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Abstract. We establish some connections between operator space the- 

ory, and the theory of selfdual modules. Every selfdual C*—module 

over a W*—algebra is a dual operator space in a canonical way. We find 

appropriate W*—versions of some results from our previous paper “A 

new approach to Hilbert C* —modules”. For instance we prove that the 

composition Y ®¢Z of correspondences Y and Z, is completely isometri- 

cally isomorphic, via a W*-homeomorphism, to the “extended Haagerup 

tensor product” of ¥ and Z. Also we can identify the (unique) pred- 

ual of this composition as the module operator space projective tensor . 

product of Z., the operator space predual of Z, and Y, the conjugate 

module of Y. This predual is also completely isometrically isomorphic 

to the module operator space projective tensor product of N,, Z and 

Y, where N, is the predual of the W*—algebra with respect to which Z 

is a C*-module. These are not true with the Banach module projective 

tensor product. 

1 Introduction 

Selfdual Hilbert C* —modules over a W*—algebra, which we shall abbreviate in 

this paper to W*—modules, were defined and developed by W. L. Paschke [1973, 

1976], with later contributions by M. A. Rieffel {1974a, 1982]. More recently, they 

have played a significant role in noncommutative topology and geometry, under 

different guises (for instance in the study of correspondences, or the basic construc- 

tion of Jones). A (right) W*—module Y over a W*—algebra M then, is a right 
C*—module over M which is selfdual. The last term means that every bounded 

right M-module map f : Y — M is of the form f(y) =< z|y >, for some z € Y. 

Selfdual modules behave almost exactly like Hilbert spaces (as opposed to gen- 

eral C*—modules); for instance there exist orthonormal bases, Gram-Schmidt, the 

Parseval identity, and a good orthogonality theory. There are several nice charac- 

terizations of W*—modules in the literature. In this paper we show how the ideas 
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of Blecher [1995] translate into the W*—module setting. Since W*—modules are 
so well behaved, and in particular have orthonormal bases, our methods do not 

yield as many new results as in the C*—module case. Indeed, after submitting and 

circulating an earlier version of this paper we received a reprint of a recent paper 

of Denizeau and Havet [1994], which contained several of our corollaries. Since our 

methods are different and give another approach to some of their results, we have 

for the most part not removed these overlaps, but indicate where they occur. 

We shall assume that the reader is familiar with the basic ideas explained in 

Blecher [1995]. In particular, Section 2 there summarizes most of the necessary 

background and notation on operator spaces and operator modules which we shall 

need. Every W*—module is a dual Banach space (Paschke [1973]), we will obtain 
versions of the results in Blecher [1995] which are compatible with the weak*- 
topology. The main difference is that the “Haagerup tensor product” is replaced 

with the “extended Haagerup tensor product” which was developed in Magajna 

[1994a] (Magajna originally called this the full Haagerup tensor product, but he 

has informed us that he has changed the name). This is the module version of 

the “weak*-Haagerup tensor product” of Blecher and Smith [1992]. The definition 

and relevant properties of the ‘extended’ Haagerup tensor product are summarised 

below in Section 2, along with other preliminaries. We also list there the connections 

between operator spaces and W*—modules (and their preduals). 

In Section 3 below we describe in operator space language the ‘composition’ of 

correspondences. For instance we prove that the composition Y®gZ of correspon- 

dences Y and Z, is completely isometrically isomorphic, via a w*-homeomorphism, 

to the extended Haagerup tensor product of Y and Z. We give another proof of 

Denizeau and Havet’s result that this composition is isometrically isomorphic, via 

the natural map, to the space CBy(Y, Z) of completely bounded module maps 

from Y to Z. In fact this is a completely isometric isomorphism. From this we 

get a useful explicit form of the predual operator space of Y®¢Z. Namely, it is 

completely isometrically isomorphic to the module operator space projective ten- 

sor product of Z,, the operator space predual of Z, and Y, the conjugate module 

of Y. Thus it is also completely isometrically isomorphic to the module operator 

space projective tensor product of N,, Z and Y, where N, is the predual of the 

W*—algebra w.r.t. which Z is a C*-module. These are not true with the Banach 

module projective tensor product. We also define a W*—module version of the 

exterior tensor product of C*—modules, and show that this may be identified com- 

pletely isometrically with CB(Y,, Z), for W*—modules Y and Z. In Section 3 we 

also prove the basic HOM-tensor relations for W*—modules, and get better results 

than in Blecher [1995]. One example of these relations, (although this one is more 

or less in Blecher [1995]), is that the bounded module maps By (Y®yZ, W) from 
a composition of correspondences Y and Z into a third W*—module W, is com- 

pletely isometrically isomorphic to Bas (Y, By (Z, W)) (where Bs are the completely 

bounded module maps - see Section 2). In Section 4 we make some remarks on 

the Eilenberg-Watts and fundamental Morita theorem for W* —module categories. 

Many of the ideas contained herein may be found in Paschke [1973, 1976], Rieffel 

(1974a], Ghez, Lima and Roberts [1985], and Denizeau and Havet [1994], and some 
of what we do below can be construed as rephrasing part of what these authors 

did in operator space language. However, it is to be hoped that the operator space 

machinery will prove rewarding, and we do obtain many new results.
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We thank Jon Kraus for several conversations, and the referee for useful com- 

ments. 

2 Preliminaries 

A dual operator space is an operator space which is completely isometric to the 

standard dual (see Blecher [1992a], Blecher and Paulsen [1991] or Effros and Ruan 
(1991a]) of some other operator space. In Blecher [1992a] the reader may find a sim- 
ple proof of the fact that a dual operator space is w*-homeomorphic and completely 

isometric to a weak*-closed subspace of B(H) (the predual of this embedding is ex- 
plicitly listed after Proposition 3.1 there). Conversely, a weak*-closed subspace of 

B(H) is a dual operator space (this is proved in Blecher [1992a] for von Neumann 
algebras, but by using this in conjunction with Corollary 2.4 there, we get it for 

any weak*-closed subspace). A w*-homeomorphism between dual spaces is a home- 

omorphism for the weak*-topologies. Similarly, a w*-isometry or w*-isomorphism 

shall mean an isometry or isomorphism which is a w*-homeomorphism. A normal 

*_-homomorphism from one W*—algebra to another is assumed to be unital, and 

will also be referred to as a normal representation. 

If Y is an operator space, and I, J are cardinal numbers, then we write Mj j(Y') 

for the set of I x J matrices whose finite submatrices have uniformly bounded norm 

(see Effros and Ruan [1988, 1990]). Such a matrix is normed by the supremum 
of the norms of its finite submatrices. We write M;(Y) = M; 1(Y),CF(Y) = 
Mra(Y), and RY(Y) = M, ;(Y). We shall write (y;)ic; and [y:]ics for typical 

elements of C}(Y) and RY (Y) respectively. Generally [-] denotes a row, and (-) a 
column. We write C;(Y") (resp. R;(Y")) for the subspace of Cy (Y) (resp. RY(Y)) 
which is the norm closure of the set of elements with only a finite number of 

nonzero entries. If Y = C then Cy (Y) = C;(Y), and we write this column Hilbert 
space as Cr. Similarly, Ry = R;(C). In Wittstock [1980], Blecher, Muhly and 
Paulsen [1994], Blecher [1995], or Magajna [1994b], and elsewhere, it is explained 
how every C*—module has a canonical operator space structure, as may be seen, for 

example, by viewing it as the 2-1 corner of the linking C*—algebra. Similarly, every 

W*—module Y over a W*—algebra M is the 2-1 corner of the linking W*-—algebra 

of 2 x 2 matrices 
a Zz 

y b ) 
forae M,yeY,z€Y,beB(Y). This linking W*—algebra may also be regarded 

as B(M ®Y) (which is defined later). Since a W*—module is thus a corner of a 
W*—algebra, it follows by duality principles that its predual is unique. If Y, is 

the Banach space predual of a W*—module Y then it inherits an operator space 

structure from Y™*, and with this operator space structure, (Y,)* = Y completely 

isometrically. Indeed, using canonical operator space identifications (see Blecher 

and Paulsen [1991] or Effros and Ruan [1991a]), we can write down the predual 
operator space explicitly as 

Y. = M, QM Y, (H 

where M, is the operator space predual of M, Y is the conjugate W*—module of Y,, 

and ®)s is the module operator space projective tensor product. For completeness 

we give the easy argument. We refer the reader to Blecher and Paulsen [1991] or 

Effros and Ruan [1991a) for the definition of the operator space projective tensor 

product; the latter contains the ‘internal’ norm formula for this space - we shall not
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need this formula explicitly here, but it is nice to know that such a formula exists. 

We recall (see Blecher [1993, inpreparation]) that if V and W are respectively left 

and right operator modules over A then V ® 4 W may be defined to be the quotient 

of the operator space projective tensor product (see Blecher and Paulsen [1991] or 

Effros and Ruan [1991a]) V ® W by the closed subspace generated by elements 

v® aw — va ® w. As in Blecher, Muhly and Paulsen [1994] it can be shown that 

the module operator space projective tensor product is associative, and it linearizes 

jointly completely bounded balanced bilinear maps. Thus by definition M, ® mY 

is a complete quotient of M, ® Y. Hence by duality, (M, um Y)* c (M. ® Y)* 

completely isometrically. However the latter space is CB(Y,M) by Blecher and 

Paulsen [1991] or Effros and Ruan [1991a], and it is straightforward that the range 

of the inclusion above consists of M-module maps. Conversely, any c.b. M-module 

map Y — M obviously defines an element of (M, ® um Y)*. This proves (1), since 

CBu(Y,M) = By (Y,M) 2 Y completely isometrically (see next paragraph and 

Blecher [1995]). More generally, if Y is a C*—module over a W*—algebra M then 

the operator space predual of the selfdual completion of Vis M, ® mY. We remark 

that the selfdual completion of a C*—module over a W*—algebra M, as defined 

to be a W*—module over M containing Y as a weak*-dense submodule, is unique 

(see Rieffel [1974a], Theorem 6.10). If T': Y — Z is a surjective isometric module 

map between W*—modules over M, then T is unitary (see Lance (1995) or Blecher 

[1995]). Also, T is a w*-homeomorphism, and the unique preduals of Y and Z are 

completely isometrically isomorphic via the module map 7. 

If Y is a right W*—module over M, and if Z is a right operator module over M 

in the sense explained in Effros and Ruan [1988] or Blecher [1995], then we write 

B(Y, Z) or By (Y, Z) for the space CBum(Y, Z) of completely bounded module maps 

Y — Z. If Z is also a C*—module over M then all bounded module maps Y — Z 

are adjointable, with norm = c¢.b. norm, so that in this case B(Y, Z) coincides with 

Bum (Y, Z) isometrically, and thus it means the traditional thing. As explained in 

Blecher [1995] for example, B(Y, Z) is an operator space. Moreover, if Z is also 

a W*—module then B(Y, Z) is a dual operator space; the operator space predual 

(which again is unique, since B(Y, Z) is a corner of the W*-algebra B(Y & Z)) is 

easily shown by an argument similar to that for ({) above, to be 

B(Y,Z), 2Y ®u Z. 2Y un Mi. ®u Z (11) 

completely isometrically. The following standard result shall be used several times 

without comment: a bounded net Ty in B(Y, Z) converges in the weak*—topology 

to T € B(Y, Z) iff it converges to T in the point weak* topology. This may be seen 

using the first 2 in (11). Indeed this =, and consequently also the net convergence 

result is true if Y is any right operator module and if Z is a dual operator module, 

by which we mean an operator module which is a dual operator space such that the 

module action is separately weak*-continuous in each variable. For such a module, 

Z, is also a module with the obvious action, and is a submodule of Z*. 

The notation B(Y, Z) for the completely bounded module maps is convenient 

for this paper, but in the case that Z is not a C*—module it is perhaps not such 

a good notation. For instance, the reader should be warned that it does disagree 

with the notation used in the last identity of Section 8 of Blecher [1995].
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Since pairs of W*—algebras answer the slice map problem affirmatively (see 

Kraus [1991]), so do pairs of W*—modules, being corners. From this we conclude 

by (Blecher [1992b], Theorem 2.5) (the part of this theorem which we are using 
here was also proved independently by Ruan) that for two W*—modules Y and Z 

we have 

Y®Z 2 (Y, ® Z,)* (tt1) 

completely isometrically and w*-homeomorphically, where ® is the operator space 

projective tensor product mentioned above, and Y®Z is the weak*-closure of Y ® Z 

in the von Neumann algebra spatial tensor product of any containing von Neumann 

algebras. This formula shows that as a dual operator space, Y ®Z is independent of 

the particular containing von Neumann algebras, and we call it the weak*-spatial 

tensor product of Y and Z. We see in Section 3 that Y®Z is also a W*—module. 

It is well known (see Effros and Ruan [1988]) that C¥(Y) = C;®Y and RY (Y) & 
R;®Y as dual operator spaces, if Y is a dual operator space. 

If {Y,} is a collection of W*—modules, then we shall write ®3Y, for their 

W*—module direct sum (called the ultraweak direct sum in Paschke [1973]). If Y 
is a W*—module then what we called C¥(Y) earlier coincides with the ultraweak 
direct sum of I copies of Y, for any cardinal I. 

We say that a submodule Z of a C*—module Y is 1-complemented if it is the 

range of a contractive idempotent module map P. It follows (see Blecher [95] for 

instance) that P is an adjointable projection in B(Y"), and that there exists another 

closed submodule W of Y which is orthogonal to Z, with Y = Z + W, so that Y 

is the internal C*—module direct sum Z & W. Thus ‘1-complemented’ is the same 

as the usual C*—module notion of a complemented submodule. We express it this 

way so as to remove the inner product from view. If Y is a W*—module then a 

1-complemented submodule is also a W*—module, by an obvious argument. The 

following well known characterization of W*—modules corresponds to Theorem 3.1 

in Blecher [1995]: 

Theorem 2.1 Suppose Y is a Banach space and a right module over a W*— 

algebra M. Then the following are equivalent 

(1) Y is a W*—module, 

(ii) There exists an index set I and contractive M-module maps ¢ : Y — CY (M) 

and ¢ : CY (M) — Y such that Y¢ = Idy, 

(iii) Y 4s isometrically module isomorphic to a I-complemented submodule of 

C¥(M) for some set I. 
In this case, the inner product on Y is < y|lz >=< ¢(y)|p(2) >, if ¢ is as in (4). 

Proof That (i) implies (ii) and (iii) is proved in Theorem 3.12 of Paschke 

[1973]. That (iii) implies (i) is a consequence of the fact mentioned above that a 

complemented submodule of a W*—module is a W*—module. That (ii) implies (iii) 

is clear. O 

Paschke proves Theorem 3.12 (Paschke [1973]) by first showing that a W*— 
module Y has an o.n.b., that is, a subset {zs}acs of ¥ which is maximal w.r.t. 

the properties 1) < T,|To > is a projection in M, and 2) < zqlxg >= 0if a # SB. 

It then follows that y = }__ Za < Zo|y > in the weak*-topology for all y € Y, once
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one establishes the Bessels and Parseval identities. We shall refer to this o.n.b. 

{4} in the sequel. The element [Zz] of RY (M) clearly has norm 1. Then we may 

take #(y) = (< Zo,y >) and P((Ma)) = >, Tame in (il) above. The reader is 

referred to Denizeau and Havet [1994] for the related, but slightly weaker, notion of 

a quasi-basis: if ¢,1) are as in (ii) above, and if {es} is the usual basis of C}'(M), 

then {1(eq)} is a quasi-basis for Y. 
Most of the following is in Paschke [1973], before Theorem 3.12 there (see also 

Ghez et al. [1985]): 

Theorem 2.2 Suppose that {Y,}ner is a collection of W*—modules over M, 

that Y is a fited W*—module over M, and that there exist contractive M module 

maps in : Yp = Y, mp: Y = Yy, with mp 04m = bpm Idy,, for all n,m. Here bpm 18 

the Kronecker delta. Then ik = my, and Y is unitarily equivalent to the W*—module 

direct sum Z @ (®¥Y,), where Z is a W*—module over M. IfY, inmn = Idy in 

the weak*-topology of B(Y), then Z = (0). 

Proof The ranges 4,(Y,) are mutually orthogonal 1-complemented submod- 

ules of Y. The sum Y_ 4,7, is a increasing net of contractive projections in B(Y), 

indexed by the finite subsets of I directed upwards by inclusion. Hence it con- 

verges in the weak*-topology in B(Y) to a contractive projection P in B(Y). Let 

Z = Ran(I — P). The obvious map Z ® (®%Y,) — Y is well defined, isometric and 

surjective (see Paschke [1973]), hence unitary. O 

We shall need the weak*-Haagerup tensor product which we introduced in 

Blecher and Smith [1992], and its module version which was developed in Magajna 

[1994a). We defined the weak*-Haagerup tensor product for dual operator spaces, 

but it has been pointed out subsequently by several authors (see particularly Effros 

and Ruan [1992], Effros, Kraus and Ruan [1993]) that it makes sense for general 

operator spaces. Indeed the module version of this tensor product was defined by 

Magajna on the class of “full operator modules”. Unfortunately, in the present 

context, Magajna’s nomenclature was bound to be confused with the usual notion 

of a full C*—module, so that we believe that he has changed the name to “strong 

operator module”. We now describe this notion. 

A subspace Y of B(H) which is right invariant under multiplication from a 

von Neumann algebra M C B(H) is called a ‘strong’ module over M if 3° ynmn 

converges strongly (or equivalently, in the weak*-topology) in B(H) to an element 

of Y, whenever [yn], € R¥(Y), and (my), € CP (M). More generally, if Y is an 

operator module over a W*~algebra M, then we say that Y is a strong operator 

module (or simply a strong module) over M if 

(i) there exists a linear completely isometry ® : Y — B(H), and a normal 

representation ¢ : M — B(H) such that ®(y - m) = ®(y)¢(m) for all y € 
Y,m € M, and 

(ii) ®(Y) is a strong module in the above sense over ¢(M). 

If (i) holds then we say that (®, ¢) is a representation of (Y, M), and Magajna proves 

that if (ii) holds for some representation then it holds for all representations, and 

that ¢ may be taken to be faithful. The class of strong modules over the scalars C 

is exactly the class of (norm closed) operator spaces. For most of the applications 

in this paper, Y will be a dual operator space. In fact ¥ will mostly be a dual 

operator module, from which it follows (from the proof of Theorem 3.4 in Effros
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and Ruan [1988]) that there is a representation (®,¢) as above for which ® and 
¢ are w*-homeomorphisms. Thus a dual operator module is a strong operator 

module. Nonetheless, it will be convenient to summarize some results which were 
established by Magajna for general strong operator modules. 

Suppose that Y is a strong right module over a W* —algebra M, and that Z is 

a strong left module over M. Let I be a cardinal number bigger than that of some 

Hilbert space on which Y and Z can be represented in the sense of (i) above. One 
may define the “extended Haagerup tensor product” (see Remark 3.7 in Magajna 

(1994a]) Y®ra Z to be equivalence classes of pairs (y,2) € R¥(Y) x C¥(Z), where 
two pairs (y,2) and (z,w) are equivalent iff there exists a projection p € Myr (M) 

such that [y,z]p = 0 and p* (2, ~w) = 0. Denote the equivalence class of (y, z) as 
yOu z. The sum yO pr z+xO pw is defined to be [y, z]Op(z, w) (by the earlier stated 
convention, (y, x] means, for example, the element in RY, (Y) given by y followed by 

z). Finally, we norm the equivalence class of (y,2) by inf{||z||||w||}, the infimum 
taken over all equivalent pairs (z,w). A similar formula defines M,,(Y®npZ), 
making Y®pZ into an operator space. 

A pair (y, 2) should be regarded as a formal sum }, yx ® zx, if y = [yk]k, 2 = 

(zx)x- We shall see that in the cases which we are interested in, when Y is a 

W*—module and Z a dual operator module, then Y®p ps Z is a dual operator space, 

and has as predual operator space Z, ® wm Y, and the formal sums above defining 

the extended Haagerup tensor product converge in the weak*-topology. 

Another equivalent way of defining the extended Haagerup tensor product 

Y ®napZ, which is perhaps more practical, is as follows. We suppose that Y and Z 

are represented in the sense of (i) above in the same B(H), which is always possi- 
ble. Let [yn], € RY(Y) and (2,)n € Cy (Z). Identify the formal sum }, yn ® 2, 
with the operator in CB(M’, B(H)) given by r' — > y,r'2,. We identify two 
such formal sums if they give the same operator in CB(M’, B(H)), and we norm 
such a formal sum by the c.b. norm of the associated operator, which turns out to 

be the same as inf{|| }_, Yay 2 | 3, 252,]|2}, the infimum taken over all formal 
sums which represent the same operator in CB(M’, B(H)). (The reader may be 
confused at the mention of ‘*’ and multiplication in an operator space, however 

it turns out that these expressions give the same number when performed in any 

containing W*—algebras, in fact for instance ||)" 2%2n|2 is simply the norm of 
(2n)ner in CP(Z).) W.lLo.g. we can take I in these formal sums to be the cardi- 
nality of the Hilbert space H. The space of such formal sums, up to identification 

as operators in CB(M’, B(H)), is denoted by Y®parZ. Finally, it turns out that 
Y®numZ is independent, up to completely isometric isomorphism, of the way that 

Y and Z are represented in the same B(H). 
Magajna remarks that Y®p ps Z contains the module Haagerup tensor product 

Y ®nm Z completely isometrically. If M = C, and if Y and Z are dual operator 

spaces, then Y®;, pr Z is exactly the weak*-Haagerup tensor product of Blecher and 

Smith [1992]. We remark that these definitions may seem cumbersome at first, but 

in practice it allows us to get our hands on elements in a very convenient way. These 

expressions may be manipulated using slice maps, or using projection techniques 

in the W*—algebra or its amplifications. 

Magajna shows that if, further, Z is a strong right module over a W*—algebra 

N, then Y®pZ is again a strong right operator module. Moreover the tensor
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product is ASSOCIATIVE: 

(Y®rMmZ)RrNW 2 Y Rpm (ZQrnW) 

completely isometrically. The following result is mentioned in Magajna [1994a), 

and may be easily proved by the methods of that paper. 

Theorem 2.3 (The strong Haagerup tensor product is FUNCTORIAL). If 

T, : X; — Y1 is a completely bounded right M-module map between strong right M - 

modules, if Ty : Xo — Y3 is a completely bounded left M-module map between strong 

left M-modules, then Ty ® Ty is completely bounded from Xi®um Xo — Yi®pumYa, 

and moreover ||T1 ® Taleo < ||T1 leo T2]|co- 

Here T) ® T; is the map Y_; zi ® 2x — yp T1 (zk) ® To(2x), where }, Tx ® 2k 
is one of the typical sums in X;®pp Xo (that this is well defined emerges from the 

proof). 
The following result, which is essentially Theorem 4.2 and the remark after- 

wards in Effros and Ruan [1988], is used to prove the above, and also used later in 

our paper: 

Theorem 2.4 If T : Y — Z is a completely bounded module map between 

strong operator modules, then 3" T(yn)mn = T(3X, ynmx), for all I and [y,] € 
R¥(Y), and (my) € CY (M). 

If Y is an operator space then C¥(Y) = C;®,Y and RY(Y) = Y®uRy, 

and C;@,Y®rR; = M;(Y) completely isometrically, via the canonical identi- 

fications. Thus, for instance, if Z is a strong left M-module then C7 (M)®nrmZ = 

C¥(Z) completely isometrically. This is because CY (M)®nmZ = Cr@nMOrmZ = 
Ci®nZ = CF (2). 

This completes our summary of pertinent facts about the strong Haagerup ten- 

sor product. For further details see Magajna [1994a]. We now return our attention 

to W*—modules. Every W*—module is a strong operator module in the above 

sense, as may be seen by viewing it as a subspace of the linking W*—algebra. Sim- 

ilarly every M — N correspondence (see Section 3) is strong as a left and as a right 

operator module, and in fact is a dual left and a dual right operator module. Thus 

the important modules in the theory of selfdual Hilbert modules are strong in the 

above sense. 
If Y is a W*—module over M, and if Z is a strong right module over M, then 

there is a natural inclusion of Z ® Y into B(Y, Z). The following corresponds to 

Theorem 3.10 in Blecher [1995]: 

Theorem 2.5 If Y is a right W*—module over M, and if Z is a strong left 

(resp. right) module over M, thenY @nmZ = CBy (Y, Z) completely isometrically 

(resp. Z ®pmY = CBuM(Y, Z) completely isometrically), via the canonical map. If 

in addition Z is a W*—module with respect to the module action above, then these 

identifications are also w*-homeomorphisms. Putting Z =Y, we have that Zn Z 

with the natural multiplication 

(z09)(# ®y) =z <yld > 

is a W*—algebra (2 B(Z)).
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Proof Define a map © : Z ®puY — CBy(Y,Z), by O(u)(y) = 
donzn < Yn, y >, if u = 3 zn ® yo. Note that O(u)(y) = mo (Idz ® gy)(u), 
where m is the module action Z&,yM — Z, and g, : Y — M : T —< zly >. 

This shows that © is well defined. It is easy to see that © is contractive, and 

indeed completely contractive. Now if T' € CB (Y, Z), define u = 5° Tea) ® €q, 

where {ey} is an on.b. for Y. Since T is completely bounded it follows from 

Theorem 2.3 (the functoriality of the tensor product), that u is a well-defined el- 

ement of Z @amY. Clearly, [ull < || Tllesll 3, ea ® €allyg,,, v < IITllcs- For this 
u we have that ©(u)(y) = 3 , T(x) < ealy >= TX ea < ely >) = T(y), 
using Theorem 2.4. This shows that © is onto, and an isometry. Showing that 

© is a complete isometry is similar, or it may be deduced from the isometry by 

a standard argument. If now Y,Z are right W*—modules, then to prove the w*- 

homeomorphism Z ®p,aY = CB (Y, Z) we may assume by taking the direct sum 
if necessary, that Y = Z. The space Z®pprZ has (unique) predual by the above. 

It is easily checked that with the natural multiplication described in the statement, 

the identification Z®nyZ = B(Z) described above, is a homomorphism. Thus, 

Z®nmZ is a W*—algebra with this multiplication. By the uniqueness of predual 

this identification is necessarily a w*-homeomorphism. {J 

As consequences of the previous theorem we obtain the following useful facts: 

(1) if Z is also a strong right (resp. left) module over N, then CBy(Y,Z) = 
Bu(Y,Z) (resp. CBm(Y,Z) = Bp(Y,Z)) is a strong right (resp. left) 
operator module over N; 

(2) the infima in the expression for the norm in the strong Haagerup tensor 

product in the cases discussed in the theorem are actually achieved; 

(3) if Z is also a dual operator module, then by (11) and the discussion below 

it, an operator space predual of Y®ny Z is Z, ® mY. Moreover, from this 

observation it is easy to see that the formal sums defining ®;5s converge in 

the weak*-topology of Y®nsZ induced by this predual. 

(4) If Y, Z are right W*—modules over M, then T' € B(Y, Z) with ||T|| < 1 if, and 
only if, there is an indexing set I such that we can write 

T = 3 kes loe >< yrl, where || 3 ocr lzr >< zelll < 1, and || 32peq lyk >< 
yk||l < 1. Here we use the Dirac notation |y >< z| for the operator y < z|- >. 
All the sums here converge in the weak*-topology (and the last two converg- 

ing as such implies the first does too). This result, however, is well known, 

and follows from standard methods. 

Results similar to 3) and 4) hold for left modules. 

3 Tensor products of W*—modules 

Let M and N be W*-algebras. A (right) M — N correspondence is a right 

W*—module Z over N, which is a left M-module via a normal representation 

6: M — B(Z). A left M — N correspondence is a left W*—module over M which 

admits a normal right action of N. The notion of a correspondence is due to 

Connes. His definition Connes [94] looks dissimilar to ours (which is what Rieffel 

calls a selfdual normal N-rigged M-module in Rieffel [74a]); we are not sure whom 

to attribute for the fact that they are equivalent, probably Rieffel [1974a] and Baillet 

et al. [1988] (where it is made explicit). It follows as remarked in Section 2 from
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looking at the linking W* —algebra for such a Z, that Z is a strong left module over 

M, and a strong right module over N. In fact it is easy to see that Z is a 2-sided 

dual operator module. If in addition Y is a right W*—module over M then the 

composition tensor product Y®¢Z is defined to be the selfdual completion of the 

C*—module interior tensor product Y ®¢ Z of Y and Z. 

We now show how to use the preceding theory to obtain some results in 

Denizeau and Havet [94], and some other results. 

Theorem 3.1 Let Y be a right W*—module over a W*—algebra M, let Z be 

a right W*—module over a W*—algebra N, and let 0 : M — B(Z) be a normal 

representation. Then the composition tensor product Y®¢Z is completely isomet- 

rically w*-isomorphic to Y®rmZ. The conjugate W*—module (Y&Z) = Z&rmY 

completely w*-isometrically. The predual of Y®¢Z is completely isometrically iso- 

morphic to Z, Our YeN.ovZouY. 

Proof Let Y ®¢ Z be the C*—module interior tensor product. By Corollary 

8.2 in Blecher [1995] we have 

CBN(Y ®¢ Z,N) = CBy(Y,CBn(Z,N)) = CBu(Y, Z) = Z&uuY 

completely isometrically, using Theorem 2.5. Of course By (Y®¢Z, N ) = CBn(Y®¢ 

Z,N). Thus Z&nmY is the selfdual completion of the conjugate C*—module of 

Y ®¢ Z. Similarly, Y®narZ is the selfdual completion of ¥ ®¢ Z. Unravelling the 

identifications above we see that the embedding of Y ®¢ Z in its selfdual completion 

corresponds to the natural inclusion of Y ®¢ Z = Y ®nm Z in YRurmZ. The last 

statement of the theorem now follows from Remark 3 at the end of Section 2, and 

(1). O 

Since by Remark 3) after Theorem 2.5 the sums defining Y®pmZ converge 

in the (unique) weak*-topology of Y®nmZ, and since the inner product on a 

W* -module is separately weak*-continuous, we have that the inner product on 

Y®eZ = Y®npZ may be expressed as 

< > yeu) =; uw; >= SO < z)0(< yilz; >)w; > 

iel i€J ig 

=) "3 <alb(< pile; >)w; >= 27[0(< wile; >)w, 
FR 

where z = (2;),w = (w;), and the last matrix product is computed in the linking 

W*—algebra. The sums here converge in the w*-topology of M. Here I is an 

arbitrary set, so that the formula above explicitly gives the i.p. for the most general 

elements of Y®gZ. Part of the following result may also be found in Denizeau and 

Havet [1994], Corollaire 1.2.6 and Lemme 2.1.5. 

Corollary 3.2 An element u in the composition tensor product Y®¢Z has 

norm < 1 if, and only if, u may be written as a sum u = Y ker Yk ® 2x, where 

ye € Vz, € Z satisfy | Sper < zlze > | <1, and || Xges lye >< welll = 
I< wily; >lajll < 1. All sums here converge in weak *-topology (and the last two 

w*-converging imply that the first does too). 

The following result is an immediate corollary of Theorem 3.1 and Theorem 

2.5. Its main assertion, that the composition of correspondences may be identified 

with a space of completely bounded maps, is contained in Denizeau and Havet
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[1994], Proposition 2.1.1 and Theorem 2.2.2. The first two lines of Theorem 3.1 
contains our alternative proof of this result. B. Magajna has recently shown the 
author another route to proving 3.1, and consequently also to this result. 

Corollary 3.3 LetY, Z be right W*—modules over M and N respectively, and 
suppose that 6 : M — B(Z) is a normal *-homomorphism. The composition tensor 
product Y®¢Z = Bp (Y,Z) completely w*-isometrically (via the canonical map on 
Y®Z). Foru€Y®yZ write i for the induced map ¥ — Z (this is the obvious 
map if u is an elementary tensor). Then we have 

lull = lldlles = min{|| fllllgllcs} 
where the minimum is over all indexing sets I and (completely) bounded left M- 
module maps f : Y — RY(M), and g : R¥(M) — Z with @ = gf. If, further, 
Z 1s also a left W*—module over M, then we have YZ = B M(Z,Y) completely 
w*-isometrically. 

It is not sufficient in the first result in the corollary above to use the bounded 
norm on Bp(Z,Y) as we noted in Blecher [1995]. 

As a consequence we note that if X is a left W*—module over M ,and Z is a 
right M — N correspondence, then CBy(X, Z) = B(X, Z) is a right W*—module 
over N via the action (T - n)(z) = T(z)n. The inner product here is < S|T >= 
Yo <S(ea)|T (ea) > where {e,} is ANY o.n.b. for X. In particular, CBu(X, 2) 
is the set of module maps T': X — Z with 3", < T(es)|T (eq) > weak*-convergent 
in N, and for such T' we have ||T||, = || 3°, < T(€a)|T(€a) > ||z. This appar- 
ent generalization of the Hilbert-Schmidt notion was investigated in Denizeau and 
Havet [1994], and would be an interesting object for further study. 

We also obtain a description of the ‘bounded operators’ on a composition tensor 
product. 

Corollary 3.4 We have B(Y®yZ) = Y®ruB(Z)@nMY completely isometri- 
cally w*-isomorphically. The operator space predual of B(Y ®¢Z ) is 

Y ®u Z On N, SN Z8uY 2Y @y BZ). ou Y 

completely isometrically. 

Proof The first relation is because 

B(Y®Z) = (Y®Z)R®nN(Y®0Z) 

& (YOM Z)®rN (ZBrmY) fa Y®nuB(Z)®nMY. 

The weak*-isomorphism follows as in Theorem 2.5. To prove the assertion about 
the predual, we note that using the first relation in Theorem 3.6 we have: 

B(Y®Z,Y®¢Z) = CBum(Y,CBn(Z,,Y®pZ)) 

2CBu(Y ®m Z,YR¢Z) 2 ((Y Qu Z) On (Y®eZ).)* 

The last part uses (1). Thus from the last part of Theorem 3.1 the predual is 

Y ®um Z) ®n N, ®n Z8uY. 

Grouping the three middle terms and using (11) gives the last relation. [J
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If Z is also a W*—equivalence bimodule (see Rieffel [74a,74b}) for M , or 

indeed if 6 is faithful with range B(Z), then it follows immediately from 3.4 that 

B(Y®Z) = B(Y) since B(Z) 2 M. This is well known (Denizeau and Havet [1994], 

Proposition 1.2.3 (i)). We have been told that the following result is well known 

too, however we include it together with its one line proof since we are unable to 

give a specific reference. 

Corollary 3.5 A bounded net Ty in B(Y®Z) converges weak* to 

T €e B(Y®oZ) if, and only if, for all y,y' €Y, 2,2’ € Z we have 

<T(y®2)y ®7 >-<T(y®2)|y ®2 > 

weak* in N. 

The necessity here is obvious, the sufficiency follows from Corollary 3.4 since 

the hypothesis extends easily to finite rank tensors, which are norm dense in the 

last space mentioned in the statement of 3.4. 

We observe here too, because we have not seen this in print, both left and right 

distributivity of the composition tensor product over arbitrary W*-module direct 

sums. This is easy using the universal property 2.2 and the previous corollary. 

Next we transfer the HOM - tensor relations in Chapter 20 of Anderson and 

Fuller [1992] into our context, with HOM = B(—), the completely bounded module 

maps. 

Theorem 3.6 Let M and N be W*—algebras. We have the following com- 

pletely isometric identifications: 

(1) By(Y®6Z,W) = Buy (Y,BN(Z,W)) if Z is an M — N correspondence, Y is 

a right W*—module over M, and W is a strong right operator module over 

N. : 

(2) Bp (Y, (Z&rnW)) = ZRpNBum(Y,W) if Y is a right W*—module over M, if 

W is a strong N — M operator bimodule and if Z is a strong right N -operator 

module. 

(3) By(Bum(Y,W),X) 2 Y®umBn(W, X) if Y is a right W*—module over M, 

X is a strong left N-operator module, and W is a left N—M correspondence. 

(4) Bu (X,Bn(Z,W)) = BN(Z,Bu(X,W)) if X,Z are left and right W*— 

modules over M and N respectively, and if W is a strong M — N opera- 

tor bimodule. 

As in Blecher [1995] we remark that these are (right) versions, of the four HOM 

- tensor relations in Chapter 20 of Anderson and Fuller. In fact (4) is a symmetric 

condition, but (1)-(3) have ‘left’ versions whose statements we leave to the reader. 

The proofs all follow easily from Theorem 2.5, therefore we shall prove only 

one of the relations above, namely (3): 

By (Buy (Y,W),X) =By(WhnY,X) = (WRrMY)BrNX 

= YR WRKrNX = Y ®nuBn(W, X). 

One would expect these identifications to be w*-homeomorphic whenever that 

makes sense. We checked all of these except (2), using the ‘canonical preduals’ 

B(Y, Z), = Y ®u Z. for an operator module Y" and a dual operator module Z (see
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remarks after (11), and Remark 3 after Theorem 2.5). As illustrated by example 
in Blecher [1995], these HOM-tensor relations are not generally true without com- 

pletely bounded maps. As a corollary of (1) above we see that By (Y®pZ, W) = 

Bn(Y ®um Z,W) completely isometrically, where Y,Z, W are as in (1). We have 
already used this relation in Corollary 3.4. 

We have not seen the following definition in the literature, although it is the 

selfdual completion of the construction in Rieffel [74a] Proposition 8.5. Suppose that 

Y is a right W*—module over a W*—algebra M, and that Z is a right W*—module 

over a W*—algebra N. We define the W*-exterior tensor product Y®Z, which 

is to be a W*—module over M®N as follows. Let L(Y) (resp. L(Z)) be the 
linking W*—algebra for Y (resp. Z). Identify Y ® Z with the obvious subspace 

of the W* algebra tensor product L(Y)®L(Z). Write Y®Z for its completion in 
the weak*-topology of L(Y)®L(Z). As we mentioned in (111) in Section 2, we 

have Y®Z = (Y, ® Z,)* completely isometrically. Thus we have from canonical 
operator space identifications that Y®Z = CB(Y.,Z) = CB(Z.,Y) completely 

isometrically. By viewing Y®Z as in the tensor product of the linking W*—algebras, 

we see that it is obviously a M®N module, and has a natural M®N valued inner 

product. Its selfduality may be seen in several ways, one of which is given in 
Theorem 3.8 below. 

Lemma 3.7 Suppose for k = 1,2 that Ty : Yi, — Zx are completely bounded 

weak *-continuous maps. Then Ty ® Ty defines a unique completely bounded weak*- 

continuous map Y18Ys — Z1®Z,. Moreover, ||T1 ® To|lcs < | Th llcbl| T2)|ch- 

Proof This is straightforward and well known, T; ® T; may be taken to be 

(Th) ® (T2)4)*, viewing (T1)« ® (T2)x : (Z1)x ® (Z2)« — (Y1)+ ® (Ya). The latter 

is completely bounded since ® is functorial (see Blecher and Paulsen [1991]), with 

c.b. norm < ||(T1)xllesll(T2)s les = IT1llctl| T2llcs. This proves the result. [J 
Theorem 3.8 The W*-exterior tensor product of W*—modules Y and Z is a 

W*—module. Its operator space predual is Y, ® Z, completely isometrically. If {z,} 

is an o.n.b. for Y and if {wg} is an o.n.b. for Z, then {zo ® wg}lap is an o.n.b. 
Jor Y®Z . 

Proof Let ¢ : Y — CF (M) (resp. ¢' : Z — C¥(N)) be as in Theorem 2.1 for 
Y (resp. for Z), coming from the o.n.b.’s. Note that 

CTY (M)RCY(N) = Ci®MRC;®N = Cy; (MAN) 

completely isometrically. ~~ Via this identification of C¥(M)®CY¥(N) with 
C¥;(MQ®N), the inner product on C¥(M)QCY¥(N) is easily seen to be given by 
the formula 

<YRzly ®2 >=<yly >®@< 22’ > 

for y,y € CY(M),z,2' € CY(N). Thus C¥(M)RCY¥(N) is a W*—module over 
MQ®N, from which we see that Y®Z is a W*—module over M®N using Theorem 

2.1 and the functoriality of ®, since ¢ @ ¢' : YR®Z — C¥(M)RCY¥(N) embeds 
Y®Z in CY (M)®CY(N) as a 1-complemented summand. The statement about 
the o.n.b. follows immediately from the explicit embedding just constructed. [J
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Since both operator space tensor products are functorial (see 3.7 and 2.3) we 

get a quick proof of the following result, most of the statements of which are known: 

Corollary 3.9 Suppose that Y1,Z1 are right W*-modules over M, Ys, Zs are 

right W*-modules over N, and that T; : Y; — Z; are bounded right module maps. 

(i) Then Th ® Ty is bounded as a map Y1QYz — YAY OR 

(ii) If, further, @ and 7 are normal *-homomorphisms from M to B(Y2) and 
B(Z,) respectively, and if Ts is a left M-module map, then T1 ®T; is bounded 

as a map YV1&pYo — 218,25 . 
In both cases, |T1 ® Tz|| < | Th||IT2]| . For (ii), we do not need T> to be a right 
module map if it is completely bounded. 

4 The Eilenberg-Watts theorem for W*—modules 

In Rieffel [1974a], it was shown that isomorphisms between categories of Hilbert 

spaces of normal representations of two W*—algebras are implemented by the com- 

position tensor product with a fixed W*—equivalence bimodule. Moreover, he 

showed that the correspondence between such functorial isomorphisms and mod- 

ules was bijective. That is, he proved a version of Morita’s fundamental theorem 

in the setting of W*—algebras. En route, the Eilenberg-Watts theorem for such 

categories was established. An Eilenberg-Watts theorem should state that an ad- 

ditive covariant functor between categories of right modules (over two different 

rings) is naturally equivalent to tensoring with a fixed bimodule. In his paper it 

is made clear that no such theorem can exist for C*—algebras, without consider- 

ing extra structure (and at present it is unknown what that extra structure could 

be). In Blecher [1995] we found the appropriate Eilenberg-Watts and fundamen- 

tal Morita theorems for the category of C*—modules. As a consequence, we were 

able to give a functorial significance to the notion of strong Morita equivalence of 

C*-algebras, namely that it is indeed a Morita equivalence of some category. Our 

methods transfer easily to W*—modules, however here these results seem to be 

known although not explicitly written out (see Ghez et al. [1985] - we thank W. L. 
Paschke for bringing this reference to our attention). Because of this, and because 

of the lack of difficulty in this case, we omit the proof. We shall merely state the 

Eilenberg-Watts theorem, since it may be viewed as a functorial characterization 

of correspondences, complementing Rieffel’s characterization in Rieffel [1974a). 

If M is a W*—algebra, let W*MOD), be the category of right W*—modules 

over M with morphisms the bounded M-module maps. This is called Hmod(M) in 

Ghez et al. [1985], which we refer to for additional terminology. If Z is an M — N 
correspondence as in Section 3, then the composition tensor product —®sZ is a 

normal *-functor from W*MODj; to W*MODy (use Corollary 3.5 and the well 

known fact that a map is weak*-continuous iff its restriction to the unit ball is 

weak*-continuous, to get the normality). We want the converse of this. 

Theorem 4.1 (Eilenberg-Watts theorem for W*—modules.) Let M and N be 

W*—algebras, and let F be a normal *-functor W*MODy — W*MODy. Then 

there is a right W*—module Z over N, and a normal *-homomorphism 0 : M — 

B(Z), such that F(—) is naturally unitarily isomorphic to the composition tensor 

product —®¢Z, and also to Bp ((—),Z). That is, there is a natural isomorphism 

between these functors, which implements a unitary isomorphism F(Y) = Y®Z = 

Buy (Y,Z) for allY eW*MODy.
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Just as in pure algebra, it is an easy exercise to show that the unitary isomor- 
phism classes of normal *-functors W*MOD,; -W*MODy is in a 1-1 coITespon- 
dence with the unitary equivalence classes of M — N-correspondences. Composition 
of such functors corresponds to the composition tensor product of the bimodules. 

Finally we remark that it can be easily shown that two W*-algebras M and 
N are Morita equivalent if, and only if, there is a Hilbert space H such that 
M®@B(H) = N®B(H) *-isomorphically. This is not written down anywhere as 
far as the author can tell, although it is known. 
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