py 

Put N = £2, _1) 5 submanifold of M, and g = £|N. Let 

N c il be the double covering of N. 

9.1 Definition The Smith homomorphism 

A: (BO(1)Y) = 1, (BO(1)”) 
is defined by taking the class of f:M — BQ(1) to the class of 

g:N — BO(1). 

The importance of N is that the involution on M is trivial 

on M - NN. 

By 5.9, we are here simply taking the cap product with the 

class of the Thom map of the normal bundle of Po in Pq: Write 

g for the canonical line bundle over P.s for any r. Then clearly 

this normal bundle is &, and its classifying map Poi -» BO(1) is 

simply inclusion Pai Cc P_. 

Let us be more general. The normal bundle mM of LA in 

Pon is the "Whitney sum of n copies of &. Clearly mn extends 

over P__..,_4 in the obvious way. We therefore obtain two maps 

from Pond to AL the first is inclusion of the base of the 

Thom complex, and the second is the composite 

Phen-1 ~ Py « ANY
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9.2 Lemma These two maps are homotopic. Moreover, they are 

equivariantly homotopic with respect to the obvious action of 

0(m) x O(n) on the pair (Prin 1° Po 4) if we also make Q(n) 

transform the n copies of E in n. 

Proof ~~ This becomes clear if we note that P| ~~ =P  /P , 

and work with the two obvious inclusion maps 

Rr" X R™ C rR" X rR X Rr" omitting either factor rR"; these maps are 

plainly equivariantly homotopic with respect to the actions of 

o(m) x Qn). 11] 
In our case, the required map Py —» MO(1) is homotopic to 

the composite Py cP _=BQo(1) < MQ9(1). The inclusion 

BO(1) < MQ(1) gives Wy, by definition 8.1. 

9.5 Lemma The Smith homomorphism A is given by Ax = x 0 Ws. ]]] 

The bordism J-homomorphism 

Take a smooth vector bundle & over a manifold x1 with 

fibre dimension nj; such are classified up to bordism by 

N,(B0(n)"). Its unit sphere bundle Y'*™! when equipped with the 

antipodal involution represents an element xX wo, (BO(1)). 

9.4 Definition The bordism J-homomorphism 

Tue (BOR) ~ Wy, (BO(1)) 
is defined by taking the class of the bundle E to x. 

Now consider X as a singular manifold of BQ(n). We see 

that Y is the covering singular manifold obtained by the
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construction 6.18 of the bundle transfer for the universal case, 

over BO(n). Let E be a universal QO(n)-space, and put 

BO(n) = E//0(n). Then the universal case is the Borel fibre 

bundle [B2] 

P._4(R) = 0(n)//1Q(n-1) x 9(1)} = E//1Q(n-1) x 0(1)5 = E//Q(n) 

induced by the inclusion 0(n-1) X 0(1) C 0(n). Now 

E//10(n-1) x 0(1)} =~ BO(n-1) x BO(1), and the antipodal involution 

on the sphere bundle E//Q(n-1) is classified by the projection 

B0(n-1) x BO(1) - BO(1). 

Let us write this Borel bundle as 

9.5 P__4(R) = 0(n)//fg(n-1) x 9(1)} » BO(n-1) x BQ(1) = BO(n). 
Then we have proved 

9.6 Theorem JN, (B0(n)") — w,.(30(1)7) is the composite of 

the transfer homomorphism x” of 9.5 with the homomorphism 

N,({B0(n-1) x BO(1)}°) » N,(Bo(1)?) induced by projection. 11] 

For the usual reasons, we would prefer to have multiplicative 

structure available, by means of a similar homomorphism in no. 

For transfer homomorphisms, this can be defined, if we use the 

Grothendieck form 6.21 of the bundle transfer. 

9.7 Definition The cobordism J-homomorphism 

7h (3o(1)7) ~ v (8o(n) 7) 
is defined as the composite of the transfer homomorphism Ty with 

the homomorphism induced by the projection BO(n-1) x BQO(1) - BO(1).
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Then we have the multiplicative properties 6.2. 

We shall need to compare the homomorphisms Jn for different 

values of n. 

9.8 Lemma Write 1:BO(n) < BQ(n + 1) for the map induced by 

inclusion. Then J _X = AT 41sX for X N,(Bo(n)"). 

Proof This can be seen directly from the geometric definitions. 

It appears as Theorem 26.4 of [C5]. 111 

9.9 Corollary J = 17 a uw) for a wn (Bo(1)?). 

Proof 9.8, with 9.3, 9.7, and 6.2, shows that 

(x, T%) = (x, 1" (qu) for all x € IW, (Bo(n)°). The result 

follows, since we know the structure of N"(Bo(n)?), and 

(oy e.g. [C5]) N,(B(n)®). 
Still using cap products, we can obtain a very precise 

relation between Jo and Joan Let my be the bundle induced from 

9.5 for m + n as follows: 

Ey ———————=>B0(m+n-1) x BO(1) 

EA Ix 

BO(m) x BO(n) ——BO(m +n). 

Nrite gq for the composite E; - BQ(m+n-1) x BO(1) - BO(1), and 

p:B0(m) x BO(n) —» BO(m) for the projection. 

9.10 Lemma J Px X = Qy (nix Nn a) for x N, (1BO(m) x B0(n)1Y), 

where the element a € (Es) is induced from the Stiefel-Whitney 

cobordism class W_ € §" (Bo(n)?) by means of the maps 

E+ = BQ(n) x BQ(1) = BQ(n),
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®here the first is obtained from wy and gq, and the second is 

induced by ®:0(n) x 0(1) = 0(n). 

roof Geometrically, E; is a bundle over BO(m) x BQ(n) with 

fibre Pon (RB), containing a subbundle Eg with fibre Pn_4(R) 

and projection mg, say. Given a singular manifold 

X » BO(m) x BO(n) representing x, the construction 6.18 of the 

bundle transfers gives singular manifolds of Eis and Ez which 

yield in wv, (80(1)") representatives for Q, 5x and J PX 

respectively. 

By 5.9 applied over X, we obtain the required formula, 

where a:Es ~ MO(n) — MQ is the Thom map of the normal bundle of 

Es in Es. Write £& and mn for the universal line and vector 

bundles over BO(1) and BO(n). Then the normal bundle of Ez in 

Bis is (mim v3 gq E)|Es. This time making strong use of 9.2, we 

see that the Thom map we require is homotopic to the classifying 

map E+ — BO(n) of em ® aE, followed by BO(n) < MO(n). The 

latter gives W_, by 8.6. 11] 

9.11. Corollary mp (Q B ua) = 0 IB for B € n (Bo(1)?). 

Proof This dual result is obtained in the same way as 9.9. ]]] 

These results will enable us to carry out computations 

in VI.
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Our methods so far have been applicable to general 

bordism and cobordism theories. In this Chapter we 

specialize to the case of the unoriented theories, with 

the Thom spectrum MO as coefficient spectrum. 

In principle these theories hove been reduced to the 

study of ordinary homology and cohomology [C5]. Everything 

depends on the main structure theorem, that MO is a 

graded Eilenberg-Maclane spectrum. (We have by now given 

this assertion a precise meaning.) Therefore to obtain 

better results, we must be more precise about this 

structure theorem, and we must develop more efficient 

methods of carrying out the necessary computations. 

Various devices for doing this are introduced in 1, 22, 53, 

and UL. © 

In +5 we deduce the structure of MQ, and hence that 

of the theories w( ) and N.( ). This is expressed in $6 

in a different form. In (7 we obtain some information on 

the primary operations in cobordism theory. 

In §8 we consider the relations between determinants 

and tensor products on one hand, and the Stiefel-Whitney 

cobordism characteristic classes W, defined in V.8 on the
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other. These are quite complicated, and yield interesting 

results. For example we discover a canonically defined set 

of polynomial gencrators for the unoriented cobordism 

ring Ne. le also determine the behaviour of two maps 

dy»85:N » IH defined by Rokhlin [R1] on products, a problem 

posed by Wall in [V2]. 

In $10 we study manifolds with smooth involutions, 

as in [CL4],[C5], etc. This contains our main theorem, 

that a smooth involution on a non-bounding n-manifold 

must have a fixed-»noint set of dimension at least 2n/5. 

To prove this we need to know about the bordism 

J~homomorphism [C5]. We compute it in §9. 

Throughout this Chapter we shall work over the 

groundfield Z,. This will be the coefficient group for 

ordinary homology and cohomology unless otherwise stated. 

As always, we take all homology and cohomology theories 

reduced. We recall that X° is the disjoint union of X 

and a base point ¢. 

This Chapter comprises the sections: 

1. Universal elements 

2. The giant Steifel-Whitney class 

3. The giant Steenrod square 

4. Some Hopf algebras 

5. The structure of the Thom spectrum MO 

6. From cobordism tc cohomology
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7. Primary cobordism operntions 

8. Determinants 

9. Computation of the bordism J-homomorphism 

10. Manifolds with involution 

81. Universal elements 

In this section we start to develop the intensive 

algebraic machinery we require. 

Let V be a finite-dimensional vector space over the. 

field X, and V' the dual vector space. Then it is a 

commonplace that we have the evaluation map 

V'eV -» XK. 

From the point of views of categories this is unsymmetrical: 

why not work with the dual map 

1.1 XK -» Vv! ? 

1.2 Definition We call the image of 1 € K under the 

linear mep 1.1 the universal element u € VW@V' of V or V', 

1.5 Lemma Let a¢ V =» K be any linear functional on V, 

Then the composite VeV' -» KRV'2V' takes u to a € V'. 

Proof. This is immediate when we dualize back. ]]] 

This is the universal property of the element ue. 

If te! is a K-base for V, we have the dual base 

te] of V' defined by eje, = Oy 43 and then
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1.4 u = e,8€; + 4985 t+ sees + e ®e 

It is often convenient to embed V and V' in larger 

vector spaces A and B say; but from the knowledge of 

u € ARB we can recover the subspaces V and V' from 1.3 

and its dual. Alternatively the choice of any element 

u € ARB defines a duality between some subspace V of A 

and some subspace V' of B. The notion  »f universal 

element will be useful because it is easier to specify than 

a homomorphism, in customary notation. 

All this applies equally well to graded vector spaces 

of finite type (each component vector space finite- 

dimensional), except that we must replace the ordinary 

graded tensor product AB by the complete tensor product 

ASB, as below, 

1.5 Definition wiven graded modules A and B, their tensor 

product and complete tensor product are again graded 

modules, defined respectively by (£9B), = 25 5=k A;®B, 

and (£3B), = T,, 5 4408. 

Let us topologize (2B), by taking the submodules 

2s cm A;®B, and Zion A;®B__. as subbasic neighbourhoods 

of 0. Then the completion of (4B), in this topology is 

the module (2B), with the obvious topology. 

Let us give an important example of a universal 

element. Let A = K[t, st, oo yt] be a graded polynomial 

ring, in which each t; has degree -1, and B = Kla,s8,5855]
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a graded polynomial ring in which ay has degree i. 

1.6 Theorem The element u € ARB given by 

u = mh (1 + a ty + a, ts + 057 + a ty + ee) 

is the universal clement of the symmetric subalgebra of 

Ae 

Proof. Let C = Klu,,u,, .o us where each u, has 

degree 1, and define the algebra homomorphism B =» C by 

sending ay to the i th elementary symmetric function of 

the a, if 1 € my, or to 0 if i > m. This takes u to the 

element v AQC given by 

v = qi qd=m (1 + u.t.) 
i=1 j=1 Ji 

= nd] (1 + 54uy + 5,03 + ee + 5,5), 

where 84 is the 1 th elementary symmetric sum of the Cpe 

Hence v is the universal element of the submodule of 

Kls,,8,; .o ys] consisting of elements of polynomial 

degree < m in the 5 Now B —»+ C is mono in degrees < me. 

It follows that u is the universal element of 

K[s,s85 oo S| c A, which is well known to be the 

symmetric subalgebra of A. ]]] 

One can Juggle with universal elements in various ways. 

For example, supnose the module A has a multiplication 

Pp: ARA -» A. Then the dual A' has a comultiplication 

p':A' » A'@A'. The image of x € A' under ¢' is the image
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of u@u under the composite 

ARA'@ARA' = ARABAT®A" —oog a= ABA TEA ~—S=TsT KoA'@A' =A'gA', 

A homomorphism A =» B corresponds to an element of 

A'®B. In this way we shall be able to make use of universal 

elements. 

82. The giant Stiefel-Whitney class 
Denote by BQ(n), as usual, the classifying space for the 

orthogonal group O(n), etc., and by Q(n) the diagonal 

subgroup of O(n). The inclusion Z(n) < O(n) induces 

po: B(n) » Bg(n). We have by Borel [B2], as in V.8, 

H#(BQ(n)", = Zot, sty0 ++ ,t ], 

1 (Bg(n)®) = Zolw,,w,, .o Ww], 

graded polynomial rings, where Wy is the 1 th universal 

Stiefel-Yhitney class. Also, PW is the i th elementary 

symmetric function of the to. 

It is of ten inconvenient to have to give a list of 

elements when specifying the Stiefel-'/hitney classes of a 

vector bundle. If so, it is customary to introduce 

formally the total Stiefel-Whitney class 

w= 1+ , + Wy + eee This is multiplicative: 

w(g @ nm) = w(g).w(n). 

In cobordism computations it is useful to have readily 

available all the Stiefel-Whitney numbers of a manifold, 

and therefore a2ll the monomials in the Stiefel-Yhitney
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classes w,. To display these, let Zolaysa,, ces |] be 

the graded polynomial ring in which as has degree i, which 

we write formally as Zola]. Then by 41.6 the element 

2.1 1 (1 + a, ty + a, ts + as ts + eee ) € H#(BQ(n)")éz, a] 

yields the uwaiversal element of 1#(B0(n)°), with the help 

of p*. (We frequently write simply as instcad of 1oa,, 

etc.) As n increases to oo, we obtain a well-defined 

element 

2.2 we B#(BQ) 6 g,[al. 

Here the dusl space to H¥(BQ®) fills up the whole of 2,[a] 

and in effect we have identified Z,[a] with H.(B0°). 

2.3 Definition We call w € Hs (BV) & Z,lal as in 2.2 the 

universal giant Stiefel-Whitney class. If & is a vector 

bundle over the space X, its giant Sticfel-"hitney class 

w(g) e 55(x°) 3 g,[al is induced from w by the classifying 

map X =» BO. 

Consider next the product map ¢: BQ(m)xBQO(n) -» BO(m+n) 

induced by the usual inclusion 0(m)x0(n) c Q(m+n). In 

cohomology put 1 (BQ (m+n) ) = Zoltysts, oe to 1, 

H(Bg(m)®) = z lt}, .. ,t'], and H3(BQ(n)®) = Z,[t},.. ,t!]. 

Then ¢ induces t; - 14 (for i € m), ty = ty (for i > m), 

and hence, in obvious notation, w » w'.w', from the form 

of 2.1 We deduce:
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2.4 Theorem Let & and m be vector bundles over X. Then 

their giant Sticfel-Whitney classes multiply: 

w(gen) = w(€)z(n).]]] 

We recover the total Stiefel-Whitney class w(E) 

from w(£€) by means of the ring homomorphism Z,lal > Zo 

scnding a, to 1 and ay to O for i 2 2. Conversely, the 

giant class w(g€) is determined by the total class w(E). 

Let VY: z,lal + Zola'] © Zol2"] be the ring homomorphism 

defined by 

2.5 ay =» oay +a; gay +a; 585 + .. + agai, + ay, 

whe re Z,la'] and Zola"] are copies of Z,la]. We see 

from 2.1 that this comultiplicetion in za] is dual to 

the cup product multiplication in H+ (BC), under the 

duality determined by w & i: (BQ) ® Zola]. Given a 

vector bundle E, let us write w'(€) and w"(g) for the 

copies of w(g) in i+ (30°) & Z,la'] and H#% (BQO) & Z,la"]. 

2.6 Lemma Given a vector bundle & over X, its giant 

Stiefel-Whitney class w(&) is characterized in terms of 

its total Stiefel-Whitney class w(£€) by the properties: 

(a) w(g) reduces to w(g) when we put 

a, =1, a; = 0 (i> 2), 

(0) (tov)u() = n' (8) w"(8) in H¥(X') & Z,[a'18z,[a"]. 
Proof. Dualizing w(&) yields a linear map 

5 (BQ®) » H#(X°). Then (b) asserts that this is a ring 

homomorphism, and (a) asserts that it takes the value
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wy (E) on w, and takes 1 tc 1. But H# (BQ) =Z, [wy Ws + 1. 11] 

2.7 Corollary Suppose that the total class of the bundle 

g& over X has the form 

w(g) = WT (1 + x,)°09), 

where xy € at (3) (x0), r(j) is a power of 2, and e(j) is 

any integer, positive or negative. Then the giant class of 

E is given by 

w(E) = IE {1 + (3x gal alia (3) + es 1e(d), 

Proof. It is clear thet this element satisfies (a) and 

(b) in 2.6, since we are working modulo 2. ]]] 

This result will suffice for our applications. 

2.8 Definition For a smooth manifold V, we define 

w(V) = (Ty), where T, is its tangent bundle. 

Then by 2.4, the gicnt Stiefel-~WWhitney class of its 

stable normal bundle is w(v) 1. 

Let us give some examples. 

Projective spaces 

Let P(X) denote n-dimensional projective space over the 

skew field X, where K = R (reals), C (complex numbers), 

or H (quaternions). Write 4d = dim XK = 1,2, or 4 

rcspectively. - 

It is well known (compare e.g. [H1]) that 

w(P_(X)) = (1 + 0) B+] 

where H+ (P_(K)°) = Z,la oP 2 0], in which a has codegree 4d.
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Then 2.7 applies, and we find 

2.9 (w(P,(R)) = (1 + 8,0 + a,0° + a0” + ous ya+t 

\ 

Ju? (2) = (1 + asa + aS0’ + aga” + ata + eae nt 
{ 

(2, (8) = (1 + ata + ata? + ato” + ata foees PH, 

We shall need, for applications, the ‘hypersurfaces of 

degree (1,1)' introduced into cobordism theory by Milnor. 

There are two recsoas for introducing tnem: firstly they 

provide some useful generators for tine varous cobordism 

rings, and secondly tnelir characteristic classes are 

easily computed. 

2.10 Definition. The hypersurface Ho, n(X) in 

P (K) x P(X) is the subset defined by the equation 

XV + Xq¥y + X¥o + ees + x95 = 0 

where p = min(m,n), and (XpX,» «- > x) and (¥gs¥ sees) 

arc the standard homogeneous coordinates in Pp (K) and Pp (K) 

rcspectively. 

It is a smooth submanifold of codimension d. It is 

easy to sec thet if m € n, the projection 

Po X P - P induces the fibre bundle 

2.11 Pat” Bon” Tn 

(The other projection is not a bundle projection if 

m < no.) 

Let us compute the giant class of H, n(B) (The other
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cases are anclogous.) We take H# (Pp) = z,[a:a™ = 0] 

and H#(P)) = z,[p:p"" = 0]. Then by the Kinneth 

formula, 

By 0 , m+ n+ E(B x P)°) = zg [a,8: a™" = 0, 71 = 0]. 
Let JH) C Fo X P be the embedding, and suppose 

m< n. Write oo and Bg also for a°j and B°Jj. One can 

deduce from the spectral sequence of the fibration 2.11 

that ao 2nd B generate H(H 2) though we do not need this 
3 

fact, We have thc Gysin transfer homomorphism V.6.12 

1 3 0 #8 \ 0 Jy, ¢ Hx (dy) - me ((P x FP) Ys 

By V.6.2, with our identifications, this is a 

homomorphism of H#( (EB x p_)?)-modules, and must be in 

fact multiplication by a+3, since this is the cohomology 

i he) po 1 M ~ i class in Py x 2 represented by Hoon Moreover, a+3 is 

the first charccteristic class of the normel bundle of 

T ] IP 3 : ~ TD T J a [ 2 Han in Px P (compare [H1]). Then for the tangent 

bundle of H_ (compare 9.2 in [H1]) we have 
3 

/ m+ n+] -] 
w(H _) =(1 +a) (1 + B) (1 + a+ B) 

m,n 

we can apply 2.7 and write down the giant class 

2.12 

R _ _ 2. 3 m+ RE n-+1 
w(H (R))={1+20 + 8,0 +8307 ‘ol {1+a,B+2,B +256] 

EE a, (a+p) + a, (a+p)° + a5(a+B)” + 1
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Js. The gicsnt Steenrod square 

We first remark that the mod 2 Stesnrod algedra A can be 

regorded exactly as the ring {K(Z,),K(2,)1%, with the 

multiplication induced by composition. (Indscd, this 13 

how we would define A.) For if n > k+l, we .have 

(K(2,) K(2,)3° 2 (K(Zp5 2), 5(2) 1H = BME ((2552)), 

by a trivial application of Milnor's lemma (H.L4 in Summary). 

One frequently ecoucmizes on notation by putting 

Sq = 1 + Sq + 59° + SQ 4 aes ’ 

the total Steenrod sgusre. In the same way that in $2 

we introduced the gicat Steifel-Whitney class 3, we find 

1t useful to iatroduce. the giant Steenrod square, which 

displays the action 0? the whole Steenrod zlgetbra A. 

Iterated StecnrHyd squares and Adem relations 2re difficult 

to handle; therefore wc shall not use them. Yur approach 

evolids this di:’ficulty. 

Ve lean hesvily cn wo.?k of Milnor [M2]. How A is a 

Hopf algebra, whose dial £lgebra A' is a polynomiial ring 

Z,0] = Z,[0, Apyhgs ov 1, in which A, hos degwez 27-1. 

3.1 Definition Given any spectrum X, the giant Steenrod 

square Sg: H*(X) » A' § Hx(X) 

is the adjoint of the cction A @ H*(X) » H*(X) of .4 on H¥(X). 

For each monomizl A" = A NBL s Where 

oo= CIFY-PY «os ) 1s a scquience of non-negative integers,
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all but finitely many zero, we have the dual base element 

sqPeA. These form Milnor's base [M2] of A. We have 

Je2 Sg a = 2, AP sqa. 

In particular sqt = 5q120s050-e 

3,3 Theorem (a) The giant Steenrod square 

sq + B' (X) » Z,[A] 6 EH (X) 

is a natural transformation, defined for all spcctra X. 

(b) When X is a space, Sq is a ring homomorphism. 

(¢) If X is a space, and ae 5H (X), we hove 

Sg a =a + A 0° + nat + Aga + Aa © + ese 

Proof. (a) is trivial. (b) is immediate, because the 

comultiplication in A, and hence the multiplication in A', 

was defined to R&ke Sg a ring homomorphism. As for (c), we 

know from [M2] that the only operations which do not 

vanish on a are 1, sq’, sq°8q’, Sq*sq?sq’t, etc., whose 

values are a, a, ot, a, etc. These operations are dual 

to 1, Ags hyy hg ete. 11] 

3.4 Corollary A operates effectively on the A-module 

3, EH (3(n)). 
Proof. We have H (BQ(n)?) = z,[t,,t,,.. ,t ]. Since 

each t; has codegree 1, we can usc 3.3 (b) and (c¢) to 

evaluate Sq; in particular 

Sq tybyeet, = Hyon (6, + A t2 + ptf + Agt0 + Ll), 
The result follows, by letting n vary]]]
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We see from 3.3 that 5g shares with Sq the property 

of being a ring homomorphism; which accounts for the 

comultiplication in A. Cur approacn also elucidates the 

multiplicative structure. Let Sg': H*(X) - Zz," H3( X), 

etc., be other copies of Sg. We consider the composite 

ring homomorphism 

8g" 8a" : Hx(X) » 2Z,(n'] 8 Z,[n"] & HA (X), 

in which Sqg' acts trivially on Z,(n"]. If X is a space 

and t H(X), evaluation by (3.3) (b) and (c) gives 

? i _ 01,2 ' L 1 ? 4.2 2 if t 2 L Sa’ 8g" t = (t+ t7enst +oo J+J (TASS too ) THAD (EAA ETH) Th 

This agrees with 

2 L 8 
Sgt =1t + At + At + hat + eee 

if we define a ring homomorphism ZIM] > Zon" Jez, [A] by 

£ ? i 3.b MM + As 

t y 2 n if Ig = AL + MAY + 2 
} ? y 2 Pt t it 1 
RE —> hz + As A + A Ao + hz: 

By 3.3 and 3.4, we must have Sg = Sg' Sg" generally. 

3.6 Theorem Te have 

Sg = 8g" 8g": H¥(X) » 3,[n']) 6 Z,[A"] & HA(X) 
if we use 3.5 to embed Z,[2] in Z,[A'] o Zoln"]. 11] 

Hence, in conjunction with 3.5 and 3.2, we can read 

off the multiplication table of the operations sq”, and 

derive Theorem 4B of [M2]. In particular, one can verify
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tne Adem relations 

sq> sq¢Y = 5, {1-2k, jk-1-1] sq IE 54F (0 < 1 < 23), 

where {p,ql denotes the binomial coefficient, i.e. the 

coefficient of tYu? in (t+u)P+e, The necessary arithmetic 

is not trivial, =2nd may be found in the Appendix to 

Steenrod and Epstein's book [S56]. 

fe can also treat tne canonical anti-automorphism c 

of the Hopf algebra A. Define the ring homomorphism 

3.7 0: Z,[1] 8 H¥(X) » 2,[n] & H#(X) 

by means of 3g on H*(X), end the inclusion on Z,[2]. 

3,8 Theorem The ring homomorphism 6 is a ring isomorphism. 

For any element oa € H#¥(X) we have 

3.9 o~1(1 & a) = 2, 2° (e(sd”))a. 

Proof. Because sq” = 1, it is easy to show that 0 is an 

isomorphism. In view of 3.6, the formula 3.9 is 

essentially the definition of c. ]]] 

Again, we can pick out coefficients and recover 

Theorem 5 of [M2]. 

A similar treatment can be given for the mod p 

Steenrod algebra, for any odd prime p. 

SL, Some Hopf algebras 

We work over the groundfield Zo for simplicity. We refer 

to Milnor and Moore [M8] for the usual graded concepts, 

such as graded module, coalgebra, and comodule. In 

particular, a Hopf algebra A has, among other structure,
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a multiplication AA -» A and a comultiplication A =» ARA. 

However, it must be noted thatin our case the grading need 

not be non-negative. Indeed we have two names, degree 

and codegree, for the grading, each of which is minus 

the other. 

Suppose that A is a Hopf algebra, and that B and C 

are A-modules, with actions L: A®B -» B and L: ARC -» C. 

It is usual to moke the Z,-module BRC into a A-module 

by means of the action 

A9BEC~=a=g? A0ASBRC = ABBRARC —o3- BOC, 

where ¥: A => ARA is the comultiplication in A. We say 

the Hopf algebra A is connected if it is zero in negative 

codegrees and has Z, in codegree 0 (e.g. the Steenrod 

algebra). 

LL.1 Lemma Suppose A is a connected associative Hopf 

algebra, B is a free A-module, and C is any A-module. 

Then BoC is a free A-module, with A-base ib ®c i, where 

{b,} is a A-base for B, and {c,;} is a Z,-base for C. 

Proof. Let B, be the submodule Ab, of B generated by 

bs clearly BC = 3. B ®C, as A-modules. Thus we necd 

consider only the case B = A. Teke a € A and ¢c € C, 

where a has positive codegrce. Suppose 

a = al + 19a + 2 29a. 

Then age = a(1®c) - 1oac - 2 a jaye.
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It follows by induction on the codegree of a that the 

elements loc, span the A-module AC. A similar proof shows 

that there are no relations between the oc, . 11] 

ie remark that a module action L: ARB -» B can be 

dualized in various ways (e.g. Sg). In particuler, 

L': 3' » A'@B' is a cozction of the dual coalgebra A' on 

B'. 

L.,2 Definition The invariant pert of the comodule B' is 

the set of all clements x € B' such that L'x = 1 ® x. 

The invariant part is dual to the quotient module 

B ®y Zoe 

Left A-module coalgebras (sec 4.2 of [M8]), where 

A 1s the Steenrod algebra, are important in cobordism 

theory. If I is a connected left A-module coalgebra, 

there are cenonical homomorphisms of left A-module 

coalgebras i: ..=» M and "x: M - Mo, 2,5. 

Ye write C = I ®, 20 a coalgebra with trivial 

A-module action. We have the following wierd structure 

theorem, part of which is well known (sce L.4 of [M8]). 

L,3 Theorem Lect M be a connected left A-module 

commutative associative coalgebra, where A 1s the 

Steenrod algebra. Suppose i: A -» M is mono. Then the 

structure splits, in the scinse thot the exact sequence 

of coalgecbras
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bh.L 0A H2C=-0 

is isomorphic to the split-exact sequence of coalgebras 

0+A->A@C->C=.0. 

In particular we have an isomorphism M 2 A ® C of left 

A-module coalgebras, and M is a free A-module. 

Proof Let te be a Z,-base for C, and let £: C~ M be 

any Z,—module homomorphism such thet "=f = 1. We first 

show that (fc) is a free A-base for M. 

Let 2 5 ate, = 0 be any relation between the fey. 

ie consider the homomorphism (731)y: M - NM -» CRM of 

coalgebras. Then (m1) (2 ja fc) = 2 Cc @ia + eco 

Let r be the highest codcgree of any Cs such that 84 A 0; 

then picking out the terms ian CoM heaving codegreec r in C 

gives & contradiction. Hence there are no relations. 

Let B be the quotient A-module of ii by the submodule 

generated by fC; then B ®, Zo = 0, which implies that 

B = 0, since B is zerc in negative codegrees. Hence we 

have the A-base {fc of M. 

In particular, 1 € lf must be one of these base elements, 

and we therefore have a A-module homomorphism g: M =» A 

such that gl = 1. ‘ie assert that the composite 

h = (mg) 3 Hp 3M ® Ms CsA 

is an isomorphism of A-modules. It follows from what we 

have already proved, applied to the coalgebra CoA, thet 

{htc is a A-base for CA. Hence h: ¥ 2 CoA.
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further, h will be an isomorphism of A-module 

coalgebras if g is a homomorphism of coalgebras. Dually, 

g's A' » M' is a homomorphism of A'-comodules, which is 

expressed by the commutativity of the diagram 

4.5 ¢ t TTT ee y M 1 

?' lv 
i , 
A' ® Al —gmgr——4' ® M', 

We should like g' to be an algebra homomorphism. Now we 

have A' = Zorg sho, .. | as in §3. We define gy MA 

by stipulating that gy A' - M' is the algebra 

homomorphism satisfyiag gah = g'Ny for each i; it exists 

because M' was assumed commutative and associative. It 

remains to check that 84 is a homomorphism of A-modules, 

or alternctively that L.5 commutes with g, in place of g'. 

Since L', gy and ¢' are algebra homomorphisms, it 

suffices to check commutativity on the generators 

Ay € A's This follows from the commutativity of L.5 for 

g', because oN, has the form 2 xX, © Ms (see the 

explicit formulac 3.5). 111] 

Our proof of L.3 breaks dowa for right module 

coalgebras over the Steenrod algebra. 

It is easy to describe all the splittings of L.4 in 

terms of one splitting M = A © C. 

L.6 Temma The possible splittings g: M =» A of L.4 are 

described in terms of one splitting M = A @ C as follows:
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Choose any elements Cy 3Cp3Czs oo in C' having 

codegrees 1,3,7, ... 5, and define g': A' » i' by 
1-1 2 n ot ' _ g A = Ay + Mi _4Cy + Ay _oCo + cee + A Cijq + Cs 

Proof One verifies that these choices do make 4.5 commute, 

and hence provide splittings. There are no more, for 

suppose As =X is an arbitrary splitting, and Ay > Vs 

is a splitting of the above form. Suppose we have 

Xs =; for 1 < k; then commutativity of 4.5 shows that 

f — — oe L' (yy = %) =10 (yy - x). 

Thus y, - ¥. lies in the invariant part (sec Lt.2) of M', 

which is C'. Hence we can change Cc, € C' to make 

Y, = ¥ o The induction proceeds. 11] 
k 

Lio useful Hopf algebras 

“le shall need two Hopf elgebra structures on the graded 

polynomial ring Zola] = Zola sass e+ J], in which a has 

dimension i. For «uy algebre containing 

Zola] 6 Z,lul, 
where u is an element of degree -1, defiae 

L.7 "x(u) = 1 + a,u + au’ + au” + see 

y(u) =u + au + au’ + aut + eee 

and similo rly x'(u), y"(u), etc., for covies Z,la"] 

and Zola] of Zola].
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4.8 Definition The straight comultiplication 

ve: Zola] » Z,[2'] © Z,[2"] is defined as the unique 

algebra nomomorphism such that 

W811: Zylal 6 25lul » 25(a'] © Z,(a"] & 2,lul 
tekes x(u) to x'(u).x"(u). 

The crooked comultiplication is defined as the unique 

algebra homomorphism Vy: Za] - Z,la'] ® Zola"] such that 

WS 1: Zola) 6 gylul -» z,[a'] 6 Z,[a"] 6 go[ul 
takes y(u) to ¥"(y'(w)). 

It is easily verified that these comultiplications 

both induce Hopf algebra structures on Zola]. The first 

is easily given explicitly, by the familiar formula 2.5 

ay = a; + ay _42) + a: _505 + eae + aga; _y + ay. 

For obvious reasons we shall not attempt to write down the 

crooked comultiplication explicitly. 

L,9 Remark It is easy to see by comparing 4.8 with §3 

that the dual Zon] of the Steenrod algebra is a quotient 

Hopf algebra of Zola] with the crooked comultiplication, 

by means of the obvious projection 

pi Zola] + y(n] 
taking ay to Me if 1 = oq, or to 0 otherwise. 

In $2 we constructed the giant Stiefel-Whitney class 

WE Hs (80) 3 Zolal as the universal elenent of g#(80") 

If we apply the Thom isomorphism @: g#(B0") = H+*(MQ) we 

obtain the universal element
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4.10 dw € H#(1.0) & Za] 

of H#(MQ), and therefore a duality between H*(MQ) and 

Z,la]. This element will be very important in $6 and 

later sections. Meanwhile, we observe that the action of 

the Steenrod algebra on H*(MQ) gives rise to a comodule 

structure 

ak L's Z,l2a] = Zon] Q Zola] 

on Zola]. 

L.12 Lemma The coaction 4.11 may be expressed as the 

composite 

Zola] —%ylal © Zola] <5 1%] & Zola], 

where ¥ is the crooked comultiplication, and p is given in 

1.9. 

Proof We consider the restriction of &w to MQ(n)ciO(n). 

The inclusion BQ(n) c MQ(n) embeds H*(MQ(n)) in 

. 0 . . 
H+ (BQ(n) ) = Zolty sts, oo ,t as the ideal generated by 

t,t, oo tos and ®w restricts to the element in 

cv 0 A 

H#(BQ(n)") & Zola] 
1=n I~ oD 4 _ i= Lo13 Mo, (t, + 2,5 + agty + agty + .. ) = I; (ts). 

Applying the giant Steenrod square Sg, with the help of 3.3, 

yields 

i=n i=n 2 Ly 8 
II. S . -_— . . ®e jo ¥(3Q ty) = M75 vty + At] + Atl + At] + a). 

The result follows. 11]
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5.__The structure of the Thom spectrum MO 

Let us write M = H¥(MQ). Then M is a A-module, where A is 

the Steenrod algebra. Further, M is a left A-module 

coalgebra, by means of the map ¢: MOAMO - MO provided by 

Ve1.7 and V.1.10. In 4 we gave the universal element 

ow € M § Z,{a]. The structure of M is well known: 

5.1 Theorem M is a free A-module. Further, there exists 

an isomorphism M = A ® C of left A-module coalgebras, 

where C has trivial A-structure, and the dual algebra C' 

of C 1s a graded polynomial algebra Zlbysb) sb, bps ee J 

with one generator by in each degree not of the form o%_q, 

Proof. It is easy to show that 4.3 applies. Instead we 

shall give a high-speed version of Liulevicius's proof 

[12]. The inclusion BQ(n) c MQ(n) induces the inclusion 

H¥(HQ(n)) c H:(BQ(n)®) = Z[t),t,, oo tl. 
The restriction to MQ(n) of the universal element dw of 

M yields the element (see 4.13) 

u = mh (ty+0, tra t3s,t + oo ) E H+ (Bg(n)") S Zola]. 

Define the subgroup B of M by specifying its universal 

element veMd 2,[a], whose restriction to M@(n) for 

each n gives 

v, = my=y (ty + b, ts + by, t7 + bts + 4s) € H#(8Q(n) 82, [oo - ] 

Then by 3.3
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_ 2 L 2 3 5 8g v_ = I, it, + Ay ty + hots + es + y(t, +h, ti+es) 7g (bree). 

2 3 L 5 = II, (ty +a,ts + at] + ast, + 2), t3 + oe ) 

if we define the isomorphism Zola] or ZIM] ® Zolbyeb) sper ] 

of algebras so that the formal identity holds: 

2 3 Ly _ 2 
5.2 © + 2,06% + 2,6” + 20 + eo = O + A,© tan 00+. 

2 4 3 + b,(6+2,6 +A ,0 too) 

2 L 5 + b) (6+1,6 A507 +. 0) 

2 6 
+ b (041,06 tes) Foo 

It follows that Sg v = u. The interpretation of this 

equation in universal elements is that a Z,-base of B is 

a A-base ofM, and that we have split the coalgebrea 

structure of M. (We have used essentially the same 

A-base as Thom [T1].) Also 

Cc! = B! = ZolbysD) ses es ]. 11] 

This is the main algebraic result on M. As in [T1] 

we ceduce geometric properties of the spectrum MJ. 

He? Theorem We have N = Te (MQ) = Zolbysb) spss ]. 

The Thom spectrum HMO has the homotopy type of the graded 

Eilenberg-MacLane spectrum K(N). Moreover we can find 

2 homotopy eguivalence MQ = X(N) such that ¢: MOAMO - MQ 

corresponds to the map K(N)AK(N) » K(N) induced by the
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multiplicc tion N x N - N. 

Proof By 5.1 choose a A-base {x} for M. For each a 

toke & spectrum kK. = S°K(Z,) » where 0 is the degree of 

a; the we have a mop x :MQ —» K . Their product 

x:MQ » I K = K induces cu isomorphism M = H* (MQ )=H=(K), 

since {x} is a A-basc for M. 4s in [T1], there is :i0 

homology with odd torsion coefficients, aiid we can apply 

the Whitehead theorem to deduce that x is a homotopy 

ccuivelence (XK and MQ are highly co.uiected). If we chose 

the A-base compatible with the cowlgebr: structure of M 

(possible by 5.1), the map @:HOAMO -» MQ is i.iduced by 

Nx N- N. Alss, 5.1 gives the structure of N 2 x, (MQ). ]]] 

hat we are rerlly after is statements about the 

bordism and cobordism theories N., and N=. 

5.4 Theorem There exist pairs of aon-coiaonical actural 

eguivale:iices 

N.(X) = H(X) § ¥ ond I*(X) » H¥(X) § N 

thot respect all the product structures (uomely cup, cap, 

slant, ond Kronecker products, and N-module structures). 

Proof We select by 5.3 oo homotopy equivalence 

MQ = K(N) such thot @ : MQAMQ — MQ corresponds to the 

coefficient homomorphism K(N)AK(N) » K(N) iaduced by 

multiplication N x § = No. £11 the stated products cre 

induced by Qe. 11] 

N.B. There 1s no canonical homotopy egquivalelice
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MQ = X(N) in 5.3, oud heace the equivalences in 5.4 are 

not cenoniccl. The permissible variation of the choice 

of the homotopy equivalence MQ = K(N) so as to respect 

products is mecsurcd by 4.6. Thus there arc many choices. 

From the usual XKinneth formula we deduce: 

heh Corollary For ony spectra X and Y we have canonically 

N.(XAY) ~ N, (X) Oy N.(Y) and N#(XAY) » N%(X) By N*(Y). 111 

Theorem 5.4 a1sposes of a large part of the theory 

of N, and N*. However, quite cpart from cesthetic 

considerations, the non-uniqueness of the equivalences in 

5.4 is not acceptable. Trousfer homomorphisms are not 

catered for, ond either are the cobordism Stiefel- 

Whitney classes we introduced in V.8.9. (We shall see in 

$8 thot W, does not correspond to w, © 1 under gay of the 

couivalences in 5.4) We therefore formulcte our results 

in cn iavericnt monner. 

5.6 Theorem We have canonicclly N 2 Hom, (M,2,), aad 

canonical ancturcl ecgulvale:ices 

N.(X) = Hom, (H*(X)ol, Z,) ond N¥(X) =~ Hom, (, H#(X)) 

for any finite spectrum X. The second is valid for all 

spectra X. The product structures come from the 

coalgebra structure oo. M. 

Proof. By definition and 5.3 we hove 

H4(X) = §X,M0} = = {X,K(N)}= and w, (X)={2°,%n0} 2 (5°, XK (N)
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We know that XAK(N) is again a graded Eileaberg spectrum 

(sec Summary, M.20, or we could use the algebraic 

counterpart L.1). 11] 

This theorem sheds more light 0:1 how the equivalences 

in 5.4 depend on the choice of the splitting of M. 

We can remove the finiteness restriction in 5.6 if 

we agree to toke only those homomorphisms H#%#(X)oM — Zo 

thot factor through H* (Y) @ M, for some finite 

subspectrun Y of X. For we have N.(X) = lim, N,(Y), in 

common with «ll homology theories. 

36. From cobordism to cohomology 

In $5 we elucidated the structure of the cohomology 

theory 0 o In this scction we express its structure i.. 

form suitable for the computation of transfer hcmomorphisms. 

This will involve the machinery of universal clements, 

ginnt Stiefel-Whitiacy classes, giant Steenrod squares, etc., 

which we hove developed in previous sections. (From now 

0:1 we colcentrate on N= rather thon Ny s mainly because it 

hos cup products.) 

We fix attention on the canonical natural equivale:iice 

5.6 

6.1 N#(X) = Hom, (i, H*(X)). 

We have the universal clement 4.10 dw e H*(MO)S Zola], 

where Z-lal, as usual, stands for the graded polynomial
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algebra Zolayras,25, .. ] with a generator 24 in degree 

i for each 1 > 0. The elcment @w establishes a duclity 

between H*(1Q) and Zola]. We use this duality to 

rewrite 6.1 in the form 

6.2 W(X) c B(x) & g,[al. 
To decide which clemcints of H#%(X) & Zola] cre in N#(X), 

we must express differently the A-module structures of 

H#(X) and M. To this end, we have the giant Steenrod 

square 3.1 

8g * H*(X) —— Z,[M] 6 H*(X), 

and the dual ccactioa 4.11 on Zola] dual to the A-action 

on NM 

L':2,[2] ———3Z,[\] © Zo[2]. 

We shall elso write H¥(X) & Z,la] morc succinctly as 

H*(X;2,lal). Their what we arc doing in 6.2 is to apply 

the map of coefficient spectra fw: MQ — K(Z,[a]). We 

extend the giant Stecurod square Sg end the cocction Lf 

to ring homomorphisms 

B(X3Zpla]) = ——1Z[A] 6 B*(X35,[0]) 
by making Sg cet trivially on Zola] end L' act trivially 

on H#(X). 

6.3 Theorem The giant class dw:MQ - K(Z lal) induces a 

multiplicotive ::.ctural transformation 

owe 1 THX) — 5 Bo(X35,[a)),
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which embeds NX as the subalgebra of eleme:iits 

X € H*(X;2,(a]) satisfying Sg x = L' x. 11] 

This is the description of N*(X) most couveailent 

for our computatiolis. 

We have the canonically defined cobordism Stiefel- 

Whitey classes Wye 

6.4 Lemma In Hx (BO(1)"52,la]) we have 

Pw ° Wy = W, + a, wg + 2,7 + x + 2,77 + eee 

Proof. By definition V.8.1. W, is the class of the 

inclusion Bo(1)" c 110(1). We can rend off the cuswer 

from L.13, by putting = = 1. 111 

6.5 Corollary In H#(Bg(2)"52,(a]) we have 

dwo T, = ty + oy ts + at? + ot + aoe 111] 

By a formidable computation, one can tow work out 

Py © Ws oe 

Tronsfer homomorphisms 

A transfer nomomorphism ia ordinary cohomology extends 

trivially to one in H#( 32,021). If we also have a 

corresponding transfer homomorphism in N#, we can use 

dw and the Riemaonn-Roch theorems of V.7 to compare them. 

Any smooth ma:iifold V has a canonical MO-orientation, 

which corresponds by V.lh.7 to an orientatio:: of its 

stable mormal bundle —T, where T is the tangent bundle, 

Also, ay vector bundle a over X is canonically oriented
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by its classifying map x* MO, defined in V.1.10. 

We. intend to apply the Riemani-Roch theorems of V.7/ 

to the multiplicative naturcl transformation 

Qwo s W* — Ha ( 52,021). 

To do this we need to compute &(V) for o manifold V, 

end A(x) for =o fibre bundle of the type considered in 

V.6.20, etc. For any virtual vector buaidle a over X, the 

classifying naps x0 BO and X"—MQ induce the commutative 

dicgrom of Thom isomorphisms i... ordinary cohomology: 

15 (1; 2,5 [2]) ———— B#(x%;5Z5[2]) 
= | & =Te 

1% (8032, [a]) ————3H5(x7;2,[2]). 
From this we deduce thot dwou € H#(X™32,0a]) corresponds 

under ® to the giant Stiefel-Whitney class 2.3 w(a). 

If we now consider the defimitions Ve7.5 cid Ve7.7 OF 

A(V) aud 4(x) we finds 

6.6 Lemna With respect to the transformation 

Swe :N#* » H#( ;Z,[a]) 

(2) For any smooth manifold V we have A(V)=w(V)™7, 

(b) For cuy fibre bundle ® as in V.6.20 we have 

A(x) = w(z)", where © is the bundle of tangents 

clong the fibres. 

(ec) If oY deotes the cobordism Thom isomorphism 

of; §x(x°) = mx (x*), and x  ¥¥(X°), we have 

swodx = o((ewex).w(a))e 17]
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Generators for Ne. 

By 6.3, @uw° : N~ Z,[a] embeds N as the invariaut 

subalgebra of Z,[a] with respect to the coaction L.11. 

In the proof of 5.1 we expressed Z,lc] os ao tensor 

product algebra Z,[v] ® ZolN] by mecons of the identity 

5.2; 1x particular we observe that under this isomorphism 

by, = a; + lower terms. The image of Z,(Dp] is just 

w oN. It is an algebraic triviality that if we are given 

an i-manifold My for each 1 wot of the form *_q, their 

classes [34, ] in N form a system of polynomial generators 

if and only if a; appears in wo (M, | with non-zero 

coefficient for each i. 

Let us compute dw © [V] for a n-manifold V. This 

cal be done by couisidering the tro.isfer homomorphisms 

V.6.3 induced by the map f:V -» P, where P is a point. 

In N, we have [V] = £001 € N,, where i € w, (2°) is the 

fundamental class of P. By applying the Riemann-Roch 

theorem V.7.6 cnd V.6.2 (e), we obtain 

owe [Vv] = (z, a(v)), 
where z is the homology fundame:ital class of V. Finally 

we substitute from 6.6. 

6.7 Lemna For ony a-manifold V, whose class in N is 

[V], we have 

ey © [V] =z, w(V)7) e gyal,
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where 2 is the fundamental homology class of Ve. We may 

take [V] as one of co system of polynomial generctors of N 

if ond only if a has non-zero coefficie.t in w(v)™, 

or equivalently in w(V). 11] (Compare Thom [T1].) 

In $2 we computed w(V) in various cases, to which we 

now apply 6.7. 

6.8 Lemma [P (R)] may be taken as a generator for IF in 

degree 1» if n is even; [P_(R)] = 0 if a is odd. 

Proof. In 2.9 we conputed 

w(P, (R)) = (1 + oa +a,0° + 250° + ooo y+ 

where a ge;erates H (P (R)7). The coefficient of a_ is 

(-141)a™, which is non-zero if nn is even. If 1 is odd, 

n = 2k-1 say, wc hove 

w(P,) = (1 + asa? + «20 + a5a® rE, 

iy which the coefficient of a is plainly zero.  1]] 

6.9 Lemma (a) Suppose m > 2,a > 2. Then [Hy 4 (R)] 

may be token as a geaerator for I is degree m + n - 1 if 

and only if the binomial coefficient {m,a} is non-zero 

(mod 2). 

(b) [Ey ,(R)] = 0 if a> 1. 

Proof We computed w(E, |) in 2.12. The fundcomental 

class of Epa is awkward to work with. Instead we use the 

embeddi:ig Jel, 5 © FP X Pos 2d the traisfer homomornhism 

Je We sec that, inn the notation of 2.12 ond using information
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there and in V.$6, 

CI w(H, 07) = z, x Po (asp) ow(H D7). 

Now (asp) em(By |)" = [(a+B) +o, (048) 4a, (asp) + eee {ea 

{140,040,054 000+. JT (140, B+0,8%+2,87+.. 377, 

The coefficient of Qed 1:1 this expression is 

(c+8)™ = fm,n} «BY, all the other terms beiig zeros 

Hence we have (a), by 6.7. 

If m=1 this computation is felse. That [Hy = 0 

hos bec verified explicitly by Conner ond Floyd as Lemma 

2.2 of [C6]. In our notation their proof is os follows. 

1:1 this case we have the relations 0°=0 and sp. 

Hence (1+a+8)° = 1 + 0° + 32 = 1 + 5 = (148)2, which 

ciiobles us to rewrite w = (140)%(148) 1 (1404p) os 

w= (14a) (148)771 = (148)™ + 0148) = (14+ (a/n))™. 
The last expressio.: lies in He (P, X P.); despite 

appearances. By the expansion lemma 2.6 the giant Stiefel- 

Wwhitacey class 1s 

w(H, = {1 + a, (p + a/11) + a,(p + 0/7) eee 17, 

formclly. We require, by the same device as before, the 

terms in (ap) op(E, |) of polynomial degree n+l in a and PB. 

But these contain thc factor ‘ 

(a+8). (B+a/s1)" = af” + 8.2871 ofa = 0. 

Chis argument requires morc justification than we have given.) ]]]
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6.10 Corollary (Milnor) As a sct of polynomial 

geaerators for N we may toke: 

(a) All [7 (R)], for n even, and 

(bp) All (1, ,(R)] for which m=2", a=2"g, r>1, sz1. ]}] 

Let x. € wv, (30(1)°) be the class of the singular 

monifold Hy (BR) c P,(R) x P(R) » P (BR) c Pu (R) = BO(1). 

These elements were used in [CL] by Conner and Floyd to 

provide a good N-base of w, (Bo(1)°). They will reappear 

in 8. It is easily secn [CL] that Ax, = x _,, where A 

is the Smith homomorphism V.9.1, i.e. X94 =X N Wy in 

view of V.9.3. We may write 6.9 (b) in the form 

(x, 1p = 0 if n> 1. It follows that (x;,W)y 1s 1 if 

i= J, and 0 otherwise. This shows: 

6.11 Thecorernn The nmononials wy} in + (80(1)°) are the 

N-linear functionals on w, (80(1)") dual to the base ix; 4. 11] 

57. Primary cobordism operations 

As with any represcited functor, primary cobordism 

operations arc in canoniccl 1-1 correspondence with 

{1M0,M03*%, which is a gradcd ring under composition. In 

this scction we make various remarks o:x its structurc. 

From 5.6 we sce that {MQ,MO}® = Hom, (M,M), where 

M = H¥(#Q) as ao frec A-module. Thus {MQ,M0}* is the 

graded clgebra of matrices over A of a certain form. 

Unfortunctely this form of the structure is not very useful,
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because it involves choosing a A-base for M. 

A canonical cpprocch is to moke use of the Thom 

isonorphisim, which is N-linear, 

721 3: N#(BQ°) = WH(HQ) = {MQ,MQ}*; 
this is more useful becouse we have from V.8.7 

w+ (BQ") =N& Z,lW, sWosWags eo 1, 

where the Ws are the cobordism Stieffel-Whitney classes. 

By menns of ®, the composition product in {MQ,MQ}#* induces 

2 pceullior multiplication in w+ (80°), quite different from 

the cup product multiplication. We call it the crooked 

nul tiplicotion, on account of 7.5 below. 

A particularly interesting subriang of w+ (BOC) is the 

groded polynomicl algebra Zo LW) 555M 5s es ]. By v.8.8 

the multiplication w:BO x BO —- BO induces a coalgebra 

structure on ZolW, 5W ose ] and we have the same formal 

theory as for cohomology Stiefel-Vhitaey classes. In 

particular, just as in $92, we toke the graded polynomial 

clgebra Z,lv] = ZolbysbysD3s ee ] os the ducl algebra. 

L.2 Definition The universal giagant Stiefel-Whituney 

cobordism chorocteristic class We w+ (BQ) & Zolb] is 

defined iii terms of the W, in the same way that the 

gicnt Stiefel-Yhitney cohomology class w was defined in 

ters of the Ws. Thus WW is the universal clement of 

ZolW, 50 see ]. 

Let us calculate (ow 8 1) ° W H#(BQ" )6Z, [a] & Z,lb].
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[<3 Lemng We have 

(ew 6 1) © W = (1 6 Mg « B40") & z (a) & z,[v], 

where the clgebra homomorphism A:Z,la] - Z la] ® Zolp] 

is defined by the formal identity 

ZL (M1) x,(0) = x. (y,(0)) ia Z,[a] & Z,[(v] & Z,l6]. 

Here we have written, os in 4.7 

x, (6) =1 + b,0 + b,6° + bg0° + eee 

vy, (8) = 0 + a, 6° + 0,07 + 040" + ene 

Proof, It suffices, os usual, to consider the 

restrictions to BQ(n) for finite ii. Then | restricts 

to 1 x (T,), in the notation of V.8, and hence 6.5 

aad 6.3 show that the restriction of (dw & 1) © W is 

om, x (y(t) =L,(1 6 Mx _(t,). 

But by 2.1 MT, x (t;) is the restrictiov. of w. 11] 

We note that we almost have here the formula for 

the crooked comultiplication. 

[.5 Theorem Under 7.1, (2, LW, soso 1) is a subalgebra 

of the clgebra {MQ,MO}* equipped with the composition 

product. The dual comultiplication on the dual Z,[b] is 

the crooked comultiplication L.8. I. cohomology we 

hove 

(ow & 1) © a = (1 6 ¥) ou 1a H#(iQ) 6 2,[a] 6 2,[v], 
where y:z la] Za] ® Z, Pb] is the crovked comultiplication. 

Proof. We show (dw & 1) © oN = (1 8 ¥) @w, from which the
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rest follows, by thc ocssociativity of the crooked 

comultiplication and the fidelity of we. By 6.6 znd 

1.3, Wc hove 

(du 1) caW=(286181)((2w°W.(w& 1)) 

=(686181)((1 & Nw.(wd&1)) 

= (1 © V) dw, comparing 7.4 and 4.8. ]]] 

Renmark This result does not determi.i.e the ring structure 

of {MQ,MO}* completely, for the composition product is 

N-linear only in the first factor. 

We now have, as foreshadowed in 94, two Hopf algebra 

structures on the subgroup ZoLW, Ws, ] of w#(BQ°), 

hoving the same comultiplication. One multiplication is 

by cup products, ond the other from composition in 

{MQ,M0}* by 7.1. These are dual to the straight and 

crooked comultiplications on Z,b] respectively, defined in 

1.8. 

There are various standard cocbordisia operations. 

N-module multiplications For any spectrum X, N*(X) is 

e. N-module. Siace N is commutotive, multiplication by any 

elenent of N is a N-linenr cobordism operation, of degree 

> 0. 

Steenrod operations By 5.3 there exist homotopy 

equivalences MQ =~ K(N) respecting the products KQAMQ - MQ 

and K(N)AK(H) + K(¥). The Steenrod algebra A acts
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canonically on K(N), and hence on MQ, if we choose a 

homotopy equivalence MQ =~ K(H) as above. We call these 

cobordism operations the Steenrod operations, They have 

negative degree, and are obviously N-linear. Of course they 

depend decisively on the choice of HQ = K(N), Eee 5q° 

definitely can vary, as we see from L.6. 

+6 Theorem 

(2) The only N- linear cobordism operations are the 

(infinite) N-linear combinations of the Steenrod operations. 

(These include the module multiplications.) 

(b) Let x € w+ (BC) 3 then by 7.1 ®x is a cobordism 

operation. This operation is a derivation if and only if 

X is primitive with resoect to the straight coproduct; 

there are only the (infinite) N-linear combinations of those 

given formally as (3 T.), for each integer r>1,. 

(¢c) The only N-linear derivations are the (infinite) 

N-linear combinations of the Steenrod operations 

sq, 5q00 1 5402001... 

Proof To prove (a) we may work in K(M), where the assertion 

is trivial. 

Naturality of the Thom isomorphisms with resmect to 

BO x BQ — BQ ylelds the commutative diagram
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Ir (10) —r— IH (1Q) oy N* (HQ) 
P= 

=e lo ® © 

5 (500) ——— 1#(30°) ey 17(30%). 

An element of N*(MQ) is a derivation if and only if it 

is primitive. The first assertion of (b) follows. The 

primitives of + (BQ°) are easily to found from V.8.8 to 

be those given; they are dual to thie indecomposable quotient 

of No Z,[b]. 

We deduce from (a) that to prove (c¢) all we have to 

do is to find the primitive elements of A. These can be 

read off from 3.2 (compare [M2]), as the elements dual to the 

generators of A,,A,,.. OF ZL]. 11] 

Remark The previous caution notwithstanding, these 

operations sq’, sq, ».. are independent of the choice of 

110 = K(¥), as one can see from L.5. 

$8. Determinants 

We introduced the cobordism Stiefel-~-Whitney classes Ws 

partly because they have geometric significance, partly 

because they enable us to write canonically 

w+ (Bo(n)") = N ® Zo, 5Wn, ee 11 

In this section we determine their behaviour under the 

various standard maps involving BO(n). Not all of them 

behave as one might exvect from the situation in ordinary 

cohomology. Those involving determinants are particularly
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non-trivial, and give rise to interesting geometric 

operations. 

We have various standard maps as follows: 

Whitney sum maps 

¢:B0o(m) x BO(n) — BO(m+n), and ¢:BQ x BQ - BQ 

¢:M0{m) A MQ(n) -» MO(m+n), and @:MQ A MQ - MOQ. 

(see V.1.8 and V.1.9) 

Diagonal maps 

A:BO(n) = BO(n) x BO(n), hence A:BQ - BQO x BO, 

A:10(n) = 30(n)°A MO(n), hence Az1iQ - BQ A 10. 

Determinant 

det:BO(n) - BO(1), hence det:BQ — BO(1). 

Tensor product 

®:B0(m) x BO(n) — BO(mn), and ®:BQ x BQ -* BO. 

Multivlication 

L:BO(1) x BO(1) —- BO(1) (defined since (1) is abelian). 

and of course many maps induced by inclusion. 

We have already dealt with most of these. All the 

diagonal maps do is to furnish w+ (Bo(n)°) etc. with cup 

products, and induce Thom isomorphisms (Chapter V). The 

Whitney sum maps were treated in V.8.7 and V.8.8, and yield no 

surprises. By restricting to BQ(n), etc., as in V.88, we 

can reduce the study of det and ® to that of the 

multiplication p« This man contains all the difficulty.
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The map w:BO(1) x BQ(1) =» BO(1) and the diagonal 

induce a commutative and associative 'Hopf algebra' structure 

on 3#(BQ(1)°) over the graded groundring N. Also the 

canonical antigutomorphism is the icemtity. All these 

facts follow from the easily verified assertion that 

0(1) is an abelian group in which inversion is the identity. 

As algebra, we have w#(B0(1)°) = N & Zolw, 1. It remains to 

find the coproduct W,°p. We see from 6.4 that W, is not 

primitive, 

8.1 Theorem There eXist elements Zos%) sZgsBgsTgs es in N, 

uniquely defined by the condition that 

P = W, +20 + 2,17 + 21° + 7 0] + 207 + see 

(omitting terms of the form zs when k is a power of 2) 

is a primitive element in w= (Bo(1)°). Moreover, these 

elements Zs are a sct of polynomial generators for Ne. 

Proof We use @w © w#(BO(1)°) + 1 (B0(1)°) 8g lal=z,lw, 187,(al, 

which is a homomorphism of Hopf algebras, and the fact that 

Wy is primitive. In the proof of 5.1 we made use of an 

algebra isomorphism 

z,lal = z,[2] @ Z,[b] 
defined by the formal identity 5.2 

© + 2,0” + a,0” + a0" faa = 040,06 + A 0% 4 A500 Foe 

,y(8 + 1,0°% + a0 4 LL) 

+o, (6 + A, 6° + A, 6" + «2)5 

+ bg(6 + 1,07 4 C4 en,
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with the property that @w°:N = Z,[b]. If we write 

L=w, + AB + Aw + Ais + eee E Zolw,] & Zola] and 

use the above identity and 6.4 we find 

Sw owW, = L + b,L° + b, 1” + b,L° + ese 

We can solve this for L: 

L = QuowW, + c, (qwew, )> + c, (owew, )” + c5 (wow, ) + eee 

where the Cs are certain complicated polynomials in the b 

and therefore lie in ¢w°N. Hence we can write 

L = &w (Ww, + yuo + y 0 + yo! + ee), 

in which the y; are in N. But L is primitive. It follows 

that the element 

Q = W, + ye + y 07 + y + e w#(Bo(1)°) 

is primitive. This does not yet have the correct form, 

because y # 0. However, 2 is again primitive, and a 

suitable N-linear combination of these has the required form, 

Further, such combinations account for all the primitive 

elements, which is enough to show that P is unique. 

Finally, if i does not have the form 0% _1 we observe 

that z, involves b, with coefficient 1. 11] 

Remark In unitary cobordism we have a corresponding 

'Hopf algebra’ u(BY(1)°). The coproduct of C, 1s 

C, ® 1 + 1eC, + a(C,&0C, ) + higher terms, 

where a generates Use It follows that this Hopf algebra 

has no non-zero primitive elements, so that the unitary 

analogue of J.1 fails.
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We study the coproduct of Ww, in more detail. This 

hes the form 

8.2 WH = 24,3 3, 3 Wy Sy wd, (v1, 5 e IN) 

8.3 Definition We defi:ie the diagonal fuuction 

D(u,v) N& Zolu,v] by D(u,v) = 25 Vi, ut vd, so that 

Wop = D(W, Sy 1, 1 Oy W,). 

Directly from the definition, by applying owe and 

using 6.4 we haves 

8.4 D(u+a,u’ + au’ + aga tees Vea, v° + a, vo av too) 

= (u+v) + oy (uv)? + a, (uv)? + a5(usv)” + ee 

in which we have suppressed the inclusion &w° :N C Z,lal. 

Also, from the primitive element obtained in 8.1 we have: 

8.5 D(u,v) + z(u,v)” + 2,D(1,v)? + 2,D(u,v)° + sae 

=u + 20° + 7,0” + 2, 0° + eo + V + 2,7" + 2), v° + 2, v° +e 

These formulae e:icble one to compute the elements 

Yi, 3 = | in terms of the z, or the as by a formidable 

algebraic computation. The first few terms are: 

wrv+z, (uv + av?) + 2), (uty + uv) +25 (Wend Pin sant) + oe 

Let us list the elementary properties of the 

diagonal function. 

8.6 Lemmas The diagonal fuaction D has the properties: 

(a) D(u,v) = D(v,u), 

(b) D(u,v) = u + v + higher terms 

(c) Every term in D(u,v)except for u and v contains 

uv as a factor,
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(a) D(u,u) = 0 

(e) uw + v divides D(u,v), 

(ff) D(u,D(v,w)) = D(D(u,v),w). 

Also, 5,4 = 0 for all i. 

Proof (a), (4d), and (f) follow from the corresponding 

properties of the comultiplication in 

w*(B0(1)7). 
(c) expresscs the fact that this comultiplication has a 

counit. From (d), the coefficient Vii of ulvl in D(u,v) 

is zero, which with (a) proves (e). 11] 

It is possible to display explicit manifolds 15,3 

whose cobordism classes are the coefficients 3,3 

appearing in 8.2. We recall the hypersurface 

Hoon Cc Po X P 

from 2.10, 

Some cobordism operations 

8.8 Definition We define the class W,_. € N*(BQ) by 

Wact = W, det. 

Then by 7.1 we have a cobordism operation (Wy) 

for each positive integer r. These are also bordism
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. : _ (<0 
operations, since N.(X) = 12 sXAMO} 

8.9 Definition We use the operation o(Wy ,) to define 

the linear map d,:N -+ Ny, for each r > 1. 

Geometrically we are considering the composites 

0 oO .. oO , 
2 —5HMO—5 BO AMO == BO(1 ) AMO Tag eA oo 0. 

“1 

We interpret a, in terms of manifolds, as foliows: We 

represent Xx € N by a manifold V, and let V » Pc BQ(1) 

be the classifying map of its orientation bundle, 

factored through P for some large n. Suppose V is 

transverse to Po _r C Pe Then dX 1s represented by 

the inverse image in V of P__..» 

Thus the operations dy and d, on I are those 

introduced by Rokhlin [R1] and studied by Wall [W1], 

[72]. As for the other operations, because the normal 

bundle of
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Po in P 1s orientable, cad the normal bundle of P._4 In 

P_ 1s classified by the inclusion P_, © PC BO(1), we 

hove the compositio:. laws 

8.10 d.d, = 4d, 5, end d,d, = 0, for r > 1. 

Aquestion posed in [W2] is the behaviour of d, and d, on 

products. We can now aaswer this. 

8.11 Theorem 4, and d, are not derivotions on Nj iustead 

= 2: yy. . d.u. 4d.V and a (av) = 34 595,35 9439 9; 
a (uv) = 3. 4 ¥° . dou. dy.V = 3, . yo . diu. adv 

2 i,j Y1,J 21 27 i,j “1,3 2 2? 

where the elements Ys 3 € N are those defined in 8.2. , = 

Proof. The naturclity of the Thom isomorphisins yields 

the commutative diagram 

2M ee eee se erm #(M 3 BAN N* (MQ) ——g———W* (MQ) Sy N+ (HQ) 

1 (BQ” )———e-—— T#(80°) 6 1 (8°), 

from which we see that we have to find the coproduct 

wader ¢o* of Wact® From another commutative diagram 

BO B) —&et x ast 7 21) x B0(1) 
LQ Ju 

! 

BQ ——gg¢— BO(1) 

we deduce that



~L7- 

@ Wact = Wye det ©°¢o 

= Wyo po (det x det) 

= (25 5 Vi, wy By wd) o (det x det) 

= 35 55,3 301 Oy et. 

Hence, cond by squaring, the required formulce. 11] 

Both the formuleoe in 8.11 contain i:nfiaitely many 

potenticlly non-zero terms, siiace dy: N =» is epi 

(Theorem 1 in [W2]), and hence by 8.10 d,, is epi for 

all i. 

Renark The Wall subalgebra W of N [Wi] [wW2], is 

defined cs the kerzel of ds 8.11 shows that Wis a 

subclgebro. In the formulas for a, (uv), 211 the terms 

except d,u.v and u.d,v veaish if u ond v are in ¥ (since 

yq.,4 = 0 by 8.6), so that we recover the result that d, 

1s a derivation on i. 

some values of d, oad dy ore particularly easy to 

fide It is clecr geometrically that 

a, [Ps] = [Pp4] = 0, by 6.8, 

LiPo) = [Py ol 
Also that Hom, 2.1 is orientable, which gives 

ay lHyy oy] = 0, and 

aolHy, 0) =U. 

Further, the orientation of Hor, 0041 is induced by the 

projection Hom, ened Po,q © Po = BO(1), so that
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[Hon opp yq] = [Epp 001s and 

AolHon 0041] = (Hop, 0g] provided m £ n. 

By 6.10 we have here enough manifolds to generate N. 

§9, Computation of the bordism J-homomorphisnm 

In V.29 we introduced the bordism J-homomorphisms 

7:1, (39(2)%) > my, (B0(1)°) 
defined _ " in [c4][C5] by Comicr and Floyd. 

We interpreted them in terms of transfer homomorphisms. 

For technical recsons we i.utroduced the corresponding 

cobordisn J-homomorphisms 

7a (80(1)°) . wi? (39(1)°) 

which we defined V.9.7 in terns of transfer homomorphisms. 

They are therefore dual to the homomorphisms J 

In this section we compute Jt, which of course 

determines J. Since 1t is N-liacor, it will be enocugh 

to find J Wy Further, we lose no iuformation if we 

compose with p:BQ(n) -» BO(n), by V.8.4. In order to 

cxnress the result, we nced some more cobordism classes 

in w+ (Bg(a)Y) =N& Zo[Ty5Thsee,T 1s Define 

Tyg = be; Wy for any distinct integers i and J 

(1 <i, j < a), where by 5 is the composite map 

iy 43BR() = BQ(1) x BQ(1) x «. x BQ(1) » BO(1)xBQ(1) + BOM), 
where the centre map is the projection of the product to its 

i th and J th factors. Algebraically, 

9.1 Ty 4 = D(Ty,T,)
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where D is the diagonal fuactionr defined in 8.3. 

9.2 Theorem The homomorphism og: Wx(BQ(1)7) - w+ (Bg(n)®) 

is given by 

ong Wy = Ty + I, + eee + rT 

TioTyzeeTyy Tyotoze Toy Tinton Ta, a 

for any integer r => 0, 

Renmark. This formula demands some explanation; J wy is 

cpporcntly in the field of fractions of mw (Bg(n)°) rather 

than w+ (BR(a)®) itself. We can put everything over the 

common denominator Is «5 Ty40 By 8.6 (b) and (e) 

(T3+T45)/T is a respectable element of w+ (Bg(a)”). Then 

we need cnly show that the numerator of our fraction has 

Ti (T4+T 5) as a factor. Symmetry shows this to be so. 

According to V.9.7 we are co.usidering the Borel 

fibration of the inclusion 0(n-1) x Q(41) < O(n), and that 

induced from it by p:BQ(n) -» BO(n). Thess form the 

commutative diacgrom of bundles 

9:3 Q(n)//Q(n~1) x Q(1) = B—————pr——=- *BQ(n) 
i | 
3 ¥ 

0(2)//9(a=1) x Q(1) —BQ(n-1 )xBO(*+)—BQ(a). 
We shall clso write Wa T.>» tes etc, for the induced 

classes in ws (£0) and m:(m). Then by V.9.7 cad aaturality 

J wy = Tp Te 

To compute =, Hes we use the Riemann-Roch theorem V.7.11
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with respect to the natural transformation @wo:N* -» H*( ;Z,[a]) 

This gives 

iL Heo r 9. lL que x, W, = m/ (a(x). owe wl, 

where mt deaotes the transfer in ordinary cohomology. We 

have to find A(x') and the cohomology transfer ms this 

will be eiough because dw° 1s mono. 

Now by 6.6 A(x') = w(s)™, where T is the bundle over 

E of tangents along the fibre. Fortunately, Borel and 

Hirzebruch have already computed w(t) in [B3]; the answer 

. ] _ RN ya n-2 
is w(t) = (1+, ) + vy (1+w,) + vo (14m, ) tees + Voy 

where we write Vi for the cohomology class induced from the 

i th Stiefel-‘"hit:ey cluss over BO(:n). Expressed in terms 

of the tis this simplifies to 

i=n i w(t) = I 7, (1 tow, + t,). 

The expansion lemma 2.6 therefore yields 

Af ty _ i=n o ( 2 -1 
9.5 a(x!) = 3) {1 + ag (wr, +15) + a (wy +t, ) + os } a 

It remains to find mit 

9.6 Lemnc me (50) is generated by w, and the t, subject 

to the single relation 

(w, + ty) (w, + t,) see (w, + t) = Qe 

All the differenticls in the spectral sequence of ®' vanish. 

Proof This is proved by Borel [B2]. 11] 

For dimensional reasons, mb wy = 0 if r < n-1. From the 

spectral scquence definition V.6.14 of the traasfer mt, we
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sce that mt wr = 1. ©Since the Wy for 0 €£ 1 € n-1 

generate HE) a8 2 Zoltystoses » +, ]-module, and with 

our identifications mH is a module homomorphism, these 

values determine mb completely. 

Unfortunately direct substitution in 9.4 is not 

practicable. We must first express win in a different form. 

9.7 Lemma The bundle map w' has canonical sections 

oc; :BR(n) +E (1 <1i< a), which induce oyw, = t;. In 

terms of these, the tra.isfer mit is given by 

0 

mt “© = 317] = ik. i (a e B5(E)). 

Proof. The universal vector bundle over BQ(n) splits as 

the Whitney sum of a line bundles. Bach of these yields 

o section 0; of the projective bundle w'. Clearly 

ow, = t.. 

The rest is algebraic. Both mit and 3, Tz (t+) o¥ 

ore homomorphisms of Zolty toss yt, ]-modules, taking 

valucs in the field of fractiocas of Zoltystsse. st. 1s which 

fortunately has 10 zero divisors. It is clear that they 

cgree on the elements Gy = Msz4 (wy+t5)- But for any 

a € 1: (EC) there exist elenents XyZy9Xpges » XE Zoltystosee yt] 

such thot xa = X,0, + X05 + «o + X 0, With X Z 0. This 

shows that the two homomorphisms coincide. ]]] 

We can now substitute 9.7 22d 9.5 in 9.4 to obtain 

the theoremn.
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Proof of 9.2. We recall from 4.7 the notation 

y(6) = 6 + 2,67 + 2,0” + a0" + cece 

x(8) = 1 + 2,0 + 2,6° + 256° + eee : 

We have from 6.4 and 9.5 

A(x'). dw © Wy = yw)". I x (wy +t) 7" 

Therefore from 9.4 and 9.7 we deduce (using x(ty+t5) = 1) 

dw © 73 wy = 3; y(t)" Igy x(t,+t,)7 (tg4t)7" 

= 3, y(6y)% I 4 y(tyrt,)” 

= Qqw ° 3; Te Tyzs 77 by 6.5 and 9.1. 

Since dw © is mono by 6.3, the theorem follows. 11] 

The result 9.2 is still not convenient for 

calculation. We need to express it in another form. First, 

we note from V.9.9 thot Jy = agit where 

1:B0(n) » BQ(n+#1). Also, n#(BQ°) = lim N*(BQ(n)°), uader 

the homcmorphisms i*. 

9,8 Definition For any integer i, positive or negative, 

we define ny € wt (Bg°) as the inverse limit of the 

elements gry € v1 (Bo(n)?) (which are defined for 

sufficiently large nn). We define the Laurent series m by 

n(e) = 3, m6" 
This Lourent series m contains all the information 

about cll the homomorphisms J. 

We can also write the cobordism transfer homomorphism 

xy NE(ED) » BH(R(n)°) 
in a form very similar to that in 9.7 for the cohomology transfer,
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9.9 Lemma The sections o; of the bundle map x! induce 

o#W, = T;. In terms of these, the cobordism transfer TT 

is given by 

. o* [3 
i=n vf 0 

Ty B = 254 Tr (B N*(E )) 

JEL Ti] 

Proof. This is exactly parallel to that of 9.7; we have 

two module homomornhisms that agree on the elements Wy 

by arrangement, and therefore generally. 111 

For any m € n, V.9.11 yields the commutative diagram 

17% (BQ(1)°) ————s1r#(E") = . = 

m t 
5 oo 

ra 0 LY 0 fmm fn O 10% (BQ(m) ”) ———0*(Bg(n) ~) ———N¥(BR(k)"), 
Pp J* 

where n = m + k, p:BQ(n) ~ Bg(m) denotes the projection 

to the first m factors, and j:BQ(k) c BQ(n) denotes the 

inclusion of the lsst k factors. In view of (8, the class 

a € 17% (E0) 

now reveals itself as 

— FH iW 7 Qa = D(Ty, 4294 )D(T 5,W,) ceo D(T,,%,) 

Let us write ao as a power series 23 as Wy with coefficients 

i A . 0 in N&® Z,[T  4»T os «os T 1 =1#(BQ(k)"). 

We evaluate the commutativity on the element Wy. Now 

sq! at) = Susp! wl +5y 
J Ty (iy) = J Ty (2 Cg Vy ) = 240g ep_s+1°
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On the other hand, pj:BQ(k) — BQ(m) is the constant map, 

so that Wy goes to 

™ T es 0 (z, 7M) 1 e mH(3g(k)"), 

where z is the bordism class of a point in B3(m). We can 

n° r SA ~ ex . . 0 2 - * 

rewrite (zp, d™03 > as {3% {pl By definition, JZ is the 

class of the singular manifold 

0) — Pq (R) © Peo = BO(1). 

Hence by V.9.3 

XL or T Gur Ty = (Bp py @IeE 
We thercfore have 

2210, 25 % Mp posed = [Ppp q (RB) in i (BY(x)). 

To express this result in concise form, we introduce 

two morc power series. Hirst, we note that it is possible 

te rmultinly any two homogeneous Laurent series over 

10% (B(x) °) in an indeterminate © of codegree 1, so they 

form a ring. In this ring D(T,,6) is invertible, by 8.6, 

9.11 Definition We define the Laurent series & OVer 

7% (BO) as the series whose restrictions to each N# (3o(n)?) 

is 

i=n m 

I;_4 6/D(T,,6). 

We also need the power series over N 

- 6 9:12 (6) = 1 + [Py(R)16% + [B,(R)]6" + [Pg(R) 16° + .... 
(We do not need the odd terms, because they vanish by 6.8.)
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9.13 Theoren We have 

n(e8) = p(8). Z(86), 

an identity of Laurent series over m+ (BQ") « 

Proof. It is sufficient to consider the restrictions to 

ws (B(x) 7). Write a(9) = 2 Og 6°. Then we showed in 

9.10 that over wi (Bg(k)°) we have o(8).n(8) = p(8).6". 

But by the definition of a, 

65/a(8) = 6°/D(T__,50)D(T,, 556). D(T,,0), 

which is the restriction of Z(86). 111] 

In the remainder of this scction we translate the 

results on the cobordism J-homomorphisms back into 

results on the bordism J-homomorphisms. At the same time 

we can use the precise information to obtain better theorems. 

9.14 Definition We define 

7:10, (BQO) + the graded ring of Laurent series over N 

by setting Jx = (x, n(0)) , where (6) is the Laurent series 

defined in 9.3. More directly, we have 

2l2. Jz = 3 pays FE! 

in which we choose for each i an integer n(i) such that 

n(i) >i + 1 and x lifts to Ww, (BO(n(1))°). 

Let us recall that N,(BQ’) hes a multiplication induced 

Dy ¢:BO x BO — BC. | 

9.16 Lemma 17, (50°) = Nb, LPYLEY ve ] 

is a graded polynomial ring on generators b, of degree i,
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such that the H-universal element 1r,.(80°) & (BOP) 

restricts to 

pt=n (14b,T. +b 7240 or...) e N[b, 0,025] s+ (Bo(n)Y). i=1 171772717 737d =-"1""2""5 = 7 
Proof This follows from 7. 

It is inconvenient to have Laurent series here (c.g. 

Jb = oy. We avoid them by forcing the image of J to have 

degrees zero. 

9+17 Definition We put F = 2. W. (BQ°), so that F is an 

ordinary ungraded polynomial ring over Zpe le filter I by 

the subgroups F_ defined by F_ 3170 N. (80°). Then we 

define 

J':F -» N[[e]] 

by linearity, from J'x = gl JX. whenever x € w, (0°). 

We now find from 9.15 that 

J" =1 + [p,]6° + 7, Je™ + [p,]6° + «oe = p(06). 

9.18 Definition We normalize the homomorphism J' by 

outting 

J'x = p(8) 1.7%. 

Then we have arranged J"'1 = 1. We can now state the 

main theorem of this section, in which N = Zolz 597) sZigy ee] 

as in 8.1. 

9.16 Theorem J":F -» N[[6]] is an injective ring 

homomorohism. X¥urther, we can find polynomial gencrators 

oH for F (i not of the form of _1) such that
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(a) PF = z,legsep 05588505, 0 1, 

(b) ey; and ©5044 lie in PF, 

(c) Jl; = 7, 67 + terms with higher powers of ©. 

It follows from (b) that F_ consists of all polynomials 

in the =H with weight < n, where we assign weight 1 to 

ep; 8nd ©5, 4 
9.20 Corollary J" induces J":F~ = N[[6]ly> where ° 

denotes completion with respect to a suitable filtration of 

I'y and we take the O-dimensional subring of nilell. 11] 

A direct geometric proof that J" is a ring 

homomorphism would be desiravle. Also a direct description 

of the filtration on F determined by J". 

By definition 9.18, 9.13 and 9.1L, we have 

9:21 Tx = (x0",%(0)) (x en; (50%)). 
It follows from the form of (6) given in 9.11 that J" is 

a ring homomorphism. Now Z(6) is expressed in terms of the 

diagonal function D(T,6) NL[T,0]]; let us write, by 8.6, 

9,22 8/D(T,6) = 1 + B,T/6 + B,T°/6° + B,1°/6° + eaee, 

where Bj eN[[6]]. 

9.23 Lema J", = B,, J"z; = 2,0". 

Proof It is immediate from 9.16 that J", = B.. The 

N-linearity of J and J" = 1 yiela T"z; = z, 6%. 11] 

We must therefore study the formal power series Be Now 

the defining relation 8.5 of D(T,6) suggests working with the 

dual polynomial generators of F. Let us write
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9.24 D(T,8)/6 =1 + T/6 + C,T/6 + C,T%/6° + C51°/ 6” + eee 

(14,6408 +0 5074+ +)” = 1 + 6 + Cy0 + c,6° + 050” + eee 

where C, e N[[6]] and c. € F, and we have inserted extra terms 

T/® and 6. It is immediate from 9.23 that J"c, = C,. The 

point of inserting the extra term T/6 is that now C; € q for 

all i, where gq = Ker(N[[6]] = Z,[[6]]) is the augmentation 

ideal generated by the Zs. 

We now work in formal algebra, modulo q°, and replace T 

in 9.24 by AB, so that A has degree 0. We have 

D(AB,0) = B8.(1+\ + AC, + 2=C,, + 220 + eee)e 

The defining relation 8,5 for D, modulo 0°, simplifies to 

9.25 2450 2,67 { (140) 9F 4a d+1 4 } +\C, + 2°C,, +705 + eo. = Oa 

Consider the quadratic equation A+ = p. If A 1s one root, 

the other is 1+\A, and the expression (1a) at) being 

symmetric, is a »olynomial in p. Moreover, we can solve this 

equation in the ring z,[[rll, by setting 

A =p + 0° + ott + oS + eo 

9.26 Lemma irite £ (pe) = (140) + At + 1. Then 

(2) £ (p) is polynomisl in p, of degree < iu, 

(b) £5 q(P) = 0 + lower terms. 

Proof We consider the generating function of the fo.
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n n,n Nn, 
2 50 [1+ (p)] 67 = 2 (141)"0" + AO 

= 1/(1+(141)0) + 1/(1+0\6) 

= 8/(1+6+06%) 

= Bf 1+(0+p6%) + (6+06°)%+(0+06%)..} . 

We obtain the result by picking out the coefficient of 

6". 111 
We next work in the ring Z,L1ol], and make the 

substitutions 

2 
Jef Pe =0, 

2 Ly 8 
bW =0 + 0 + CC + 0 + aa 

9.28 Definition fie define new elements © e I and 

E, € N[[6]] for i > 0 by the identities 

I 2 J+1 3; 640 = (cyh+e A tee JU + 25 zh ec F[{[o]], 

on d+ 2 Jj + J+ 
2; BO = (Cyn + CA +. uo + 2 2 56 A e N[[6]][[o]] 

where we sun over those J not of the form oq, 

It is immedlicte from the similerity between these 

formulae that we still have Ile = E, for all i. 

In the first formula of 9.28, the terms having odd 

powers of © yield 

5 en.pt = c,h +A + cho + 
21 7 2 3 rete 

end the terms having even powers of 6 yield 

2 ©. ot + = (c,M+c Ate Ar.) (0%+0t 0th. ) 43 z AI 
21+1 1 2 > 5 3 j+1 J 

= (cy h+eoh +C 5h Feo) + 3 z 4 .
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Thus e,; = C; + «.oy, and 5, 4 = Z; + «oe (if i is not of 

the form 25-1). We have 

9.29 Lemma F=Zolesse) se5,805€0s 1, J"e, = By, and F_ 

consists of the polynomials in the €; of weight < n, if we 

assign weight i to e,; and 5s, 4°11] 

These are almost the required generators of F. Let 

m c N[[6]] be the augmentation ideal generated by 6. 

9.30 Lemma For all i not of the form oK_q, we have 

EB; = 2,0" mod (¢®+mit1), 

Proof We work mod q°, to begin with. If we substitute 

9.25 into 9.28 we find 

34 Bot = 2 26° f (140) TH atti + 3 7,6929% 

= 3 2.467 C+) 23 (ap) perp 2 Paap 23+ 

= 3, 26° JCFIDRCARNTERLLICY TEAR INTL, 

= 3 2 6° (£55,4(0).0 + us] 

If we now pick out the coefficient of got, we find the result 

by 9.26. 11] 

Proof of 9.19 IHHodulo a°, we have 9.19 from 9.29 and 9,30. 

We need to alter each ©. (i not of the form 2%_1) to =H by 

adding polynomials in the previous generators © 3 to cancel the 

unwanted terms in Je. , in such a way that 

(a) Jl = z, 0" modulo m>* 

(b) es and €54 11 lie in F,. 

There is no difficulty here. ]]]
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810. Manifolds with involution 

In this section we apply our results on the bordism 

J-homomorphism to the study of smooth involutions on manifolds. 

We consider particularly non-bounding n-manifolds with a smooth 

involution whose fixed point sets have dimension < k. Conner 

and Floyd in Theorem 27.1 of [C5] gave a highly non-constructive 

proof that for k given, n could not be arbitrarily large. We 

show that n< 5k/2, the best possible result. 

We recall from [C5] the elementary results on the bordism 

theory of manifolds with involution. Let II be a compact 

n-manifold without boundary with a smooth involution w. 

Let FP be the fixed-point set of w. Then F is the disjoint 

union of submanifolds Fy of i, where F. has dimension i. Xach 

F. has a tubular neighbourhood Ny on which w is the antipodal 

map in each fibre; the Ns may be assumed disjoint. The 

classifying map of the normal bundle of Fs in M yields an 

element v; € N, (BO(n-1)"). Let I be the cobordism group of 

manifolds with involution. The main result is that the elements 

v; are cobordism invariants, subject to the single relation 

10.1 Z, J; v= 0 in N__,(Bo(1)°), 

and characterize the cobordism class of (M,w). In other words, 

we have the short exact scquence (28.1) of [C5] 

10.2 0-1 = 210 N, (BO(n-1)°) 2 WL (Bo(1)°) ~ 0, 

where J is the sum of the homomorphisms Jn_i°
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The cobordism class [M] is obviously a cobordism 

invariant, and 1s expreased in terms of the Vy by the 

formula (24.2) of [C5] 

10.3 [M] = q 3170 J mi (Jy vils in N, 

where j:BO(n-i) =» BO(n-i+1), and q:BO(1) -» Point. 

We combine these results and express them in terms of 

the homomorphism J':F - n({el]l, introduced in 9.417, where 

F=3, N(BQ”). 

10.4 Definition We define vy, € F by 

Vy = Vg tT Vy Ft Vo Fees Vos 

where we include the normal invariants Vs in ¥, (80°). 

Then from 9.15 we have 

10.5 Theorem The formulae 10.1 and 10.3 arc combined in 

either of the formulae 

J'vy = [M]6"™ + terms with higher powers of 0, 

J" = [M]6™ + terms with higher powers of ©. 

Proof. The first follows from 9.15, 9.17, 10.1, end 10.3. 

The second is equivalent ot the first by the definition 

0.18 of J". 11] 

10.6 Corollary If the fixed-point sets of the involution 

on M have dimension <€ k, and M does not bound, then n cannot 

be arbitrarily large. 

Proof. This is (27.1) of [C5]. For a given k, there are 

only finitely many relevant elements Vir 11]
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10,7 Definition Given k, let ¢(k) be the mazimum 

dime.asion of a noan-bounding manifold carrying an involution 

whose fixed-point sets have dimension € k. This exists 

by 10.6. 

The problem Of determining ¢(k) is reduced by 10.5 

to the computation of J", which we carried out in $9, 

apart from the question of lifting elements of w, (B0") to 

m, (BQ(n-1)") (which turns out to be irrelevant). 

We next give some examples of manifolds with involution. 

hxamples 

(a) We can give V x V the involution interchanging the 

factors. The fixed-point set is the diagonal. Thus 

o(nn) > 2a, except possibly when n=1 or n=3. 

(b) On a complex algebraic variety with real coefficients, 

e.g. Hy, a8) or P (2), we have the inwolution given by 

complex conjugation. The fixed-point sets arc e.g. 

fy, a(R) or P(R). 

(c) Let V and W be manifolds with involution. We can give 

V x ¥W the product involution, w(x,y) = (wx,wy). If the 

fixed-point sets 111 V and VW are F and G, the fixed-point 

set in V x W is F x G. Hence o¢o(m+n) > ¢o(m) + o(n), 

since N has no zero divisors. 

(da) Take coordinates (xgsXy 5%) on P,(R), and involution 

given by w(XgsXy 9X) = CIPEIFESIDE The fixed-point sets
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ape P, (x, = 0) and P, (x, =X, = 0). Hence ¢(1) > 2, and 

by (c), o(n) > 2n. 

(e) Teke coordinates (7254 9T 5554555) on p(B)» and the 

involution given by 

w(yys¥, 1Tos¥ 1 s¥ 5) = (¥gs¥49Y02=T35-95). 

The fixed-point sets are P, (vy, = V5 = 0) and 

(f) Consider the product involution (c) on Py X P 

obtained from the involutions (da) and (e). The hypersurface 

—_ =f 1 ? 1 — . 
H = Hy i, - P, X Fy defined by Xo¥ + XY + X45 4 0 is 

token into itself by w. The fixed-point sets of wl|H are 

Hy Cc P, X Poy P, X Ps P, X Pos and Hy 4 Cc Py X Pe. 

Thus ¢(2) = 5, and we have, from (c) and (4), 

10.8 o(22) = 5n, o¢(2n+1) = 5n+2. 

(g) More generally than (f), consider 

with coordinates CITRINE IY .o y Kg 9X) 9X5 .o yX; ) oi Poss 

and (gs 45 oo J 5sTq0e V5) on Pose We suppose i < j, 

and that H = Hpi, 03 is defined by 

eo 0 ! ! eo ! ! —- 0. Zo¥g * XY Foes TRI FT Tee eK 

We condiser the involutions on Py. and Fs 5 given by 

w(XysXy se. 9 X: 9X, oe y Xs) - STEINER 9 X;e=Kyseo =X.) 

W(FgsTysee 5 T5o¥qsee 5¥5) = (Tpa¥ysee s¥Tisee 5). 

The fixed-point sets in Pss and P are Ps and P. 19 and those in



—65— 

Pos are F, anc Pig The product involution on Pos X Fos 

tekes H into itself, and the fixed-point sets of w|H are 

Hy 3 Cc Py X Ps P. X Pigs P._q X Pys and 

Hi 1, 3-1 Cc P.: 4 X Pa_q which have dimensions i + J - 1, 

i+j-1, i+j-1, and i+j-3 respectively. H has dimension 

2i+2j-1. Its cobordism class [H] is indecomposable (6.10) 

if the binomiol coefficient {2i,23} #2 0, i.e. {i,j} # 0. 

We can choose i aad j such that i+j = n and {i,j ZO 

whenever in is not a power of 2. 

10.9 Theorem 0(2k) = 5k, and 9o(2k+1) = 5k+2. 

Any smooth involution on a non-bounding n-mcnifold has a 

fixed-point set of dimension at least 2n/5. 

Proof Suppose the n-manifold M has an involution with 

Tixed-point sets of dimeasion € k only. The corresponding 

element v, of F lies in F,. Let m be the ideal in Niel] 

genercted by 6. We proved in 9.19 that J" embeds Fy in 

N[[6]]1/n"*!, where r = 5k/2 if k is even, or r = (5k-1)/2 

if k is odd. If n > r, we must have v,, = 0 and [i] = 0 

by 10.5. Our examples show that this is the best possible 

result. 11] 

However, we can do better with zn extra hypothesis. 

10.10 Theorem Any smooth involution on 2 n-nmanifold 

whose unoriented cobordism class is indecomposable has a
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fixed-point set of dimension at least %(n-1). 

Proof By 10.5 we have T's = z 6° apart from higher terms 

and terms involving more than one Ze By 9.19 the 

generator e. must appecr in vy, and heace vy, lies in Fin 

or Fon) and not in any smaller Fs Therefore there is 

a fixed-point set with dimension 4n or 3(n-1) (whichever is an 

integer). 11]
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