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A GENERAL SUMMARY
We set out here, under lettered heads, the general
properties of CW-spectra, which are designed to overcome
the objections to previous theories of stable homotopy.
They are closely analogous to CW-complexes in ordinary
homotopy theory; and it is this analogy that gives them
their favourable properties.
A, Topological categories
In any category A we write MopA(X, Y) or Mor(X, Y) for
the set of morphisms from X to Y. -
A.d. We say that A is a topological category if
a) Mor(X, Y) is a topological space for all objects
X, Y,
b) The composition map
Mor(X, Y) x Mor(Y, Z) - Mor(X, Z),
which we write f x g ~ g °f, is separately continuous for
all objects X, Y, Z.
In practice our topological categories satisfy the

extra axiom:
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A.2. The composite g°f is jointly continuous in f x g
if we restrict f or g to lie in a compact subset.

For example, the category T of topological spaces and
continuous maps becomes itself a topological category if we
endow Mor(X, Y) with the compact-open topology. In this
example composition is not always Jjointly continuous.

If A has a zero object, we may take the zero morphism
(which we write as o) as base point of Mor(X, Y).

Let F:A - B be a functor between topological categories.
A.3. We call F continuous if F:Mor(X, Y) - Mor(FX, FY) is
continuous for all objects X, ¥ in A.

Now let A be a topological category.

A4, A homotopy from the morphism f:X - Y to the morphism
g:X » Y is a path from £ to g in Mor(X, Y). We write f = g.

This enables us to define the usual homotopy-theoretic
concepts, such as homotopy equivalence (written £:X = Y),
deformation retract, and homotopy type. In particular assume
A has a zero object. Then the object X is contractible if
either of the equivalent conditions holds:

A.5. X has the homotopy type of a zero object,
A6, The identity and zero morphisms of X are homotopic.
In general,

A.7. The homotopy category Ah has the same objects as A,

its morphisms are the homotopy classes of morphisms of A, and
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composition is induced from that in A.
Let F:A = B be a continuous functor.

A.8, Then F induces the homotopy functor, F, :A = By

B, CW-complexes
Our CW-complexes are assumed to be given a particular

cell structure and a base point o, which is a 0-cell. We
consider only those maps that respect base points; in
particular, we consider only those subcomplexes that contain
the base point.
B.1. We have various categories C, F, I(C), I(F) of
CW-complexes, with objects and morphisms as follows:

GC: arbitrary CW-complexes, continuous maps.
F: finite CW-complexes, continuous maps.
I(C): arbitrary CW-complexes, inclusions of subcomplexes.
1E

): finite CW-complexes, inclusions of subcomplexes.
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Thus I(F) = I(C) nF, and F and I(F) are full subcategories
of C and I(C) respectively. We write an inclusion
A->X as A c X.

Ve generalize this situation. Suppose given a category
A and any subcategory I(A) satisfying
B.2. a) I(A) has the same objects as A,

b) Every morphism in I(A) is a monomorphism in A.
We can construct new categories, by a double limit process,
B.3. Aw.and_l(éw) C Aw, satisfying B.2., and containing
the pair I(A) c A as full subcategories.

Suffice i1t to say that the objects of AW are the
directed non-empty (commutative) diagrams over I(A), and that
we recover (essentially) the pair I(C) c C from I(F) c F as
follows. From I(E) c E we construct I(E,) c Ey. We assign to
a CW-complex X the diagram of all its finite subcomplexes; this
yields a functor G - E, taking I(g) to ;(EW).

B.4. The functors G - Ey and 1(C) - I(Fy) are equivalences

of categories.

B.h. Moreover, if A is a topological category, so ls éw.
B.6. F is a topological category, under the compact-open

topology, and by B.4. and B.5., C is also a topological category.

(However, the topology received in this way by C is not the

compact-open topology.)



We therefore have
B.7. The homotopy category gh. We write [X, Y] for the
set of morphisms from X to Y in_gh.
B.8. An equivalence of categories gh 4~EWh'

The category C. is the subject of homotopy theory.

h

Equivalently we may study'EWh. Note that we have not even

defined‘Ehm.
We review briefly those constructions in homotopy theory

that we need for our present purposes. The requisite formal

properties are well known, and omitted, and will be reflected

in the properties of CW-spectra.

B.9. The CW~complex consisting of one point, which we also

write as o, is a zero object in F or C.

B.10. For any n > 0, we define an n-sphere s as any CW-complex

having just one n-cell and no others, apart from o. This

determines 3 up to isomorphism in I(F).

B.11. Given A c X, we have the identification map p:X - X/A,

and the natural cell structure on X/A.

Let (xh) be any family of CW-complexes.

B.12. We have the wedge, or one-point-union, \/hxh’ in I(C)
or C. It is a sum in the category C, and contains each XK as
a subcomplex. We write AvB if the family has two members A

and B.
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The smash product, or reduced join, XAY of X and Y is
defined as XAY = (X x Y)/(X vY), retopologized as a CW-complex,
and given the usual cell structure.

B.13. We have the smash product functor C x C - C, which is
separately continuous. It induces functors F x F - F,
() x 1(g) » 1(g), and L(B) x L(F) - L(®).

The suspension SX of X is defined by SX = Z1A.X9 and we
put Sf = 1 Af for a map f.

B.14., We have the suspension functor S:C - C. It is continuous,
and induces functors S:F - F, S:I(C) - I(C), and S:I(F) - I(F).
We denote by st the functor S iterated n times. It is not

to be confused with Zn, the n-sphere.

C. The stable categories

Take a copy En of the category F for each integer n. Then

we consider the sequence of categories and functors

Co1a e ce -)E_z § E_1 -§ EO § E,] § E2 e e o0
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In terms of this seguence, we obtain the guspension category
By (a 'limit' in a highly technical sense only).
C.2, An object of‘ES is uniquely an object of some En‘ I
X G-Em and Y €~En’ the morphisms from X to Y in_ES form the
set

1im | MorE(sk"“x, sk ,

“e note that in'ES, X E-En is isomorphic to SX G-En+15
it is not necessary for categorical purposes to identify these
two objects.

C.3. The subcategory_l(gs) C‘ES is obtained similarly, with
I(F) in place of F throughout.

C.l. The pair of categories ;(ESW) C Eqy is obtained from
the pair ;(gs) c Eq by means of B.3.

C.5. The category of CW-spectra § is defined as ESW‘ Its
objects are called CV-spectra or simply spectra. We shall call
its morphisms maps of spectra.

C.6. The maps in the subcategory I(S) = ;(ESW) are called

inclusions of spectra; we write an inclusion A - X as A c X,

and say (by abuse of language) that A is a subspectrum of X.

C.7. A finite spectrum is a spectrum which is isomorphic

in I(§) to some object of |Eg .
C.8. The category § is a topological category. The space

Mors(X, Y) is Hausdorff, and normal when X is a finite spectrum.
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C.9. The homotopy category of CW-spectra is the homotopy

category ﬁh of S. We write {X, Y} for the set of morphisms

from X to Y in‘§h; these are the homotopy classes of maps in S.

The category §h is the ultimate object of study in our
stable homotopy theory.
Remark §h has as subcategory ESh‘
absent from the literature, in spite of the fact that it is the

The latter appears to be

most natural category for expressing Spanier-Vhitehead duality,
and that it is gasy to set up directly: in obvious notation

B = F

~S8h =~ *hS°

Suppose X E-Em and Y E'En are objects of_ES. Then
C.10. (X, ¥} = 1im_ [s5™x, s7Py].

The inclusion of F in Fq as the copy EO of F induces
functors
c.11. E ckgs IE) c -;["@S)’ CcEBycEyw=58 &y 8

which are usually ouitted from the notation.

In terms of the functor C ¢ § in C.11., let X and Y be
CW-complexes, and suppose that X is finite-dimensional.
C.12. Then (x, v} = 13m_[s"x, s*v].

This result is false in general if X has infinite dimension,
which shows where our theory diverges from the S-category as
originally proposed.

The sequence C.1. has an obvious automorphism, given by
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moving one step to the left; for each object X in F we take

its copy in‘En to its copy in‘En s for each n. This

-1
automorphism induces the following translation suspension
functors, which all have the obvious inverses:
C.13. S":Eg » By I(Eg) »I(Eg), 8~ 8 1(8) »1(8)s §, - 8y-

We have the point CW-complex o in F, from B.9.
C.14. By C.11., the CW-complex o gives rise to a spectrunm,
also written o. We call this, and any isomorphic spectrum, a
point spectrum. The point spectra are the zero objects of S.

Suppose given spectra and subspectra, A c X, B cY.
C.15. The subspace Mor((X, A), (Y, B)) of MorS(X, Y) is
defined as the set of all maps F:X - Y such that f|A:A - Y
factors through B, and is given the subspace topology.
C.16. We write {(X, A), (Y, B)} for the set of homotopy classes
(path components) of Mor((X, A), (Y, B)).
C.17. 1In particular, MorS(X, Y) = Mor((X, o), (Y, B)), and

{x, v} = {(X, o), (¥, B)}.

Thus C.17. includes the absolute case in the relative. It is
clear that C.15., C.16., and C.17. extend to more complicated
configurations, so that we can define maps of triads, triples, etc.
c.18. Every inclusion A € X has the homotopy extension property.
C.19. If the inclusion A € X is a homotopy equivalence, then

A is a deformation retract of X.

Now let (XA)KGA be any family of spectra.
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C.20. We can define the wedge thh’ uniguely in I(8).

It is a sum in § or in.§h. It contains each Xh as a

subspectrum. The inclusion C < S respects wedges.
o ) ‘\‘[ ’ / ]
C.21 If Al c Xh for all \ € A, then hAk c \xxh
C.22. We can define the product spectrum II.X., up to homotopy

A

type, as a product in_§h.
C.23. The homotopy category §h has an additive structurs.

This additive structure is unique, as always. Apart from
C.l4., C.20., C.22., this assertion amounts to C.24:
C.2U, {X, Y} can be given a natural abelian group structure,
for any spectra X, Y, for which composition is bilinear.
C.25. Hence wedges and products of finite families of spectra
coincide in.§h.
C.26. If A is finite, we have, generally, {A, V}\Xxg =@ (A X
C.27. IfAcX,BcY, {(X, A), (Y, B)} can be given a natural
abelian group structure. Similarly for more complicated

configurations.

-
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D. Smash products

The smash product functor A:C x C - C can be extended to
give a smash product functor on S:
D.1. We have a separately continuous smash product functor
A:S x 8 » 8, which takes I(S) x I(S) to I(8).
D.2. The homotopy functor A:gh X §h *-§h is bilinear, and
coherently commutative and associative.
Note. The functor D.1. is not quite canonical, since it
involves certain choices; but these choices become equivalent

when we pass to homotopy.

For any spectrum X, we have the natural isomorphisms in

I(8):
D.3. OAXPJO, X/\O ~ O.
D.L., ZOAX ~ X, XAZO ~ X, where the 0O-sphere 20 is inherited

from I(F).

Take any family (Xh) of spectra, and any spectrum A. Then
we have natural isomorphisms in I(S)
D.5. v)\'(AAX.)\) ~ AA‘&;\X)‘, and Y, (X,04) » (V, X, )nA.

Choose a 1-sphere 21, inherited from I(F). Parallel to
B.14, we define the suspension SX of the spectrum X by
8X = 21/\X, and St = 1Af:z1AX - 21AY for a map £:X = Y,

D.6. This defines the suspension functor S:S - S, which

takes I(S) to I(8), and induces $:8y ~ 8-
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We have already defined an invertible translation
suspension functor S'. Exceptionally, let us write J:C c S
for the functor in C.11.
D.7. There is an isomorphism SJ = S'J of functors from C to S.
Unfortunately, this natural isomorphism cannot be extended
to the whole category S. However, we do have:
D.8. There is an isomorphism S = S' of the homotopy functors

from.§h to §h’ compatible with D.7. We write it in the form

o:st s ~ 1.

D.9. The functor S:85, é_§h
and induces isomorphisms S:{X, Y} 2 {SX, SY! for all spectra X, Y.

is an equivalence of categories,

D.10. The additive structure on.§h may be induced by track
addition and the isomorphisms D.9.

Let B be the closed interval [0, 1] of the real line, with
0 as base point and two other cells. We can repeat D.6. with B
instead of 21.

D.11. The cone functor T is defined by TX = BaX, Tf = 1Af.

D.12. The cone TX is contractible, for all spectra X.
D.13, We have the canonical natural inclusion X ¢ TX, for any
spectrum X, by D.4.

Let X and Y be spectra, and A a CW-complex. Then we have
the natural isomorphism

D.14. [A, Morg (X, Y)] » {AAX, Y.
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On the left we have the set of homotopy classes in the
ordinary sense of maps from A to the space MorS(X, Y). This
property has a well-known analogue for CV/-complexes.

This result is useful for constructing secondary operations.

For example, one can define Toda brackets directly by it.

E. The graded category

We have the additive category §h, on which the translation
suspension functor S' is an automorphism. Take any spectra, X
and Y. For each integer n, we put
E.1. {x, Y}n = {X, YI7® = {s'™, Y}, and call the elements
the graded homotopy classes from X to Y of degree n, or

alternatively of codegree - n.

E.2. The graded category §h* has the same objects, spectra,

as §h’ or S. The morphisms from X to Y form the graded group
%

{X, ¥i, = {X, Y}, whose components are the abelian groups

{X, Y}n X, Y}™™, Composition is evident.

1}



-1 -

E.3. The bigraded category S, ., ® S has as objects the

h h*
ordered pairs X ® ¥, where X and Y are objects of §h*‘ The
morphisms from X @ Y to X' ® Y' of bidegree (m, n) form the
group {X, X'}m ® {Y, Y'}n, which is thus generated by the
morphisms o ® B, where o € {X, X'} and g e {¥, Y'} . We also
give o ® B the total degree m + n. Composition is defined by
the formula

(a' ®8") ° (a®p) = ()™ (a'°a) ® (8" ° ),
where a and B' have degrees m and n'.
B.l. The bigraded category §h*
involution taking X ® Y to Y ® X and a ® B to (=)™ 8 ® a,

®~§h* has the canonical

where m and n are the degrees of a and B.
We can obviously repeat the construction in E.Z.

E.5. We have canonically (§h* ®~§h*) ® 8y = ® (8

§h* Dk

where (X ® Y) ® Z corresponds to X ® (Y ® Z2) and
(o ®B) ® y to a ® (B ®¥).
Our purpose in introducing these multigraded categories
is to express the properties of the smash product more succinctly.
E.6. By use of D.2. and D.8., the smash product functor

A:§h X §h 4_§h extends to an additive graded functor

ANiSpx ® '“S"h* - §h*'
E.7. The functor E.6. is commutative and associative with

respect to E.4. and E.5.
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This formulation takes care of the signs introduced in
computations involving smash products and suspensions.

We may also rewrite D.8. in graded form.
E.8. There is a natural isomorphism (in the graded sense)

oX:8X = X,
of degree - 1. It satisfies
f°oX= (=)oY c° sr

for a morphism f:X - Y of degree n.

More generally than in E.1., given pairs Ac X and Bc Y
of spectra, we define, for any integer n,
2.9.  {(X, &), (¥, B}, = (X, &), (¥, B)}™" = {(8'K, s'"a), (¥, B)}.

These form a graded group. It is clear that this

definition extends to triads and other configurations.
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Cells

F,

We need to express the fact that CW-complexes have cells

in a categorical form, so as to gpply also to spectra. They

are needed, for example, in proofs by induction on cells. We

do this by introducing an auxiliary space.

F.1. A cell space consists of a topological space V, whose

points are called cells, in which each cell is assigned an

integer (possibly negative), called its dimension. A cell of

dimension n is called an n-cell. These are subject to the

axioms:

a)
b)

c)

The closure of a single cell is a finite subset of V.

For any n-cell a, every cell in its closure 3, other than a
itself, has dimension strictly less than n.

A subset of V 1s closed if it contains the closure of each
of its points.

Let X be a CV¥~-complex, with base point o.

P.2, The cell space QX of X is obtained from the space X-o

by identifying each open cell in X-o to a point, and giving X

the identification topology. An n-cell is CSsigned dimension n.

Thus o does not count as a cell.

F.3. The category V of cell spaces has cell spaces as objects,

and a morphism of V is a dimension-preserving embedding onto a

closed subspace.
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F.h4. From F.2. and F.3. we deduce the functor Q:I(C) - V.

In any category, denote by Sub(X) the set of equivalence
classes of subobjects of X. Then for any CW-complex X, the
functor Q in F.4. induces an isomorphism
F.5. Q:Sub(X) = Sub(QX).

This is the formulation we seek.
F.6. The functor Q@ on I(C) extends canonically to a functor
Q:I(8) - ¥ which satisfies F.5. for any spectrum X.

This expresses in a very precise and accessible form the
information we need about the possible subspectra of a spectrum.
It also enables us to extend more of the language of CW-complexes
to spectra.

F.7. For any spectrum X, Sub(X) is a complete distributive
lattice.

F.8. Given any family (Al) of subspectra of X, we can use F.7.
to define the union UAAX and intersection ﬂxAk, uniquely in
Sub(X). If the family consists of A and B only, we write A U B
and A n B.

Conversely, we can also build new spectra out of inclusions.
E;Q;‘ Given any directed non-empty diagram (A%) of inclusions
of spectra, we can extend the diagram so as to include a spectrum
X containing the Ax as subspectra, such that X is the union of the

Ay. The spectrum X is unique up to isomorphism in I(8).
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F.10. Given inclusions of spectra A ¢ B, and A c C, there
exists a spectrum D containing B and C, unique up to isomorphism
in I(8), in which A =B n Cand D = B yu C.

The process in F.10. is called gluing B to C along A to
form D.

Let (Xx) be a directed system of subspectra of the spectrum
X whose union is X. Let A be any finite spectrum. Then
F.i1. A, X} = 1im {A, X, 1.

There are various ways of constructing new cell spaces from
old.
F.12. Given a family (V,) of cell spaces, their disjoint union
val is the topological disjoint union, with the obvious dimension
function.
F.13. The product Vi x Vg of the cell spaces V4 and Vp 1s the
topological product; the cell a x b is given dimension m + n,
where m and n are the dimensions of g and b.
P14, The n-fold suspension S™ of the cell space V is the same
topological space, with the dimension function increased by n,
for any integer n.
F.15. Given V, c V4, the difference cell space V,/Vy 1s the
space Vy; - Vg with the subspace topology, and the restricted
dimension function.

All these occur for spectra. Let (XK) be a family of
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subspectra of X.

F.16. Then X =\¢%Xk if and only if QX is the disjoint union of
the QXK'

F.17. We have Q(XAY) ~ QX x QY, for any spectra X and Y.

F.18. For any spectrum X, QSX x SQX, and QS'nX ~ SnQX.

F.19. X is a point spectrum if and only if QX is empty. All
point spectra are isomorphic in I(8).

F.20. The spectrum X is finite if and only if QX is finite.
F.21. We call the spectrum X an n-sphere if and only if QX
consists of a single n-cell.

F.22. For each n, n-spheres exist and are all isomorphic in
I(8). We therefore write 3" for any n-sphere. We inherit an
n-sphere from I(F) if n > 0.

F.23, For any m and n, we have s3 = 2n+1’ gtz ~ 2m+n,

and 3PAsD o gD,
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G. Tdentification

Let 1:A ¢ X e an inclusion of spectra.

G.1. We can construct canonically a map p:X — X/A of spectra,
such that a) p is a cokernel of i, in S,

b) i is a kernel of p, in S,
c¢) This extends the notion of identification for
CW-complexes in B.11.
G.2. The subspectra of X/A are the spectra Y/A, where
AcYcX.
G.3. We have Q(X/A) ~ QX/QA, which was defined in F.15.
Gl Suppose A is contractible. Then p is a homotopy equivalence.
Suppose A, B, C are subspectra of X.
3.5. Then (A u B)/A = A/(A n B).
G.6. Suppose A D B > C. Then (4A/C)/(B/C) = A/B (excision).
Suppose A ¢ X and B ¢ Y are subspectra.
3.7. Then (XvY)/(AvB) = (X/A) v(Y/B).
(XAY)/(XAB.U AAY), and

3.8.  Then (X/A) A (Y/B)

(XAB) N (AAY) = AB.
3.9.  We have S(X/A) = SX/SA, and S'™(x/A) = s'™x/s'"a.

z.10. The inclusion D.13. X c TX yields TX/X =~ SX.

'

here 1s a natural exact sequence of abelian groups

. AA, Y (X, A) (Y, B)] - 14, Bl o XA, Y

‘-;...

1
Suppose X is contractible. Then identification induces an

Isomorphism
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G.12. f(x, A), (Y, B)} = {X/A, Y/B}.

Thus in one very important case the relative groups

are easily expressed in terms of the absolute groups.

H. Filtrations

FPiltrations of spectra are of crucial importance both
in the abstract theory and in applications.

H.1. A filtration of a spectrum X is an increasing sequence

(Xn) (n € Z) of subspectra of X whose union is X.

Thus a filtration of X corresponds precisely to a
filtration of the ccll space QX of X by a sequence of closed
subspaces whose union is ?X, and conversely. Note that we do
not insist on ﬂan = 0, a condition that has no significance
in homotopy theory.

Let (Xn) be a filtration of X, and Y any spectrum. Then

H.2. {4, X} = 1im {4, Xn}, for any finite spectrum A.
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H.3. linm {x/xn, Y} = 0.
H.l. We have a natural short exact scquence
0 - Rlim {sxn, Y} - {X, ¥} - lim {Xn, Y} - 0,
where R%ig denotes the first right derived functor of lim, as
applied to a sequence of abelian groups and homomorphisms.
Suppose given any sequence of spectra and maps
.OQY

=Y Y =Y, - Y

2 1 0 1 2 "
H.b. Then there exists a filtration (Xn) of a spectrum X
and a homotopy equivalence Xn & Yn for each n, such that the

diagram

ceoe X_2 cC X_1 C XO c X1 c X2 o

R

cees Y_2 ﬂ-Y_1 - Yo - Y1 - Y2 oo

commutes up to homotopy. Moreover, the homotopy type of X is

uniquely determined (but not up to unique homotopy equivalence).
Suppose given filtrations (Xn) of X and (Yn) of Y.

The product filtration (Zn) of Z = XAY is defined by

H.7. Then Z,/Z 4 = Vii5on (xi/xi_1)A(Yj/Yj_1).

Take any spectra X and Y.

H.8. The n-skeleton X* of X is the subspectrum of X such

that er is the set of all cells in QX having dimension at most

n. The skeletons form the skeleton filtration of X.
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H.9. Then XP/XP-1 is a wedge of n-spheres.

H.10. The product filtration of the skeleton filtrations
on X and Y is the skeleton filtration on XAY.

H.11. We call the map f:X - Y skeletal (or ccllular) if
£|Xt:x" » Y factors through Y™ for all n.

H.12, Every map is homotopic to a skeletal map.

H.13. Given a subspectrum A c X and a skeletal map f:A - C,

there exists a spectrum Z and a map g:X - Z such that:

a) C is a subspectrum of Z,

b) g extends f,

¢) The inclusion maps, with f and g, form a pushout diagram
in S,

d) The isomorphism X/A & Z/C induced by f and g lies in I(S).

H.14. Given a skeletal map f:X -» Y, we have the mapping

cylinder M of £, and maps 1:X c M, j:¥Y ¢ M, p:M - Y such that

a) By j, Y is a deformation retract of M, with retraction
map p,

b) £ =p°i.

H.15. In H.14., the mapping cone of f is the spectrum M/X.

H.16. Any mep f can be expressed as a composite, £ = h°og,
where g is an inclusion and h is a homotopy equivalence.
The above mapping cylinder and cone correspond to the

reduced mapping cylinder and cone in ordinary homotopy theory.
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Older theories of spectra are based essentially on
the following definitions:

He17. A CW-prespectrum (or simply prespectrum) consists of

a sequence (An) of CW-complexes and inclusion maps

an:SA.n c A.n+1 of CW-complexes.

H.18. The prespectrum A = (An; an) is a Q-prespectrum if

each adjoint map éin:An - ﬂAn+1 is a homotopy equivalence.
Given a prespectrun (An; an), we may, by C.11., regard
each Ah as a spectrum, then, by D.7., obtain an inclusion

t.at
an.S An c An of spectra.

+1
H.19. Each prespectrum (An; an) determines a spectrum X with

filtration (Xn) such that, for each integer n,
N Rt
a) X, =8""A

. . ¢ =—-1
b) The inclusion X, cX .4 1is 8

a'_.

n
H.20. Any spectrum is isomorphic in I(S) to the spectrum
determined by a suitable prespectrun.
H.21. Any spectrum has the homotopy type of a spectrunm
determined by a suitable Q-prespectrun.

Let X be the spectrum determined by the prespectrun
A = (A.n
H.22. Then {B, X}n = lim [s

s a ).
n+kB, Ak] for any finite
CW-complex B.

H.23. Further, {B, X]_, = {B, X} 2 [B, A ] for any

-Nn
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CWN-complex B, provided A is a fl-prespectrum. (Homotopy classes
are taken in §, on the left, in G on the right.)

These are the properties that relate our spectra to
previous notions of spectra. There is little worth saying about

maps of prespectra.

J. Exact triangles

In this scction, let us write |f| for the degree of a
morphism £ in 8, ..
Suppose given an inclusion i:A < X of spectra.
I The boundary morphism &:X/A - A in §h*’ of degree - 1,
is defined as the composite
X/A = (X u TA)/TA —p X uTA ‘-?(XUTA)/X 2 TA/A = SA SL A
(The morphism p-1 exists ?n 8y bY G.L. E.8. provi“cs g.)

Jele The standard exact triangle of the inclusion A < X is

the triangle
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A——X 5 X/A -5 A,

(It has a distinguished vertcx at A.)

Given two triangles in §h*
F > C g * A

AtA > B

h

oA t N N
DAY e Bl o O ok,

we define a morphism from A to A' as a triple (a, b, ¢) of

graded morphisms such that in the diagran

ded. A-~-—-3B > C > A
1a b lc a
N v
At )B' :01 )A!
hi f' g'

the three squarcs commute up to the signs (—)n, (=), ana (=),
where
la] + |o] + Jel +u + v +w
is even.
Thus the triangles in §h*
category, under the obvious composition.

and these morphisms form a

J.U. We call the triangle

A s B >C 3> A
h r g

an cxact triangle if it is isomorphic in the sense of J.3. to

sornie standard exact triangle.

A slight modification of exactness is frequently useful.
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Jd«H. We say the trianglec

A — B >0 A

h f g
is an anti-exact triangle if and only if
A > B > C A

-h - -g

is an cxact triangle. By Lanti)n—exact we mean cxact if n

is even, anti-exact if n is odd.

J.6. Suppose

A———aB s C 3 A
h f g

is an exact triangle. Then

A s B ->C > A
+h +f +g

. N . . .
is (anti) -exact, if we choose n minus signs.

We have the class of exact trianglecs in §, .. It

h
satisfics the axioms of Puppe:
Jdele In any exact triangle
A o > B p > C z >A,
we have |f| + |g| + |h]| = -1.
J.8. Any triangle isomorphic to an exact triangle is an

cxact triangle.
J.9. I

A > B C >A
h iy g

is an exact triangle, so is

B 3C 2A >B.
f g h
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Henee exact triangles no longer need distinguished vertices.
J.10. For any spectrum A,

A ; 24 > 0 > A

is an exact triangle.
Jd.11. Every morphism h:A - B in § 4, can be included in some
exact triangle
A >~ B —> C — A
h t g ’
in which thc degrce of £ is arbitrary.

Je.12. Given the diagram, in which the rows are cxact triangles

and the squarc commutes up to sign,

A >B >C > A
h iy g
|a lb la
v
] S ] 'y 1 LY ?
S U T T

we can fill in c:C -» C' to form a morphism of triangles.
The axiom of Verdier also holds:

Jd.13. Given three exact trianglcs

B . -»C A'——B,

A »0 —B' ——A,
g

A TB ""'50' ""'—‘>A.,

such that g = £° h, there exists a fourth exact triangle

A' s C'—B' —3A!

which makes the diagram



N ) ke
e 0o e B B' B LRI Y

commute up to sign; and these signs are such that this diagram

yields four morphisms of exact triangles:

> B >C! SA

L

Exact triangles enjoy various propertics, most of which
arc casy deductions from the abovc axioms. Take any cexact

triangle

A—— B +C 2 A.
h £ g

Then for any spectrum X, the scquences

Loale  ooo 1%, Al lX, Bly—ge X, Cly—(m UK, Al ...

% B sk %
Jedbe  eor {4y X} =5 [C, X} —55> (B, X} —> {4, X} ..
arc exact sequences of graded abeclian groups, in the ordinary

Scnsc.,

J.16. For any n,

sy

stip ——
§'"h

S
stie 5'*g



- 30 -

is an (anti)™-exact triangle.

Also
- T N T Y Tag T
J¢180 A./\X "—9BAX "‘-"""")CAX ——— A/\X’
hat Al gn

are exact triangles. In an obvious sense,
J.19. The smash product functor is exact in each variable.
Note J.16. and J.17. do not contradict D.8., because E.8.
introduces a sign.

Suppose that we have a fanily of exact triangles

AHTF

3 B> G, ———>A_,
T T, xng‘A

in which the degrces Ifxl’ ngl, and Ihhl are cach independent

of A. Then the triangles

6 s Va4

/ Y .\
J.20¢ \'kA. bd ‘, B E rd h 7\‘ \/'hgx 7\ h

(VS T NV

are defined, and are exact triangles.
Finally, we give two methods of deciding whether a
given morphism is an isomorphism.

J.22. Given the exact triangle

A > B >C s A
h f g ?

C is contractible if and only if h is an isomorphism (possibly

of non-zero degree) in Spse
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J.23, The 'five lemma'. If in the morphism of exact
triangles
A B > C >A
la jb c a
L " 4 b
;i' ,A,B' >C' ;K!
hl f' gt

a and b are isomorphisms, then c¢ is also an isomorphism.

K. Homology and cohomology

Let G be the category of abelian groups and homomorphisms,
and G* the category of graded abelian groups and graded

homomorphisms.

A contravariant (respectively covariant) additive

K.1.

functor K:§h

a) K respects sums: for any wedge X =\JKXX of spectra, the

- @ is a cohomology (resp. homology) theory if:

inclusions ihth c X of the factors induce an isomorphism

KX = I, KX, (KX = o, KX, ),
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b) For any inclusion i:A c X, the induced sequence

K(X/A) ———> KX ——--KA KA ———3KX ——sK(X/A
( / ) Kp Ki ( Ki Kp ( ))

of abeclian groups is cxact.

K.2. Then, given any spectrum A, the functor K dcfined by
KX = {X, A} (respectively KX = {20, XAAY)

is a cohomology (homology) theory. TFor these theories, A is

callcd the coefficient spectrum.

Given a contravariant (resp. covariant) functor
K:§h -+ G, as in K.1., we cxtend to a functor

K*:gh* - g% (K*:§h* - @) by sctting
K.3. a) For any spectrun X, K'X = K§' "X (KX = K8'™"x),
b) TFor any morphism £:X - Y in Sy x of codegree p
(resp. of degree q), so that £:8'™PX o Y
(£:8'% - ¥) in g,

Kf= (-)"Pks' ey » k7Px (K.f = R B 5 5 SR o8

q
K.l If XK is a cohomology (resp. homology) theory, and

A— =B —F—C ——4

is any cxact trianglc, then the sequencce of graded groups

£ £ % S
ce I{A “—_éK C -WKB__T“>KA e
K'g K f K h

nas - —_— e, M JOR——— A
(I‘vSp ¢ s 00 I{*J‘L >K3“B K;;;f —> 1(;30 K*g K*IX e o0 )

Kh
is cxact. (Conversely, this condition clearly implies b) of K.1.)
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K.5, In the case of the theories of K.2, wc write

HY(X; &) = K™K = {X, AP® (resp. H_(X; A) = K X = {37, Xaa} ).

Cohomology theories can be classified:

K.6. Every cohomology thcory on §h is represcntable, i.e. has
the form { , A}, for some spectrum A.
Ke7. Every cohomology theory defined only for finitc spectra,
and such that K*EO is countable, can be extended to a cohomology
theory on thc whole of §h.

K.8. Given any spectra X and Y, there exists a spectrum

F(X, Y), called the function spectrum of X and Y, and a natural

isomorphisn

{2, P(X, Y)} ~ {XaZ, Y}.
K.9. The spectrum F(X, Y) is functorial, and is anti-exact
in X, and exact in Y. (Comparc J.19.)

K.10. The functional dual DX of thc spectrum X is defined as

DX = F(X, 39).

Then K.8. yields the evaluation morphism

K.11. e :XADX - 20.
Assume from now on that X is a finite spectrun.

K.12. Then X ~ DDX, and we may take DX to bc finite.

K.13. The cvaluation morphism e inducces an isomorphism, for
any spectra A and B,

{4, BaX}, = [AADX, B},,
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which takes f:A - BaX to (1ae)°(£a1), followed by Baz’ ~ B.
K.14. Composition induces
F(A, B) = DAAB,
if A or B is finite.
K.15. By K.13., there is a canonical morphism
u:z? - DXAX.
K.16. Then u induces, for any spectra A and B, an isomorphism
{XAA, Bl, = {A, DXAB,.
.17, Conversely, suppose given a map v:ZO - YAX which
induces an isomorphism

0

{X, Al, = {37, YaAl,

for all spectra A. Then we may take Y as DX, and v as u in‘K.15.
It is sufficient to be given the isomorphism when A = 20.
The last result enables us to recognise functional duals

when we meet them.
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L. Homotopy groups

-

oA For any integer n, the nth homotopy group ﬂn(X) of the
spectrum X is defined by
0 ~ n
n,(X) = {37, x}_ = {37, x}.
(Of course, if X is a CW-complex, this must be interpreted as
the stable homotopy group, in the usual sense, by C.12.)

L.2. We say the spectrum X is n-connected if wi(X) = 0 for

all i < n, We say X is highly connected if it is n-connected

for some finite n. (Of course, n may be large and negative.)
L.3, Any n-connected spectrum has the homotopy type of a
spectrum whose n-skeleton is o.

L.h. If X is (m-1)-connected and Y is (n-1)-connected, then
XAY is (m+n-1)-connected, and

Tpen (XAY) 2 n(X) o = (Y).

L.5. If wn(X) = 0 for all n, then X is contractible.
L.6. If the map f:X - Y of spectra induces isomorphisms

fuimg(X) = n,(Y), then £ is a homotopy equivalence.

L.7. Given the family (Xh> of spectra, the canonical morphism
® e V&XK - Hkxl

is a homotopy equivalence if and only if for each integer n,

the number of indices A such that = (X,) £ 0 is finite.

L.8. The filtration (Yn) of the spectrum Y, with decreasing

indices (... PO S ...) is called a Postnikov filtration
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of Y if for each n;
a) Y is (n - 1)-connected,
v o~ 1
b) Y c Y induces xi(Yn) = ﬂi(Y) for all i > n.
L.9. Any spectrum X has the homotopy type of a spectrum Y

having a Postnikov filtration. The boundary morphism

Y/Yn 6‘4%Yﬁ. D n+1

is called the (n+1)th k-invariant kn+1(x) of X.

,Yn/Y

1

M., Tilenberg-liaclLane spectra

Let G be an abelian group.
el We say the spectrum X has type G if:
a) xn(X) = 0 for all n £ 0,
b) We are given an isomorphism WO(X) = G.
Me2. Spectra of type G exist for any group G, and any two
are canonically homotopy-equivalent. We therefore write XK(G)

for any such spectrum.



- 37 -

M.3. The functor =w, induces an isomorphism

0
{K(@), K(H)} = Hom(G, H).
Hence K(a):K(G) - K(H) is defined, for any homomorphism
a:G - H.

M.l The Steenrod algecbra for the group G is the graded

ring {K(@), K(G)Iw, with composition as multiplication.

M.5. Given a short exact sequence of abelian groups

0 A 5 > B V-~—-‘,C —3 0,

there is a unique morphism B:K(C) - K(A), of degree -1, such
that

K(A X(B K(C ————>K A

(4) —iz‘j“* (B) 7= K(v) (¢) (A)
is an exact triangle. The morphism 8 is called the Bockstein
of the given exact sequence.
L.6. There is a natural morphism
K(G) A K(H) - K(G ® H).

lie [ e Given the coefficient group G, we define the ordinary

cohomology H* and homology theory H, of the spectrum X by:
Y (X; @) = {X, K(&)}™ 5 H (X @) 0
so that in the notation of X.5.,
HY(X; ) = HY(X; K(6)); H (X; 6) = H_(X; K(G)).

{2

1

» EAK(G)] 5

{(When X is a CW-complex, these theories give the reduced
cohomology and homology. To recover the 'absolute' theories,
we adjoin a new base point o to X to form XO, and use XO instead

of X.)
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Let X _, be the spectrum Y/Yn in L.9., obtained from X

1
by 'killing the homotopy groups above ﬂn_1'.
£.8.  Then ¥™(x) e HM(X__,; n (X)).

Take any spectrum X, and let (X°) be its skeleton

filtration. We define the cochain complex (C*(X; G); &) and

chain complex (C,(X; G); o), for a given coefficient group G, by:

8.9, O™ ) = ENXYEM @); o (%5 6) = B (XX e),
and boundary homomorphisms
6:C(X; ) - Cn+1(X; G); a:cn+1(x; G) - Cn(X; @)
induced by the boundary morphisms
A It e S S
with a sign (-)® in the case of cochains.

X.10. The chain groups Cn(X; %) are free abelian, and as

complexes, we have
%
C(X; G) = Hom(Cu(X; 2), G); Cu(X; G) = Cu(X; 2) © G,
There are canonical isomorphisms

M.11. HY(X; @) = HY(CT(X; @), 8); H_(X; G)

IR

H (Cu(X; G), o)

between the homology groups of these complexes and the cohomology
and homology groups of X.

Let Y be another spectrum, and G and H abelian groups.
Then there is a canonical isomorphism of chain complexes
.12, C.(X; @) © C,(Y; H) = C(XaY; G @ H),

where the left hand side is equipped with the usual differential.
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Thus M.10., M.11., and M.412. entitle us to use the
theory of chain complexes, and obtain results such as the
Klinneth formula. In particular, we have the universal
coefficient theorems: there are natural short exact sequences,
which split,

Hed3. 0 - Bxt(H_,(X; 2), @) » H(X; &) » Hom(H,(X; 2), G) - 0,
M.k, 0 - Hn(X; Z) ® G - Hn(X; @) - Tor(Hn_1 (X; 2), G) » 0.

For any spectrum X, and any integer n, we have the
natural Hurewicz homomorphism
.15, nem (X) - H (X5 2).

i.16. Then h:ﬂn(X) ] Hn(X; Z), whenever X is (n-1)-connected.
¥.17. Suppose X is highly connected, and H,(X; Z) = 0. Then

X is contractible.

R

¥.18. Suppose the map £:X - Y induces f,:H,(X; Z) = H.(Y; Z),
and that X and Y are highly connected. Then f is a homotopy
equivalence,
Jote M.17. and }.18. are false without the hypothesis that X
and Y are highly connected. For example, let X be the spectrum
that represents the modulo p complex K-theory; then H*(X; g) = 0,
put X is clearly not contractible.

A slight generalization of the notion of Eilenberg-MacLane

spectrum is frequently useful. Let G, be a graded abelian group.

X,19. We say the spectrum X is a graded Eilenberg-MacLane

spectrum of type G, if:
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a) X has the homotopy type of \Jn S'nK(Gn) ~ I S'nK(Gn),
b) We are given an isomorphism xn(X) % @, for each n.
We write K(G,) for such a spectrum. Then mu(K(Gy)) = G,.
We have the somewhat surprising result:
M.20. For any spectrum X and any abelian group G, the spectrum

XAK(G) is a graded Eilenberg-MacLane spectrum.

N. Smectral sequences

Let X be any spectrum, with arbitrary filtration (xn),
and Y any snectrum. Then we have two natural spectral sequences,
which arise from H(p, q)-systems. In each, the differentials

are homomorphisms

aPsa D+r, q-r+1
d. B’ - Bp .

N.1. The 'contravariant' spectral sequence (contravariant

in filtered spectra X), (B (X Y)), in which
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1
. . o) By .
where the filtration (F*{X, Y} ) is defined by

gPr 2 - {xp/xp_1,Y}P*q s - FPyx, YR+ P+l gy yyPra

Fix, v} = werl[{X, ¥}" - {x_,, ¥}71.

N.2. The 'covariant' spectral sequence (covariant in

filtered spectra X), (E (Y, X,)), in which
-bs=-q _

E1 = ¥, X / D- 1;p+q

where the filtratlon (FP{X, Y},) is deflned by

-P,-q _
BP9 - B (X, Y] v, X

p+q p -1

Fp{Xa Yi, = Im[{Y, Xpl* - {Y, X}4]-

In N.2., it is frequently (but not always) convenient
to change the signs of the indices by writing ED,q E;P"q.

Let X' be another filtered spectrum, and Y' and Z be
spectra. Then the above spectral sequences have natural products,
with respect to which the differentials are derivations,

N.3. EP(X*, Y) ® Er(x;, Y') - Er((XAx')*, YAY'),
H.L. Er(Y, X.) ® Er(Y’, X)) - EP(YAY', (XAX') )
N.5. E.(Y, X4) © E (X, 2) = {Y, Z},, by composition.

The spectral sequences N.1. and N.2. include all the
usual types of spectral sequence in algebraic topology, which
are obtained by constructing suitable filtrations of X, e¢.g. the
Adams spectral sequence. For these particular cases, we can
write down the E; term.

Let X have the skeleton filtration; then for any spectrum

A we filter XaA Dby (XAA)n = X ah. In this case,
.6, 2’ 4(x,, 4) = HP(X; 7_q (M),
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N.7. Eg’q(zo, (Rak),) = H (X3 7 (4)).

Let p:E - B be a fibrc bundle of CW-complexes, with
fibre ¥, a CW-complex. Let B" be the n-skeleton of B. Then
filter E by putting E_ = p~ (B ), a OW-complez. This
filtration gives rise to the Leray-Serre spectral sequences.

For these, we have

n.8. B YE’, &) = #P(8%; (¥, a1%) = HP(B, #; HY(®, #; 4)).

w9, 82 (3%%a),) = Hy(8% (27, FOaal) = H (B, £ HqéF, g; 4)),
for any spectrum A. We had to take the disjoint union E- of E
with a base point o, etc. The coefficient systems H*(F, g; A)
and H,(F, #; A) are twisted in general.

There are also cap products in the spectral sequences, of
which N.5. is a special case. Let X and Y be filtered spectra,
and A and B any spectra. Then we have natural products, with
respect to which the differentials are again derivations,
¥.10.  E (4, (XaY),) ® E,(Y,, B) = E,(4, (XuB),),
Ne11.  EL(A, Xy) © EL((Xa¥)ys B) - E,((AAY),, B).

In using these products, it is frequently useful to

filter a spectrum C trivially, with C0 = C and C g = 0.
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In this chapter we consider the formal properties of
Thom spectra, and how they arise in Spanier-Whitehead duality.
There are many peculiar homomorphisms in algebraic topology,
defined in widely differing ways; one of our objects is to
unify several of these under the name 'transfer homomorphism'.
We also introduce the bordism homology and cobordism
cohomology theories (see [C5]). We show how to define generally

the cobordism characteristic classes of a vector bundle over a
Cli-complex; these take values in the cobordism cohomology

ring of the base space.

This chapter comprises the sections:

-
.

Thom spnectra

Combinatorial Pdincaré duality

The Thom construction

Thom isomorphisms

Bordism and cobordism theories

Transfer homomorphisms

Riemann-Roch theorems

.

Characteristic cobordism classes

W O N oo U & W

Some geometric homomcrphisms.



$1.__ Thom spectra.

In [A6], Atiyah considered the Thom complex of a vector
bundle over a finite CW-complex from the stable point of view,
and observed that its stable homotopy type depended only on
the stable class of the bundle. Now that we have the correct
stable homotopy theory to work in, we can carry this through
for vector bundles over arbitrary CW-complexes, and indeed for
virtual vector bundles.

We shall assume that all our vector bundles have been
given an orthogonal structural group. Those with fibre dimension
n are classified by means of a universal bundle Yy over a
classifying space BO(n). We shall assume that for the various n
these fit together nicely:

(a) We have a CW-complex BO filtered by subcomplexes

e0.B0(n) € BO(n+1) «oe,

(b) We have a universal vector bundle Y, over BO(n), with

fibre dimension n,

(c) We have for each n a bundle isomorphism

Yn+1IBQ(n) %y, ® 1, where 1 stands for the trivial
line bundle,
‘;1 - 3 . * z

(d) We have hundle isomorphisms pu Ypen = Ym X Yp (cross

product of vector bundles, over BO(m) x BO(n)),
where W:BO(m) x BO(n) -» BO(m+n) is induced by
9(m) x O(n) c Q(m+n),
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(e) The bundle isomorphisms in (c) and (d) are compatible.
This can conveniently be done by using the universal
bundles constructed by Milnor [M4].
Bundles are determined by their classifying maps. We
shall work with spaces over BQ(n) rather than with vector
bundles themselves. Let Z be the additive group of integers,
with 0 as base point.

1.1 Definition The category A of finite CW-complexes over

BQO x Z has as objects pairs (X, f), where X is a finite CW-complex,
without base point, and f:X - BO x Z is a map. A morphism from
(X, £) to (Y, g) is a map h:X - Y such that g ° h = f.
Composition is evident. We have also the subcategory IL(A),
with the same objects, which contains the morphism h if and only
if h is an inclusion of CW-complexes.
1.2 _ Definition The category 4y of CW-complexes over BQ x Z,
with the subcategory ;(AW), is the W-extension of the pair of
categories I(A) ¢ A (see Chapter I).

We observe that A, and hence AW’ isa topological category.
By means of W:BQ x BQ - BQ and group addition in Z, we have a
multiplication on BQ x Z. The definition of pu is not obvious
(see Chapter II). Given a vector bundle E over X, with fibre
dimension n, we take f:X - BQ x Z to have a classifying map as

first component, and n as second. If the fibre dimension



T

varies, we treat each component of X separately.

1.3 Definition We define

ko(x) = [x°, BQ x z];
the set of unbased homotopy classes of maps from X to BQ x Z.

It is an abelian group. We call the elements virtual vector

bundles over X. The projection X - Z is called the rank of the
virtual vector bundle.

When X is finite, this is the usual Grothendieck group of
vector bundles over X. When X is infinite, KQ(X) is much bigger
than the Grothendieck group - a virtual bundle is not in general
the difference between two honest bundles, else the universal
Stiefel-Whitney classes would not be algebraically independent.

Our object is to construct the Thom spectrum of a virtual
vector bundle. Given f:X - BQ(n), the Thom complex of & = f*Yn
is obtained from the unit disk bundle in & by identifying the
boundary sphere bundle to a base point o. It has a natural cell
structure. We follow [A6], and write x% for this space. Also,

adding a trivial line bundle to & simply suspends Xg, In particular,
XO is the disjoint union of X and o, as before! If we write n
for the trivial bundle of fibre dimension n, and 2 for a point,
we see that 2% is an n-sphere!
Write 4 for the category of finite CW-complexes over BO,

and A for the subcategory of complexes over BO(n). By
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compactness, A 1is the union of the subcategories A . We can
“o “n
multiply (X, f) e A with (Y, g) A Dby means of
L:BO x BQ - BQ to form (X x ¥, po (f x g)); this induces a
functor ém X ém - éw. The eclementary information about Thom
complexes is summarized in:
14 Lemma For each n > 0, we have the Thom complex functor
T, 4, = & L(én) - I(E),

where F is the category of finite CW-complexes with base point.
We have natural isomorphisms

a) ST ~ T, 44 - B

b) Tma”“TnB & Tm+n(ax B, (o e ém’ B e Ah)

which yield the commutative diagram

ST a A T B = S(Tma, A Tne) ~ T o A ST B

i
{

ST 4n (0%B) l
:
N7
Tpeq® A T B Tm+n+1(a,xB) v TooaT B - 111

We now feed all this material into the categorical
machinery developed in Chapters I and II. We recall that the
suspension category Eq was defined as the 'limit' of the
sequence

e
d
&)
=
7
=

e e o0 &2-'__‘? _1 S ""'0 S \’M,' S ~2 LRC U 'Y

in which each En is a copy of F.



-6 -

1.5 _Lemma We have the Thom spectrum functor

T:a - Ego L&) - L(Eg),
and a natural isomorphism

T(a x B) = Ta A TB (ay, B € A).
Proof Take a map f:X - BQO x Z, where X is a finite
CW-complex, which is an object of A. By compactness of X,
there exists a least n such that f factors through
£':X - Bg(n) x Z. We assume X is connected, for the moment.
Then f' has first component f;:X - Bg(n) and second component
r € Z, say. We define the functor T on this object of A to

be Tn(X, f.) e _p» an object of E,. Now suppose g:Y - X,

¥n
where Y is also finite, connected. Then f ° g:Y - BO x Z
factors through BQ(m) x Z, say, where m < n. We require a
map ’I‘g:Tm(Y, £, °g) - Tn(X, f.) in Fq. Now Tm(Y, f,0og) €E .

is isomorphic in Eg, canonically, to Sn_me(Y, £, °g) e E o _p
Since T is a functor, we have a map Tn(Y, f,0 g)—*Tn(X,:fi)

in I

P _p+ Naturality in 1.4 yields a map

Sn_me(Y, fi o g) - Tn(Y, £y © g). The required map Tg is the
composite of these three. One can verify that T is a fuanctor,
defined so far for connected X.

If X is not connected, we treat each component of X
separately, and take the wedge in ES’ so that T respects sums.

If a, B € A, the natural isomorphisms of 1.4 yield a
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natural isomorphism of T(ax B) with the smash product

Toa A T8 (see II). Care is needed at this stage, but the
machinery of II is equal to the task. ]]]

1.6 Lemma Suppose the maps f, g:X - BQ x Z are homotopic.
Then the Thom spectra of (X, f) and (X, g) are isomorphic,
in L(Eg)-

Proof This derives from the covering homotopy property
for bundles. ]]]

We can now take W-extensions of everything (see I). Also,
our functors are all continuous, and we may take homotopy classes.
1.7 Theorem We have the Thom spectrum functor

Tihy = Eqy = S ,].:.(ﬁw) -+ 1(8), fam ~ Sy

We #srite the Thom spectrum of the virtual vector bundle a over

the CW-complex X as %%. There are canonical natural isomorphisms
(X x T)¥B & x% 4 vB, gPx% & xO0B
for each of the above three functcrs. The first is coherently
commutative and associative. ]]]
In particular, when Y = X, the diagonal map A:X - X x X

induces from a x B over X x X the Whitney sum a + B, which makes

KQ(X) an abelian group.

1.8 Corollary There is a canonical natural diagonal map

A:XCH-B - Xa' A XB,

which is commutative and associative. 1]]



Given a topological group G and a continuous orthogonal
representation G - Q(n), or G - O, we have the Borel map
BG - BQO(n) or BG - BQ (see [B2] or [M4]). Hence a map
BG - BO x Z, with second component n in the first case, 0 in
the second.

1.9 Definition The Thom spectrum MG is the Thom spectrum

of the virtual vector bundle BG - BO x Z. In particular HQ
is the Thom spectrum of the identity representation of Q.

1.10 Definition Denote by ¥y the universal virtual vector

bundle of rank 0, so that BQY = MQ. Then any virtual vector
bundle over X, a say, of rank 0, is induced from ¥ by a

classifying map X - BQ, unique up to homotopy. The Thom

spectrum functor applied to the classifying map of a yields

the classifying map X - M0,

More generally, a virtual vector bundle a over X of
constant rank n has a classifying map of Thom spectra X% - MO
of degree - n.

We have observed that a genuine vector bundle & over X
gives rise to a (homotopy class of) virtual vector bundle over
X whose rank is the fibre dimension of E. By convention, we
write XE Tor its Thom spectrum; this is consistent with what
we already have.

1.11 Theorem Given a genuine vector bundle g over X, let N
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be its unit disk bundle, oN its unit sphere bundle, and
7:N - X the bundle projection. Then for any virtual vector
bundle a over X, we have an isomorphism of Thom spectra
XE+a ~ Nx*a/aNx*a
in 8, I(8), or § .
Proof . Our categorical machinery requires simply a natural
isomorphism of CW-complexes defined when X is a finite
CW-complex and o is a genuine vector bundle, and thig isomorphism

T Q

must commute with the suspension operations on a, N , and

Xg+a. We do this canonically in each fibre. This amounts to

finding for each p, g, 2 Q(p) x 0(g)-equivariant homeomorphism

P x Dq/a(Dp X Dq) = Dp+q/aDP+q, which has to be associative.

This becomes a trivial matter if we first choose for each p

an equivariant homecomorphism of R® with the interior of DP. ]]]
As an application, suppose given genuine vector bundles

E, nm over ¥, Y respectively, having unit disk bundles M and N.

Then X° = M/dM, and Y = N/oN. Suppose we are given an embedding

of U in M as a tubular neighbourhood of Y ¢ M, not meeting oM.

Then identification induces a map of Thom spaces cp:Xg - YN,

1.12 Theorem Under these conditions, we have also a canonical

map of Thom spectra
#
x&+ta M+ a

for any virtual vector bundle o over X, where f£:¥ - X is the
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composite Yc N ¢ M » X. This map is compatible with the

diagonal maps, in the sense that the diagram

XE-HJ' A -3 XE’AXG
| | oat
t l

yf o — R > YN, x®

1/\ ;}g

commutes. ]]]

§2. Combinatorial Poincaré Duality

In this section we translate G.W. Whitehead's duality
theorem [W4] into our theory, with the various simplifications
possible.

Let X be any finite triangulated simplicial complex.

Given any subcomplex K, the supplement K~ of K is the union

of 211 simplexes of the first derived complex X' that do not
meet K. We observe that
(KuL)" =K nlL, (KnL)” =K ul™, KcL inplies L  c X .

There is a unique simplicial map X' - K™*K (the join) extending
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the inclusions of K~ and K. Let s:K #K - [0, 1] be the

simplicial map taking K~ to 1 and K to 0. Then we set, as [W4],
N(K) = s [0, 4], N(K") = s [, 1],

which are triangulable subspaces of X. We see that we have

homotopy equivalences

P

2.1, KTcNX)cX-X, KcNEK) cX-K,
K/L = N(K)/N(L), K~ /L™ = N(K™)/N{(L7).
If L ¢ X, we can define a map
a:x° o (W(LT)/N(ET)) A (M(K)/N(L))
in the obvious way on N(L~) n N(XK), and zero elsewhere.

2.2 Definition Given subcomplexes L ¢ K of X, the diagonal

map
2:x% 5> (L7/K7) A (K/L)
is defined from the above map up to homotopy, by using the

homotopy equivalences 2.1.

2.3 Remark When K = X, L = g, A is the usual diagonal

2:x9 5 x0 A %0 (recall X/4 = XO).

The diagonal has the expected naturality properties.
Given subcomplexes K o L o M of X, we have i:L/M c K/U,
p:K/M - K/L, and in § ,
degree - 1, and similarly for K*, L”, M . We consider the

the boundary map 6:K/L - L - L/M of

diagrams
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(a) 30 A > (M°/L7) A (L)
lA 1Al
_ !
(M /K7) A (K/M) A - (M7/L7) A (K/M)
(v) x° x > (U/KT) A (K/M)
A g‘l/\p
(L7/K7) A (B/L) =3 >(W/K7) a (K/L)
(c) x° r S(L7/K7) & (R/L)
P 1108
\
(M/L7) A (/M) —57 * (L7/K7) A (L/M)
2.4 Lemma The diagrams (a) and (b) commute, and (c)

anticommutes, up to homotopy.
Proof (2) and (b) are obvious. Although (c) looks forbidding,
it is sufficient, by (a) and (b), to take K = X, M = 4. ]]]
The diagonal induces cap products. Given a map
ptA A B - C of spectra, and z Hn(XO; A), we have the cap
product
z n: H(L/K; B) » B, (¥/L; C).
The naturality of the diagonal in 2.4 shows that we have

the diagram, for any subcomplexes K D L o M of X,
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2.5
g (M~/L7; B) - H(M™/K"; B) - HY(L/A&; B) - witl(um/L7; B) ...
lz0 lzn lzn lzn

Hn__i(L/M; c) - Hn_i(K/M; Cc) - Hn_i(K/L; C) - Hn_i_,l(L/M; C) vue

in which the first two squares commute and the third commutes
up to the sign (_)n+1.
Now suppose that K and L differ by one simplex P;

K =L vuP, and the boundary oP of P lies in L. Let c be the
barycentre of P, and V = V_ the closed star of ¢ in X', the
union of 211 simplexes containing c. Let Q be the union of all
simplexes of X' that meet P only in c, and R the subcomplex of
Q consisting of those simplexes not meeting P, the 'link' of
P in X'. Then K/L = P/0P, L7/K~ = Q/R, and V/oV 2 (Q/R) A (P/oP),
where oV is the frontier of V.
2.6 Lemma Under these conditions, the diagonal

2:x° 5 (L7/K7) A (X/L) 2 (Q/R) A (P/OP) = V/ov

agrees, up to homotopy, with the identification map
0

R

DX - X/C1(X - V) = v/ov. 11]

Homology manifolds

2,7 Definition We say X is a combinatorial homology n-manifold

if it is a triangulable space having the same local homology

groups as an n-sphere.
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We shall always choose a fixed triangulation, Various
facts are more or less immediate from the definition. Assume
; for simplicity that X is compact and connected, for the moment.
Then H™(X; Z) £ Z or Zz. Every simplex is contained in some
n-simplex. Let Vc be the closed star of c in X', for any
vertex ¢ of X', and pc:X0 - VC/aVC the identification map;
then vc/avc is a homotopy n-sphere (being a suspension), and

0

L tHNV /oV_; 2) » HX(X; 2) is epi. We write g :X° - 3 for

the desuspended composite x° 5 Vc/aVc ~ 3P

of degree -n,
determined up to sign. Then by a theorem of Hopf,
2 (X; zZ) = {XO, Zofn, and is generated by q, for any c.

Orientability

Let X be any triangulated compact combinatorial homology
manifold. Suppose given a spectrum A, and a 'unit' map

i:EO - A, of degree 0.

2.8 Definition We say z € Hn(X; A) is a fundamental class

of X if for every vertex c of X', <§, qc> =13 e ﬂO(A). We

then say X is A-oriented.

Duality
We suppose given i:z0 - A as above.

2.9 Definition We say the spectrum B has A-action if we are

given a morphism, p:A A B - B, such tlmt the composite

Br 30 A B———A A B > B
iad

is the identity morphism of B.
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Remark From IV, the only spectra with K(Z)-action are the
graded Eilenberg-MacLane spectra.

2.10 Theoren Let X be a triangulated compact combinatorial

homology n-manifold, A-oriented by z € Hn(X; A). Then for
any subcomplexes K D L of X and any spectrum B with A-action,

zn:H(L™/K"; B) = H _.(E/L; B), B (%/1; B) = H__.(L7/K7; B).
Proof If K and L differ by one simplex, the theorem holds
by 2.6 and the definition 2.8 of orientability. If the result
is true for K/L and L/M, it is true for K/M by exactness,
commutativity of 2.5, and the five-lemma. The result therefore
follows by induction. ]]]

We may take K = X, L = 4.

(x% B). 111

There is no longer any need to work with a fixed

2.11 _Corollary Z N Hr(XO; B) = Hn—r

triangulation.

2,12 Theoren Let X be a compact combinatorial homology

n-manifold, A-oriented by z e Hn(X; A). Let K o L be closed
subsets of X which are subcomplexes in some triangulation
of X, and K' c L' a pair of closed subsets of X homeomorphic
to a CW-complex and a subcomplex, such that XK' and L' are
deformation retracts of X - K and X - L respectively. Then
z N induces

E'(L'/K's B) = B _(K/L; B), H (X/L; B) =H__(L'/K'; B),

for any spectrum B with A-action. ]]]
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Clearly the n-sphere Zn is Zo—orientable, and any spectrum
B has a unique Zo—action. Then given subcomplexes K o L
such that K # 3%, L # #, the diagonal map A:3" - (L7/K”) A (X/L)
induces the isomorphisms of 2.10 for any B. After desuspending,
our recognition result (see IV) for dual spectra shows that we
have duals here. We have

2.13 Theorem Given subcomplexes K o L of 37, K £ B LA 4,

we have, as spectra, L /K = SnD(K/L). The hypotheses may be
weakened as in 2.12. ]]]
In particular, take L to be a point; then &:L /K~ =~ SK ™.

2.14 Corollary k™ « s7 DK, 111

Historically, 2.14 was used [S3] as the definition of the
dual.

We may also add duality isomorphisms (see IV)
B (x°; B) = B (0x%; B) ana  H,(x%; B) = HV(0x"; B) to 2.11
to give a new form to Poincaré duality.

2.15 Theorem Let X be a compact A-oriented combinatorial

homology n-manifold. Then we have isomorphisms, for any spectrum
B with A-action,

1 x%; B) = 552 (ox0; B), HP(XO; B) = H,_ (0x°; B). 1]]
Remark The proof of 2.10 did not make essential use of spectra.
It could have been cxpressed entirely in terms of half-exact

functors.
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$3. The Thom construction

We give the elementary facts about the Pontryagin-Thom
construction, expressed in a form suitable for our applications.

In this section, all manifolds shall be smooth C%.
Triangulation theorems show that we may freely use the results
in $2. We again write n for a trivial vector bundle of fibre
dimension n.

2.1 Lemma (Milnor, Spanier [M5]). Let M be a smooth compact

manifold, and a any virtual vector bundle over M. Then the

dual spectrum DM% o M™%

0

, where t is the tangent bundle of M.

~ M~". These equivalences are canonical.
1

In particular, DM
Proof Since DS'X = §'" DX for any spectrum X, and M is

compact, by suspending we may assume o is a genuine vector bundle.
If n is large enough, we can embed M in st smoothly, and the
bundle o in the normal bundle v to M in Zn, so that v = a ® B,

say. Then the disk bundle, with total space K, boundary L,

of a, is embedded in a tubular neighbourhood of M in 20. We

have MY = K/L. We see geometrically, for suitable representatives,
that in the notation of 2.12 L'/K' = MP., Hence, by 2.13,

pu® = gt~ TyP

If we take B = 0, we find DM~ "' = n°, 11]

R

MPP = NT% provided o £ 0, since T @ a @ B = n.

Let £:X c g@ x Y be a smooth embedding, where X and Y are

compact, with normal bundle v. Then the Thom construction [T1]
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yields a map g@ x Y - Xv, which, compactified, gives a map
SmYO - Xv, or Y% - xV.

3,2 Definition The Thom map T(f) of f is this map ™ - xY,

or any map T(f):Y% - Xv"m+ff“ constructed from it by 1.12,
where o is a virtual vector bundle over Y, and £,:X - Y is
the composite of f with projection.

In particular take - o = 7(Y), the tangent bundle of Y.

%
Then over X we have f,t(Y) @ m = ©(X) @ v. Hence a Thom map
o) y-T(Y) o v (X)

3.3 Lemma Under the identifications of 3.1, the Thom map
2(2):y~"(Y) 5 x=%(X) agrees with the dual Dy :DYC - DxC.

Proof  Let N be the disk bundle over Y having R" x Y as
interior. Let M be a tubular neighbourhood of X in N. We
embed N smoothly in Ek. Then we find tubular neighbourhoods
Qof Y, Pof X, in 25, P ¢ Q. By definition the identification
map N/ON - M/OM is the Thom map T(f), and we see from 1.12 that
Q/9Q - P/OP is an associated Thom map T(f). Comparison of
2.4(a) with the definition of Dfj; shows that the latter map,

after desuspension, gives Dfi. ]]]

3.0 Corollagx The stable homotopy class of T(f) depends

only on the stable homotopy class of f. ]]]
This was clear anyway.

3.5 Lemma Under the above hypotheses, the diagram commutes
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for any virtual vector bundles a and B over Y:

Ya+6 3 y YO, YB
]
T(L) IT(f) A 1
L 2 % s Y
xvfaasrfaB __  yvefaa G L4B ., yviTia B
A A 1/\f1# ’ A ‘
Proof This is clear for genuine vector bundles.. By - - -

compactness of Y the virtual bundles may be suspended to give
genuine bundles. ]]]
Now suppose we have a second smooth embedding,
g:Y ¢ g? x Z, with normal bundle u. Then (1 xg) °f:X c EP+n x Z
is a third, with normal bundle v & ffu.
3.6 Lemma Under these hypotheses, . s
S D((1 x g) oF) = T(E) 0 T(g) 2% » xT1B0 + Y ¥ ff“,

for any virtual vector bundle ¢ over Z.

Proof Directly, or from 3.3. ]]]



- 20 -

&li, Thom isomorphisms

We give in this section the abstract theory behind the
Thom isomorphisms, which applies regardless of the honesty
or otherwise of the bundles involved. We deduce that a
smooth manifold is A-orientable if and only if its stable
normal bundle is A-orientable.

Let us take a CW-complex X, and a virtual vector bundle
a over X, having constant rank n. Take also a spectrum A
0

with a 'unit' i:3° - A.

4.1 _Definition We say w:ix* - A (of codegree n, i.e. degree

-n) is a fundamental class of X or of o if for every point

alx c X%

X € X, the composite Zn = X "“ﬁ"’A is ¥i. We then

say that X% and o are A-oriented.

L.2 Definition Given a fundamental class u:X% - A of a,

and p:A A B - C, we have the Thom homomorphisms
<I)o, - ulJ:{XB, B}m - {X6+a’ C}m+n
o = (-)™( nw: {30, Py - {27, %P .

induced by the diagonal map (1.8)

m-n

atB B ya B
X -Z&——’X A X ———1-;1-1———-5)( AA,
where B is any virtual vector bundle over X.
Also, by means of the diagonal A:KB+G/LB+Q - (Kﬁ/LB) A X%,

we can define useful Thom homomorphisms
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4.3 o%:{xP/LP, 1" - (xProsLPre, gpmn
0 + 0
o :(3°, (xP*O/PtY) B} o {37, ®P/LP) acy
for any subcomplexes L ¢ X of X, natural in K and L,
including boundary maps.

L. Theorem [Dold] Suppose given 1:30 o A, and a spectrum

B with A-action (see 2.9) p:AAB - B. Suppose the virtual

vector bundle a over X is A-oriented. Then

o%:{xB, B}D & {xP+a p™tR

0

@a:{zo, xP+e B} = §39, xB .Bj

m m-n

are isomorphisms, for any virtual vector bundle B over X. We
also have Thom isomorphisms l..3 for any) subcomplexes L < K of X,
Proof By induction on cells. Suppose first that L c K c X,
and K = L u ek, i.e. K is obtained from L by adjoining one
k-cell. Let x:Dk - K be its characteristic map; then to prove
L.L for K/L we need only prove L.4 for Dk/aDk for the virtual
bundles x*a and X*B, which are trivial. For either Thom
homomorphism, this result follows from 4.1 and the hypothesis
on U, by suspending.

Let Xr be the r-skeleton of X. Then by additivity, from
the previous case, we have L.4 for Xr/xr-1' Suppose, by

induction on r, that L.4 holds for Xr- Then by naturality

1 .
of 4.3 and the five lemma, we deduce the isomorphism for Xr'

Hence we have the Thom isomorphism for Xr for all r, by
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induction. By Milnor's lemma (IV), we therefore have the
isomorphisms for general X.

In particular, we have isomorphisms for the restricted
bundles a|K and a|L, whenever L ¢ K c X are subcomplexes.
The theorem for X/I. now follows from the five lemma. ]]]
Remark Again, when the vector bundles are genuine, this
theorem does not make essential use of spectra, and could be
expressed in terms of half-exact functors. Theorem L.4 is in
some sense ‘'dual' to 2.10.

Because we have allowed for the possibility B # 0, Thom
isomorphisms can evidently be composed.

L,5 Temma Suppose given spectra i:Z0 - A, i:ZO - B, and a

spectrum C with A- and B-actions p:AaC - C, p:BaC - C that
commute, in the sense that they yield only one (A A B)-action
LWsAABAC - C on C. Suppose given virtual vector bundles

a, B over X, such that a is A-oriented, and B is B-oriented.

Then we can (A,«B)-orient a +fB canonically. With these

. . atB _ 505B -
orientations, we have @ = &7, ®G+B = @a@B.
Proof Let u:X%* - A and v:XB - B be the given orientations

of a and B. We orient a + B8 by
a+3 a B
X —‘A——>X AX WAAB.
The commutativity and associativity of A yield the composition

laws. ]]]
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We always orient the zero bundle by means of the

obvious projection XO ‘ZO T >A.
4.6 Temma Then ©° and ¢, are identity homomorphisms. 11]

These two results yield a simpler proof of the Thom
isomorphism, in the common cases. Given an A-action cn A,
LiAAA > A, commutative and associative, one deduces from
L.5 and L.6 that @~% is inverse to ®%, and that ¢_, 1is inverse
to @a.

Let X be a compact smooth n-manifold with tangent bundle
T, and i:ZO - A a map of spectra. We can consider
A-orientability of X, or of 7.

L.7 Theorem With X and A as above, X is an A-orientable

manifold if and only if -7 is an A-orientable bundle. The possible
fundamental classes correspond, under the isomorphisms

- %
px’ = X7 (see 3.1), and {Dx°, A}® » {39, x0 A4}, (see IV).

0 %

- * -
The Thom isomorphisms & *:{X°, B} = {X~ %, B} and

0 0 0

o {3, X" aB}, = {3°, X  aB}, agree with the isomorphisms

-T
2.15, for any spectrum B with A-action.

Proof We have the stated isomorphisms. We must check that,

if w:X"T - A corresponds to z:ZO - XOA A, the local conditions

on u and z for these to be fundamental classes are equivalent.
We embed X smoothly in zn+k’ with normal bundle y. Then

we may conveniently take u:x¥ - A, of degree -k, instead of the
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given map X ' - A, by suspending, since T + v = n + k. The

k

. . n . .
Thom construction gives a map 2 ¥ 5 XV, Then z is obtained

from u as the composite

n'l‘k . AV « O V) . 0
Z g X A K A X -~-1~-~-/:1_1,...’ X A A’

desuspended as necessary. The assertion about Thom isomorphisms

follows.

Take any point x of X. Then we have the composite

k kK lex

v:3© - A, defined by inclusion of a fibre, 3 c XV<~379A.

0 5 3™ pe

Take a disk neighbourhood Dn of x in X, and let q:X

the Thom construction applied to this disk neighbourhood D"
e

of B in X. Then our two local conditions are that for all

2n+k

X € X, the maps V:Zk -» A and (gal)° z: - 3% AA are each

*i, apart from suspensions. But it is immediate from the
diagram below that these conditions are equivalent. This
diagram is made up of Thom constructions, and commutes up to

homotopy (compare 1.11).

B xY > X0 aXY e X0aA
| : |
|= | aat jant
ln/\zk —_—— En/\Xv '""TA—L:L—-'“% En AA. ] ] ]

Multiplicative structure

Take i:ZO - A, and let B and C be spectra with A-action,
such that B AC inherits a well-defined A-action w:AABAC - BaC.

Let & be an A-oriented virtual vector bundle of rank r over X.
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Then we have seen that the diagonal X5~n-aX0/\X€-¢X°,«A

A
induces Thom isomorphisms. Also, the diagonals
A:XE - XO/\Xg and A:Xo - XO/\XO induce cup and cap products.

Then by commutativity and associativity of cup products and
diagonals A (see 1.8), and the mixed rule for cup and cap
products, we deduce the multiplication formulae
.8 85(aup)= 8% a UB = (=)™ a us®p (aeix®, B1%, peix?, c}™)
L.9 @E(xr\a):=(—)mr xn 6% = @Exrﬂa
(x e {3°, X‘E’AB}m, o e {x°, c}®).

Naturality )

Consider the Thom maps T(f):Ya - X“+fma induced by a
smooth embedding f:X c Y x BF of smooth manifolds, as in 3.2,
where o may be any virtual vector bundle over Y.

L.10 Lemma Let B be an A-oriented virtual vector bundle

over Y. Then the Thom maps T(f) and Thom isomorphisms @B yield

commutative diagrams, for any spectrum B with A-action,
&8 * 3 %
x+fa® g ML), iv7, B

%
z[@fi - 1@‘3

o
%

% ® % b .
{Xu+fia+f16, B} T(f) >{YG+B, glf |

o =
and 2%, v&*B . B}, TE {30, xH+TrortaB gy
= ) =P %
l B j f18
0 0"

Proof Both parts are immediate from 3.5. ]]]
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85, Bordism and cobordism theories
Thom's fundamental lemma [T41] relating cobordism classes

to homotopy classes shows that the use of Thom spectra as
coefficient spectra gives rise to geometrically interesting
homology and cohomology theories.

Let E be any vector bundle, rank k, over a CW-complex B.
Let M be any smooth (n + k)-manifold, and M, its one-point
compactification.

5.1 Definition A E-submanifold, or submanifold with

E-structure, is a smooth compact submanifold VB or M, with a
bundle map from its normal bundle v to §. Two E-submanifolds
Vs and Vg are cobordant if there exists a &-submanifold W of

M x I, with boundary V, = W n (Mxi) (i =0, 1), where W meets
M x 0 and M x 1 transversely, and the E-structure on W extends
that on Vo and Vi, under the natural identifications

vIVi = vy ({ = 0, 1), where v, vo, vi, are the normal bundles
of Win M x I, Vo in M, V, in M.

In particular, if the same submanifold V is given two
homotopic structure maps v = E, the two resulting E-submanifolds
are cobordant. Cobordism is an equivalence relation.

The Thom construction applied to the E-submanifold V of
M yields a map M - BE with compact support, and therefore a

map Mc - Ba. Uniqueness of tubular neighbourhoods and the
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definition of cobordism show that this construction yields
a well defined map from the set of cobordism classes of
E-submanifolds of M, to [Mc, BE].

5.2 Lemma [after Thom] The Thom construction induces an

isomorphism

Lt &) = [, 3%,
where L(M; E) denotes the set of cobordism classes of
g-submanifolds of M.
Proof The method of proof in [T1] is valid for the case when
£ is a smooth vector bundle over a smooth manifold B. We reduce
the general case to this case.

Since any E-submanifold V of M is compact, its structure
map v - E factors through £|C, for some finite subcomplex C of
B. Similarly for the structure map of a cobordism manifold
between two E-submanifolds. Hence
c®1°y;

L(M; E) = 1im L(M; E|C); and [M_, B®] = 1im [M

c’ c?

as C runs through finite subcomplexes of B. Thus we need
consider only the case when B is a finite CW-complex.
We may clearly replace B by any space B' of the same
homotopy type, and E by the induced bundle E' over B'. We can
choose B' to be a smooth manifold (e.g. an open neighbourhood
of B in R™ for some suitable m), and give E' a smooth structure. ]]]

Remark The condition on B can be removed.
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We now stabilize. We shall be concerned only with the
case M = BP+k; then Mc = Zn+k, a sphere. We may replace B
by its (n +1)-skeleton without loss of generality; then if
k > n any virtual vector bundle & over B of rank k is isomorphic
to a genuine vector bundle. Also, if k > n +1 the particular

embedding of V in BF+k

becomes irrelevant, and we ignore it.
We next give the stable version of 5.1. Let E be a
virtual vector bundle with base B (i.e. a map &:B - BQ), of

rank 0.

5.3 Definition The smooth n-manifold V* is a E-manifold

if we are given a map - T —» £ -n of virtual vector bundles,
where ¢ is the tangent bundle of V. Two compact E-manifolds
without boundary V% and V? are said to be cobordant if there is

a compact E-manifold Wn+1

with boundary Vo U Vi, whose
E-structure extends those of Vo and V5. We define Ln(g) as
the set of cobordism classes of compact smooth E-manifolds
without boundary.

The word 'extends' needs amplification. In comparing the
structures of W and Vi over Vi (1 = 0, 1), we need to make use
of bundle isomorphisms 'rIVi =T, © 1, where 7, 7o, Ty, are the
tangent bundles of W, Vo, V4, respectively, and the extra

trivial bundle 1 represents the inward normal bundle of V, in W

or the outward normal bundle of V, in W.



With the help of the

5.2 with ¥ = R°F,

k
assumed honest.

5.4 Theorem

Ln(ﬁ) the set of cobordism classes

Then the Thom construction

Let & be a
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remirKs
z2n + 2, to g

virtual

induces

. (8) = (3%, 853 . 111

This theorem leads to the computation of Ln(a) in various

well known cases [T1, M1, A5].

g

g-manifolds

preceding 5.3, we apply

+ k, which bundle nay be

vector bundle over B, and

of E-manifolds of dimension n.

the isomorphism

As examples, we have:

5(8)_

-

.

1"

l

.%___.... e o ¢ o s e e

identity virtual

- —— 4

bundle over BQ

unoriented manifolds

zero bundle over pointg stably framcd manifolds

framed cobordism
grours

[Prp— -

!

universal virtusl

bundle over BSO

oricnted manifolds

(i.e. no extra structure)

o—— e

meam et e b

o) T e seems

universal virtual

bundle over BU

'unitary' manifolds

-— - -

iuniversal virtual

bundle over B Spin

spin manifolds

spin ccbordism

| groups

IR,

The 'unitary' manifolds are commonly called 'weakly almost

complex' manifolds.

Spin cobordism appears not to have been

properly defined until [M6].
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Track addition in Ln(E) in 5.4 is clearly expressed
geometrically by disjoint union of &-manifolds. If we are
given a bundle map & x & —» &, we can introduce multiplication
into L,(&) in the obvious way, which corresponds under 5.4 to
that induced by the map of Thom spectra Bg’/\BE = (B XB)ExE - BE
(from 1.7).

Singular manifolds

Suppose we are given a space X and a virtual vector bundle
E over B of rank 0.

5.5 Definition A singular E-manifold of X is a pair (V, f),

where V is a E-manifold and f:V - X is an (unbased) map. Two
singular manifolds (V, £) and (V', £') are bordant if there is a
cobordism E-manifold W between V and V', and a map g:W - X
extending £ and f'. Denote by Bn(X; £) the set of bordism classes
of singular &-manifolds of dimension n. (Compare [C5].)

Thus the structure of a singular E-manifold (V, f) of X
consists of a bundle map -7~ & -n and a map V = X, We may
combine these into a single virtual bundle map -'5411—11, where
7 is the virtual bundle over X x B induced from & by projection.
So singular E-manifolds of X correspond to mM-manifolds, and
cobordism classes correspond. e have, therefore, Bn(X; g)= Ln(n).
By 1.7, (X x B)" ~ x° A BE.

5.6 Theorem The Thom construction induces an isomorphism,
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natural in X and &,

0 A BE}*,

B.(X; &) 2 {3, X
between the graded group B$(X; £) of bordism classes of singular
E-manifolds of X and the stable homotopy groups of x% » BE. 111

Thus B,( ;&), apart from reduction, is the standard
homology theory (see IV) with B> as coefficient spectrum. It is
therefore prudent to introduce the associated cohomology theory.
In accordance with general policy, we define all homology and
cohomology theories in the reduced form.

5,7 Definition N (X) = (50, Xaugl_,  NHX)
U, (X) = {27, xaugl ., UN(X)
o (x) = 2%, xausQl , 2%(x) = {x, ugol®

{x, uo}”

1

0

{x, g™

(see 1.9 for MU and MSQ).

Then g*(xo) are the bordism groups of X; but N, and Q* are now
defined on all spectra. The products MO A MO - MQ, etc. from
1.8. induce commutative and associative products in all the
above pairs of theories. In particular, these are modules over
the coefficient rings N = {20, MO}, etec.

Conner and Floyd show in [c5] that when A is a subspace of
X, the relative bordism group N (X, 4) = 3%, (x/a) A Mo}, , ete.,
can also be given a geometric interpretation. Elements are
represented as equivalence classes of singular manifolds with

boundary, f:(V, oV) = (X, A), under a rather artificial equivalence
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relation. This has some uses. For purely homological
considerations, relative groups are superfluous: instead a
Mayer-Vietoris boundary homomorphism is all that is required.
Berstein has given an elegant method of doing this. Let

X =AU B, where A and B arc open subsets, and let f:M - X

be a singular manifold of X. Then £ (X - A) and £ (X - B)

are disjoint closed subsets of M. Take a smooth Urysohn
function ¢:M - R, 0 on f-1(X - A), 1 on f’1(X - B), and transverse
to . Then N = ¢"1(%) is a smooth (n -1)-manifold, and the class
of the singular manifold g = £|N:N - A n B is the required
boundary.

Trivially, any virtual bundle over any CW-complex X is
MQ-oriented (L4.1) by means of its classifying map X - MQ
(assuming it has constant rank), where 1:39 > MO is the
classifying map of the zero bundle over a point. Hence we
always have Thom isomorphisms for the MQ theories. Let us give
the geometric interpretation in terms of singular manifolds,

5.8 Lemma Let & be a smooth vector bundle over the manifold

X. Let f:(i, oM) - (Xg, o) be a singular manifold of (Xg, o),
smooth near and transverse to X C XE. Put N = f-1(X), and

g = f|N, so that g:N - X is a singular manifold of X. Then the
Thom isomorphisn @g:g*(xg) - g*(xo) is given by @E[M, ] = [N, g].

Proof In effect, @g is induced by the map of Thom spectra
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x5 —x0 A %% 5 xPamp
over the map of base spaces X - X x BQ. This, composed with f,
is homotopic to the map M - XOA‘MQ obtained by applying the
Thom construction to N in M. ]]]

In particular, let X be a smooth submanifold of the
smooth manifold Y with normal bundle v, f:M = Y a singular
nanifold of Y transverse to X, N = f-1(X), and g = £|N, so that
g:N - X cY is a singular manifold of Y. We recall that the
Thom isomorphism is a cap product. Let a:X - MQ be the
classifying map of v. Then naturality of Thom spectra yields

the geometric interpretation of cap products:

5.9 Lemma We have M, £l n a = [N, g]. 11]

Again, any smooth manifold is canonically MO-oriented by
means of the identity singular manifold. One can deduce that in
this casc Poincaré duality is given by the Thom map (see 3.2) :
given £:M < X x BP, we use the map y G A M0.

Evidently, everything we have done for the MO theories
carries over to the other theories, provided the bundles and
manifolds have sulitable structures.

It is well known when bundles are orientable for ordinary
cohomology.

5«10 Definition

We have the fundamental classcs

Oy:MQ = K(Z2), Oy iMSQ - K(Z), hence My, - K(2),

A~

defined in the usual way (e.g. [T1]).
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§6. Transfer homomorphisms

There are certain well-known important homomorphisms
in algebraic topology which do not quite fit into the usual
functorial framework. We propose to call them transfer
homomorphisms, by analogy with the represcntation theory of
groups. There is one for each homology and cohomology theory.

The transfer homomorphism is defined like a function on
a manifold - we define it locally, on various domains of
definition, and show that it is well defined on the intersection
of any two of these domains. We shall content ourselves with
eight types of transfer homomorphism; there are many more in
common use.

Since our applications are to smooth menifolds, we shall
often restrict attention to this easy case, even though it is
well known, and sometimes obvious, that the definitions work
much more generally. We also say nothing about manifolds with
boundary. We give bordism transfer homomorphisms only for the
theory g*; but aggin the definitions hold for other bordism
theories, under the obvious orientation conditions.

We shall usc the same symbol & for all transfer homomorphisms,
however defined, to distinguish them from ordinary induced
homomorphisms (this differs from some current practice).

Axiomatic description

We recall that X° = X/¢. For certain maps £:X = Y of
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sprces with additional structure, in addition to the ordinary

in'iuced homomorphisms

0 0 0

* *
9 B} - iXO’ B} f*:{z ’ X /\B}* - {EO

ety , YO ABl,

-

w2 have transfer homomorphisms, both of the same generally

ron-zero degree, m say,

0 }* 0

»4x%, Bl 7030, ¥0aBl, - 120, X0 4 B,
These are functorial to the extent that 15 and 1h are identities,
and that if we have g, and gh, where g:Y = Z, then

6.1 (g° )y = 84fy (go)” = (-)™r%",

where fq, 8y and (gOf‘)t’ have degrees m, n, m+n. Under the

conditions favourable to cup and cap products, we have

0 -+ B, (3:’3(O - C)

0

l

6:2 (a) f£,(aUfB)=faup (a:X
(b)  £(£aup)

il

(_)m|a| auf,B (ay’ - B, B:X0 - C)

0, YO/\ B, a:XO

0

(C) ft’(x N (1,) ft’X A f*d. (X:Z‘,
(@)  £,.(e7x 0 a) = (-)"Ix]

1l

—)C)

0

XNt (x:ZO =Y AB, aX" - C);

in particular, for Kronecker products,

(e) <ft'x, a> = (..)mIXI <x, fbla> (x:39 » v0.4 B, a:x’ » ).
If we are also given C = B = A and a multiplication p:AAA - A,
then £, and £° are homomorphisms of {20, A}*-modules. We shall
give the products in the simplest forms available; they may all
be embellished with suitable multiplication maps B A C = D, etc.

Various transfer homomorphisms

We shall always need a spectrum A with a map 1:20 - A, and

a spectrum B with A-action M:AAB-= B (see 2.9).



Let X and Y be A-oriented combinatorial homology manifolds,
of dimensions m and n, with fundamental classes zX:ZO - XO,\ A,
and zY:Z0 YA A. Then lle = m, IzYI = n., Take £:1X - Y.
6.3 Definition We define the Poincard duaiity transfers

(0 0
f,q.{X

* %
, B} - {Y’, B} fq:{EO, YOAB}* - {zo, 10 A B},

by the formulae n f£0 = f*(ZX na) (a:XO - B)

2y
fb'(zY nB) = (..)(m“n)n Zy O '8 (8:¥° - B).

Then f, and fq have degree m - n, and the diagrams

* * * i0 o

(x°, B} —5 17, B} e, 8" —— ", 3}

= lZXﬂ z lZYﬂ = \LzYn =] ‘LZXn
(20, 107 pl,— 129, ¥0a B}, 120, ¥0a B}, —5120, x°a BY,

big
commute up to sign. The definition works in virtue of the

duality isomorphisms 2.11.

For these transfers, 6.1 is trivial.

Suppose we have also a spectrum C with A-action A A C = C,
such that the two resulting A-actions on B A C coincide. Then
the multiplicative formulae 6.2 follow from the standard formulae
(IV) for associativity, commutativity, and induced homomorphisms
of cup and cap products, by algebraic manipulation or commutative
diagrams, according to taste. (To prove (a) and (b), apply
Zy0 to each side. To prove (¢c) and (4), express X in the form

Zy n B.)
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0

Next, assume thot B = C = A, and put B = 1 € {Y~, B}, the

'unit element', in 6.3. Then

6.1 o 7y = (_)(m-n)n .

Xo

If we put x = z,, in 6.2 (4) and (c) and substitute from 6.k,

Y
we rccover the formulae of 6.3, Thus

6.5 Lemma In this case, 6.4 and the multiplicative formulae

6.2 characterize £ and Ty 11]

Remark The Principle of Signs breaks down in 6.3, because Zy
and Zy have non-zero degrec. In any case, we camot regard fb
or fh &s being obtained from f by a2 unary operation. We have

chosen the signs to moke 6.1 hold.

(b) Spanier-Whitehecad duality transfer

Let X and Y be A-oriented combinatorial homology manifolds,

of dimensions m and n, with fundamental classes zX:ZO - XOA.A,

2,:2° > ¥ A A, Let £:X - Y be a map.

6.6 Definition We define the Spanier-Whitehead duality transfers

s £
£.:0x0, B} - {v0, 817, £7:02% v0 A B}, - £2°, X0 A BI,
by requiring the diagrams
+0 = 0 -m+n 0 0 o 0 0
(x%, BI® —g— iy, 3177 (2%, YAl > 30, XA Bl
= | =) = | z |
-0 p-m 0 p-m 0 0 0 0
{px”, B} (Df)=,siDY » B (27, DY" A Bl —mpy? 127, DXUAB]

to commute up to the signs + 1 and (_)(m-n)n respectively, in
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which D denotes dual as in IV, and the vertical isomorphisms
are provided by 2.15.

6.7 Lemma The Spanier-Whitehegad and Poincaré duality

transfers agree.
Proof We recall from 2.15 the definition of the vertical
isomorphisms. This shows that the first diagram of 6.6 can be

expanded to give the commutotive diagram

{x°, BjP A {y?, pjp-me
= lzgn = |z,n
0 L0 (50 0

{27, X"aBy_ p T {27, v AB}m_p
0 - -

{px°, B}P™ - > (oy°, BJP™,

(Df)
which shows the result for fq. Similarly for fh. 111

(c) The transfer of ~n oriented map

Let £:X 2 Y be 2 map of CW-complexes, which need not now

be finite.

6.8 Definiticn We say f is an A-oriented map if we are
given a map of spectra f:YO - XOINA, of degree n, say, such that
YO ) . R YOAYO

J,f' J,'l Af
0

0
Taial o F AEAA

commutes (up to homotopy). It induces transfers

0 5 0 0 0 0 }
*

% R
£.:0x°, B} - (¥°, B}, £7:(2%, ¥Pam}, - (29, 2% 4
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as follows: Given a:XO - B, we have Yowwx-%XOAA —
£ an

BAA——E&B,
and we define f, o = (—)nla'u ° (aa1)°of. Given x:ZO - YO/\B, we
have 20-3{-»%’1'0 AB —'-::E‘;T'? XO AAAB -1~-/—\~a—é X0 AB, and we define

£x = (1ap) © (fa 1) ex. (One could always take £ = 0, which
would meke f, and £ Zero. )

Suppose that we are also given a spectrum C with A-action,
such that the two resulting A-actions on B AC agree. Then the
deduction of the multiplicative formulae 6.2 from the commutative
dingram of 6.8 is another exercise in manipulating commutative
diagrams or algebraic formulae, according to taste.

The multiplicative properties of the Thom isomorphisms
(see §4) are included as a special case.

Now assume that we are in the simplified multiplicative
situation with A = B = C, 2nd we have a commutative and associative
map KiA AA - A, Then given maps £:X = Y, g:Y¥Y - Z, A-oriented
by £:Y° - x%a 4, 2:2° - ¥4 A, we con A-orient g ° £:X ~ Z by
putting
6.9 g5 = (=)™ (1ap)o(Fa1)eg:2? » Y0aa - x0annh o X004,
where m and n are the degrees of £ and &. The commutative diagram
of 6.8 for g °f follows immediantely.

We next compare this transfer with the Poincaré duality

transfer. Let X and Y be A-oriented mnnifolds, of dimensions

m and n.
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6.10 Definition We say the A-orientation of f:X - Y is

cdmpatible with the A-orientations of X and Y if f has degree

m-n, and the transfer induced by T gives fqu = (_)(m-n)n Zys
where Zy ond zZy are the fundamental classes of X and Y.
6.11 Lemma Suppose the map f:X = Y of A-oriented manifolds is

A-oriented compatibly, by 2:v0 S XOA.A, where Wi:AA A —» A is
comnmutative and associative. Then the transfer induced by F
agrees with the Poincaré duality transfer. If also Z is an
A-oriented manifold, ond g:Y - Z is oriented compatibly, then the
A-orientation of gof is compatible with the A-orientations of

X and Z.

Proof It is immediate from 6.5 that the two transfers agree,

for they agree on z. by 6.4 and 6.10, and are both multiplicative. ]]]

Y
(d) The Grothendieck transfer

Let £:X = Y be a map of compact smooth monifolds, whose
tangent bundles are T(X) and 7(Y). We suppose that the virtual
vector bundle f*T(Y) -7 (X) over X is A-oriented, and deduce a
transfer.

Tle 1ift £, up to homotopy, to a smooth embedding
f1:Xc ¥ x g?. Let v be the normal bundle. Then
V=X + f*T(Y).-T(X) is A-oriented. The Thom construction (3.2)
yields a map T(f):Y0 - Xv, of degree k, and hence, by using

diagonals (1.8), a map of spectra f:YO - Xv"—KwéxoﬁsXv - XOI\A.
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This A-orients the map f (the comautative diagram of 6.8 is
immediate), and hence induces transfer homomorphisms fb and fq.
However, we can express these transfers slightly differently,

as being induced by the composites of the ordinary homomorphisms

induced by T(f) with Thom isomorphisms.

6.12 Definition In this situation, the Grothendieck transfers
fq:{XO, B}* - {YO, B}*, fb':izo, YOAB}* - izo, XOAB}*
arc the composite homomorphisms
(x°, B} ——j— 10, 8}~ (¥, B}
@ T(f)

and
{0, YOAB}*—"';T,'(—E)-;-9 {9, x"ABz*ma;—v—-a{zo, %% Bl,.

We see from 3.4, or by direct geometric construction, that
these transfers are well defined. We deduce the multiplicative
formulae 6.2 from those for Thom isomorphisms (4.8 and 4.9), and
the composition law 6.1 from 3.6.

We have already observed that the Grothendieck transfers
are special cases of transfers induced by an oriented map.

6.13 Lemma Suppose that X and Y are also A-oriented manifolds,

and that we are given W:AA A - A, commutative and associative.
Then there is a canonical A-orientation for f*T(Y) -T(X), and
with this orientation the Grothendieck and Spanier-Whitehead
duality transfers agreec.

Proof Write v = f*T(Y) -7(X). By 4.7, we have A-orientations

v:Y_T(Y) - A and W:X-T(X) » A. We choose u:X’ - A corresponding
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to w under the Thom isomorphism

@“f*T(Y);{X“, R el Rt
naturality of Thom isomorphisms for the inclusion in X of any
point shows that u is an A-orientation of the virtual bundle v.
Further, by means of 4.5 and u, the orieﬁtations u and v give
back the orientation w, and @"T(X) = @"qu(Y) &Y, We consider

the diagram

{XO: B}*—:DT\T'-'{XV, B}**“@;L‘EE'Y") '<9{X“T(X)9 B}*
lze)” lz(e)”
Y%, B}" ~57T) Ay gy

which commutes by 4.10. From 4.7, the Thom isomorphisms of
- T(X) and - 7(Y) are the Spanier-Whitehead duality isomorphisms

0 T(X) ana py? = yT(Y),

2.15 for X and Y, apart from putting DX~ = X~
and from 3.3 T(f) = (Df)w; we arc back to 6.6.
Similarly for homology. J]]

(e) Integration over the fibre

We now consider a fibre bundle ®:E - B whose fibre F is a

compact n-manifold, with fundamental classes z_ € Hn(F; G) and

F
un € Hn(F; G), where G = Z or Zz. In the case G = Z we also
require the fundamental group of B to act trivially on Hn(F; a).
Then we have transfer homomorphisms (see e.g. [B3]) known as

'tintegration over the fibre'. The picturesque name arises from

the case when B, E, and F are smooth manifolds and ® is a smooth
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bundle, in which the cohomology transfer can be eXpressed in
terms of integrating differential forms.

We shall also call these transfers the spectral sequence
transfers, and use the definition [B3] in terms of the Leray-Serre
spectral sequences of «.

5.14 Definition We define the spectral sequence transfers,

or integration over the fibre, ﬂh:Hl(E) - g (B), Wh:Hi(B) - Hi+n(E)’
in terms of the spectral sequences of ® as follows:
%, is the composite H'(B) » E. - ¢ Bz™'® = 5 77(3),

B2 -1 _cH (B),

i,n i,

R

x7 is the composite Hi(B) isn
w¥here the isomorphisms are @u and ® z.

We know (from IV) that we can put cup and cap products into
these spectral sequences. It is easy to deduce from this fact
the multiplicative formulae 6.2.

It is clear that Ty and wb are natural for maps of bundles

with fibre F, because thc spectral sequences are natural.

£.15 Lemma (Chern [02]) Suppose B is a manifold. Then E

is also a manifold, and the spectral sequence transfers agree with
the Poincaré duality transfers.

Proof Both pairs of transfers are multiplicative, and hence,

by 6.5, we need only check " Zy = %t zp. This is evident from the
definition 6.14, assuming we choose the correct orientation Zg

for E. 1]]
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(£) The pullback transfer

One would expect that for a gcometrically defined homology
theory such ns bordism theory v-rious traonsfers could be defined
gecometricnlly. This is indeed the case, although we shall

restrict attention to the theory N,

o

for simplicity.

Suppose we are given a smooth map f:X = Y of compact
smooth manifolds, of dimensions m and n. GCGiven a singular
manifold h:N = Y of ¥, we can construct the pullback space M
and a map g:M - X. Undecr na suitable transversnlity condition
(viz. £ x h:X x ¥ - ¥ x Y tronsverse to the diagonal of Y x Y)
g:¥ =» X is ~ singular manifold of X.

6.16 _Definition The pullback tronsfer fq:gi(Yo) - gi+m—n(xo)

is defined by tzoking the class of h:N = Y to the class of g:¥ - X,

. = .
One cnn show direcctly that £ is wecll defined.

6.17 _ Lemma The pullback transfer agrecs with the Grothendieck
transfcre.
Proof We 1lift £ to a smooth embedding £':X € ¥V x E?. Then our

assertion is evident from two applications of 5.8. 1]]

(g) Th-:' b’l;‘ldle 'tj_"‘ﬁ‘nsi’cr

There is anothor cosc, very similar to the previous, in
which a geomctric definition con be given. Suppose ®:E = B is
a fibre bundle whose fibre F is o smooth compact n-manifold, and

whoac structure group is a Lie group G acting smoothly on F.
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Then given a singular manifold f:M - B of B, we construct the
induced bundle ¥ - M over M and a map f:M - E. We may give this
induced bundle a smooth structure, which makes F:M-Ea
singular manifold of E.

%)

6.18 Definition The bundle transfer ﬂbzgi(Bo) - Ei+n(

is defined by taking the class of f:M - B to the class of
f:if - B.

Again one can show that ﬂq is well defined. It obviously
agrecs with the pullback transfer when B is a smooth manifold.
It is also trivial that wb is natural for maps of bundles with
fibre F.

(h) The Grothendieck bundle transfer

A serious disadvantage of the two previous transfers is
that there is no obvious way to define the corresponding cohomology
transfer, because E* is not a geometric theory. We should like
to have multiplicative trensfers. Again, integration over the
fibre has only been defined for ordinary homology and cohomology.
We f£ill this gop by constructing another transfer, available for
general cohomology and homology theories.

Let m:E - B be a fibre bundle whose fibre F is a smooth
compact n-manifold, and whose structure group is a compact Lie
group acting sﬁoothly on F. "We shall need the bundle T of

tangents along the fibre (see e.g. [B3]); this is a vector bundle
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over E whose restriction to a typical fibre F is the tangent
bundle of F.

65.19 Lemma Let F be a smooth compact manifold, and G a compact

Lie group acting smoothly on F. Then therc exists a finite-
dimensional reprcsentation space V for G, and a smooth G-equivariant
embedding F < V.
Proof We use a useful lemma of Mostow [M7], based on the
Peter-Weyl theorem. Let S be the algebra of smooth real functions
on F; then G acts on S, Take a finite set of elements {hi} of S
which separate points of F. By [M7] we can approximate these
by {h{}, still separating, such that for all i Gh{ is contained
in a finite-dimensional subspace of S. Let W be the subspace of
S spanned by all the sets Ghi; it is finite-dimensional. Put
V = Hom(W, R). Then evaluation of W at each point of F yields
the required equivariant embedding F ¢ V. ]]]

Given a representation space V as in 6.19, let mn be the
vector bundle over B with fibre V associated to ® [S5]. Then
6.19 yields an embedding of E in the total space of M. Choose an
equivariant metric on V, and let U be a metric tubular neighbourhood
of I in V. Then U gives rise to an associatecd subbundle of 7T
having fibre U, total space N, say. We have a tubular neighbourhood
disk bundle N of E in m, with normal bundle v, say. Without loss

of gecnerality N is contained in the unit disk bundle of m. The
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Thom construction now gives a map B - Ev, and hence a map of

spectra Bn+§ - g7 &

by 1.12 for any virtual vector bundle &
over B. In particular, we have a map of spectra
6.20 o(n):B° » BT,
since AN £ T ® v. The Thom map 6.20 is well defined (for if £
is another bundle containing %, adding £ to mn does not affect
T(®x), and we then have to compare two isotopic embeddings of E
inme %).

Now we suppose that - T is A-oriented, and that C is a
spectrum with A-action.

6.21 Definition We define the Grothendieck bundle transfers

° 09 C}q" 751:'2{20, BOAC}* - {ZO

5

0
x:{E, ¢~ {B , B acCl,

as the composite homomorphisms
ES

, C} T('J\:)* >{B

9 E_'.!:/\C},}< @_ﬁizo, EO/\C:};;g
T

{EO, C}q‘_"-g:;&-‘.‘\-{E_T

, C17

0 0

0
{37, B aC}, - CI {2

Formally we have exactly the same situation as for the
Grothendieck transfers, and we shall not trouble to repeat the
details. These transfers are multiplicative, i.e. satisfy 6.2.

It is clear that they are natural for maps of fibre bundles with
fibre ', As before, we have here a particular case of an oriented
map.

If B is in fact a smooth manifold, we can choose mn to be a
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trivial vector bundle (it does not have to come from a
representation space). Then these transfers agree with the
Grothendieck transfers 6.12.

Again, naturality and two applications of 5.8 show that
our transfer includes the transfer 6.18 in bordism groups.

6.22 Lemma If the spectral sequence transfers 6.14 are also

defined, they agree with the Grothendieck bundle transfers.
Proof We observe that we can relativize the transfers 6.21
as we did Thom isomorphisms, by constructing a map of spectra
6.23 T(n):By/Bs » (BEa/Be)a E "
for subcomplexes Bz < By C B, where E; = ﬂ-1(Bi). The spectral
sequences of ® can also be relativized. By using naturality of
both pairs of transfers, we quickly reduce to the case of a
trivial bundle over (DY, oD'), which is clear. 11]
Summary

Let us gather together what we have. For the map £f:X - Y
of CW-complexes, under the respective orientation conditions, we
have various transfer homomorphisms fh and fq:

(a) Poincaré duality - X and Y A-oriented manifolds.

(b) Spanier-Whitehead duality - X and Y A-oriented manifolds.

(¢) Oriented map - A-orientation f:YO - XOA,A.

*
(d) Grothendieck - X, Y smooth manifolds, £ T(Y¥)-7(X)

A-oriented.



(e)

(f)
(g)

(h)
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Integration over the fibre - f a bundle, fibre a
manifold.

Pullback - X and Y smooth manifolds. (Only in bordism,)
Bundle - f a bundle, ribre a smooth manifold,

group a Lie group acting smoothly. (Only in bordism.)
Grothendieck bundle - f a bundle, fibre a smooth
manifold, group a compact Lie group acting smoothly,

- T A-oriented.

6.2y Theorem Under suitable conditions, these transfers are

multiplicative. If two transfers arc defined for f, and the

appropriate compatibility conditions on the orientations hold,

the two transfers agree. ]]]
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§7.  Ricmann-Roch theorcms

We give here the formal theory (compare [D2]) of
Riemann-Roch theorems for smooth manifolds (e.g. [A8]) and other
situations in which transfer homomorphisms arec available.

We shall suppose throughout this section that we are given

two coefficient spectra A and C, with maps 1:20 - A, 1:20 -+ C,

and commutative and associative multiplication maps H:AAA - A

. 50 s
pu:CAC - C, such that A= 3 A A —TXTwaA/\AH—ﬁ—aA and similarly
C - C are identity maps of spectra. We suppose also that we

have a 'homomorphism' 6:A - C, such that 6°u =p°o(6A0) :AArA > C,

and 6°i = 1:3° - Q.

If £ is a virtual vector bundle over X, with A- and C~

orientations, therc is no rcason for expecting the diagram
0 % 0 %
, Al —— X, ci

~| 2% ~|o®

§X

(x5, A} —p—> (x5, ¢}
to commute. Indeed, we use this diagram to define a new
homomorphism.

7.1 Definition We define a homomorphism
0 0
+{X , C}

® ®

8 , Al" - {x

g
by putting 6. a= (85)7'6,0%a,
Associativity of cup products yields the formula

7.2 0, (aUB) =06,auUbB. (a 8elx’, al”).
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Next, we suppose that X and Y are smooth manifolds, each
A- and B~ oriented, and £:X - Y a map. Then the transfer

# *
fﬁ:{x, Al - {Y, Al  may be defined (6.6 and L4.7) by Thon

-w(Y) , x~v(X) (essentially the

isomorphisms and the Thom map Y
dual of f by 3.3), where T(X) and T(Y) are the tangent bundles
of X and Y. Then naturality and 7.1 yields the formula

7.3 fce_T(X) = 0.y e2:(x%, A" - (v0, o,

Take a:Y? - A, B:X° - A. Then 6.2, 7.2, and 7.3 give
c - c s
fh(e-w(x)f a U B,B) = £,.0 T(X)(f a U B) = 6_T(Y)fA(f a U B)
A A

i.e.

s
M fg(e_,r(x)f a v 6*6) = S_T(Y)a U G*fﬁﬁ (G::YO = A, B:XO - A).

a%

In the cohomology ring {x0, A}™ of X we have the identity clement

1, given by X0 - 20——E—aA, where the first map is induced by

projecting X to a point.

1.5 _Definition  We put &(X) = 6_g(xy1 € (x°, cl.
7.6 _Theorem £9(8(x) u 6,8)= 4(Y) u 6, 58 (B:x0 - a).

2roof We put @ = 1 in 7.4, and use 7.5. ]]]

The proof of this 'Riemann-Roch' theorem is trivial. It
is the verification of orientability and computation of A(X)
and 4(Y) that are liable to causc difficulties (e.g. [A8]).

More generally, we necd only thc difference bundle
f*T(Y)—‘T(X) to be oriented, if we usec the Grothendieck transfer

6.12.
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Ed
7.7 Definition If v = £ v(Y) -v(X) is A- and C- oriented,

we put

0 ¢},

a(f) = 6,1 € §X
If also X and Y are oriented as before, and the dif ference bundle
v is oriented according to 6.13, it is not difficult to prove
7.8 a(x) = £ a(Y) u a(e),
and that &4(Y) is invertible in {Y°, C}, so that in this case
4(f) can be determined from this formula.

In the same way as for 7.6, we obtain

7.9 Theorem £3(a(e) v o) = 6,888 (B:ix¥ > a). 111

Again, supposc we have a fibre bundle ®:E - B as in the
context of the Grothendieck bundle transfer 6.21, and let T be
the bundle of tangents along the fibres. Formally, the situation
is exactly that of 7.9. Suppose -7T is A- and G- oriented.
7:10_Definition  We put &(x) = 6_1 < {E°, c}.

7.11  Theorem xg(é(w) U 6,0) = e*xga (a:E0 - A). 11]

Thus if 6, is mono, and we know ﬂg and 4(x), we can compute
3. It is this case that will concern us.

One could, of course, derive Riemann-Roch-type theorems for
homology and cap products, along the same lines. There are
obvious advantages, however, in arranging the computations so

that they only involve cohomology and cup products.
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$8. Characteristic cobordism classes

Given a complex vector bundle & over a CW-complex B,
we shall define natural characteristic classcs of &, called
the Chern cobordism classes of &, taking values in g*(BO).
(Recall that B0 - B/#, and that all cohomology is taken reduced.)
Similarly we obtain Whitney classes in the real case, and an
Euler class. For the Chern cobordism classes, this has been
done by Conner and Floyd, under the restriction that B is finite,
Now that we have g*( ) defined satisfactorily for arbitrary
CW-complexes, this restriction is irrelevant; also we may
parallel Borel's approach [B2] and work only with the universal
bundle over Bg(n), thus guaranteeing naturality. Finally, we
show that our definition agrees with that of Conner and Floyd.
The importance of these classes in g*(Bg(n)O) and g*(Bg(n)O)
is that they pick out canonical elements, which makes more
precise investigations possible, as we shall see in VI. Further,
we shall find in §9 some geometric properties of these classes.
For any honest vector bundle & over B, there is a canonical
inclusion of BO in the Thom complex BE, as the zero section
(apart from base point). In particular, we have Bg(1)0 c My(1), etec.

8.1 Definition The first universal Chern cobordism class

Ci € QQ(BQ(1)O) is the composite Bg(1)0 c MU(1) - My.

The first universal Stiefel-Whitney cobordism class Wi € N'(B0(1)°)
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is the composite B0(1)" < MO(1) - MQ.

The n th universal Euler cobordism class X € {ng(n)o, ugo}™

is the composite B5Q(n)° c M5Q(n) - MSQ.

In ecach casec, thz sccond map of spectra is the classifying
map of a Thom spectrum.

Thesc are our initial characteristic classes, from which
we shall construct the others. We do this by using the

fundamental classes (seec 5.10) 0q:MQ - K(Z2) and o :MU - K(2),

9]

“wA

observing that they induce ring homomorphisms from cobordism to
ordinary cohomology, and using the results of Borel [B2].

Denote by T(n) the usual maximal torus of diagonal
matrices in U(n), and Q(n) the diagonal subgroup of O(n). Then
T(n) 2 (1) x T(1) x ... x T(1), and we may therefore take
BT(n) = BT(1) x BT(1) x ... x BT(1), and similarly for Q(n).
Define the cobordism classes S, € gz(Bg(n)o) (1 £1i <€ n) induced
from C1 € 22(B$(1)0) = EZ(BQ(1)0) by projection BT(n) - BL(1)
to the i th factor; similarly we obtain T, € §1(Bg(n)0).

In cohomology we have the corresponding cohomology classes
s, and ti’ and by Borel we have

1
£
8.2 H (B:];(n)o; g) = §[81, 32, es ey Sn],

*
B (Ba(n)"; Za) = Zalts, ta, .ou, t.],

graded polynomial rings.

&
_8_03 Leln.m.a (a) g (Bg(n)o) = g[si, 82, ¢ ey Sn},\y aIld OU °Si =

S,

1
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{v) g*i(Bg(n)O) = N[Ts, T2y ..., Tn]", and Oy °T; = t,.

in each case, completion N is with respect towthe skeleton
topology (see IV), which here is the augmentation ideal
generated by the Si or the Ti’ and its powers.

froof We see from 8.1 that Oy °C1 = c1, the first cohomology

Chern class, from [B2] or [H1], and hence Oy °8; = 8- (We may

)

take the inclusion BU(1) < MU(1) as inclusion of a hyperplane in
Pw(g).) By IV we have a spectral sequence with Ez term
2% = #2(8r(n)% uY), where we write U% = U__. Milnor has
shown that E is a graded polynomial ring over Z, with one
generator in each even negative codegree, and in particular is
free abelian [M1); hence by 8.2 all the differentials vanish.
Therefore the derived term REw vanishes, and the spectral secquence
converges (see IV; this is a fourth quadrant spectral sequence)
to E_, associated to a complete Hausdorff filtration of
g*(Bg(n)o). The homomorphism induced by o appears here as an
edge homomorphism gp(Bg(n)o) - Eg’o. Sincg Oy ©S; = s;, and the
spectral sequence has products and U-module s;}ucture, g*(Bg(n)o)
anust be as stated.

Similarly for BQ(n), except that we have to invoke the
fact (compare [C5]) that again the differentials vanish, because
as we shall see in VI, MO is a graded Eilenberg-MacLane

spectrum. J]]
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Still following Borel, we consider the map p:BT(n) - BU(n)
Induced by inclusion T(n) < U(n).
2.4 Lemma (a) Inclusion induces the monomorphism
:¢:g*(Bg(n)o) - g*(Bg(n)o), whose image is the symmetric
subalgebra of g*(Bg(n)O) = Uls1, 82, ..., Sn]A.
{b) Inclusion Q(n) < QO(n) induces the monomorphism
:*:g*(Bg(n)o) - g*(Bg(n)o), whose image is the symmetric
subalgebra of E*(B@(n)o) = g[Ti, T2y eeoy Tn]A.
Zroof The symmetric group G of permutations of n objects acts
on T(n) by permuting the factors, and hence also on BT(n).
Jowever, each permutation can be expressed as conjugation by an
element of U(n), which is path connected. It follows that G acts
on 2*(B$(n)0) = Q[Si, Sy eees Sn]A by permuting the S;, and
that the image of p* is contained in the symmetric subalgebra of
2[81, coey Sn]A. Consideration of the spectral sequences for
g*(Bg(n)O) and g*(Bg(n)o) and of the map between them induced by
p shows that p* must be mono and its image the whole of the
symmetric subalgebra, since H*(Bg(n)o) = zles, c2, ..., cn] and
9*H$(Bg(n)0) is the symmetric subalgebra of Z[si, sz, ..., sn].

Similarly for BQ(n). ]]]

The situation is therefore exactly as we would expect from

that in cohomology, apart from the necd for completion. We can

therefore proceed.
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8.5 Definition  We define the universal Chern cobordism

cizsses O; € ?Y(Bu(n)®) (1 <1 < n) so that P C; is the i th
zlementary symmetric function of the Sj‘

¥z define the universal Stiefel-Whitney cobordism classes

i, < El(Bg(n)O) so that pﬁWi is the i th elementary symmetric
fanction of the Ti'

This definition is permitted by 8.L.

Ismark We can now complement 8.1.
5.6 c, € U°%(8U(n)?) is the composite BU(n)" c MU(n) - MU.

W, € En(Bg(n)o) is the composite Bg(n)0 c MO(n) - MQ.
We are ready for the main thecorcm.

2,7 Theorem

% 0 # o
{a) U (BU(n) ) = UlCs, Cz, ..., Cn]"; N (Bg(n)o) = Nlws, ‘Nz,...,Wn]A.
{v) OQOC:’L = ¢y 09° W= w,.
{c) 1Inclusion U(n) < U(n + 1) induccs the homomorphism
I__I(BLJ,(H +1) ) = _[_:I[C:I-; sy Cn+1] - E (B,U.(n)) = E__][Ciy cooy Cn]A,
¥nich takes Ci to Ci for 1 € 1 € n, and Cn+1 to 0. Similarly
for O0(n) € O(n + 1).
(8) By (c), we may define C; € gzi(BgO) as the inverse limit of

the elements C; € gzl(Bg(r)o) (r

\%

i). Similarly W, € 151(}390).
i %

(¢) v (3y®) = ulCs, Cop +...1; W(BQY) = WM, T2, ...0%.

(f) Inclusion U(m) x U(n) € U(m + n) induces the homomorphism

v (8u(m + )% - U ({BU(m) x BY(=)}?)

i
2[01, 02, e ey C

!
nan) 2 U[Ci @1, Ca® 1, .., € ®1,18C1,..,10C, 1"
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in which
CiN_)Ci®1+Ci—1®oi+ci-2®02+-oo+1®oi’
with the convention that C, = 0 in g“(Bg(r)O) if j > r.

J
Similarly for O(m) x Q(n) < O(m + n).

Proof We give only the unitary proofs, as the orthogonal

proofs arc similar. By 8.L4, g*(Bg(n)o) is isomorphic by p*

to the symmetric subalgebra of g[Si, S22y eeey Sn]A, which is

known (Newton?) to be a completed graded polynomial algebra on

the elecments p*Ci. We have (a). Since C, and c, are both

defined in terms of elementary symmetric functions, (b) follows
from 8.3. The inclusion T(n) c T(n + 1) induces a homomorphism
taking S, to S, (1 £1i<n) and S,,4 to 0, clearly. Hence (e),

by 8.4 and 8.5. By Milnor's lemma (sece IV) E*(Bgo) = lim g$(Bg(n)0),
since we have here a sequence of epimorphisms; hence (d) and (e).

In (f), we need only work with maximal tori, T(m) x T(n) = T(m + n),
by 8.4. For these, we have S, ~* 8, ® 1 (if 1 <1 <m) or

S, ~1e@8;  (ifm<is<ms+ n). The result follows from 8.5. ]]]

b E5
8.8 Corollary The comultiplications in U (Bgo) and N (BQO)
are given by

C; 0y ®1 +C;_, ®Ci +Cy_

1 2

W ~ W :“J. TI’!‘T y! . s e “‘ s ®
VoW et + W oW + W 5,0 W+ +1emw,. 1]

@ Ca + eo0 + 1 ® Ci;

8.9 Definition Given a virtual vector bundle & over the

CW-complex X, its Stiefel-Thitney cobordism characteristic classes
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=
ﬁi(a) € yi(xo) are defined by wi(a) = £, (recall that by
definition 1.3 we have &:X - BQ). Similarly, Ci(E) € QZI(XO)
is defined, if & is factored through BU.
8.10 Corollary Let € and m be virtual vector bundles over X.
= 1
Then Wk(é + M) = 2i+j=kNi(€).Wj(n). 111

Finally we give an alternativc description of the Chern

(and equally of the Stiefel-Whitney) cobordism classes, which is
the version adopted by Conner and Floyd.

Suppose & is an honest complex vector bundle over the
finite-dimensional CW-complex ¥, with complex fibre dimension n.
Let Y be the total space of thc associated projective bundle
with fibre Pn_1(g), projection ®:Y - X, and let Z be the unit
sphere bundle in £€. Then the map Z - Y is a principal Q(1)-bundle,
with Chern class C € gz(YO), say.

5
(YO) is a

* % "
8.11 _Thcoren By means of w :U (XO) - U (YO), u
n-1 ;

free {g*(XO)}-module with base {1, C, 02, vesy C
Multiplicatively, there is one relation

8.12 ¢ - ™ Nntoi(g) « P BinTCa(®) - ...+ ()P (B) = 0.
Proof We first consider the universal example m:E - B. When
we have unravelled the various definitions, we find we are to

investigate the Borel bundle [B2]

8.13  U(n)//iU(n - 1) x y(1)} - BY(n-1) x BU(1) =E 2 BY(n) = B

induced by U(n -1) x U(1) € U(n). The class C is induced by
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projection from Cy € QZ(BQ(1)O). Write

g’ (3u(n-1)") = ulcd, ¢4, ..., 4 41", by B.7. Then we know

(from the usual spectral sequence) that

. From 8.7, the homomorphism

v (&) = ule, cf, ci, ..., ¢!,

x is given by
¥, _ At e At L oo : v _ ot
nCs =Cl +C, mC; =C; + CCy_, (1 <i<n), =« C, = CCl_,4-
Eliminating the Ci yields the relation 8.12. We also note that

U(n)//{g(n-1) x G}, v (F%) is

U-free with base {1, c, 02, ooy Cn-1}

114

for the fibre F = P, _,(C)
, and therefore a freec
abelian group.

Let us now return to w:Y¥Y - X. Certainly 8.12 holds, by
naturality. We must show therc are no new relations.

Consider the Leray-Serre spectral sequences of ®:Y = X and
1:X = X, with MU as coefficicent spectrum. Let us write them as
(E,(Y)) and (E_(X)) respectively, and w*:Er(X) ~ E_(Y) for the
map induced by ®. Now %4 (X) acts trivially on g*(FO), and

Ea(X) = H (X5 2) ® U E2(Y) = H (X3 2) ® U (F7),

since these facts are true of 8.13. Now these arc graded rings,
and by means of w*, Ez(Y) is a free Ez(X)-module, with base
{1, C, 02, cees Cn-1}. Moreover, the differentials are all
derivations, and vanish on C since they do for 8.13. It follows,
by induction on r, that EP(Y) is a free Er(X)-module with base

{ 2 n-1 z

1, C, C 'y, +vey C . The spectral sequcnces converge without
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difficulty, to show that U (Y ) is a free U (X )-module with

base {1, C, ¢%, ..., ¢, 111

The dimensional restriction on X can be removed.

o

$9. Some geometric homomorphisms

We consider here two geometrically defined homomorphisms
in cobordism theory discussed by Conner and Floyd [05], and called
by them the Smith homomorphism and J. The second is of crucial
importance in the study of fixed points sets of involutions on
manifolds, as we shall see in VI. We show here that both
homomorphisms are special cases of homomorphismé already considered.

We know [C5] that g*(BGO) classifies equivariant cobordism
classes of manifolds with free smooth G-action, where G is a

Lie group (by considering the orbit spaces). Take a manifold
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¥ with free involution, representing x € gi(Bg(1)°). Its orbit
space is a singular manifold f:M - BQ(1). We take BQ(1) = P_(R).
Since M is compact, we may assume fM C Pq(g) < P_(R), for some
large q, and that f is smooth and transverse to Pq__1 in Pq.
Put N = £7'(P,_,), a submanifold of i, and g = £|N. Let
N c il be the double covering of N.
9,1 Definition The Smith homomorphism

a:m, (Bo(1)%) > 1y (0(1)°)
is defined by taking the class of f£:M - BO(1) to the class of

g:N - BO(1).

The importance of N is that the involution on M is trivial
on i - H.

By 5.9, we are here simply taking the cap product with the

class of the Thom map of the normal bundle of Pq_1 in Pq. Write

£ for the canonical line bundle over Pr’ for any r. Then clearly

- BO(1) is

this normal bundle is &, and its classifying map Pq_1

simply inclusion Po-1 c Rw.
Let us be more general. The normal bundle M of Pm-1 in

Pm+n-1 is the "hitney sum of n copies of &. Clearly m extends

over P in the obvious way. We therefore obtain two maps

m+n-1

from P to P

n+1—1 m+n—1 3 the first is inclusion of the base of the

Thom complex, and the second is the composite

Pm+n—1

4| Ul
~ Pm-1 c Pm+n—1
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.2 Lemma These two maps are homotopic. Moreover, they are

equivariantly homotopic with respect to the obvious action of

0(m) x Q0(n) on the pair (P

m+n-1? Pm_1)’ if we also make Q(Il)

transform the n copies of & in 7.
. . Yl _
Proof This becomes clear if we note that P = , =P ... /P .,
and work with the two obvious inclusion maps
R™ EP c g? X BP x BP omitting either factor B?; these maps are

Py

plainly equivariantly homotopic with respect to the actions of
o(n) x o(n). 111
In our case, the required map Pq - MO(1) is homotopic to
the composite Pq c P_=BQ(1) < MQ(1). The inclusion
BO(1) < MQ(1) gives Wi, by definition 8.1.
5 _ Lemma The Smith homomorphism A is given by Ax = x n We. J]]

The bordism J-homomorphism

Take a smooth vector bundle & over a manifold x! with
fibre dimension nj; such are classified up to bordism by

N, (B0(n)®). Its unit sphere bundle Y ™~

when equipped with the
antipodal involution represents an element X §i+n_1(Bg(1)o).

9.4 Definition The bordism J-homomorphism

. 0 0
I, N, (BO(n) ") - N, o 4 (BO(1)7)
is defined by taking the class of the bundle E to x.
Now consider X as a singular manifold of Bg(n). We see

that Y is the covering singular manifold obtained by the
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construction 6.18 of the bundle transfer for the universal case,
over BO(n). Let E be a universal Q(n)Qspace, and put
BO(n) = E//0(n). Then the universal case is the Borel fibre
bundle [B2]

P, _4(R) = 0(n)//{0o(n-1) x 9(1)} - B//{Q(n-1) x 0(1)} - E//Q(n)
induced by the inclusion Q(n-1) x Q(1) < Q(n). Now
5//{0(n-1) x 0(1)} =~ BO(n-1) x BO(1), and the antipodal involution
on the sphere bundle E//Q(n-1) is classified by the projection
B0(n-1) x BO(1) - BO(1).

Let us write this Borel bundle as

2.5 P, 4(B) = o(n)//to(n-1) x 9(1)} = BQ(n-1) x BO(1) 2 BO(n).
Then we have proved

9.6 Theorem ang*(Bg(n)o) - E*(Bg(1)0) is the composite of

the transfer homomorphism Wq of 9.5 with the homomorphism

7. (§80(n-1) x B9(1)1?) - N,(B(1)?) induced by projection. ]]]
For the usual reasons, we would prefer to have multiplicative

structure available, by means of a similar homomorphism in g*.

¥or transfer homomorphisms, this can be defined, if we use the

Grothendieck form 6.21 of the bundle transfer.

9.7 Definition The cobordism J-homomorphism

7t (eo(1)®) - 7 (30(n) )

is defined as the composite of the transfer homomorphism Ty, with

the homomorphism induced by the projection BO(n-1) x BO(1) - BO(1).
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Then we have the multiplicative properties 6.2.
We shall need to compare the homomorphisms Jn for different
values of n.

9.8 Lemma Write i:BQO(n) < BQ(n + 1) for the map induced by

. . . 0
inclusion. Then J X = AJn+11*x for x e g*(Bg(n) ).
Proof This can be seen directly from the geometric definitions.

It appears as Theorem 26.4 of [C5]. 1]]

* %
9.9 Corollary TPa = 1" auw)  for o e 1 (Bo(1)?).

o

Proof 9.8, with 9.3, 9.7, and 6.2, shows that
(x, %) = <x, 1 7 (g uw, )) for all x € ;_g*(Bg(n)O). The result
follows, since we know the structure of g*(Bg(n)o), and
(b7 e.g. [05]) N, (B0(n)?).

Still using cap products, we can obtain a very precise
relation between J_ and J . Let my be the bundle induced from

m m+n
9.5 for m + n as follows:

o >BO(m+n-1) x BO(1)
l’Ni Jﬂ‘
BO(m) x BO(n)——>B0(m +n).
Write g for the composite E; - BQ(m+n-1) x BQO(1) - BQO(1), and

p:BO(m) x BQ(n) - BO(m) for the projection.

9.10 _Lemma I Px X = QU (wfx n a) for x € N, ({BO(m) x Bg(n)}o),
where the element a € g*(EQ) is induced from the Stiefel-Whitney

£
cobordism class W_ € N (Bg(n)o) by means of the maps

E; = BO(n) x BQ(1) ~ BQ(n),



- 66 -

where the first is obtained from ®; and g, and the second is
induced by @:0(n) x 0(1) - 9(n).

2roof Geometrically, E; is a bundle over BQ(m) x BQ(n) with
fibre Pm+n_1(g), containing a subbundle Ez with fibre Pm_1(g)
and projection mz, say. Given a singular manifold

X - BO(m) x BQO(n) representing x, the construction 6.18 of the
bundle transfers gives singular manifolds of E; and Ez which
yield in g*(Bg(1)0) representatives for q*%fx and J_p.x
respectively.

By 5.9 applied over X, we obtain the required formula,
where a:Es - MQ(n) - MQ is the Thom map of the normal bundle of
Bz in E;. Write & and n for the universal line and vector
bundles over BO(1) and BQ(n). Then the normal bundle of Eg in
E:s is (ﬂfn ® q*E)IEz. This time making strong use of 9.2, we
see that the Thom map we require is homotopic to the classifying
mep Ex - BO(n) of min ® q &, followed by BO(n) < MO(n). The
latter gives W , by 8.6. 111

% % *
9.11  Corollary Tap(a B U a) =p J'8 for B € N (Bg(1)0).
Proof This dual result is obtained in the same way as 9.9. ]]]

These results will enable us to carry out computations

in VI.
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Our methods so far have been applicable to general
bordism and cobordism theories. In this Chapter we
specialize to the case of the unoriented theories, with
the Thom spectrum MO as coefficient spectrum.

In principle these theories hove peen reduced to the
study of ordinary homology and cohomolégy [c5]. Everything
depends on the mein structure theorem, that MO is a
graded Eilenberg-MacLane spectrum. (#We have by now given
this assertion a precise meaning.) Therefore to obtain
better results, we must be more precise about this
structure theorem, and we must develop more efficient
methods of carrying out the necessary computations.
Various devices for doing this are introduced in .1, 32, %3,
and sb. '

In 45 we deduce the structure of MQ, and hence that
of the theories gj( ) and N,( ). This is expressed in &6
in a different form. In {7 we obtain some information on
the»primgry operations in cobordism theory.

In §8 we consider the relations between determinants
and tensor products on one hand, and the Stiefel-Whitney

cobordism characteristic classes Wi defined in V.8 on the



other. These are qguite cowplicated, and yiecld interesting
results. For example we discover a canonically defined set
of polynomial generators for the unoriented cobordism

ring N. We also determine the behaviour of two maps
dy,d45:N » H§ defined by Rokhlin [R1] on products, a problem
posed by Wall in [%W2].

In §10 we study manifolds with smooth involutions,
as in [C4],[C5], etec. This contains our main theorem,
that a smooth involution on a non-bounding n-manifold
must have a fixed-point set of dimension at least 2n/5.

To prove this we need to know about the bordism
J-homomorphism [C5]. We compute it in §9.

Throughout this Chapter we shall work over the
groundfield gz. This will be the coefficient group for
ordinary homology and cohomology unless otherwise stated.
As always, we take all homology and cohomology theories
reduced. We recall that XO is the disjoint union of X
and a base point q.

This Chapter comprises the sections:

1. Universal elements

2. The giant Steifel-Whitney class
3. The giant Steenrod square

4. Some Hopf algebras

5. The structure of the Thom spectrum MD

6. From cobordism tc cohomology



7. Primary cobordism operntions
8. Determinants
9. Computation of the bordism J-homomorphism

10, Manifolds with involution

§1. Universal elements

In this section we start to develop the intensive
algebraic machinery we require.

Let V be a finite-dimensional vector space over the.
field X, and V' the dual vector space. Then it is a
commonplace that we have the cevaluation map

V'aV -» K.
From the point of view of categories this is unsymme trical:
why not work with the dual map
1.1 XK - VaVv' ?

1.2 Definition We call the image of 1 € K under the

linear mop 1.1 the universal element u € V@V' of V or V',

1.3 Lemma Let a¢ V - K be any linear functional on V.

Then the composite VgV' - KV'=V' takes u to a € V',

Proof. This is immediate when we dualize back. ]]]
This 1is the uaiversal property of the element u.
If {ei} is a K-base for V, we have the dual base

{ei} of V' defined by eje. =6 and then

Jj ij?



1.4 U = ey@e) + €408, + a.oe + € @€,

It is often convenient to embed V and V' in larger
vector spaces A and B say; but from the knowledge of
u € A®B we can recover the subspaces V and V' from 1.3
and its dual. Alternatively the choice of any element
u € A®RB defines a duality between some subspace V of A
and some subspace V' of B. The notion of universal
element will be useful because it is easier to specify than
a homomorphism, in customary notation.

All this applies equally well to graded vector spaces
of finite type (each component vector space finite-
dimensional), except thut we must replace the ordinary
graded tensor product A®B by the complete tensor product

A8B, as below.

1.5 Definition diven graded modules A and B, their tensor

producc and complete tensor product are agein grzded

modules, defined respectively by (A@B)k = Zi+j=k Af&Bj
and (AaB)k = ni+j=k Af@Bj.

Let us topologize (A@B)k by tcking the submodules
2i<m Af®Bk-i and Zi>n Angk-i as subbasic neighbourhoods
of 0. Then the completion of (A@B)k in this topology is
the module (A@B)k, with the obvious topology.

Let us give an important example of a universal

element. Let A = K[t1,t2, oo ,tn] be a graded polynomial

ring, in which each t, has degreec -1, and B = K[a1,a2,a3”.]



a graded polynomizl ring in which ay has degree 1i.

1.6 Theorem The element u € AQB given by

_ i=n - 2 - 3
u =I5, (1 + “1ti + azti + “3ti

is the universal element of the symmetric subalgebra of

+ autg + eu)

A.

Proof. Let C = K[u1,u .o ,um], where each u, has

2’ i

degree 1, and define the algebra homomorphism B - C by
sending ai to the i th elementary symmetric function of
the uj if i< m, or to 0 if i > m. This takes u to the

element v € A§C given by

_ gi=n J=m
v=0_, I (1 + ujti)

; j:']

= H?i? (1 + squy + szu§ + oo + Snu?)’

where si is the i th elementary symmetric sum of the tk.
Hence v is the universal element of the submodule of
K[s1,sz, .o ,sn] consisting of elements of polynomial
degree < m in the 54 Now B -+ C is mono in degrees < m.
It follows that u is the universal element of
K[s1,82, .. ,sn] c A, which is well known to be the
symmetric subalgebra of A. ]]]

One can Jjuggle with universal elements in various ways.
For example, supnose the module A has a multiplication
@: ARA - A. Then the dual A' has a comultiplication

e':A' » A'QA'. The image of X € A' under ¢' is the image



of u®u under the composite

MA'RARA' =2 ARASA'®A' --i—-‘A®A'®A' > KQA'@A' ZA'QA'.

®1® x31e1
A homomorphism A - B corresponds to an element of
A'®B. In this way we shall be able to make use of universal
elements.

82, The giant Stiefel-7Whitney class

Denote by Bg(n), as usual, the classifying space for the
orthogonal group Q(n), etc., and by Q(n) the diagonal
subgroup of Q(n). The inclusion Z(n) c 0(n) induces

p: Ba(n) » Bg(n). We have by Borel [B2], as in V.8,

4 0. -

H"(B@(ﬂ) ;= /d.2[t1’t2! L) 9tn]’
. 0

H#(Bg(n)~) = ZQ[W1,W2, .o ,Wn],

graded polynomial rings, vwhere Wy is the 1 th universal
Stiefel-Yhitney class. Also, p*wi is the 1 th elementary
symmetric function of the ti’

It is of ten inconvenient to have to give a list of
elements when specifying the Stiefel-'hitney classes of a
vector bundle. If so, it is customary to introduce
formally the total Stiefel-Whitney class
w =1+ W1 Wy o+ e This is multiplicative:

w(g @ m) = w(g).w(n).

In cobordism computations it is useful to have readily

available all the Stiefel-Whitney numbers of a menifold,

and therefore 2ll the monomials in the Stiefel~Whitney
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classes w,. To display these, let gg[a1,a2, cee ] be
the graded polynomial ring in which a; has degree i, which

we writc formally as gz[a]. Then by 1.6 the element

2.4 WITR (1 4 oty + ayts + agty + oo ) @ HR(BR(n)?)Ez,[n]
yields the uwiiversal element of H*(Bg(n)o), with the help
of p*. (We frequently write simply ay instecad of 1®ai,
etc.) As n increascs to oo, we obtain a well-defined
elencat

2.2 w e 14 (80°) & z,lal.

Here the dual space to H$(BQP) fills up the whole of QQ[a]

and in effect we have identified.ge[a] with H$(Bg°).

2.3 Definition We call w € H$(Bg9) & gz[a] as in 2.2 the

universal giant Stiefel-Whitney class. If & is a vector

bundle over the space X, its giant Sticfel-"hitney class

w(g) € H*(XO} ® gz[a] is induced from w by the classifying

map X - BQ.
Consider next the product map ¢: BQ(m)xBQ(n) - BQ(m+n)
induced by the usual inclusion Q(m)x0(n) ¢ Q(m+n). In
o3 O —
cohomology put H*(BQ(m+n) ) = 52[t1,t2, .o ’tm+n]’
B 0 0 ; i
H(BQ(m)") = gQ[t', .o ,té], and H*(BQ(n) ) = ;Q[t",.. ,tA].
. : - 1 : - ]
Then ¢ induces t, - ti (for i < m), ty ot (for i > m),
and hence, in obvious notation, w » w'.w", from the form

of 2.1 We deduce:



2.4 Theorem Let £ and m be vector bundles over X. Then

their giant Stiefgl-Whitney classes multiply:
w(gon) = w(&)w(n).]1]]

Wle recover the total Stiefel-Whitney class w(E)
from w(&) by means of the ring homomorphism 52[a] > Zo
sending a, to 1 and ay to O for 1 > 2. Conversely, the

y
giant class w(E) is determined by the total class w(&).
Let ¥ gQ[a} + Zo[2'] @ gQ[a"] be the ring homomorphism
defined by
2.5 a; —»aj +al ga) +ai 580 + ..+ ajal , +al,
where QQ[a'] and gz[a"] are copies of gQ[a]. We seec
from 2.1 that this comultiplication in gg[a] is dual to
the cup product multiplication in H*(BQP), under the
duality determined by w & H$(BQP) & zZ,lal. Given a
veetor bundle &, let us write w'(E€) and w"(E) for the
copies of w(g) in H*(ng) & QQ[a'] and H*(BQP) ) gQ[a"].
2.6 Lemma Given a vector bundle & over X, its giant
Stiefel-Whitney class w(g) is characterized in terms of
its total Stiefel-Whitney class w(€) by the properties:
(2) w(E) reduces to w(E) when we put

a, = 1, a, = 0 (1 > 2),

1
(b) (lew)u(g) = z'(&) w"(8) in H5(x°) & gyla'leg,la"].

Proof. Dualizing w(&) yields a linear map

15 (BQ®) » H#(x°). Then (b) asserts that this is a ring

homomorphism, and (a) asserts that it takes the value



Wi(E) on Wy and takes 1 to 1. But H*(BQP):QZ[W1,WZ,.. 1. 111

2.7 Corollary Suppose thot the total class of the bundle

£ over X has the form

w(g) = 1T (14 )0,

where zy € Hr(j)(XO), r(j) is a power of 2, and e(j) is
any integer, positive or negative. Then the giant class of

g is given by
w(g) = mI=0 {4 4 a75‘(.J)X+ar(a) r(3) 3 .qe(),

3=1 x5
Proof. It is clear thet this element satlsfies (2) and

(b) in 2.6, since we are working modulo 2. ]]]

This result will suffice for our applications.

2.8 Definition For a smooth manifold V, we define
w(V) = E(TV), where Ty is its tangent bundle.

Then by 2.4, the gicant Stiefel-~Whitney class of its
stable normal bundle is ﬂ(V)~1.

Let us give some examples.

Projective spaces

Let Pn(K) denote n-dimensional projective space over the
skew field X, where K = R (reals), C (complex numbers),
or H (guaternions). Write 4 = dim X = 1,2, or 4
rcspectively. -
It is well known (compare e.g. [H1]) that
W(Pn(K)) = (1 + u)n+1

where H*(Pn(K)o) = §2[a 2P 0], in which a has codegree 4.
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Then 2.7 applies, and we find
2.9 (w(P (R))
i

(1 + 2,0 + a

J 2
(1 + ay

u(? (Q)) o+ a

il

———e N

3 L)

{g(Pn(ﬁ)) = (1 + ajo + aja” + a
Hypersurfaces

We shall need, for applications, the 'hypersurfaces‘of
degree (1,1)' iatroduced into cobordism theory by Milnor.
There are two recsoas for introducing tnem: firstly they
provide some useful generators for tiae varous cobordism
rings, and secondly their characteristic classes are
easily computed.

2,10 Definition. The hypersurface H  (X) in
H4

Pm(K) x Pn(K) is the subset defined by the equation
XVg + Xq¥q + 05 + eee # xp.'y'p = 0y

where p = min(m,n), and (XO’X1’ ee s xm) and (yo,y1,..,yn)
are the standard homogeneous coordinates in Pm(K) and Pn(K)
respectively.

It is a smooth submanifold of codimension d. It is
easy to sec that if m € n, the projection
Pm X Pn - Pm induces the fibre bundle

2.1 P - H - P .

n-1 m,n m
(The other projection is not a buandle projection if
m < n.)

Let us compute the giant class of Hm n(g). (The other
b
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1 0]

czses are analogous.) We take H*(Pg) = gz[a:am+
and H#(PY) = 2,[p:8™" = 0]. Then by the Kinneth
formula,
- 0 . m+1 n
B (B x P )Y) = z,[a,8: o™ =0, ™1 = 0],
Let JiHm’n c Pm X Pn be the embedding, and suppose
m< n., Write o and B also for a°j and B°j. One can
deduce from the spectral sequence of the fibration 2.11
that o 2nd B8 gencratc Hﬂ(Hg n), though we do not need this
3
fact. We have thc Gysin transfer homomorphism V.6.12
i ] ”0 o > 0
Iy * Hv(ﬂm’n) - Ha((Pm x Pn) ).
By V.6.2, with our identifications, this is a
homomorphism of H*((Pm x Pn)o)—modules, and must be in
fact multiplication by a+8, since this is the cohomology
] e o M e i
class in Pm x 2. represented by Hm,n' Moreover, a+3 is
the first charccteristic class of the normel bundle of
- K3 » A . ~ ~ g ~\ ¥ L
hm,n in P x P (compare [H1]). Then for the tangent
bundle of H (compare 9.2 in [H1]) we have
9
/ mn+1 n+1 -1
wid ) =(1 +a) (1 +8) (1 +a+ B) &

m,n
We can apply 2.7 and write down the giant class

2.12

) _ R m+1 . 2 n+
E(Hm’n(g))—{1+a1a + 2,0 +aga el {1+a1B+M26 +a3§a-}

31,

LI+ a1(a+B) + a2(a+6)2 + a3(a+(3)3 + oo
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3. . The gisat Steenrod squaie

We first remark that the mod 2 Stesnrod alged’ra A can lbe
regerded exactly as the ring {1{(;2),11 ;42)}*, with the
multiplication induced by composition. (Indscd, this 13

how we would define A.) For if n > k+1, we .have
(K(2,) ,K(2,)3F 2 (K(Z,s 2),5(2,) P = B (x(2,,0))
=22 ’ ) = Lo § L =0 = ,‘,,29 »

by a trivial application of Milnor's lemma (H.L in Swmary).

One frcquently ecoucmizes on notation by putting

Sqg =1 +ngI +Sq2+Sq3+... ’

the total Steenrod squsre. In the same way -that in 2
we introduced the gicat Steifel-Whitney class 3, we find
it useful to iatroduce. the giant Stecnrod square, which
displays the action 0? the whole Steenrod zlgetbra A.
Iteroted Stecar>d squares and Adem relations @2re difficult
to handle; therefore we shall not use them. 9ur approach
evoids this di:’ficulty.

We lean hexvily ca wo.k of Milnor [M2]. How A is a
Hopf algebra, whose dial glgebra A' is a polynomiial ring
2,[0) = 2,0, Ashgs oo 1, in which A, has degre. ol 1,

3.1 _Definition Given any spectrum X, the giant Steenrod

square Sgq: H*(X) > A' S H#(X)

is the adjoint of the action A @ H#(X) » H*(X) of .4 on H3(X).

: 0 o) Vo
For each monomizl A" = 7»(,71 7\'22... , Where

o = (p1,pz, .+ ) is a scquience of non-negative integiers,
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all but finitely many zero, we have the dual base element

SgPeA. These form Milnor's base [M2] of A. We have

3.2 Sq o =3, A" sqfa.
In particular Sqi = Sqi’o’o"“.

3,3 Theorem (a) The glant Steenrod square

gt H (X) » 2,[M] 6 H (%)
is a natural transformation, defined for all spcctra X,
(p) When X is a space, Sg is a ring homomorphism.

(¢) If X is a space, and a€ g (X), we haove

_ 2 L 8 16
Sga=a + h1a + A 07+ X3a + hug + eoe

Proof. (a) is trivial. (b) is immediate, because the
comultiplication in A, and hence the multiplication in A',
was defined to Ra@ke Sg a ring homomorphism. As for (c), we

know from [M2] that the only operations which do not
vanish on a are 1, Sq1, Sq28q1, Sq b

values are a, aa, au, as, etc. These operations are dual

Sq Sq , etc,, whose

tO 1, l," lzy 7\.3’ etCQ iJ]]

3.4 Corollary A operates effectively on the A-module
* 0

2, B (B(n)”).

£
Proof. fe have H (BQ(n)?) = z,[t,,t yt.]. since

D2
each t; has codegree 1, we can use 3.3 (p) and (c) to
evaluate Sq; in particular

_S_g.t,ltzoot —H-n (t +h1 §+7\2tu+)\31+ ooo)o

The result follows, by letting n vary]]]



il

We see from 3.3 that Sg shares with Sq the property
of being a ring homomorphism; which acecounts for the
comultiplication in A. Our approacih also elucidates the
multiplicative structure. Let Sg': H*(X) ~» gz[m']é H3( X),
etc., be other copies of Sg. We consider the composite
ring homomorphism
Sa' 8g" @ H¥(X) » Z,[0'] & Z,[A"] & BA(X),
in which Sq' acts trivially on gz[x*']. If X is a space
and t H1(X), evaluation by (3.3) (b) and (c) gives
sq' 8q" t = (t+x1't2+xét“+.,)+7\’1'(t+7x1't2+..)2+7\5(t+x1't2+..)“+..
This agrees with
2 L 8

Sgt=1%t+ K1t + Kzt + hBt + eee

if we define a ring homomorphism ge[h] - ZQ[A']®Q2[h"] by

3.5 fhy = Ay + A,
!
PLOE RS S VR VY
Eh N L L I Ay

TR T~ T I B~

By 3.3 and 3.4, we must have Sg = Sg' Sg" generally.

3.6 Theorem ¥e have

8g = 8g' 8g": H*(X) » L[] & Z,[A"] & HH(X)
if we use 3.5 to embed Z,[A] in gz[k'] ® gz[x"]. 111
Hence, in conjunction with 3.5 and 3.2, we can read
off the multiplication teble of the operations qu, and

derive Theorem 4B of [M2]. 1In particular, one can verify



~45-

tne Adem relations

-k 5% (0 < 1 < 23),

sqt s¢Y = 3, {i-2k, j+k-1-1} Sq
where {p,ql denotes the binomial coefficient, i.e. the
coefficient of tPu? in (t+u)?*?. The necessary arithmetic
is not trivial, =2nd may be found in the Appendix to
Steenrod and Epstein's book [86].

e can also treat the canonical anti-automorphism c
of the Hopf olgebra A. Define the ring homomorphism
3.1 6: Z,[n] & H#(X) » 2,[] & H*(X)
by means of Sg on H'(X), end the inclusion on gg[h].
3.8 Theorem The ring homomorphism 6 is a ring isomorphism.
For any element o € H¥*(X) we have
3,9 611 6 a) = 2, A (e(8¢°))a.
Proof. Because Sqo =1, it is easy to show that 6 is an
isomorphism. In view of 3.6, the formula 3.9 is
essentially the definition of c. ]]]

Again, we can pick out coefficients and recover
Theorem 5 of [M2].

A similar treatment can be given for the mod p

Steenrod algebra, for any odd prime p.

&, Some Hopf algebras

We work over the groundfield 7, for simplicity. We refer

2
to Milnor and Moore [M8] for the usuzl graded concepts,
such as graded module, coalgebra, and comodule. In

particular, a Hopf algebra A has, among othsr structure,
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a multiplication ARA - A and a comultiplication A - ARA.
However, it must be noted thatin our case the grading need
not be non-negative. Indeed we have two names, degree
and codegree, for the grading, each of which is minus
the other.
Suppose that A is & Hopf algebra, and that B and C
are A-modules, with actions L: A®B - B and L: ARC - C.
It is usual to moke the Z,-module BRC into a A-module
by means of the action

%B&C'%W ARARBRC = ARBRARC S T BoC,

where ¥: A - A®A is the comultiplication in A. We say
the Hopf algebra A is conneccted if it is zero in negative
codegrees and has gQ in codegree 0 (e.g. the Stecenrod
algebra).

4.1 Lemma Suppose A is a connected associative Hopf
algebra, B is a free A-module, and C is any A-module.
Then BeC is a free A-module, with A-base {b ®c.}, where

a” i

{ba} is a A-base for B, and {ci} is a Z,-base for C.

Proof. Let Ba be the submodule Aba of B generated by
ba; clearly BeC = Ea Bdgc, as A-modules. Thus we necd
consider only the case B = A. Teke a2 € A and ¢ € C,
where 2 has positive codegrce. Suppose

a =al + 1®a + 2, a'val.

Jd 4 J

Then agec = a(l1ec) - 1oac - Zj aé@agc.
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It follows by induction on the codegree of a that the
elements 1®ci span the A-module A9C. A similar proof shows
that there are no relations between the 1oc,. 111]

e remark that a module action L: A3B - B can be
dualized in various ways (e.g. §g).‘ In particular,
L': 3' - A'@B' is a coaction of the dual coalgebra A' on
B'.

4.2 Defianition The invariant pert of the comodule B' is

the set of all clements X € B' such that L'x =1 ® x.

The invariant part is dual to the quotient module
B @, gz.

Left A-module coalgebras (sec 4.2 of [M8]), where
A is the Steenrod algebra, are important in cobordism
theory. If M is a connected left A-module coalgebra,
there are cenonical homomorphisms of left A-module
coalgebras i: ..—=» M and ®: M - M ®p 52.

e write C = M ®, % a coalgebra with trivial

.~\2’
A-modulc action. We have the following wierd structure
theorem, part of which is well known (sece L.4 of [M8]).

.3 Theorem Lct M be o connected left A-module

commutative associative coalgebra, where A is the

Steenrod algebroe. Suppose i: A - i is mono. Then the

structure splits, in the scinse thot the exact sequence

of coalgebras
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.4 0> A2 H2C=0

is isomorphic to the split-exact sequence of coalgebras
0+A->AgC~-»C=-.0.

In particular we have an isomornhism M 2 A ® C of left

A-module coalgebras, and M is a free A-module.

Proof Let {cj} be a Z,-base for C, and let f£: C - M be

~2
any gQ—module homomorphism such thet =f = 1. #We first
show that {fcj} is a2 free A-base for M.

Let Zj ajfcj = 0 be any relation between the fcj.
e consider the homomorphism (m31)¥: M - NgM -» CM of
coalgebras. Then (W31)¢(Zjajfcj) = Zj cj®iaj 4 sooo
Let r be the highest codcgree of any cj such that aj A 03
then picking out the terms ia Col having codegree r in C
gives a contradiction. Hence there are no relations.

Let B be the quotient A-modulc of I by the submodule
generated by fC: then B ®) 22 = 0, which implies that
B = 0, since B is zerc in negative codegrees. Hence we
have the A-base {fcj} of M.

In particular, 1 < 1 must be one of these base elements,
and we therefore have a A-module homomorphism g: M = A
such that g1 = 1. ‘ie assert that the composite

h = (meg)y : I;i—-*-i!-""-w}M ) I‘{t»-gf: CoA

is an isomorphism of A-modules. It follows from what we
have already proved, applied to the coalgebra CzA, thet
{hfcj} is a A-base for C®A. Hence h: ¥ 2 CgA.
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Further, h will be an isomorphism of A-module
coalgebras 1f g is a homomorphism of coalgebras. Dually,
g's A' » M' is a homomorphism of A'-comodules, which is

expressed by the commutativity of the diagram

&2—5 .iA' - g v }M'
o] L'
¥
.A.' D A.'—..‘T—é—g"‘—“Mw-T}A' ® Mv.

We should like g' to be an algebra homomorphism. Now we
have A' = gz[x1,x2,x3, .o ] as in §3. We define gy: MoA
by stipulating that g;: A' - M' is the algebra
homomorphism satisfying g;hi = g'\; for each i; it exists
because M' was assumed commutative and associative. It
remains to check that g4 is a homomorphism of A-modules,
or alternctively that L.5 commutes with g; in place of g'.
Since L', g;, and o' are algebra homomorphisms, it
suffices to check commutativity on the generators
ki € A'. This follows from thc commutativity of L.5 for
g', bccause @'hi has the form Zj Xy © xj (see the
explicit formulac 3.5). 111

Our proof of L.3 brezks dowa for right module
coalgebras over the Steenrod algebra.

It is easy to describe all the splittings of L.4 in
terms of one splitting M = A o C.
L.6 Temma The possible splittings g: M -» A of L.4 are

described in terms of onc splitting M = A ® C as follows:
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Choose any elemeants c1,c2,c3, .o in C' having
codegrees 1,3,7, ... 5, and define g': A' - ' by

g'ny = Ay o+ x§_1c1 + h%_2c2 +oeee + 151-101-1 + Cse
Proof One verifies that these choices do make L.5 commute,
and hence provide splittings. There are no more, for
suppose hi - Xy is an arbitrary splitting, and li -V
is a splitting of the above form. Suppose we have
Xy = yi for i < k; then commutativity of 4.5 shows that

L' (v - %) =10 (v - x).

Thus y, - %, lies in the invaricnt part (sec L4.2) of M',

which is C'. Hence we can change ¢, € C' to make

Y, = X « The induction proceeds. 11]
k
Tuo useful Hopf algebras

“ie shall need two Hopf elgebra structures on the graded
polynomial ring §2[a] = 52[31,a2, «« ], in which a5 has
dimension i. For «uy algebra containing

52[3] ) gz[u]s

where u is an element of degree -1, defiae

4.7 f%(u) =1 +au+ azu2 + a3u3 + oeee
iy(u) = u + a1u2 + a2u3 + aBuLL + ees

and simil~rly x'(u), y"(u), etc., for copies gz[a']

and gQ[a”] of Z,[a].
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4.8 Definition The straight comultiplication

¥: Z,(a] » 2o[a']l e Z,[2"] 1is defined as the unique
algebra nhomomorphism such that
~ ° A _' Ead 1" 2
w61 Zylal 6 Zolul - Zy[a'] & Zy(a"] & Z,lul
tekes x(u) to x'(u).x"(u).

The cgrooked comultiplication is defined as the unique

algebra homomorphism ¥ gQ[a] - ge[a'] ® g2[a"] such that
¥ 1: zo[al & Zolul » z5(a'] & Zola"] & Zo[ul
takes y(u) to ¥"(y'(u)).

It is easily verified that these comultiplications
both induce Hopf algebra structures on gQ[a]. The first
is easily given explicitly, by the fomiliar formula 2.5
- 1 t it ] ] [P _ it
8y = 85 + a5 48 + 85 505 + eee + 2487 , 4 A
For obvious reasoils we shall not attempt to write down the

crooked comultiplication explicitly.

4.9 Remark It is easy to see by compariang 4.8 with §3

that the dual gQ[x] of the Steenrod algebra is a quotient
Hopf algebra of gz[a] with the crooked comultiplication,
by means of the obvious projection
p: ﬁz[a] ~+ QQ[K]

taking ay to Kk if i = Zk-1, or to 0 otherwise.

In $2 we constructed the giant Stiefel-Whitney class
W e H*(BQO) 8 52[3] as the universal eleuent of H*(BQO)o
If we apply the Thom isomorphism @: H*(BQO) = H#(MQ) we

obtain the universal element
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4.10 ew < H#(1Q) & 3,le]

of H#(MQ), and therefore a duality between H¥(MQ) and
ZQ[a]. This element will be very important in §6 and
later sections. Meanwhile, we observe that the action of

the Steenrod algebra on H*(MQ) gives rise to a comodule

structure
L.14 L': z,la]l » Z,[2] @ gQ[a]

on Z,[a].

L.12 Lemma The coaction L.11 may be expressed as the

composite

.Z\.2[a] "“‘T"“%Z.z[a] @ &2[31 ‘5"@“1").&2[7\] @ .Zv.z[a]s

where ¥ is the crooked comultiplication, and p is given in
L.9.

Proof We consider the restriction of &w to MQ(n)ciO(n).
The inclusion BQ(n) c MQ(n) embeds H*(MQ(n)) in

H*(Bg(n)o) = gQ[t1,t2, .o ,tn] as the idezl generated by
t1t2 oo tn’ and ®w restricts to the element in

H#(8g(n)") ¢ z,lal

, i=n 12 L o 43 L _ pi=a
Li13 Ty (ti + ety + eyt 4 agty + - ) = ;- y(ti)°

Applying the giant Steenrod square Sg, with the help of 3.3,
yields

i=n a _ i= 2 Ll. 8
Wiy v(8a b)) = I29 vty + Mg + Aptf + agt] + o).

The result follows. ]]]
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5. __The structure of the Thom spectrum MO

Let us write M = H¥(MQ). Then M is a A-module, where A is
the Steenrod algebra. Further, M is a left A-module
coalgebra, by means of the map ¢: MOAMQO - MO provided by
V.e1.7 and V.1.10. In §4 we gave the universal element
weMsS ge[a]. The structure of M is well known:

5.1 Theorem M is a free A-module. Further, there exists
an isomorphism M 2 A ® C of left A-module coalgebdbras,
where C has trivial A-structure, and the dual algebra C'
of C 1s a graded polynomial algebra getbz’bu'b5’b6’b8’ oo ]
with one generator b1 in each degree not of the form 2k-1.
Proof. It is easy to show thet 4.3 applies. Instead we
shall give a high-speed version of Liulevicius's proof
[12]. The inclusion B@(n) ¢ ¥MQ(n) induces the inclusion

H#(MQ(n)) < B5(BR(R)7) = Zylt .ty v bl

The restriction to MQ(n) of the universal element dw of

M yields the element (see L4.13)

b, 0
u = n (1:1%1 i+a2t 3t . ) e H*(Bg(n)") & gg[a].
Define the subgroup B of M by specifying its universal
element velNé gQ[a], whose restriction to MQ(n) for
each n gives

Ya T T (¢ 0g ¢ ] e bgt 1) < (o) )6yt -
Then by 3.3
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n

-S=-g. v = Hi {ti + l t. + 7\. tLI. ti‘l‘..)B‘l‘m(ti‘P'o)?"o. }

4 oty + oot b2(t1+l

1

. +3 L 5
i (ti +oaty o+ ety o+ aSti + auti + 0o )

o R

IR

if we define the isomorphism gg[a] ZQ[K] ® gg[b2.bu,b5,"]

of algebras so that the formal identity holds:

2 3 n _ 2
+ a,0” + a36 + oo = 0 + 116 +126”+h 68+..

5.2 6 + a16
3

>
+ Dy(0n,6%4n,0M4. )7

+ bu(6+l162+h264+..)5

2+..)6+...

+ b5(6+h16
It follows that Sg v = u. The interpretation of this
equation in universal elements is that a gg-base of B is
a A-base ofM, and that we have split the coalgebra
structure of M. (We have used essentially the same
A-base as Thom [T41].) Also

C' = B' = &2[b2’bu,b5yog ]- ]J]
This is the main algebraic result on M. As in [T1]

we c&duce geometric properties of the spectrum MJ.

5.3 Theorem We have N 2 x,(NQ) = gz[bz,bu,b5,.. 1.

The Thom spectrum M0 has the homotopy type of the graded
Eilenberg-MacLane spectrum K(N). Moreover we can find
e homotopy eguivalence MQ = K(N) such that ¢: MOAMQO - MQ

corresponds to the map K(ﬁ)AK(g) -+ K(N) induced by the
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-

multiplicction N x

un=
"=

Proof By 5.1 chcose a A-base {xa} for M. For ezch a
tcke @ spectrum Ka = SnK(QQ), where 1 is the degree of

a; thell we have o mep x,:MQ -+ K . Their product

x:MQ » I K, = K induces c. isomorphism M = H*(MQ)=H*(K),
since {xa} is o A-basc for M. As in [T1], there is o
homology with odd torsion coefficients, aid we con apply
the Whitehead theorem to deduce that x is a homotopy
ccuivelence (XK and MQ are highly co.iected). If we chose
the A-base compatible with the coalgebr: structure of M

(possible by 5.1), thc map @:MOAMQ - MQ is i..duced by

—

N x N- N. Als>, 5.1 gives the structure of ¥ 2 x, (:Q). ]]]

Whet we are rerlly after is stotements about the
bordism and cobordism theories N, and N#*.

5.4 Theorem There exist pairs of non-coacnical actural

eguivalelices

N.(X) » H(X) 6 ¥ ond N¥X) » H¥(X) 8 ¥
thot respect 2ll the product structures (.iomely cup, cop,
slant, «nd Kronecker products, and N-module structures).
Proof We select by 5.3 o« homotopy equivaleiice
MO = K(N) such thot ¢ : MOAMQ - MQ correspoiads to the
coefficient homomorphism K(N)AK(N) - K(¥) iaduced by
multiplication N x N - N. A11 the stated products cre
induced by ¢. 11]

N.B. There is no cauonical homotopy equivalelice
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MQ =~ K(g) in 5.3, and heuce the equivalences in 5.4 are
not ccnoniccl. The permissible variation of the choice
of the homotopy cquivaleunce HQ = K(E) so as to respect
products is mersurcd by 4.6. Thus there arc many choices.
From the usucl Kinneth formula we deduce:
5eH Corollary For any spectra X and Y we have gcanonically
g*(xAy) ~ N (X) Oy N (Y) and N#(XAY) » N*(X) &y N*(Y). 111

Theorem 5.4 disgoses of o large part of the theory
of N, and E*' However, gquite cpart from cesthetic
considerations, the non-uniqueness of the equivalences in
5.4 is not ccceptable. Trouasfer homomorphisms are not
catered for, and neither are the cobordism Stiefel-
Whitney classes we introduced in V,.8,9. (We shall see in

$8 th-t W1 does not correspond to w, ® 1 under any of the

1
equivealences in 5.4) We therefore formulate our results

in cn iavericnt manner.

5:6 _Theorem We have cononicclly N = HomA(M,QQ), and
canonical natural equivalences

N, (X) = HomA(H*(X)QM, ;2) and N#(X) = HomA(M, H#(X))
for any finite spectrum . The second is valid for all
spectra X. The product structurces comc from the
coolgebra structure o.. M.
Proof. By definition and 5.3 we have

m#(x) = {X,M0}* = {X,K(N)}* and g*(X)=iz°,XAM,q}*s {27, XAK(N) ¥
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We know that XAK(Q) is again a graded Eileaberg spectrum
(sec Summary, M.20, or we could use the algebrcic
counterpart L4.1). 111

This theorem sheds more light o:1 how the equivalences
in 5.4 depend oa the choice of the splitting of M.

We con remove the finiteness restriction in 5.6 if
we agrce to toke only those homomorphisms H#(X)oM - Z,
that factor through H* (Y) © M, for some finite
subspectrun Y of X. For we have §$(X) = lim, N,(Y), in
commonl with 2ll homology theoriecs.

86. From cobordism to cohomology

Ia $5 we elucidated the structure of the cohomology

theory g*. In this scction we express its structure i.. a
form suitable for the computation of transfer homomorphisms.
This will involve the machinery of universal cleme:nrts,

ginnt Stiefel-Whitiacy classes, giant Steearod squores, cete.,
which we hoave developed in previous sections. (From now

0a we coacentrate oa g* rather than E*’ mainly beccuse it
hos cup products. )

We fix ctteation on the canonical aatural equivaleice

5.6
6.1 N#(X) » Hom, (4, H*(X)).

We have the universal clement 4.10 &w e H*(MQ)S gQ[a],

where gz[a], as usual, stands for the graded polyiomial
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algebra 52[31,a2,a3, .« ] with a generctor a; in degrec
i for each 1 > 0. Thec elcment @y establishes o duality
between H*(HQ) and gz[a]. We use this duality to
rewrite 6.1 in the form
6.2 ¥+ (x) € 1%(x) 6 Zylal.
To decide which elemcuts of H%(X) & gQ[a] are in N#(X),
we must express differe:.itly the A-module structures of
H#(X) and M. To this ead, we have the giant Steearod
square 3.1

Sg ¢ H*(X) —— &2[13 6 H*(X),
and the dual ccactioa 4.11 on QQ[Q] dual to the A-action

on M

L':gQ[a] agQ[x] o ge[a].

We sholl also write H¥(X) & ZQ[a] more succinctly as
H*(X;gg[a]). Then what we arc doing in 6.2 is to apply
the map of coefficient spectra dw: MQ - K(Z,[a]). We
extend the giant Stecirod square Sg and the coaction L'
to ring homomorphisms

B+ (X3Z5[2]) =~——2Z5[0] & Hx(X;2,[a])
by making Sg act trivially on Z,[a] aad L' act trivially
on H#(X).

6.3 Thecorecm The giaut class dw:MO - K(gz[a]) induces a

multiplicctive natural troisformation

Que : N#(X) —— H¥(X;53,[a]),



-29-

which embeds Q*X as the subalgehra of elements
X € H*(X;gz[a]) satisfying Sq x =1L' x. 111

This is the description of g*(X) most couveaient
for our computationis.

We have the canonically defined cobordism Stiefel-
Whit:iey classcs Wi.
6.4 Lemma In H*(BQ(1)O' 2La]) we have
o W1 ) 2 D L )

Proof. By definition V.8.1. W1 is the class of the

hitd
=y

inclusion 39(1)0 c 10(1). We can rend off the auswer
from L.13, by putting = = 1. 11]
6.5 Corollary I H*(Bg(n)o;g [2]) we have

£2 3 .
due Ty = by o+ oty o+ aztl + “Bti + eee 11]

By a formidable computoation, oae can iow work out
@W ° W..
== i

Troasfer homomorphisms

A troansfer homomorphism i:i ordinary cohomology extends
trivially to ocne in H#( ;nga]). If we also have a

corrcsponding transfer homomorphism i N*, we can use

@w oand the Riemaomn-Roch theorems of V.7 to compare them.
Any smooth ma:nifold V heas o canonical MO-orientation,

which corresponds by V.L4.7 to an oriextation: of its

stable normal bundle —t, where T is the tange:nt bundle.

Also, aiuy vector bundle o over X is canonically oriented



by its classifying mep y MO, defined in V.1.10.

We intend to apply the Riemaiii-Roch theorems of V.7
to the multiplicative naturcl transformation

Qwo s % He ( ;ge[a]).

To do this we need to compute Z(V) for o manifold V,
cnd 8(wx) for a fibre bundle of the type considered in
V.6.20, etc. For any virtual vector buadle a over X, the
classifying naps XO - BO cnd Xa—ﬁaMg induce the commutative

dicgroem of Thom isomorphisms i:. ordinary cohomology:

B (MQ;Z,[2]) ———— H#(x%;2,[2])
=T o =To
0 0
H#(BO™;Zo[2]) ————— H*(X";2,[2]).

From this we deducc thut dweu e H*(Xa;gz[a]) correspo:ds
under ® to the giant Stiefel-Whitney class 2.3 w(a).
If we now consider the definitions Ve.7.5 cid Ve7.7 of
A(V) aud A(x) we finds
6.6 Lemna With respect to the transformetion
gwo s » Hi( 32,0a])
(a) For any smooth manifold V we have ﬁ(V):ﬂ(V)"1,
(b) For any fibre bundle ® as in V.6.20 we have
a(x) = ﬂ(T)-1, where T is the buudle of tangents
clong the fibres.
(c¢) 1If oY desotes the cobordism Thom isomorphism

ol : g*(XO)

swoolx = o((ewex).w(a))e 1]]

R

N#(x*), and x € é*(XO), we have
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Genercotors for Ne.

By 6.3, duwe : N - gz[a] embeds N as the invariant
subalgebra of 52[a] with respect to the coactioxn L4.11.

In the proof of 5.1 we exXpressed gz[a] as a teuasor
product algebra gQ[b] ® gz[x] by means of the identity
5.2; iun particular we observe that uinder this isomorphism

b

; = a; + lower terms. The image of Ze[b] is just
@ﬂ°g. It is an algebraic triviality that if we are given
an i-manifold Mi for each i not of the form Zk-1, their
classes tMi] in E form a system of polynomial geinerators
if and only if a, appears in ¢ﬂ°[Mi] with non-zero
coefficient for each 1.

Let us compute @y © [V] for o n-manifold V. This
cair be done by cousidering the tro:iisfer homomorphisms
V.6.3 induced by the wmap f:V -» P, where P is a point.

In N, we have [V] = f*fhi € N, where i € Q*(PO) is the
fundame:ital class of P. By epplying the Riemann-Roch
theorem V,7.6 cnd V.6.2 (e), we obtain

ewe [v] = {z, a(v)y,
where z is the homology fundame:ntal class of V. Finally
we substitute from 6.6.

6.7 _Lemma For cuy n-menifold V, whose class in N is

[V], we have
oy o [V] = (z, w(M™) e g,lal,
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wherc z 1s the fundamentel homology class of V. 'We may

take [V] as oile of o system of polynomial geunerctors of N

if cnd only if o has nou-zero coefficieat in E(V)-1,

or equivalently ian w(V). 111 (Compare Thom [T1].)
In $2 we computed w(V) in various cases, to which we

now apply 6.7.

6.8 Lemma [Pn(g)] may be toke: as a generator for N in
degrece 1 if n is even; [Pn(g)] = 0 if 2 is odd.

Proof. Iin 2.9 we computed

2 a+1
ﬂ(Pn(R)) = (1 + a0 +2,0° + a3a3 + .. ),

where a geiierates H1(Pq(5)o). The coefficient of a_ is
(s141)a™, which is non-gero if n is even. If 2 is odd,
n = 2k-1 say, we hove

k

2
2 2all+ + ‘..) ’

_ i 2.6
E(Pn) = (1 + ayo” + a5 a

+ 0z
i1 which the coefficient of a™ is plainly zero.  ]]]
6.9 ILcecmma (a) Suppose m > 2,1 > 2. Then [Hm,n(g)]
mey be tokeinn as a generator for g is degree m + n - 1 if
and only if the binomicl coefficient {m,a} is non-zero
(mod 2).

(v) [H,I,H(B,)] =0 if a = 1.
Proof We computed E(Hm’n) iz 2.12. The fundamental
class of Hm,n is awkward to work with. Instead we use the

embedding jeH  _~c P x P_, and the traisfer homomornhism
M, n n

jq.' We sec that, in the notation of 2.12 cnd using information
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there and in V.§6,

- -1 _ ) -1
<Hm,n’ H(Hm,n) > - <Pm x Py (G+B)°H(Hm,n) >'
) -1 2 3
Now (a+p).w(H_ _) = {(o+p)+co, (a+B8) +a,(a+B)” + ... }.
=, 1 2
o gan ala n g3 ~ni—1 L a2, a3 -n~1
{1+u1a+u2a + o0 +eol . {1+a16+u26 +u36 teol .
The coefficieat of & in this expression is
(c+)™ = fm,n} "B, 21l the other terms beiig zeros

Heuce we have (a), by 6.7.
J=0

hos becir verified explicitly by Comner ond Floyd as Lemma

If m=1 this computation is folse. That [H1 0
14

2.2 of [C5]. In our notation their proof is os follows.

In this case we have the relations a2=0 and Bn+1=0.

Hence (1+a+B)2 =1 +a° 4 52 =1 + 62 = (1+B)2, which
caobles us to rewrite w = (1+a)2(1+6)n+1(1+a+6)‘1 as

wo= (14a+8) (148)T = (14p)™ + a(1+8)* 1 = (14p+ (a/n))R
The last expressio.. lies in H*(P1 X Pn)’ despite
appearances. By the expansion lemma 2.6 the giant Stiefel-
Whitaey class is

) = {1 + a1(B + o/1) + az(B + a/n)2 +oeee P,

formally. We require, by the same device as before, the

terms in (Q+B).ﬂ(Hm q) of vpolynomicl degrec n+l1 in a and B.
yI
But these contein the factor

(a+8).(B+a/i)" = ap™ + B.an—1.a/n = 0.

(Chis crgument requires morc justification than we have given.)]]]
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6.10 Corollary (Milnor) As a sct of polynomial

geaerators for § we nay tokes
(a) All [Pn(g)], for n even, and

s, r21, sx1. 1]]

(v) 411 [H (R)] for which m=2", n=2
Let x € E*(BQ(1)O) be the class of the singular
nonifold H1’n(g) c P1(3) x Pn(g) - Pn(g) c Pe (R) = BO(1).
These elements were used in [CL] by Conner and Floyd to
provide & gocd H-base of E*(BQ(1)O). They will recppecr
in §8. It is easily secen [CL] thot Axn =X, 10 where A
is the Smith homomorphism V.9.1, i.e. X4 =% N W1 in
view of V.9.3. We may write 6.9 (b) in the form
<x , 1) = 0 if n > 1. It follows that (x;,W))y is 1 if
= j, and 0 otherwise. This shows:

6.11 Thecorern The 1o“om1uls {Wi} in N*(BO(1)O) are the

N-linear functionnls on N, (BO(1) ) dual to the base {xi}. 1]

$7. _ Primary cobordism operations

As with any represcited functor, primary cobordism

operations arc in canoanical 1-1 correspondeince with

{110,403 *, which is ¢ groded ring under composition. In

this scction we make various remerks oa its structurc.
From 5.6 we sce that {MQ,MQ}* = HomA(M,M), where

M = H¥(MQ) as o free A-module. Thus {MQ,MQ}* is the

graded clgebra of matrices over A of a certain form.

Unfortunctely this form of the structure is not very useful,
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because it involves choosing a A-bcse for M.

A cononical approach is to moke use of the Thom
isonorphism, which is g;line&r,
72 o : w(BQ0) = wH(MQ) = {MQ,MQ}*;
this is more useful because we have from V.8.7

w+(B0°) = N & A L A B

where the Wi are the cobordism Stiefel-Whitney classes.
By meons of &, the composition product in {MQ,MQO}# induces
o pcculicr nmultiplication in g*(BQO), quite different from
the cup product multiplication. We call it the crooked
multiplicotion, on accouat of 7.5 below.

A particularly interesting subriag of E*(BQO) is the
graded polynomial algebra 52[W1,W2,W3,.. l. By v.8.8
the multiplication p:BQ x BO -+ BO induces o coalgebra
structure on QQ[W1,W2,.. ] 2nd we have the same formal
theory as for cohomology Stiefel-"7hitiey classes. In
particular, just as in §2, we take the graded polynomial
algebra 52[b] = ,z“z[b,I ,’b2,b3,.. ] as the dual algebra.

7.2 Definition The universal giant Stiefel-Whituey

cobordism choracteristic class W e g*(ng) & Z,[p] is
defined i terms of the Wi in the same woy that the
giant Stiefel-~Thitney cohomology class w was defiuned in
terus of the W Thus ¥ is the universal clement of
gz[v1f1,wﬁaz,.. 1.

Let us calculate (4w 6 1) ° W e H#(BQ")6z,[a] @ z,[v].
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7.3 Lemma We have

(ew 6 1) ° = (16 My e 74(80°) & z,la] & z,[b],

where the algebra homomorphism A: Zz[a] -~ Z [ al o Qz[b]
is defiized by the formal identity
7.l (a81) x (6) = %, (v,(8)) 1a Z,[a] & Z,[b]

Here we hove written, as in L.7
9

@»

z,00].

il

+ ® o8

L

0" + ...

xb(e) 1+ 70,6 + b262 + b36
R

(6) =06 + a,6% + 2,07 + 2z

Proof., It suffices, os usual, to consider the

restrictioﬁs to BQ(n) for fiuite u. Then W restricts
to IT _1 ‘b(T ), in the notatioa of V.8, and heice 6.5

& 6.3 show that the restriction of (dw & 1) ° ¥ is

o, x (v (t5)) = 1,(1 6 M)x_(t,).

But by 2.1 0, x (t;) is the restrictic. of w. 11]

Vie note that we almost have here the formula for
the crooked comultiplication.
[.5__Theorem Uader 7.1, @(gQ[W1,W2,.. 1) is a subalgebra
of the clgebra {MQ,NMO}* equipped with the composition
product. The dual conmultiplication on the dual §2[b] is
the crooked comultiplicotion 4.8. Ia cohomology we
hove

(g & 1) o oW = (1 & V) @w in H*(MQ) & 2Z [a] & Z [b],
where w:gz[a] - gQ[a] & gz[bj is the crocked comultiplication.

Proof. We show (¢w & 1) © ®W = (1 & ¥) ®w, from which the
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rest follows, by thc cssociativity of the crooked
comultiplication and the fidelity of @we°. By 6.6 and
7.3, We have

(Bw & 1) e ol = (8616 1)((qw ° W).(wé 1))
=(e6161)((18&MNu.(gwé1))

= (1 ® V) ®w, comparing 7.4 and 4.8. ]]]

Remork This result does anot determi..c the ring structure
of {MQ,MO}* complctely, for the composition product is
g-linear only in the first feactor.

We now have, as foreshadowed ina &4, two Hopf algebra
structures on the subgroup &2[W1’W2’°' ] of E*(ng),
hoving the same comultiplication. One multiplication is
by cup products, ond the other from compesition in
{MO,M0}* by 7.1. These are dual to the straight and
crooked comultiplications on gQ[b] respectively, defined in
4.8,

There are various standard cocbordism operations.

N-module multiplicotions For any specctrum X, N*(X) is

o N-module. Since N is commutctive, multiplication by any
elenent of N is a N-linenr cobordism operation, of degree
> 0.

Steenrod operations By 5.3 thecre exist homotopy

equivnlences MQ =~ K(N) respecting the products HOAMO - MO
and K(N)AK(H) » K(¥). The Steenrod algebra A acts
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canonically on X(N), and hence on MQ, if we choose a
homotopy equivalence MQ = K(I:_\_T) as above. We call these

cobordism operations the Steenrod operations, They have

negative degree, and are obviously N-linear. Of course they
depend decisively on the choice of MO =~ X(N), e.g. Sq8
definitely can vary, as we see from L.6.

7.5 Theoren

(a) The only N~ linear cobordism operations are the
(infinite) N-linear combinations of the Steenrod operations.
(These include the module multiplications.)

(b) Let x € §$(BQP); then by 7.1 ®x is a cobordism
operation. This operation is a derivation if and only if
X is primitive with resvect to the straight coproduct;
there are only the (infinite) N-linear combinations of those
given formally as (3 T?), for each integer r>1,

(¢) The only N-linear derivations are the (infinite)
g—linear combinations of the Steenrod operations

Sq1, Sq0’1, 0,0,1’

Sq ce
Proof To prove (a) we may work in K(E), where the assertion
is trivial.

Naturality of the Thom isomorphisms with resoect to

BO x BQ — BQ yields the commutative diagram
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0% (H0) ——— W*(1Q) oy W*(1Q)
§|® §T® Q@ 90

i
e 168 oy 1436,

An element of g*(MQ) is a derivation if and only if it
is primitive. The first assertion of (b) follows. The
primitives of g*(BQP) are easily to found from V.8.8 to
be those given; they are dual to the indecomposable quotient
of N ® Z,[p].

We deduce from (a) that to prove (c) all we have to
do is to find the primitive elements of A. These can be
read off from 3.2 (compare [M2]), as the elements dual to the
generators of A, ,A,,.. OF g2[h]. 111
Remark The previous caution notwithstanding, these

operations Sq1, Sq0’1,

... are independent of the choice of
110 ~ K(¥), as one can see from L.0.

$8. Determinants

We introduced the cobordism Stiefel-Whitney classes Wi
partly because they have geometric significance, partly
because they enable us to write canonically

g*(Bg(n)o) =N & zQ[W1,¥2,.. ,wn].
In this section we determine their behaviour under the
various standard maps involving Bg(n). Not all of them
behave as one might exvect from the situation in ordinary

cohomology. Those involving determinants are particularly



non-trivial, and give rise to interesting geometric
opverations.
We have various standard maps as follows:

Whitney sum maps

¢:BQ(m) x BQ(n) - BO(m+n), and ¢:BQ x BQ - BQ
@:M0{m) A MQ(n) - MQ(m+n), and @:MQ A MQ - Q.
(see V.1.8 and V.1.9)
Diagonal maps
A:BO(n) - BO(n) x BO(n), hence A:BQ = BQ x BQ,
A:30(n) = Bg(n)o/\ MO(n), hence A:lQ - Bgo A MO.

Determinant

det:BO(n) - BQ(1), hence det:BQ - BQ(1).

Tensor oproduct

®:BO(m) x BO(n) — BO(mn), and ®:BQ x BQ - BO.

Multivlication

w:BO(1) x BO(1) - BQ(1) (defined since (1) is abelian).
and of course many maps induced by inclusion.

We have already dealt with most of these. All the
diagonal maps do is to furnish E*(Bg(n)o) etc. with cup
products, and induce Thom isomorphisms (Chapter V). The
Whitney sum maps were treated in V.8.7 and V.8.8, and yield no
surprises. By restricting to BQ(n), etc., as in V.88, we
can reduce the study of det and ® to that of the

multiplication p« This ma» contains all the difficulty.
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The map w:BO(1) x BQ(1) - BO(1) and the diagonal
induce a commutative and associative 'Hopf algebra' structure
on.E*(Bg(1)o) over the graded groundring N. Also the
canonical antiautomorphism is the icdemtity. All these
facts follow from the easily verified assertion that
0(1) is an abelian group in which inversion is the identity.
As algebra, we have g*(BQ(1)O) =N8& 52[W1]. It remains to
find the coproduct W,°u. We see from 6.4 that W, is not
primitive.

8.1 Theorem There eXist elements ZZ’ZA’Z5’Z6’Z8”’ in N,

uniquely defined by the condition that

w3 5 6 w7 w9
P = \.’\:1+22N1 + zuﬁ1 + z5N1 + z6N1 + z8J1 + oo
(omitting terms of the Fform zk_1W§ when k is a power of 2)

is a primitive element in §$(BQ(1)O). Moreover, these

elements zi are a set of polynomial generators for E.

Proof We use dw © :g*(39(1)°) - H*(BQ(1)O) ®§2[3]=§2[w1]®52[a],
which is a homomorphism of Hopf algebras, and the fact that

w, is primitive. In the proof of 5.1 we made use of an

1
algebra isomorphism

zlal 2 z,[2] © Z5[b]

defined by the formal identity 5.2

2 3 1y _ 2 Ly 8
O + a16 + a26 + a36 + o0 = 0 + l16 + KZG + h36 + e

2 I
+b,y(0 + 1,07 4 20t ¢ LL)7

+ D) (8 + 2 8% 4 x26“ +..)5

1
2 6
+ b5(6 + 007+ L)+ L,
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with the property that ¢ w°:N & gQ[b]. If we write
2. L 8 o
L=w, + MED AW+ AWy 4 . € 52[W1] & QQ[a] and
use the above identity and 6.4 we find
5 _ 3 5 6
QweW, =L + bL7 + th + b5L + eeen

We can solve this for L:

2
L = dwoW, + c1(@g°w1) + c2(<I>1v_°W1)3 + cB(q}y_y_oW,l)LL + eany

1
where the c; are certain complicated polynomials in the bj

and therefore lie in @ﬂPE. Hence we can write
L=aw (W, + y1wf + yzwf + yBW? + ae)s
in which the y; are in E. But L is primitive. It follows
that the element
Q =W, + v+ gD+ waﬁL + e N#(Bo(1)°)
is primitive. This does not yet have the correct form,
because y7 # 0. However, sz is again primitive, and a
suitable E—linear combination of these has the required formn,
Further, such combinations account for all the primitive
elements, which is enough to show that P is unique.
Finally, if i does not have the form 2k—1 we observe
that z, involves b; with coefficient 1. 111
Remark In unitary cobordism we have a corresponding
1 is

C, ® 1 + 180, + a(C1®C1) + higher terms,

where a generates U,. It follows that this Hopf algebra

'"Hopf algebra' g*(Bg(1)°). The coproduct of C

has no non-zero primitive elements, so that the unitary

analogue of G.1 fails.
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We study the coproduct of W, ia more detail. This

1
hos the form

vy — 14 il
8.2 Y,°n = zi’j Vi, Wy ®E Wy, (yi,j € N)

8.3 Definition We defi:ie the diagonal fuunction

V. . ut vJ, so that

D(u,v) € N & gQ[u,v] by D(u,v) = zi,j 1,3

W,°n = D““ ®§ 1, 1 @EV%).
Directl§ from tge definition, by applying dwe and
using 6.4 we have:
8.4 D(u+a1u2 + 32u3 + 5131:LLL teosy v+a1v2 + a2v3+ aBVI4 +eo)
= (u+v) + 31(u+v)2 + az(u+v)3 + aB(u+v)u + ooy
in which we have suppressed the inclusion @we :N c gg[a].
Also, from the primitive element obtained in 8.1 we have:
8.5 D(u,v) + z2D(u,v)3 + zuD(u,v)5 + z5D(u,v)6 + oeee
=u + 22u3 + zuu5 + z5u6 + o0 + V + 22v3 + zuv5 + 25v6 +eoo
These formulae e:noble one to compute the elements
yi,j € E in terms of the zi or the ai, by a formidable
algebraic computation. The first few terms are:
u+v+z2(u2v + uv2) + zu(uuv + uvu)+z§(uuv+u3vz+u2v3+uv“)+ .e
Let us 1list the elcmentary propcrties of the
diagonal function.

8.6 Lemma The diagonal fuuction D has the properties:

(a) D(u’V) = D(V’u),
(b) D(u,v) =u + v + higher terms
(¢) Every term in D(u,v)except for u and v contains

uv as a factor,



(a) D(u,u) =0

(e) wu + v divides D(u,v),

(£f) D(u,D(v,w)) = D(D(u,v),w).
Also, yi,i = 0 for all i.
Proof (a), (d4), and (f) follow from the corresponding
properties of the comultiplication in

w#(80(1)°).

(c) expresscs the fact that this comultiplication has a

counit. From (d), the coefficient ¥; 4 Of utv' in D(u,v)
9

i
is zero, which with (a) proves (e). 111

It is possible to display explicit manifolds Yi 3
’
whose cobordism classes are the coefficients yi 3
’
appearing in 8.2. %We recall the hypersurface
Hm,n c Pm X Pn

from 2.10.

Some cobordism operations

8.8 Definition We define the class W,_, & N*(BQ") by

Then by 7.1 we have a cobordism operation @(Wget)

for each positive integer r. These are also bordism
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operations, since g*(X) = {ZO,XAMQ}*.

8.9 Definition We use the operation @(wge .) to define

the linear map dr:H -+ N, for each r > 1.
Geometrically we are considering the composites

0 0 .- 0,
37— MO —53 BOANQ = BO(1) "AMQ WMQAMQ Tp—)M_g.
™

We interpret db in terms of manifolds, as follows: We
represent x € N by a manifold V, and let V - P c BO(1)
be the classifying map of its orientation bundle,
factored through Pn for some large n. Suppose V is

transverse to P c Pn' Then er is represented by

n-r
the inverse image in V of P ...
Thus the operations d1 and d2 on N are those

introduced by Rokhlin [R1] and studied by Wall [wW1],
[w2]. As for the other operations, because the normal

bundle of
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P o in P is orieatable, cnd the normal bundle of P in

P is classified by the inclusiou P;

a -4 © P < BQ(1), we

hove the compositio:: laws

8.10 drd2 = dr+2’ and drd1 =0, for r =2 1.
Aquestion posed in [W2] is the behaviour of d, and d, on
products. We can now aaswer this.

8.11 _Theoren 4, and d2 are not derivotions ona Ei iastecd

1
d1(uv) = Zi,j y%,j d;u. djv and . . .
= = i J
d(uv) = 35,5 95,5 Gpque dpgv = 2y 5 Y5 5 dpu. dyv,

where the elements vy j
b

Proof. The naturclity of the Thom isomorphisms yields

€ N are those defined in 8.2.

the commutative diagraom

N*(MQ) % HI#(MQ) ég N+ (MQ)
o ]\ o6 3
1 (B0° )~ 1#(50°) &y 1¥(50),

from which we see that we have to fiand the coproduct

wider ¢* of Wdet‘ From another commutative diagram

BQ x BQ —3-t % ast — BA(1) x BQ(1)
Lo B
L
BQ 85T »BO(1)

we deduce that
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Q% Wdet = W1° det °¢
=Wﬁ;¢°(%txémﬂ
ol oa wd
= (34,5 74,5 7y & We) ° (det x det)

- Wt wd
= 21,5 91,5 Tact Oy Maet.

Hence, cnd by squaring, the required formulae. 111
Both the formulee in 8.11 coatain iufiaitely many
potenticlly non-zero terms, si:ace dzzg - Q is epi
(Theorem 1 in [W2]), and heace by 8.10 d,, is epi for
all .
Renark The Wall subalgebra W of N [(w1] [w2], is
defi::ed as the kerzel of dye 8.11 shows that Wis a
subalgebro. In the formula for d1(uv), 211 the terms
excent d1u.v and u.d1v vaaish if u and v are in g (since
y,‘,1 = 0 by 8.6), so that we recover the result that d

1
is o derivation on .
Some values of d1 and d2 are particularly easy to
find. It is clecr geometrically that
d1[P2n] = [P2n—1] =0, by 6.8,
BlPon] = [Py ol

Also that H2m,2u is orientable, which gives

d1[H2m,2n] = 0, and
d2[H2m,2n] = 0.

0.44q IS induced by the

c P, = BQ(1), so that

Further, the orieantation of Hzr
;L’

projection H2m,2n+1 - P2n+1
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d1[H2m,2n+1] = [H2m,23], and

a,[" = [HZm,2n—1] provided m #Z n.

2 m,2n+1]
By 6.10 we have here enough manifolds to generate N.

$9. Computation of the bordism J-homomornhism

In V.59 we introduced the bordism J-homomorphisns

. ( O - { \O
7,0, (30)%) » By (30(1)

defined _ © in [c4][c5] by Comicr and Floyd.
We interpreted them in terms of transfer homomorphismse.
For technical recsons we i.utroduced the correspo.ding
cobordisn J-homomorphi sis
Jn:gi(Bg(1)O) 5 gi-n+1(39(n)o>

which we defined V.9.7 in teras of transfer homomorphisnms.

They arc therefore dual to the homomorphisms Jn.
In this section we compute Jn, which of course

determines Jn’ Since it is E-liﬂear, it will be encugh

to £find Jn Wf. Further, we lose no iuformation if we
compose with p:BQ(n) » BO(n), by V.8.4. In order to

cxpress the result, we nced some nmore cobordism classes

in §5(BQ(n)°) = ¥ 6 2,[7,,T,,..,T_]. Define

Tij = “ij W1 for any distinect integers 1 and J

(1 <1, j € a), where “ij is the composite nap

byytBR(n) = BO(1) x BO(1) x .. x BO(1) - BQ(1)xBQ(1) 7 BO(1),

where the ceuntre mop is the projection of the product to its

i th and j th foactors. Algebraically,

9.1 Tij = D(Ti,Tj),
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where D is the diagonal fuactioxr defined in 8.3.

9.2 Theorem  The homomorphisn p*Jn:E*(Bg(1)O) - g*(B@(n)o)

is given by

. r r r
p::;Jﬂ- Wﬁ‘ = T1 + T2 T eee + Tn
T12 13. .T :l T12 23' -T T1T1T2_10 DT

n-1,n
for any integer r > 0.
Remork. This formula demands some explanation; gt Wf is
cpporently in the field of froctions of g*(BQ(n)O) rather
than g*(ag(n)o) itself. We con put everythiag over the
common denominator H1<J Tij' By 8.6 (b) aad (e)
(Ti+Tj)/Tij is a respectablc elemecat of g*(B@(n)o). Then
we need ocnly show that the aumerator of our fraoction has
(Ti+Tj) as o foctor. Symmetry shows this to be so.
According to V.9.7 we are co.usideri:nig the Borel
fibration of the inclusion 0(n-1) x Q(1) < 9(n), and that
induced from it by p:BQ(n) - BO(n). Thess form the
commutative diagrom of bundles
3 o(n)//0(n-1) x Q(1)—=E g w'“*‘BQ:(n)
i; 1 |

¥
O(*L)//O(a—‘l) x 0(1) —BA(n-1)xBQ(*)—>BQ(n).

We shall clso write W1, Ti’ ti’ etc, for the induced

closses in g*(EO) and HE(EO). Then by V.9.7 cnd acturality

o .
J ‘]1 - 'Kq ‘.’1c

5 r 3 1
To compute ﬂ; N1, we use the Riemann-Roch theorem V.7.11
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with respect to the natural transformation dweo:N* - H=( ;Ze[a]L

This gives
9.l awe ) W = xéH{ﬁ(ﬂt'). 2o W1,
where xéH Genotes the treonsfer in ordinary cohomology. We

H, this

have to find A(w') and the cohomology transfer KL :

will be eiough because ®w° is mono.
Now by 6.6 aA(x') = ﬂ(m)-1, where T is the bundle over
E of tangents along the fibre. Fortunotely, Borel ond

Hirzebruch have already computed w(t) in [B3]; the answer
n-1

-~
<4

)11—2

is w(T) = (1+w1) + v1(1+w1) + v2(1+w1 toeee + Vo,

1
where we write vy for the cohoumology class induced from the
i th Stiefel-‘'hit:iey cluss over Bg(n). Expressed in terms

of the ti’ this simplifies to

1= u
w(t) = I35 1+ W, + ti).
The exponsion lemma 2.6 therefore yields
AltY _ pil=n e 2 -1
9.5 a(r') = 1 {1 + u1(w1+ti) + ag(w1+ti) + oes } e

1H
b o
9.6 Lemnc H*(EO) is generated by w, and the t,, subject

It remains to find =

to the single relction
(w1 + t1)(w1 + t2) e (w1 + tn) = 0.

All the differentials ia the spectral sequence of ®' vanish.

Proof This is proved by Borel [B2]. 11]
For dimeirsional reasons, W'H wi = 0 if r < n-1. From the

] 1
spectral sequence definiticn V.6.14 of the traasfer ﬂéﬂ, we
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see that ﬂLH W?—1 = 1. Since the w% for 0 € i £ n-1
generate H*(Eo) as a gQ[t1,t2,.. ,tq]—module, aud with
our identifications ﬂ;H is a module homomorphism, these

values determine W;H completely.

Unfortunately direct substitution in 9.4 is not
practicable. We must first express wéH in o different form.
9.7 Leima The bundle map «' has canonical sections

oi:Bg(n) -+ E (1 < i< @), which induce ojw, = t;. In

terms of these, the trausfer K;H is given by
. o% Q
ﬂél o = Z;;T * (a € H*(EO)).

Hj%i (ti+tj)
Proof. The universal vector bundle over BQ(n) splits as
the Whitney sum of i line buuadles. Iaoch of these yilelds
o section o5 of the projective bundle x'. Clearly
o-‘j'fw1 = t,.
The rest is algebraic. Both xéH and 3, Hj#i (ti+tj)-1 of
ore homomorphisms of ge[t1,t2,.. ,tn]—modules, taking
valucs in the field of fracticas of ge[t1,t2,.. ,tn], which
fortunately has a0 zcro divisors. It is clear that they
.). But for any

J
a € H*(EO) there exist clements X,%,,X5se+ X € 52[t1,t2,.. ’tn]

cgree on the elements ay = Hj#i (W1+t

such thot xo = x,0, + X0, + oo + X0, With x #Z O. This
shows that the two homomorphisms coincide. ]]]
We can now substitute 9.7 2nd 9.5 in 9.4 to obtain

the theoremn.
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Proof of 9.2. We recall from L.7 the notation

y(®) = 6 + 3162 + a263 + 5136)‘L
2 ~ ad
x(6) =1 + 2,0 + 2,0" + 250

+.... L d

i

+ LK BN 4

n

We have from 6.4 and 9.5

r
1

Therefore from 9.4 and 9.7 we deduce (using x(ti+ti) =1)

r r -1 -1
o= 3y y(ti) ’Hjﬁi x(ti+tj) . (ti+tj)

A T -1
A(x'). @w ° W, = y(w1) . Hj X(W1+tj) .

o ! W
Qw © Wy

r
2y v(tg)  Myys y(ty+t,) 1
- - mr “'1
= @E ° Ei ;io Hj#i Tij
Since ®w ° is mono by 6.3, the theorem follows. ]]]

by 6.5 and 9.1.

The result 9.2 is still act coanvenient for
calculation. We need to express it in another form. First,
we note from V.9.9 thot Jan = i*Jn+1Wf+1, where
1:80(n) » BO(n#1). Also, H#(8Q°) = lim N#(BQ(n)®), uader
the homcnorphisms i#*,

9,8 Definition For any integer i, positive or negative,

we define my € g-l(BOO)

A

as the inverse limit of the

elements an?—i~1 € g“i(Bg(n)o) (which are defined for

sufficiently large n). We defiue the Laurent series m by
n(6) = 2, n;6

This Lourent series 1 contains c2ll the information

i.

gbout 2ll the homomorphisns Jt.
We can clso write the cobordism transfer homomorphism
xy A0H(ED) -+ w(Bg(a)°)
in o form very similar to that in 9.7 for the cohomology transfer,



9.9 Lemma The sections o5 of the bundle map ' induce

t

0§W1 = Ti' In terms of these, the cobordism transfer Ty

is given by

m B =30 ﬁ-—-—soif—- (B  B*(E%))
a =1 My Ty =

Proof. This is exactly parallel to that of 9.7; we have

r

two module homomornhisms that agree on the elements W1

by arrangement, and therefore generally. 111

For any m < n, V.9.11 yields the commutative diagram

w5 (BQ(1)°) ——— (=)

g ﬂ;
v oo Y o0 . 0
N#(BQ(m) ") ———> N*(Bg(n) )~—~—;——~§*(B§(k) )s
p 5

where n = m + k, p:BQ(n) - Bg(m) denotes the projection
to the first m factors, and j:BQ(k) c BQ(n) denotes the

inclusion of the last k factors. In view of 8, the class

IR ¢
a € N*(EB")
now reveals itself as

a = D(Tm+1,W1)D(T ,w1) e D(Tn,W1).

m+2
Let us write a as a power series 2 ai W%, with coefficients

: A 5 0
in N8 Z,[T 4»T . 0r o s T ] = N5(BY(k)").

We evaluate the commutativity on the element Wf. Now

jrm) (&.Wf) = J*r) (35 a Wi te)

s 1 = 250g My _poged®
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On the other hand, pj:BQ(k) — BR(m) is the constant map,
so that Wf goes to
(z, ™5y 1 e w(3(x)Y),
where z is the bordism class of a noint in Bg(m). We can
- 'Y A r ‘)1 ] K3 0 2 1 .
rewrite <?,Jﬂwf> as <?mz, Jf>. By definition, sz is the
class of the singular manifold
Py (R) © Peo = BO(1).
Hence by V.9.3
-r e T
3.2 wq> =[P ,(R)]e N
We thercfore have

9.10 ZS as1]

n-r-s+1 [Pm--r-1(3~)]'1 in g*(Bg(k)o).
To express this result in concise form, we introduce

two more power series. First, we note that it is possible

to multinly any two homogeneous Laurent series over

g*(B@(k)O) in an indeterminate 6 of codegree 1, so they

form a ring. In this ring D(Ti,e) is invertible, by 8.6,

9.11 Definition We define the Laurent series g over

E*(BQP) as the series whose restrictions to each N# (B@(n)o)
is
i:n

Hi:‘l

e/D(Ti 26) e

We also need the power series over N

942 2(8) = 1 + [Fp(R)16° + [B(R)]6" + [P¢(R)1e° + ...,

(We do not need the odd terms, because they wvanish by 6.8.)
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9,13 Theoren We have
n(e) = p(8). 2(8),

an identity of Laurent series over g*(BQP).

Proof. It is sufficient to consider the restrictions to
: S .
E“(B@(k)o). Write a(0) = zs Qg © + Then we showed in
9.10 that over g*(Bg(k)o) we have a(6).n(6) = p(e).ek.
But by the definition of a,
k K /¢ ;
o /a(0) = 8 /D(Tm+1:e)D(Tm+2:6)°° D(Tn’e),
which is the restriction of Z(6). 111
In the remainder of this scction we translate the
results on the cobordism J-homomorphisms back into
results on the bordism J-homomorphisms. At the same time

we can use the precise information to obtain better theorems.

9.14 Definition We define

J:g*(ng) ~ the graded ring of Laurent series over N

by setting Jx = <?, n(6)> , where (6) is the Laurcnt series

defined in 9.3. More directly, we have

O

- LA(1)=1-1\ 1
15 Iz = 3, <§n(i)x, 7 e

X

in which we choose for each i an integer n(i) such that
n(i) > i + 1 and x 1lifts to g*(Bg(n(i))o).

Let us recall that §$(BQP) has a multiplication induced
by ¢:BO x BO — BQ. .

9.16 Lemma I_\__T,:,(Bgo) = 1_\[[b1 ,"02,b3, ve ]

is a graded polynomial ring on generators bi of degree i,
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such that the H-universal element e I,.(BQ°) & N+(BQP)

restricts to
T +b ’]'E+ ) c Nlb b,,b L) I @N*(B’%‘)(Il) )'
I 24. . 3 s To oo .1 : i’ 7)’ —

Proof This follows from ;7.

i=n
Hi=1 (1+b Ti+b
It is inconvenient to have Laurent series here (c.g.
Jb = 0'1). We avoid them by forcing the image of J to have
degres zero.

9.17  Definition We put F = 3, N,(BQ°), so that F is an

1

ordinary ungraded polynomial ring over Z,. 'e filter F by
the subgroups F, defined by F _pi=p N.(BQP). Then we
define
J':F - N[[e]]
by linearity, from J'x = ol Jx. whencver x € gi(‘g
We now find from 9.15 that
J' =1 + [P2]e2 + [Pu]eh + [P6]66 + .00 = p(60).

9,18 Definition We normalize the homomorphism J' by

outting
J“X = p(e)—1 oJ'K.
Tiien we have arranged J"™ = 1. We can now state the
mein theorem of this scetion, in which N = ZQ[ZQ’ZQ!&5"']

as in 8.1.

9.19 Theorem J":F - N[[6]] 1s an injective ring
homomornhism. ¥urther, we can f£ind polynomial gencrators

e{ for F (i not of the form 2k—1) such that
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(a) F = Zdz[eé,ell,eé,eé,eé’o. ],

1 ] . s
(b) ep; and €554 1ie in Py,

(c) J"ei = Ziel + terms with higher powers of 0.

It follows from (b) that Fn consists of all polynomials
in the e{ with weight < n, where we assign weight i to
4 1
o3 #0d €549+
9.20 Corollary J" induces J":F~

R

N[[6]]ys where ~
denotes completion with respect to a suitable filtration of
F, and we take the O-dimensional subring of E[[e}]- 111
A direct geometric proof that J" is a ring
homomorphism would be desirable. Also a direct description
of the filtration on F determined by J".
By definition 9.18, 9.13 and 9.1L4, we have
9.21 7% = (x0T, 5(0)) (x e 1;(80°)).
It follows from the form of Z(G)'given in 9.11 that J" is
a ring homomorphism. Now g(e) is expressed in terums of the

diagonal function D(T,08) € N[[T,6]]; let us write, by 8.6,

9.22 8/D(T,6) = 1 + B,T/6 + By1°/6° + B3T3/63 Foaeee,
where By eN[[e]].

i
9.23 Lemma J"bi = By, J"zi = 2,07,

Proof It is immediate from 9.16 that J"b, = B;. The
N-linearity of J and J" = 1 yield J"zi = ziei. 11]

We must therefore study the formal power series Bi. Now
the defining relation 8.5 of D(T,8) suggests working with the

dual polynomial generators of F. Let us write
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9.2l D(T,8)/6 = 1 + T/6 + C;T/6 + C,T°/6" + 03T3/e3 ..

2+b363+..)_1 =1+ 6+ c,40+ 0262 + 0363 + eees

(1+b1e+b26
where C; < N[[6]] and ¢, € F, and we have inserted extra terms
T/6 and 6. It is immediate from 9.23 that J'c, = C;. The
point of inserting the extra term T/6 is that now C; € q for
all i, where g = Ker(N[[6]] = 2,[[6]]) is the augmentation
ideal generated by the Zs .

We now work in formal algebra, modulo q2, and replace T
in 9.24 by A6, so that A has degree 0. We have

D(16,8) = 6.(14n + G, + 2°C, + 205 + aee)s

The defining relation 8.5 for D, modulo q2, simplifies to
2:25  Zj.9 zjej § (1+x)j+1+l3+1+1 } A0, + h202 +h303 + oo = O.

Consider the quadratic equation h2+l = p. If A is one root,
the other is 91+A, and the expression (1+h)i+1+hi+1+1, being
symmetric, is a polynomial in p. loreover, we can solve this
equation in the ring ZQ[[p]], by setting

9:26 Lemma Write £ (p) = (4+A)" + A" + 1. Then

(a) fn(p) is polyaomial in p, of degree < i,
(v) f2n+1(p) = o™ + lower terms.

Proof We consider the generating function of the .
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2 [1+£, (0)] 6% =3 (1/)76% + AT0™
= 1/(1+(140)8) + 1/(1406)
= 8/(146+p06°)
= 6] 1+(64p8%) + (84p07)°+(04p6%) 7.1

n=0

We obtain the result by pickiag out the coefficient of
6. 111

We next work in the ring &2[[0]], and make the

substitutions
2
3.27 p =0,

2 L

8
u,=0+0 + O + O +oo,

A 2 2 + o4 + 08 + oo

I
=
i
Q

9.28 Definition ie define new elements e e P and

B, € g[[e]] for i > 0 by the identities
+1 T T 2 zjx3+1 e P[[c]],

s gitt
3, €0 = (c1X+c <
27»2+.. o + 23‘ zje‘-’ At 1=\I[[6]][[c]]

. k
wherc we sun over those J not of the form 2 -1.

) 2
1+ (C1K + C

™M
=
Q
]

It is immedicte from the similority between these
formulee that we still have J"e:.L = Ei for 211 i.
In the first formula of 9.28, the terms having odd

powers of O yield

i

2 3
2 ey4P " = c1k +02K + cBA

+0000’
end the terms having even powers of O yield
i+

_ J+1
oi4P = A

(c K+02h2+03h3+..)(0 +0u+o8+..)+2
(c x+c2x2+c3x3+..)x + 3z x3+1

2 e

C.;.
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. = C, . a . = Z. ce e i i ]
Thus e, g F ey and epy gt . (if i is not of

the form 2k—1). We have

9.29 Lemma F=ZQ[82’eu’e5’e6’68"' 1, J"., = 3y, and F_

i
consists of the polynomials in the e; of weight < n, if we
assign weight i to e,, and e21+1.]]]
These are almost the required generators of F. Let
m c N[[6]] be the augmentation ideal generated by 6.
9.30 Lemma For all i not of the form 2k—1, we have
i

2
E, = 20 mod (q~+m

i+1)
Proof We work mod q2, to begin with. If we substitute

9.25 into 9,28 we find

i+t _
Ei Eio =

J

z.6

; (1)t ity 4 3 zjeaxj+

Z 6J

i

J
. Z
dJ

J
. 6
j 2

If we now pick out the coefficient of oa+1, we find the resu

by 9.26. 111
Proof of 9.19 Modulo qz, we have 9.19 from 9.29 and 9.30.

i

2
2
2
2

567 1
2541 2541 2
587 {(1+) 9T ()™ S
' 2541 23 p) 2
jea FLC+0) 9 I T (W) 4
P

j 2
f23+1(o).0 + u}

We need to alter each e; (i not of the form 2k-1) to el by

1

2j+1}

]

1t

adding polynomials in the previous generators eé to cancel the

unwanted terms in J"ei, in such a way that

(a) J"ei = zi6l modulo m ¥

v T, 1 R
(b) e5; and e;. , lie in F..

There is no difficulty here. ]]]
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§10, llanifolds with involution

In this section we apply our results on the bordism
J-homomorphism to the study of smooth involutions on manifolds.
We consider particularly non-bounding n-manifolds with a smooth
involution whose fixed point sets have dimension < k. Conner
and Floyd in Theorem 27.71 of [C5] gave a highly non-constructive
proof that for k given, n could not be arbitrarily large. We
show that n< 5k/2, the best possible result.

We recall from [C5] the elementary results on the bordism
theory of manifolds with involution. Let M be a compact
n-manifold without boundary with a smooth involution w.

Let F be the fixed-point set of w. Then F is the disjoint
union of submanifolds Fi of i, where Fi has dimension i. Bach
Fi has a tubular neighbourhood Ni on which w is the antipodal
map in each fibre; the Ni may be assumed disjoint. The
classifying map of the normal bundle of Fi in M yields an
element v; € Ei(Bg(n-i)O). Let I be the cobordism group of
manifolds with involution. The main result is that the elements
v; are cobordism invariants, subject to the single relation
10.1 3, I, v; =0 in N, (8Bo(1)?),

and characterize the cobordism class of (M,w). In other words,
we have the short exact scquence (28.1) of [C5]

10.2 0 -1, »31 w (80(n-1)%)

=0 I
where J is the sum of the homomorphisms Jn—i‘

. 0
v, (30(1)%) - o,
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The cobordism class [M] is obviously a cobordism
invariant, and is expreased in terms of the vi by the

formula (24.2) of [C5]
1=n

10. [(M] = asw 25°0 Tp_g4q (
where j:BQO(n-i) - BQ(n-i+1), and q:BO(1) - Point.

I vi), in

n=
.

We combine these results and express them in terms of
the homomorphism J':F - N[[6]], introduced in 9.17, where
0
F =3 gi(ag ).

10.4 Definition We define vy € F by

= v + vV eos V
Y Vv, + 1 2+ n’

M 0
. . . P - 0]
where we include the normal invariants v; 1n g*(BQ )e
Then from 9.15 we have

10.5 Theorem The formulae 10.1 and 10.3 are combined in

either of the formulae

J'v [M]6™ + terms with higher powers of 6,

M

I"vy [M]6™ + terms with higher powers of 6.
Proof. The first follows from 9.15, 9.17, 10.1, end 10.3.
The second is equivalent ot the first by the defianition
9.18 of J". 111

10.6 Corollary If the fixed-poiat sets of the involution

on M have dimension € k, and M does not bound, then n cannot
be arbitrarily large.
Proof. This is (27.1) of [C5]. For a given k, there are

only finitely meny relevant elemeunts vy. 111
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10,7 Definition Given k, let ¢(k) be the mazimum

dimeasion of a non-bounding menifold carrying an involution
whose fixed-point sets have dimensioan € k. This exists
by 10.6.

The problem of detcermining ¢(k) is reduced by 10.5
to the computatiocn of J", which we carried out in $9,
apart from the question of 1lifting elements of g*(BQO) to
Q*(Bg(n-i)o) (which turns out to be irrelevant).

We next give some examples of menifolds with involution.
Lixamples
(a) We can give V x V the involution interchanging the
factors. The fixed-point set is the diagonal. Thus
o(n) > 2n, except possibly when n=1 or n=3.
(b) On a complex algebraic variety with real coefficients,
e.g. Hm,n(g) or Pm(g), we have the involution given by
complex conjugation. The fixed-point sets are e.g.
Hy o(B) or P (R).
(¢) Let V and W be manifolds with iavolution. We can give
V x W the product iavolutioa, w(x,y) = (wx,wy). If the
fixed-point sets in V and ¥ are F and G, the fixed-point
set in V x W is F x G. Hence ¢(n+n) > ¢(m) + o(n),
siance N has no zero divisors.
(d) Take coordinates (XO,X1,X%) on Pz(g), and involution

given by w(xo,x1,X;) = (XO,X1,—X;). The fixed-point sets
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are P, (x; = 0) and P, (xo =x, = 0). Hence ¢(1) > 2, and
by (c), o(n) > 2n.
(e) Teke coordinates (yo,y1,y2,y%,yé)‘ on Pu(g), and the
involution given by

w(yo,y1,y2,y1',yé) = (yO:.V1 9y2"'y,;,'Yé)-
The fixed-point sets are P, (y; = yé = 0) and
P1 (yo = y1 = y2 = 0)'
(f) Consider the product involution (c) on Py X Pu
obtained from the involutions (d) and (e). The hypersurface

= s ] t = .

H = HZ,M c P2 X PLL defined by xoyo + X1y1 + X1y1 0 is
taken into itself by w. The fixed-point sets of w|H are

cP. xP,.

P 0o % Py

H c P, xP

1,2 © Fq % Far By 0 0,1
Thus ¢(2) = 5, and we have, from (c) and (d4),

x P1, P, x P2, and H
10.8 o(22) = 5n, o¢(20+1) = 5n+2.
(g) More generally than (f), consider

H2i,2j c Pzi(g) X sz(g)’

vi ordina X, X . LeXY, ), ee ,x! 1 P,
with coordinates (XO, IR SV IRTINS S IFE Y ’ 1) on Py

. to. ' . W ) i< A
and (yo,y1, .o yj,y1, ,yj) on sz ie suppose i < j,

and that H = H is defined by

21,2]
10 1!
xoyo + X1y1 + ...+xiyi + x1y1 +..,.+xi:y:.L 0.
We condiser the involutions on P21 and P2j given by
w(XO,X1,.. ’ Xi,X', oo ,X:!L) = (XO,X1’.° 9 Xi'—x_;,oo ,—X:{),

w(yo’y1’oo ’ yj’y;yco ,yé) = (yo’y1’,. ,yj’_y;’.c ’_yé).

The fixed-point sets in P21 ond P are Pi and Pi-1’ and those in
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P.. are P, and P. ,.
23 J J-1

tekes H into itself, and the fixed-point sets of wl|H are

=] s - s~ |
The product involution on PZi X sz

Hi,j c Pi X Pj’ Pi X Pj—1’ Pi-1 X Pj’ and

Hi—1,j-1 c Pi—1 X Pj-1’ which have dimensions i + J - 1,
i+j-1, i+j-1, and i+j-3 respectively. H has dimension
2i+2j-1. Its cobordism class [H] is indecomposable (6.410)
if the binomisl coefficient {2i,23} # 0, i.e. {i,3} # 0.
e can choose i and j such that i+j = n and {i,3} # 0

wheinever 2 is not a power of 2.

10.9 Theorem o(2k) = 5k, and ¢(2k+1) = 5k+2.

Any smooth imnvolution on a non-boundiang n-manifold has a
fixed-point set of dimeansion at least 2n/5.

Proof  Suppose the n-manifold M has an involution with
fixed-point sets of dimeasion € k only. The correspoading
element v, of F lies in F . Let m be the ideal in g[[e]]
genercted by 6. We proved in 9.19 that J" embeds Fk in
g[[e]]/mr+1, where r = 5k/2 if k is even, or r = (5k-1)/2

if k¥ is odd. If n > r, we must have v, = 0 and [H] = 0

M
by 10.5., Our examples show that this is the best possible
result. 11]

However, we can do better with an extra hypothesis.

10.10 Theorem Any smooth involution on a2 n-manifold

whose unoriented cobordism class 1s indecomposable has a
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fixed-point set of dimension at least Z(n-1).

o™ apart from higher terms

Proof By 10.5 we have J"vM =z

and terms involving more than one z By 9.19 the

i.
generator e! must appecr in v, aind heiace v, lies in F4
n M M I
or Fl(,1 1)? and not in any smaller Fj‘ Therefore there is
2\ =
a fixed-point set with dimension #n or #(n-1) (whichever is an

integer). 111
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