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Abstract. We prove in this paper that the tensor product of reduced
bimodules associated to a subfactor can be recovered as a product of
certain projections in the higher relative commutants associated to the
subfactor. After giving an elementary introduction to bimodules of II;
factors and their relative tensor product, we prove various formulas relat-
ing the representations of the Jones tower coming from different k-step
basic constructions and show that the natural shift on the higher rel-
ative commutants, defined by two consecutive modular conjugations of
the tower, can be computed in terms of orthonormal bases and the Jones
projections e;. We give a detailed account of how the principal graphs
of a subfactor can be recovered by calculating dimensions of intertwiner
spaces of certain (reduced) bimodules and show that each vertex of the
principal graphs represents a unique reduced bimodule. Then we de-
fine the (full) fusion algebra associated to a subfactor and prove that
this fusion algebra can be calculated by computing products of certain
projections in the higher relative commutants of the subfactor. Explicit
formulas for these products are given. Finally we discuss reduced sub-
factors and give a procedure to compute the fusion algebra of a subfactor
in those situations, when the principal graphs are simple. We show the
relation to reduced subfactors and discuss in detail the example of a
subfactor with principal graph Ejg to illustrate the general algorithm.

Introduction
In this paper we prove various facts about bimodules associated to a subfactor, some
of which are known to experts, but whose proofs are not readily available in the
literature. We refer to (Connes [1994], Sauvageot [1983]), (see also Ocneanu [1988],
Ocneanu [1991(a)], Popa [1986]) for some of the original papers on bimodules,
and to (Anantharaman-Delaroche [1993], Denizeau and Havet {1993(a)] [1993(b)],
Ocneanu [1991(b)], Sunder [1992], Yamagami [1993]), for additional material (see

1991 Mathematics Subject Classification. Primary: 46L10.
Supported by a Heisenberg fellowship and NSF-grant DMS-9307234

®© 1997 American Mathematical Society

13



14 Dietmar Bisch

also Bisch [1994(b)], Bisch and Haagerup [1996], Evans and Kawahigashi [1996],
Haagerup [1994], Goodman and Wenzl [1990],Izumi [1991],Jones and Sunder [1996],
Longo [1989][1990], Popa [1994],Sunder and Vijayarajan [1993], Wassermann [1995],
and Wenz] [1988]). The above list of citations is by no means intended to be com-
plete.

Here is a detailed description of the sections below. We begin in Section 1 with
an elementary introduction to bimodules associated to a pair of 1I; factors, define
Connes’ relative tensor product of two such bimodules and prove that this bimodule
tensor product is associative (Proposition 1.12). We discuss bimodule intertwiners
and state the Frobenius reciprocity theorem (Theorem 1.18). Finally, we show that
the direct sum of bimodules is compatible with the bimodule tensor product. Most
of the material in this section can be found in (Connes [1994], Sauvageot [1983],
Ocneanu [1988] and [1991(a)], Popa [1986], see also Sunder {1992]).

Section 2 contains material that is needed in Sections 3 and 4 to establish the
bimodule interpretation of the principal graphs associated to a subfactor and to
identify the tensor product of reduced bimodules as a product of certain projections
in the higher relative commutants of the subfactor. We discuss the representations
of the tower of II; factors associated to a subfactor N C M coming from the k-step
basic constructions, i.e., the basic construction for the inclusion N C My (resp.
M C M) and prove various formulas relating them (Lemma 2.4, Propositions 2.2,
2.5). Next, we discuss the natural shift on the higher relative commutants. We
show that the “spatial” definition using the modular conjugations is the same as
the “abstract” one using the Jones projections e; and orthonormal bases (Theorems
2.6 and 2.11). We do this for an inclusion of II; factors of the form A C B C** By,
which we apply then to A = N, B = M, (resp. A = M, B = M,,) in Section
4. We give explicit formulas of the J - J-map and the shift in terms of the e;’s
and orthonormal bases, which are useful for the computation of tensor products
of reduced bimodules associated to a subfactor. We also discuss briefly Ocneanu’s
Fourier transform and give a simple application to illustrate the usefulness of this
map.

In Section 3 we show that the higher relative commutants associated to a
subfactor can be viewed as spaces of N-N resp. N-M resp. M-N resp. M-
M bimodule intertwiners. After recalling the definition of the principal graphs
of a subfactor in some detail, we prove that each even (resp. odd) vertex of the
principal graphs represents in a unique way a reduced N-N (M-M) (resp. N-M
(M-N)) bimodule, i.e., a bimodule of the form pL?(M,), where p is a projection in
N'NMMay+1 (resp. M'NMay, N'NMa,, M'NMa,41). This is done by writing down
an explicit isomorphism between these bimodules. We identify the contragredient
(or conjugate) of a reduced bimodule as another reduced bimodule by calculating
the projection in the higher relative commutants to which this conjugate reduced
bimodule is associated (Proposition 3.11). We give then the definition of the (full)
fusion algebra associated to a subfactor, including all possible bimodule products,
i.e. the products of N-N (resp. M-M) bimodules with themselves (called the even
part of the full fusion algebra, or simply the fusion algebra) and the products of
N-M (resp. M-N) with M-N (resp. N-M) bimodules, called the odd part (where
we form the relative bimodule tensor product over N resp. M of course). We list
briefly the properties of the structure constants (which are dimensions of spaces of
bimodule intertwiners) appearing in this definition.
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We prove in Section 4 that the edges (including multiplicities) of the principal
graphs can be recovered by computing dimensions of certain intertwiner spaces of
(reduced) bimodules, thus, together with the results of Section 3 (the identification
of the vertices of the principal graphs as reduced bimodules), establishing the bi-
module picture of the prinicipal graphs as “principal” fusion rule matrices, due to
Ocneanu. This uses some of the results of Section 2, in particular various formulas
involving the representations of the tower of II; factors associated to a subfactor
coming from different k-step basic constructions. We have to work spatially all
the time, since reduced bimodules are obtained by an action of a projection in a
certain higher relative commutant on a Hilbert space L?(My) (Propositions 4.1 and
4.3). In Theorem 4.6 we prove that the bimodule tensor product of two reduced
bimodules (over N or M), associated to projections p and q say, can be calculated
as a product of projections in the higher relative commutants, involving the mod-
ular conjugations and the shift from N’ N Ma,1y to My, 1 N My, 3 for example.
Roughly, we obtain the tensor product of these two reduced bimodules by fixing
p and shifting ¢ far enough in a higher relative commutant so that the shifted ¢
commutes with p and consider then the reduced bimodule associated to this new
projection. This reduced bimodule turns out to be the bimodule tensor product
of the two reduced bimodules associated to p and q. We do this for all cases in
Theorem 4.6. Combining this theorem with the explicit formulas that we proved in
Section 2 for the shift and the J - J-map (in terms of e;’s and orthonormal bases),
we obtain an explicit procedure, that allows us to calculate the fusion algebra of
a subfactor whenever the higher relative commutants are well understood. Appli-
cations of this to the subfactors in (Bisch and Jones [1995]) for instance will be
presented elsewhere.

Section 5 contains a discussion of the basic construction of reduced subfactors
and their relation to reduced bimodules. We give a simple method to compute the
(full) fusion algebra associated to a subfactor by solving matrix equations and then
calculating products of the resulting matrices. When the principal graphs of the
subfactor are not too complicated (for instance if they contain at most triple points),
the fusion algebra can be computed completely in this way. For instance, all the
calculations in (Bisch [1994(b)]) were performed using the method presented in this
section. We show how the principal graphs of the reduced subfactors associated to
an inclusion of II; factors can be determined from the fusion algebra and remark
that their fusion algebra can be read off the fusion algebra of the original inclusion.
Let us point out that this is rather obvious, when we use the endomorphism picture
for bimodules (see for instance Longo [1989] and [1990], Izumi [1991]) (properly
infinite case). However, to keep the paper self-contained, we stay in the II; setting.
To illustrate the method presented in this section, we discuss in detail the example
of a subfactor with principal graph Eg, calculate the full fusion algebra associated
to such a subfactor, and give a full discussion of the associated reduced subfactors.

1 Preliminaries on bimodules

Let A and B be II; factors. We denote by B°P the opposite algebra of B, i.e.
B°P = B as Banach spaces and the multiplication is defined by by - by = boby,
b1, b € B. B°P is of course a II; factor. Recall that an A-B bimodule H is by
definition a pair of commuting normal (unital) representations of A and B°P on the
Hilbert space H. We usually denote the left action of A and the right action of B
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(which is by definition the left action of B°P) by a-£-b, where a € Abe B, (€ H.
The notion of (unitary) equivalence of bimodules is recalled in the next definition.

Definition 1.1 Let A and B be II, factors and let H and K be two A-B
bimodules. We say that H and K are (unitarily) equivalent if there is a unitary
u: H— K such thatu(a-£-b) = a-u(f)-b, foralla € A, be B, (£ € H. We write
aHp = 4Kg. Furthermore we denote by

Homa p(H,K) = {T € B(H,K)/T(a-£:b) = a-T(£)-b, foralla € A, be B, { € H}

the space of A-B intertwiners from H to K. If H = K, we write Homa.p (HY) for
Homu.p(H, H).

Observe that Homa.g(H) = A’ N (B°?)’ N B(H) is a von Neumann algebra.
Recall that an A-B bimodule H is called irreducible, if A’ N (B°?)’ N B(H) = C.
Suppose that (B°P)’ N B(H) is again a II; factor (i.e. the coupling constant of B°P
on H is finite), then one defines the indez of the A-B bimodule H to be the Jones
index of the subfactor A C {B°*Y N B(H). If [(B°?)’ : A] < oo, then Homa g (H)
is a finite dimensional C*-algebra (Jones [1983]). We will sometimes say that the
two A-B bimodules H and K are isomorphic (as A-B bimodules), which means
that there is a bijective A-B intertwiner T from H to K. The unitary in the polar
decomposition of T implements a unitary equivalence as defined above. We will
mostly be concerned with equivalence classes of A-B bimodules.

Let A C B be an inclusion of II; factors with finite Jones index and denote by
tr the trace on B. As usual we let L2(B) be the completion of B in the norm || - |2
induced by the trace, in other words, L?(B) is the GNS Hilbert space with respect
to tr. Then 1 = 1p € L?*(B) is the cyclic and separating vector, and we write b
for b(1), i.e. b € B viewed as a vector in L*(B) is denoted by b. As usual we let
J : L*(B) — L?(B) be the conjugate linear isometry obtained by extending the
map b — b* to all of L2(B) by continuity. L?(B) is a left B-module (hence a left
A-module), where B acts by left multiplication. L?(B) is also a right B-module
(and hence a right A-module) with the action £ -b = Jb*J({), b€ B, { € L%(B).
L?(B) becomes in this way a B-B (resp. A-B, B-A, A-A) bimodule.

Lemma 1.2 Let A, B be II; factors and let m; : A — B(H;), ¢; : B® —

B(H;), i = 1, 2, be (nonzero) normal representations of A and B°P such that
mi(A) C ¥:(B®), i = 1, 2. We define two A-B bimodules aH1p and aHzp by
a-€-b=m(a);(b)E, forall € Hi,a€ A, b€ B®,i=1,2.
i) If AHip =4 Hap as A-B bimodules, then there is a surjective *-isomorphism
0 : 91 (BP) — a(B°P) such that 6(m1(A)) = m2(A). Furthermore, the Murray-
von Neumann coupling constants of 11 (B°P) on Hy and of 12(B°P) on H, coincide.
i) Assume that the Murray-von Neumann coupling constants satisfy dimy, (gory H1
= dimy,(gor) Ha < 00. Suppose that there is a surjective *-isomorphism 6 :
1 (B°P) — 9y (BP)' such that 8(m1(A)) = ma(A). Then there are automorphisms
Y € AutA, ¢ € AutB and a unitary u : Hy — Ha, such that u(m(a)y2(b)€) =
m2(1h(a) )2(B(b)) (), for all € € Hy, a € A and b € B°P. Thus AHip is equiva-
lent to aHap, with A and B actions twisted by automorphisms of A resp. B.

Proof If z\Hyz & aH,p, then by definition of unitary equivalence of bimod-
ules, there exists a unitary u : Hy — Ha such that u(m ()1 (b)€) = m2(a)y2(b)u(§),
foralla € A, b€ B, £ € Hy. Thus § = Adu does the job.



Bimodules and Higher Relative Commutants 17

Suppose that ii) holds. The condition on the coupling constants implies that
g is spatial, i.e. § = Adu, v : Hi — H> a unitary. Hence Adu is a surjective
#-isomorphism from 1, (BP) onto 1, (B°P) and therefore ug1 (b)u* = 2(4(b)), for
all b € B and some automorphism ¢ € Aut B°P = Aut B. Similarly, there is a
1 € Aut A such that um (a)u* = m2(¢(a)), a € A. The rest is clear. [

Note that the lemma shows that the Murray-von Neumann coupling constants
and the subfactor associated to a bimodule determine the bimodule only up to
automorphisms. If we consider the B-B bimodule L?(B) with action z-& -y =
zJO(y)*J(E), z,y € B, £ € L*(B), 6 € Aut B an outer automorphism, we see that
the automorphisms are indeed necessary.

We will define in Section 3 the fusion algebra associated to a subfactor and
describe in Section 4 its multiplication law in terms of projections in the higher rel-
ative commutants. To understand this multiplication, let us start with recalling the
definition of the relative tensor product (Connes [1994], see also Sauvageot [1983],
Popa [1986], Ocneanu [1991(a)}).

Definition 1.3 Let A be a II) factor with trace tr and let H be a left A-module.
A vector £ € H is called a (left A-) bounded vector in H if there is a constant
e = c(£) such that ||a€|| < cllallz, for all a € A, where |jall2 = tr(a*a)*. We denote
by HO the set of left A-bounded vectors in H. Similarly for right A-modules (i.e.
left A°P-modules) and right A-bounded vectors.

Remark 1.4 It is easy to see that AH® C H® and A'H® C H°. From this one
deduces immediately that H® is dense in H.

Proposition 1.5 Let A C B be an inclusion of Iy factors with [B: A] < o0.
Consider the B-B (resp. A-B, B-A, A-A) bimodule L*(B) as defined above. Then
the left (right) A-bounded vectors and the left (right) B-bounded vectors coincide
and are given by B.

Proof Let us prove that the left A-bounded vectors in L?(B) are given by
B. 1t b € B, then [lab|2; 5 = tr(abb*a”) < [Bbl*]all3, for all @ € A. Thus
B c L%(B)°, the set of left A-bounded vectors. Conversely, let £ € L?(B)°. Then
there is a constant c(£) such that [|allz < c(£)[lallz, for all a € A. Thus R :
A — L2(B), R¢(a) = a, extends by continuity to a bounded linear map L?(A) —
L%(B). Let A C B C*® By be the basic construction and consider the composition
Ree : L*(B) — L*(B). Note that a1R¢(d) = mal = Reai(d), a, a1 € A, so
that Ree € A’ N B(L*(B)). But By = JA'J and hence there is an z € B; with
Ree = Jz*J € B(L*(B)). By (Pimsner and Popa [1986)) there is a unique y* € B
with z*e = y*e. Thus Ree = Jz*Je = Jz"eJ = Jy*Je, which implies that
Ree(l) = Re(l) = ¢ = Jy*e(1) = 4, so that indeed £ € B as desired.— The same
proof (with e = 1) shows that the set of left B-bounded vectors in L%(B) is also
given by B. From this it follows immediately that the set of right B-bounded (resp.
right A-bounded) vectors in L?(B) is again B. O

Remark 1.6 The following slightly more general statement (which can be de-
duced from 1.5) holds: If H is an A-B bimodule with finite index, then the left
A-bounded vectors in H and the right B-bounded vectors in H coincide (see for
instance Sunder [1992], II. Proposition 4).
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Definition 1.7 Let A be a II, factor and H a left A-module, let &, n € HO.
We let (¢,m)a € A be the operator in A defined by

(x€&,m)m = tr(z(&,n)a), for all € A.

Note that (£,n)4 exists and is unique by the Radon-Nikodym theorem (note
that |(z*z€,1)| < c¢(€)e(n)||z]j3). The uniqueness of the Radon-Nikodym derivative
implies immediately the following lemma.

Lemma 1.8 Let A be a Il factor and H o left A-module. Let ¢, n € HY,
a € A. Then we have

i) {-,-)a is C-linear in the first variable.
ii) (&;ma= &k
i) (ag,ma =al&Ma.
iV) <£7£>A > 0.
Observe that (£, an)a = (§,1)4a*, which is an easy consequence of ii) and iii). Fur-
thermore, it is easy to show that if n1,...,7, € H°, then ((771'7771’>A)1<¢j<n €EA®
M,,(C) is a positive operator (consider A® M,,(C) on H™ and identify ((n;,7;) A)z p
as the Radon-Nikodym derivative ((71,...,7n )% (M1, -, 7n)") aenr,(c), Which is
positive by 1.8 iv), applied to the left A ® M, (C)-module H™).
Similarly one can define a right Radon-Nikodym derivative, which is done in
the next definition.

Definition 1.9 Let A be a I, factor and H a right A-module (i.e., a left
A°?-module), let £, n € H°. We let (£,m)% € A be the operator in A defined by

(nz, &) = tr(z(€,m)%), forallze A

Let us collect the properties of the right Radon-Nikodym derivative as in
Lemma 1.8 for the left Radon-Nikodym derivative.

Lemma 1.10 Let A be a II} factor and H a right A-module. Let ¢, n € HO,
a € A. Then we have

i) (-,-)q is C-linear in the second variable.
i) €,ma=(n&a)"
i) (€a,n)% = a*{€,M)5.
iv) (§,€)320.

Observe that (£,ma)4 = (§,7)%a, which follows immediately from ii) and iii). As
above, we have that if 51,...,7, € H°, then (<m’771')31)1gi,j5n € A® M,(C)is a
positive operator (use again an amplification trick).

If A C B is an inclusion of II; factors, then L%(B) is a natural A-B bimodule
with the action a@ - £ -b = aJb*J(£), a € A, b € B, ¢ € L*(B), as we have
seen above. We have that (b1,b2)a = E4(b1b5), where E4 : B — A is the trace
preserving conditional expectation. Similarly, L?(B) is a natural B-A bimodule
and (b],bz)% = EA(bIbg), by, by € B.

We are now ready to recall the definition of the relative tensor product of two
bimodules. Let A, B, C be II; factors, let H be an A-B bimodule and K a B-C
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bimodule and denote by H® (resp. K°) the right (resp. left) B-bounded vectors
in H (resp. K). Consider the algebraic tensor product H®° ® K° and define for
Yi&om, X & e e HHOK®

Saond gom) = (&mm) s, (11)
i J %)

where (n;,7;) 5 is the Radon-Nikodym derivative of z € B — (xm:,m;) with respect
to trp as above (definition 1.7) and (-,-),, is the inner product on H. Similarly,
let (£;,€})% be the Radon-Nikodym derivative of z € B — (&2, &;) with respect to
trg. Then we have for &, £ € H, my, n; € K°

(&lmni) B e = tra((mi, 1) B(€S, &)%)
= tra((§, &) % n})B)

= (<£;1€t>anlan;)K
and thus we have on H° ® K°

O t@n Y gany =3 (& &)%mmn)k- (12)
i 7 ]

We leave it to the reader to check that (-,-) as defined in (1.1) or (1.2) is a
(possibly non-degenerate) inner product on H° ® K°. Note that (1.1) is actually
defined on H © K° and (1.2) on H' © K.

We let N¢. .y be the null space of this inner product and define H ® K to be
the completion of H? ® K°/N,. ., in the norm induced by (,-) on H° ® K®/N.
(Connes [1994], see also Sauvageot [1983]).

Definition 1.11 Let A, B and C be I, factors, then H®p K as defined above
is called the bimodule tensor product (or the relative tensor product over B) of the
A-B bimodule nHp and the B-C bimodule gKc. We denote the equivalence class
of the the vector 3, & ®m; in H* @ K°/Ny. .y by 3., & ®p mi or [, & @ mil.

It is easy to see that H®p K is an A-C bimodule: If welet Y, &®mn; € HOGKO,
then we have an A-C action via a- (3, & ®mi)-c= Y, (a&;) ® (nic). To show that
this defines a left A-action and a right C-action on the relative tensor product,
one proves that |-}~ & ® nill < |lall|| 3; & @ mil| and similarly for the right C-
action. This inequality is shown by using an amplification trick and the remark
about positivity of ((n;,n;) A)ij after Lemma, 1.8 (resp. Lemma 1.10). We leave the
simple details to the reader. Since this induces in a natural way an A-C bimodule
structure on the relative tensor product H ® g K, we denote this A-C bimodule by

AH ®p Kc.
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Consider the quotient map ¢ : H® © K° — 4H ®p K¢, defined by ¢(3, & ®
ni) = ;& ®p - Then

I3 6 @8 millbhssx < &®m, D &®n)
i = Zi(@(mﬂﬁ);fj);[
< Y6 m)sllnls
< (a0 5) )€

i,

Thus ¢ extends by continuity to a map, still denoted by ¢ : H ® K 0 4H®p
K. Similarly, using (1.2) instead of (1.1) in the above estimates, we see that ¢
extends by continuity to a map ¥ : H°® K — AH ®p Kc. In particular, we
get that ¢(H ® K°) and ¢(H° ® K) are dense in 4H ®p K¢ and we could have
defined sH ®p K¢ equally well by using (1.1), defined on H © K° and taking
the separated completion as above, or by using (1.2) on H® ® K and taking the
separated completion. As we have just shown, all three ways of defining 4 H ®p K¢
coincide (see also Popa [1986]). Associativity of the bimodule tensor product is now
immediate and we include a proof for the convenience of the reader.

Proposition 1.12 Let A, B, C and D be II, factors and let AHp, sKc and
cLp be bimodules. Then

(aH ®p Kc)®c Lp = AH ®p (K¢ ®c Lp)

as A-D bimodules.

Proof It follows from the paragraph preceding the proposition that the com-
position of the quotient maps H® ®(K°®L°) —» H*® (K ®c L) — H®g5 (K ®c L)
is continuous with dense image. Similarly, the composition of the quotient maps
(HOO KoL - (H®p K)® L® — (H ®p K) ®c L is continuous with dense
image. The result follows now from (H° ® K°) 0 L 2 H* © (K° © L°). O

Lemma 1.13 Let A, B, C be II; factors and let sHp and pK¢ be A-B resp.
B-C bimodules. Then €b®pn = E@pby forallé € HY, ne K® (or§ € H,n € K°,
or & € H°, n e K), where H® (resp. K°) denotes the right (resp. left) B-bounded
vectors in H (resp. K).

Proof By definition of £ ®p 7 (Definition 1.11 and the remarks afterwards) we
need to show that £b®n — £ ® by € N..y, which follows immediately from Lemma
1.8 (resp. 1.10). O

Lemma 1.14 Let A and B be II; factors and let 4Hp be an A-B bimodule.
Consider the A-A bimodule L*(A) and the B-B bimodule L*(B). Then 4L*(A)®4
Hp = sHgp and 4+H ®p L*(B)p = aHp (all equivalences as A-B bimodules).
Furthermore, if A C B is an inclusion of II; factors and we regard L?*(B) asa B-A
bimodule, then sHp ®p L?(B)a = sHa (as A-A bimodules).

Proof We know that L2(4)® = A. Define a linear map T : AoH— H by
T@®E) =at, a € A, € € H. Observe that (d;,8;)% = ajai, for &, G; € A (we
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regard L2(A) as a right A-module here). Thus

“T(Z:di ® &') "%I Z(az&: a;&)n = Z((‘J’J‘ a:)a&, &) m
Zaz ®¢&, Zm ® &

which shows that T is well-defined, factors through N , and hence induces a
surjective (since A is unital) isometry, still denoted by T, from oL?(A) ®4 Hp —
AHg, which is clearly an A-B intertwiner. This establishes the first equivalence
and the remaining ones are shown in the same way, using the left Radon-Nikodym
derivative. O

Next we discuss briefly morphisms (intertwiners) between bimodules.

Proposition 1.15 Let A, B, C be IL factors and let s\Hp, aKp, saHipg,
BKic, 1 =1,2, be bimodules. Let R: sHp — sKp and S: sH1g — aHap be
A-B intertwiners and let T : gKy1c — pKac be a B-C intertwiner. Then

i) R maps left A-bounded (resp. right B-bounded) vectors of H to left A-bounded
(resp. Tight B-bounded) vectors of K.

ii) Ifn,n' are left B-bounded vectors in K, then the Radon-Nikodym derivatives
satisfy (T(n),T(n"))s = (T*T(n),n')s = (n,T"T(n')) -

iii) There is a unique A-C intertwiner SQpT : pH, ®p Kic — aH2®p K¢
such that S@p T(E®pn) = [S®T(E®n)], for all £ € H® (right B-bounded
vectors) and n € K° (left B-bounded vectors), where [ ] is as in Definition
1.11. Furthermore, if S and T are bimodules isomorphisms, then so is S®p
T.

Proof The proof is straightforward. If £ € H is a left A-bounded vector, then
laREx < |Rllllaélla < c(€)llalj2, for all a € A (we used the notation of 1.3).
Thus R(€) is a left A-bounded vector in K. The same argument applies for right
B-bounded vectors and hence i) is shown.

Let us show ii). We have seen in i) that T'(n), T(r") are left B-bounded vectors
in K3. By definition of the Radon-Nikodym derivative we have (bT(n), T(n’)) =
trB(b(T( ,T(1))5), for all b € B. But (5T(n),T(n)),, = (T(m), T 7)),
= (T*T(n),b*n) ., = tra({T*T(n),n')8), b € B, which implies the first equality
by uniqueness of tfle Radon-Nikodym derivative. The second equality is shown in
the same way.

We proceed with the proof of iii). Let us denote by (-, )1 the inner product on
HGKP® i=1,2 (see Definition 1.11). Let ), & ®m; € H°0 K% and let S®T
be the usual tensor product of S and T. Then SQT(Y; & ®mi) € H,° 0 K,° by
i) and using ii) we obtain,
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($OT(Y 6 ®n),S®T(Y & en)):

—Z ()T M), T(m)) 5, (&) gy, =D (S"SEAT T(m),ni)8) &) g,

4.3

= <ZS*S(&') ®T*T (), Zgi ®m)1 = (5*S ®T*T(Z@- ®m), Zsi ®mh

<IS*S @ T*T| 1> & @ mill}00k,05

so that S ®T(N (.,.>1) C N{.,,. Thus we get an induced map, still denoted by S®T,
from H,° ® Klo/N(,,,)l — H,’ 0 Ky° /N(..y,» which is continuous by the above
computation and therefore extends to a map from s H; ®p K1c — 4aH2 ®p Kag,
denoted by S®pT. S®p T is clearly an A-C bimodule morphism and satisfies by
definition S®5 T(Y; & ®n:) = [S®T(3, & ®m:)]. The uniqueness is clear by a
density argument. Finally, if S and T are bimodule isomorphisms, S ®p T is also,
which can be easily deduced from the above calculation. [

Definition 1.16 Let A, B be II, factors and let H be an A-B bimodule with
actions denoted by afb, a € A, b € B, £ € H. We define a B-A bimodule pHa (also
denoted by 4Hp) as H, the conjugate Hilbert space, with the B-A action defined by
b-€-a=a*€b*, where £ denotes the vector £, considered as an element in H. The
B-A bimodule gH 5 is called the conjugate (or contragredient or adjoint) of the A-
B bimodule sHg. An A-A bimodule H is called selfcontragredient if sHa = aHa
as A-A bimodules.

Remark 1.17 i) Let H be a right A-module with right A action denoted by &a,
£€H,ac A Then Hy is aleft A-module with left A action a-€ = €a* (Definition
1.16). Clearly, the right A-bounded vectors H 0 and the left A-bounded vectors I8
coincide. Thus tra{a(€,Ma) = (¢ -&,7) 5 = (m€a*)y = (na,€),; = tralal&,m%),
forall&,ne H®, a € A. Hence (£, a = (£,m)%, for all &, n € H0
u) Let A, B, C be II; factors, and let AHg, g K¢ be bimodules. Then 4H ®p K¢ =
cK®pHa asC A bzmodules Let us briefly sketch a proof of this statement. Deﬁne
a linear map T : e @H — AH®p K¢, byT(n®§_) £®gn, 5670 nEK
Then we get for & € H°, n; € K°, i =1,2,

(&®5m,& @8 ) hgrrs
= (£08m2,6 ®8Mm)  yo, ko = E2 @M, & ®Mm) = ((€1,6)5M2: M) &
= (60, &)nmm) g = (2, ((60,6)5) M) = (&8 m) o) e
= (M- (€, &)5, M) = (M ® &1, ® &)go po-

Thus T is well-defined and induces an isometry KOCDEO/N(.,.)T‘A)Qﬁo — aH ®p K,
which is clearly a C-A bimodule morphism (note that ¢ - (7 ® £) - a = 7¢* ® a*¢,
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which maps under T to a*€ @pne* =c-{®pn-a, c € C, a € A) and extends by
continuity to an injective C-A bimodule morphism ¢K ®p Ha — 2H @5 Ko. It
15 easy to see that this map is also surjective.

ii1) It is obvious that sHg = 4Hp as A-B bimodules.

Recall that if A C B is an inclusion of ITy factors, then 4 L2(B)p B%’A BL%(B)a,
where the bimodule equivalence is realized by the modular conjugation J : L?(B) —
L?(B), since J, viewed as an operator LZ(B) — L?(B), is a linear surjective isom-
etry, satisfying J(b- %-a)= J(@) =br*a= bJ(#)a="b-J(Z) - a, for all a € A,
b€ Band £ € B C L*(B) (note that the inner product on L2(B) is defined as
(&n) = (n, §)L2(B), & m € L*(B) as usual). Finally, let us state the Frobenius
reciprocity theorem.

Theorem 1.18 Let A, B and C be II; factors.

i) Let sHp, nKp be A-B bimodules. Then the following vector spaces are
naturally isomorphic: Homs.p( AHp, aKp) = Homp.a( 5K A, pHa)-

Let p\Hp, pKc and 4Lc be bimodules with finite index. Then the following
vector spaces are naturally isomorphic:

ii) Homac(aH ®p Kc, aLc) = Homa p(aHp, AL ®¢c Kp).
iii) Homa.c(aH ®p Ko, aLc) = Homp.c(pKc, 5H ®a4 Lo).

Proof We will only give a hint of the proof. Let T' € Homa 5( aHg, 4KB)
and consider T* : K — H defined by (£,T*(n)),, = (T(€),n) ., £ € H, n € K.
Then it is immediate that T*(a-n-b) = a-T*(n) - b, for all a € A, b € B and
n € K. Thus T* € Homa.-g( 4Kp, sHp). Now we consider T* as an operator
K — H, defined by T*(77) = T*(n). T* is clearly linear and satisfies T*(b-7j- a) =
T*(a*nb*) = T*(a*nb*) = a*T*(n)b* = b-T*(n)-a = b- T*(7) - a, for all a € A,
bc B, e K. Thus T* € Homp A(AKp, 4Hp) and the map T — T* is the
desired natural isomorphism in i), which is an algebra isomorphism if H = K. This
proves i).

Using the properties of of the contragredient bimodule and i), it is immediate
that ii) and iii) are equivalent. Using again i) and Lemma 1.14, we see that it is
enough to show that Homu p( aHp, AKp) = Homa 4( aL?(A)a, AK ®p pHa)
which is left as an exercise (see for instance Ocneanu [1991(a)], Sunder [1992] for
details). O

Remark 1.19 Let 4Hp, sKp be A-B bimodules with finite index. Then
Homa.g(aHp, AKB) and Homa.p( AKp, AHp) are naturally anti-isomorphic and
hence isomorphic. From the first part of the proof of Theorem 1.18, we see that the
map T € Homa g(aHp, AKg) — T* € Homag( aKp, aHg) is a conjugate lin-
ear, surjective isomorphism, which implies the claim.

Before we end this section, let us introduce some notations, which will be used
later on.

Definition 1.20 Let A, B, C be II; factors andleta = sHp, 8= sKp,v=
BLc be A-B resp. B-C bimodules. The A-C bimodule 4Hg®p gL will be denoted
by ary. Furthermore, we let (o, B) = dimgc Homa g( sHp, AKB).
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Observe that if @ and 8 were endomorphisms, one would write ya = vy o a,
rather than ay. Frobenius reciprocity can now be rewritten in the following way.

Corollary 1.21 Let A, B, C be II; factors.

i) Let « = sHp and B = sKp be A-B bimodules with finite index. Then
(@, B8) = (B,&), (&, ) = (B,

Consider the bimodules « = aHp, 83 = gKc and v = aL¢ as in Theorem
1.18. Then

i) (@B, ) = (@, 7B).
iii) (aB,v) = (8,a7).

From these identities it follows that,

iv) {(aB,7) = (v,e8) = (¥,aB).
{(v,aB) = (B,7a) = (B,a7).
vi) {(v,a8) = (a,87) = (@, 78).

Proof i)-iii) is just a rewriting of Theorem 1.18 and Remark 1.19. iv)-vi)
follows by applying the rules i)-iii). O

Finally, let us show that the relative tensor product is compatible with direct
sums of bimodules.

Definition 1.22 Let A and B be I, factors and let sHp, aKp be A-B bi-
module. The Hilbert space H @ K becomes an A-B bimodule with the action
a-®n)-b=(@@-€E-b)®(a-n-b), € H neK, ac A beB. Itis
called the direct sum of the bimodules sHp and 4K p and denoted by sHp ®4 K.

Recall that the inner product on H @ K is given by ((¢®n,¢ &n') = (,&)n +
)k, & & €H,nn € K.

Proposition 1.23 Let A, B, C be II; factors and let AHp, aKp and pL¢ be
bimodules. Then

(aHz® aKB)®p5 Lo = (AH®p Lc) @ (4K ®5 Le)

as A-C bimodules.

Proof First observe that (H & K )0 = H® @ K° (right B-bounded vectors).
Then, let us define a linear map T : (HQ)K)O OL’— (H'oL’) & (K°® L°) by
T(Een®) =) e (ne]), € H, ne K (€ L°. We have,
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Z(ﬁz On:) ®G), Z(ﬁz &) ® () (HooLo)a(KooLo)
= Z«& 86 ® ), (& 60 (1, @)
= g:((& ® Cir&5 ® G rowro + (M ® iy ® i) kopLo)
= Zj (6646, 6)B: &) i + (1i4Gir G3)Boms) )
= Z EOm) (668 & O M) yox
= <Z(5i ® ) ® G (& @) ® G oKyeLs:

Note that N(w->(Ho@Lo)e;<K0@L0) = Nypogio @ N gopro Thus T is well-
defined and induces a map between the quotient spaces, which is continuous and
hence extends by continuity to a map T : (4uHp & 4Kg) ®p Lc — (aH ®5B
Lc) @ (aK ®p Le). 1t is clearly injective by the above calculation and obviously
an A-C bimodule morphism. Surjectivity of T can be shown in various ways. For
instance, one can define a map S : (H°® L) @ (K°® L°) — (H° @ K°) ® L° by
S(Ti@em) e (o) =2&Eo0)en +X,00v;)®u, & € H n,
p; € L° v; € K°, which is clearly the inverse of T. As above, one shows that S
extends to an injective A-C bimodule morphism from ( 4H®p Lc) @ ( AK®p Lc)
to ( AHp @ 4K B) ®p Lc, and hence the surjectivity of T follows. [

2 Shifts, Fourier transforms and the k-step basic construction

We discuss in this section the k-step basic construction, various natural rep-
resentations of the higher relative commutants associated to it, and the natural
shift on the higher relative commutants. Some of the material in this section is
known to specialists and can be found partially in the literature (see, for instance
(Ocneanu [1988], [1991(a)] and [1991(b)], Pimsner and Popa, [1986] [1988], David,
Choda and Hiai [1991]).

Let us fix an inclusion of II; factors N C M with finite index and let

NCcMcH MlcegMQC..‘

be the associated Jones tower with e, € M, obtained by iterating the basic con-
struction Mx_; C My C®+' My = {My,ex+1}” C B(L2(Mi)). The next result
is quoted from (Pimsner and Popa [1988]) and follows from the abstract character-
ization of the basic construction given there.

Proposition 2.1 Let N C M be an inclusion of I, factors with finite index.
Let

fk = [M H N]k(k+1)/2(ek+1ek e 61)(ek+28k+1 o .62) e (ezk RN ek)(62k+1 e 6k+1),
gk = [M : N]k(k_])/2(6k+18k e 62)(€k+26k+1 aee 63) s (ezk,l P ek)(egk e €k+1).

Then
i) Let N C My, Cf* Myyyy be the basic construction, i.e., fr : L*(Mx) — L3(N)

is the orthogonal projection and M2k+1 = {My, fr}" C B(L*(My)). Then
there is a surjective x-isomorphism ¢ : Magy1 — Maky, such that ¢(fk)
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and ¢(z) = z, for all x € My. We will say briefly that N C My Cf* Moxyy
18 the basic construction with projection fx.

i) M C M C9% My is the basic construction with projection gy.

We will have to work with explicit representations of the higher relative com-
mutants N’ N Mk ; and M' N M;k on the Hilbert space L2(My). If z € My, we
denote by & the vector z(1p,) € L2(My), where 1 M is the cyclic and separating
vector in L?(My). Furthermore, let Ji : L*(My) — L?(My) be the modular conju-
gation, Ji (&) = T*, z € My. Jy is then an antilinear isometry on L?(M;) satisfying
J? =id. Let us denote by 7, the (necessarily faithful) representation of My, Max,1
ob’cained from the basic construction of N C My C B(L?(My)). Let us be more
precise (see also (David, 1.5.6), (Jones and Sunder [1996])).

Proposition 2.2 The representatwn 7k of My, Moy on L2(My) as defined
above satisfies mx(z)(2) = 7z, forall 3 € M. c L?(My), z € My, and ﬂkgwfky)(z)
zE "(yz)/‘ for all zfry € Magta, ¢, y, 2 € My, fi as in 2.1 and E My —
N the trace preserving conditional ezpectation. Thus M2k+1 = ﬂk(M2k+1) e
Jemi(N) . More generally, we have ﬂk(a:)(y) [M: N]"“EMk (zyfr)", for all
z € Mogy1, § € M. If z € My, § € My, then me(2)(§) = [M : N)*Ep, (zyge)”
and hence Jpmi (M) Ji = me(Mag).

Proof The first part is precisely the definition of 7y, written in detail. Since
Mot = span{afib|a,b € My}, it is enough to show the formula for mi(x)(g) for
elements = afib, a, b E M. (we omit the hats to keep the notation simple).
But Enr, (afebyfi) = aEN*(by)Eum, (f) = [M : NJ~6+DgEM (by). Thus indeed
Ti(afib)(y) = aEN*(by) = [M : N**'Ep, (afibyfs) as desired. Finally, since
My, = span{agib|a,b € My}, it is enough to show the last formula for elements
z = agb, a, b € My. Observe that fi = [M : N)*gi(e1...ex)(ears1- - -€rt1), SO
that

Telagb)(y) = [M : NP*Ey;, (agibygr(er ... ex)(erta - . ex41))
= [M : NJ*+1a By (by) Enr, (gk(e1 - - - ex)(€2ksn - - - €x41))
= [M : NI*"'aE}* (by) Enr, (f) = aEpf* (by)
= [M : N|*Ens, (agibygr).

Thus 7|, is equal to the representation coming from the basic construction
MC M, C My € B(Lz(Mk)) and hence Jkﬂ'k(M)/Jk = ﬂk(MQk) as claimed. [

Observe that if z € Mog11, y € Mg, there is a unique element w € M, such that
2yfr = wfi, namely w=[M: N]k“EM”‘“ (zyfr) (Pimsner and Popa [1986)).
Thus m(z)(9) =

The fact shown above, that the representation coming from the basic construc-
tion of M C My is equal to mx|as,, (note that my is a priori in the representation
coming from the basic construction of N C M), will be used several times later
on. Note also that by choosing a tunnel M > N D N; O ... and performing the
basic construction for N; C My, C B(L*(My)), we can actually represent each M,
on L2(My). The next lemma contains some useful identities, which will be used in
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Proposition 2.5 and Lemma 3.6 to show how the above defined representations are
related.

Lemma 2.3 Let fi, be the projection for the k-step basic construction as in
2.1. Then
i) frex+ier...e1feyr = exp1€k...e1frr, k> 0.
ii) €k+2€k+3 - - - €2k 41 [K€2U41 -+ €k43€ki2 = €1€2... exfiek ...eer, k> 1.
iii) €k+2€k+3 - - - egkfkezk c0 €fy3€ky2 = €2€3 ... ekfkek ...€3€2, k > 2.
Proof i): We have f; = [M : NJ**+1/2(¢ 1 . egpi1)--- (e ... ext1), since

fx = f;. Before we start the proof, let us do a special case, which illustrates the
mechanism of the proof:

faesezerfs = [M : NP3[M : N]6(ezeses)(eaeseq)(e1ezes)(eseze; ) (eqeseser)
(esesezer)(eseseqes)(ereseses)
= [M : N]G[M H N](63€4€5)62(6384)61(84636261)(65646362)(66656483)
(e7eseses)
[M : N]663(6465)626’1(636261)(65646362)(66656463)(67866584)
= [M : N]Sezeze1 (eqesezer ) (eseseses)(eseseqes)(ereseses)
= ezeqey f3.

The proof in general works the same way:

Srer+1 €k ... €1 frin
= [M X N]k(k+1)/2[M : N](k+1)(k+2)/2(ek+1 .. .62k+1) v (62 .. .ek+2)
(e1 e ek+1)(ek+1 e 61)(6k+2 e 61) e (62k+3 e €k+2)
= [M : N](k+1)(k+2 /Z[M N]k(k-l)/Z(ede e 62[€+1) s (62(63 .o .€k+2))
e1(er+z .. ese2e1) - (e2k+3 - - hr2)
= [M . N](k+1)(k+2)/2[M . N](k 1)(k_2)/2(€k+1 egki1) e
(e3(es ... err3))ezer(ezeser)(entz-.-€2) - (€2kt3...Chio)
=[M: N](k+1)(k+2)/2[M S NJE=DE=8)/2(¢ 1. egpiy) -
(es(es ... enta))esezer (esesener ) (eseaezer)(exta - . . €3)
- (e ...€
=M ;(1?]?.’611)(4;)2/)2[]\4 : NJE=3)k=0)/2(g) 1 egpy) -
(65 €k+5)64€36261 (6564 61)(6665 . €2 (67 B 63)
(ekys...€a) - (e2k43 ... €hs2)
=[M: N](k+1)(k+2)/2[M N](’“ NE=G=D/2(g . eok1)
(€jt2.--ektjt2)ejries .. er(ejraejr1-..€1)(€jrs. .. €2)
(r+jaz-..€j41) -~ (€2643 - - . xy2)
= [M : N](k+1)(k)+2)/26k+1 o 61(8k+1 ‘e 61)(6k+2 .. .e1) Lo
(e2k+3 - - - €xt2
= €k+1---€1fk+1-
Thus the proof of i) is complete. i} and iii) are proved in a similar way, using
the commutation relations of the Jones projections e;. Let us just indicate the
proof of ll) Set hk = (ek+1 e €3)(8k+2 e 94) s (egk_g v ek)(eg;c_l e 8k+1), ie.
hi is [M : N]_Sﬂéﬂ x the Jones projection for My C My C Mag_;, then
€kt2 .. €241 k€241 . €ht2 =€) ...CkfkCL... €1 = [M : N]—lhk+181. ]
Next we review the shift on the higher relative commutants. Let us change
notation for a while and consider an inclusion of II; factors A C B with finite
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index. Let A C B C** B; be the basic construction and denote by (m, L*(B))
the standard representation of A C B C By on L*(B). Let J, : L*(B) — L*(B)
be the modular conjugation and define vo(z) = 7r0_1J07rg(z)*J0, z € A N By,
Le., mo(y0(z)) = Jomy(x)*Jo. The properties of the basic construction imply that
JoBJo = B’ and JoA'Jy = By (Jones [1983)), so that Jo(A' N By)Jo = A' N B,
(note that all algebras are represented on L?(B), so that we omit m. If we treat
A’ N B) as an abstract (finite dimensional) algebra and we want to emphasize
that it is represented on L%(B), we write mo(A’ N B;)). Thus 7y, defines a map
Yo : A'NBy — A'NB; (viewed abstractly as finite dimensional algebras). It is easy to
see that g is a surjective, unital, linear x-anti-isomorphism from A'NB; — A’'N B,
such that 13(z) = x, for all z € A’ N B,. Note that one often writes briefly
Yo(x) = Joz*Jo, T € A’ N By, when the representation is understood.

The next lemma contains a number of identities which will be useful in the
next section.

Lemma 2.4 Let A C B be an inclusion of I, factors with [B : A] < co. Let
A C B C* By be the basic construction and denote by (mo, L*(B)) the standard
representatwn of ACBC By on L*(B). Let vy : A’ N B, — A'N B, be defined by
Yo(z) = mg  Jomo(x)* Jo, x € A'N By as above. Then,

i) mo(z)(a1-€-a2) = a1-mo(x)(€)-az, for allar, a2 € A, £ € L*(B), z € A'NBy,
where ay - € - ag = mo(a1)Jomo(az)* Jo(€). Thus mo(x) is an A-A intertwiner
of the A-A bimodule L*(B).

ii) Let z € By, y € B, then mo(2)(§) € B. If we view the element mo(z)(9) as
an element in B, denoted by mo(x)(y), then mo(z)(y)er = zye; (in By).

iii) We have yo(z)yer, = yze; forallz € A'NB, y € B.

iv) We have mo(v(p))(y*) = (wo(p)(y))', for all projections p € A'N By and
y€eB

Proof We set 7 =7, e =e;, 7=+ and J = Jj. R
i): Let z € A’ N By, @y, ay € A and b € B. Then n(z)(a; - b-as) =
m(@)m(a1)Jm(az)* J(b) = m(ar)Jw(ag)* Jn(z)(h), since € A' N B,.

ii): By Proposition 2.2 we have that m(z)(§) = [B : A]Eg(zye;)", for all y € B,
x € By. Thus n(z)(y)e, = [B : A]Eg(zye1)e; = rye, by the comment after
Proposition 2.2.

iii): Let z € AN B and y € B. We verify the equality in the representation .
Hence 7(y(x))m(y)m(e)(8) = Jm(a)* J(yEA®)) = J(z* Ea(b)*y*) = ysEa(b),
b € B, where we used that 11'[ B is left multiplication. On the other hand
7 (yxe)(b) = yzEa(b), b € B, so that indeed y(z)ye = yze as claimed.

iv): Let p € A'N By be a projection and let y € B. Then (n(p)())" =

J(x(p)(@)) = In(p)J(5") = n(v(P)(3")-
O

The following proposition shows how the representations mx, 7411 (see Propo-
sition 2.2) are related, when restricted to the higher relative commutants associated
toNC M.
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Proposition 2.5 Let my (resp. mry1) be the representations of My, Mokt
(resp. Mi+y1, Mokys) on L2(My) (resp. L?(Myy1)) asin 2.2. Let x € N' N Majy1,
y € My and z € M. Then my(z)(y)er+1ek ... 12 = T2 (2)(yert1ex ... €12) as
vectors in L?(Mjy11).

Proof First observe that mx(x)(y) € My and 7y (x)(yeri1 .. e12) € My
(proposition 2.2), so that the above equality indeed makes sense in My (to keep
the notation simple we omit “hats” as usual). Furthermore, as in 2.4 i), we see that
Ter1 (2)(w2) = Mer1 (@)1 Th41(2) T 1 (W) = Jrp1Tes1(2)" Tt o1 (2)(w) =
T41(x)(w)z, for all 2 € N' N Mogy1, w € Miyr, z € M, since 1| is left mul-
tiplication and Jg17k+1(M)Jkr1 = Tir1(Mak+2)’ (by the last part of Proposition
2.2). Thus we have mp41(z)(yerti€k ... €12) = Trq1(T)(Yeri1€k ... €1)z, and it is
therefore enough to show the identity in the proposition for z = 1. Next, recall that
Mog41 = span{afib|a,b € My}, so that it will be sufficient to show the identity
for z = afib, a, b € M. By Proposition 2.2, we have,

mr(afib)(y)ertier...e1 =[M: N]k+1E11:4/[:k+1(afkbyfk)ek+lek ...e
= [M : NJ*aEN (by) By (fi)ersrex .- €1
= aEft,{“ (by)ex+1€k ... €.

The right-hand side is calculated using Lemma 2.3 as follows,

Ter1{afib)(verrier...e1) =[M: N]k+2E11\\44:i‘:3(afkby€k+15k co-e1frtn)
=[M: N]k”Eﬁ:ﬁa(afkbyfkekﬂek o€ fitr)
=M : NI*2aEN* (by) Eyi* (exsaek - €1 forn)
= aE%k (by)ext1€k - - €1,

which completes the proof. [0

Next we give a short proof of a well-known formula for v (see for instance
(Ocneanu [1991(a)}, David)).

Theorem 2.6 Let A C B be an inclusion of I, factors with finite index, let
A C B C® By be the basic construction and let {m;}ic; C B be a finite basis of B
over A, such that b=, m;E4(m}b), for allb€ B. Let z € A’ N By, then

v(z) = [B: AY_ Ep(ermiz)erm;. (2.1)

i€l

Proof As above, let 7 = my denote the representation of By on L?*(B) coming
from the basic construction, let e = e; and J = Jy. Then we have for all b € B,
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z e A'NBy,

(B 4] Zw(Es(emw))ﬂ(e)ﬂmf)(@) =[B: A]Zw(Es(emiw))(Ef(nT:b))
=[B: A]Z(EB(emixEA(m;‘b)))A =[B: A](EB(eZmiEA(m{b)x))A
_ (B AlBa(ebz) = (B : Al(Eae(n(@)(6)")" = (n(z)(5)"

= Jn(z)*J(5) = (x(@))(b),

where we used that (ebz)* = z*b*e = m(z*)(b*)e by Lemma 2.4 ii). O

Recall that {m;}i=1,..n41 C B (n < [B:A] <n+1)is called an orthonormal
basis of B over A if Eq(mim;) = 0, i # j, Ea(mim;) = 1,1 < i < n, and
Ea(m},1Mn41) is a projection in A (Pimsner and Popa (1986]). Any such basis
satisfies 3, mierm; = 1, b = 3, mEa(mjb), for all b € B. Note that in the
above theorem we do not require that {m;}ic is an orthonormal basis of B over A.
Any finite basis will do. Furthermore, observe that the formula for 7o(z) does not
depend on the choice of the basis, since the left-hand side in (2.1) is independent
of such a choice.

Proposition 2.7 Let A C B be an inclusion of I factors with finite index and
let {mi}icr be a finite orthonormal basis of B over A. Let tra be the normalized
trace on A’ = A’ N B(L*(B)) and consider the map

o(z) = [B: A"' Y maam,

z € A'. Then ¢ is the unique tr 4/ -preserving conditional expectation from A' - B’
(c B(L*(B)).

Proof We first show that ¢(A’) C B’. Let A C B C° Bi be the basic con-
struction, J : L*(B) — L?(B) the modular conjugation, and recall that [J,€] =0,
B, = JA'J, B; = span{aeb|a,b € B}. Let aeb € By, a,b € B, then ¢(JaebJ) =
(B : A"y, miJadeJbIm; = [B: AI7' 3, JaJmiemiJbJ = [B: A]"YJabJ €
B’. Thus indeed ¢(A4’) C B'. We clearly have ¢(8') = b, for all ¥ € B’ (since
S mem? = (B 1 A]), 9a") = $(z)", H(A):) C (B)+ and o(bac) = bo(a)e,
,c € B',a € A Furthermore, if z = JaebJ € A', a, b € B, then tra(¢(z))

B : Al Mtra(Jabd) = [B : A]7'trp, (J(Jabd)*J) = [B : Al Ytrp, (b*a*)
trp, (b*ea*) = tra(JaebJ) = tra(z). O

=l

Since the tr4/-preserving conditional expectation is unique, the above formula
does not depend on the choice of the orthonormal basis.

Corollary 2.8 Let A C B be II; factors with finite indez and let vo : A'/NB; —
A’ N B, be defined as above. Then trg, (vo(x)) = tra(z), for allz € A'NB;.
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Proof By Theorem 2.6 we have,
tre, (yo(z)) =[B: 4] z:tr}g1 (Ep(erm;z)eym;) = Ztrgl(elm,mm )
=[B: A]tlfBl (e16(z)) = (B : Altra (J¢(93)*61J)
= [B: Altra: (Jé(z)* Jer) = [B : Altra (EZ(Jd(z)* T)ey)

= [B: Altrg(Jo(z)*I)tra: (e1) = trp(Jo(z)* J),

since Jé(z)*J € A'NB and hence EE(J¢(z)*J) = trp(Jé(z)*J). Thus trg, (vo(z))
= trg, (Jo(z)*J)) = tra(¢(z)) = tra(z) by the previous proposition. 0O

Next we will discuss the shift from A’ N B; — B} N B;. Let J; : L*(B;) —
L%(B) be the modular conjugation and consider the basic construction A C B; C
m1(Bs) = J1 A’ J1, where we denote, as before, by 7 the representation of B, B3 on
L?(Bj). Then, as above, we get a linear *-antiisomorphism ~y; : A’ N Bs — A’ N Bs
such that 7(1(71(.1,‘)) = J]ﬂ’l(CL’)*Jl, ze AN Bs. Since J17l'1(A/ n Bl)Jl = 7I'1(Bi n
Bs), we have that 1 (A’ N B;) = B{ N B3. Hence the composition vy : A’N By —
Bj N Bs is a surjective #-isomorphism, which is called the shift from A’ N B; to
B{ N Bj (here it is just the 2-shift, but later we will take for instance A = N,
B = M and we will obtain a shift from N’ N Maky1 to Mg, N Mykys) (see
Ocneanu [1988], Ocneanu [1991(a)]). Note that one sometimes writes J; JozJoJ1
instead of y17y0(z), when all the representations are understood. We will deduce an
explicit formula for the shift in terms of a basis and the Jones projections e;, e
and e3.

Lemma 2.9 Let A C B be an inclusion of II) factors with finite index and let
A C B C® By be the basic construction. Then

i) EB (xelybl) = Es(zEg(ewyh)), for all z, y € B, by € B, (Ea = EX,

Ep = EBI)
ii) Ex(zEp(e1yb1)) = Eo(Ep(bize1)y), for allz, y € B, by € A'N By.

Proof The proof of i) is trivial and ii) follows from the uniqueness of the trace
preserving conditional expectation Ef ':Bi— A O

Next we prove some identities which will be needed later on.

Proposition 2.10 Let A C B be an inclusion of I, factors with finite index
and let A C B C** By be the basic construction. Let {m;}ic1 be a finite orthonormal
basis of B over A. Then {[B : A|*m;eim;}ijer is a (not necessarily orthonormal)
basis of By over A satisfying

b1 = [B . A]Zmielm,-EA(m;EB(elm;‘bl))

1,7
= [B : A]Zmielijgl ((mielmj)*bl)
1,7
=[B: A} _Ea(Ep(bymie)m;)mjerm;,  for all by € By.

ij

Futhermore, if z € AN By, thenz =B : A]E EA(mlEB(elm]z))m “eymy.
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Proof It is easy to see that {[B : A]2m,e;}ie; is an orthonormal basis of
By over B. Thus, if b € By, we get by = [B : A, m;e; Eg(eymb). But
Eg(exmibi) = 3, mjEa(m]Ep(eimib1)), so that by = [B : A}, mieim;
E4(mjEp(exm}b;)), which shows the first equality. The second one follows from
Lemma 2.9 i). Since b, = [B : A3, Eg(bim;er)esm; and Ep(bimie;) =
Zj EA(EB(blmlel)m])m; , the third formula follows. The expression for z €
AN B; follows from this and Lemma 2.9 ii). 0O

The next theorem gives an expression of the “spatially defined” shift (using
J’s) (Ocneanu [1988] and [1991(a)]) in terms of an orthonormal basis and the Jones
projections e; (Pimsner and Popa [1986]). The second formula below is well-known
(Ocneanu [1991(a)], Pimsner and Popa [1986], see also David).

Theorem 2.11 Let A C B be an inclusion of I, factors with finite index and
let y1vo be the shift from A’ N By to B{ N Bz as defined above. Then

Mvo(x)er = [B : APeiearezeqe,

for allz € A’ N By. Thus, if {m;}ics is a finite orthonormal basis of B over A we
have
M(z) = [B: A miererzeseserms,
iel
for allz € AN B;.

Proof Let {m;}ic; be an orthonormal basis of B over A with m; = 1, so
that E4(m]) =0, if ¢ # 1, and Ea(m}) = 1 (this can be assumed without loss of
generality since A is a factor). Then {[B : A]¥mie;m;}: jes is a basis of B, over
A satisfying the hypothesis of Theorem 2.6 (with B; in place of B) by Proposition
2.10. Set r;; = [B: A]%mielmj, and let A € B; ¢/ Bj be the basic construction
with projection f = [B : Aleseiezes (Proposition 2.1). If z € A’ N By, we have by
Theorem 2.6 that,

Myo(z)er = [Bi: 4] (ZEBl (Fripn(e)fri)e
= (B 4> B, (Drim(@)fry)e
iJ

=[B: A](Zmielmj'yg(:c)fm;elmi)el
i,J
=[B: A]3EmielijB(elmkw)elm,’;egelegezm;elm;‘el
ik
=[B: AP e1m; Ep(exmiz)ermieserm]eseses
jk
=[B: APeres([B: A]ZEA(ijB(elmkx))m,‘celm;)egegel
ik
= [B : A]Zelegzegezel,
where the last equality follows from Proposition 2.10. The formula for ;v is now
immediate since 3~ me;m? =1. 0O

Corollary 2.12 The shift v1v : A’ B; — B} N By is trace preserving, i.e.,
tre, (Mmy(x)) = trp, (z), for alz € A'N B;.
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Proof We calculate trs, (myo(z)) = [B : AP Y, trp,(mieieazezesesm]) =
[B : A Zitrgs(mielEB(z)egelm;‘) =3 trga(miEi‘tf1 (z)erms) = trp, (3, mie1
mi)trg, (z) = trp, (), forallz € A/'NB;. O

Although not needed in this paper, we include for the sake of completeness a
few words about the 2-shift and the Fourier transforms, both of which are partic-
ular operators in the affine Hecke algebra associated to a subfactor (Jones [1994],
Jones [1996]). For the next theorem, see (Pimsner and Popa [1988]).

Theorem 2.13 Let A C B be an inclusion of II factors with [B : A] < oco.
Let AC B C® B, C® By C ... be the basic construction and define maps Tr, :
A/ﬂan+1 — A N Ban+3 by Tn(CIJ) = [B : A]2"+2€162 ... €21 42T€2n 4362042 - - - €2€1,
for all z € A’ N Bany1. Let {m;}ier be a finite orthonormal basis of B over A and
set Sp(z) = Y, miTn(x)m], T € A'N Bont1. Then we have,

i) To(z*) = (Tul@)*, Tulz*z) 2 0, Tulzy) = T, (x)Tn(y), for all z € A'D
Bans1, Tu(1) = €. Furthermore trp,,,,(Ta(z)) = [B: Al~Mrp,,,, (x), for
all z € A'N Bang1-

i) Su(z) € By N Banys for all © € A' N Byng1. Thus S, : A'N Bapyi —
B! N Byyys is a unital x-isomorphism, which is onto and trace preserving,
By s (Sn () = trBy,,,(T), T € AN Bapy1-

iii) Sn(z) € Bj N Bany2 for allz € A’ 0 Bon. Thus Splanp,, : A N Ban —
B! N Bypnyz is a unital x-isomorphism, which is onto and trace preserving.

iv) The definition of Sn does not depend on the choice of the orthonormal basis.

<
<

Sni1]anBanss = Sny Snsilansy, = Selanp,,. Thus (Sn)nen defines a

. . . B . —_— W —_—— s W
trace-preserving surjective *-isomorphism S : U,A'NB, — U,BNB,
such that S(A’ N By) = By N Byya.

vi) Sp: A'N By — B N Bs satisfies So =M.

Proof The easy verification of i) is left to the reader. To show i), let z €
AN Baon+i1, by, by € B. Then,

blelngn(z) = [B : A]2n+2§:b1EA(b2mi)€1€z c. . €20 42T€2043 - .- egelm;‘
=[B: A]2"+ZZmJEA(m;b1EA(bzmi))eleg ...T€yp43 ... €261
i,J
=[B: A]2"+2Zm]~eleg ... €2n42T€2n43 - - 452&1EA(m;b1EA(b2mi))m:
2
= [B H A]2"+zzm]‘€1€2 . €24 2T€20 13 . - - egelm’;blelbz
J
= Sn(z)blelbz,
since EEA(bzm,)m: = by. Hence S,(x) € B{NBanys as claimed. The fact that S,
is a unital *-homomorphism, which preserves the trace, follows immediately from i).
Thus S, is injective. Since dim A’ N Bzp1 = dim B! N Ban+s, Sy is also surjective
and the proof of ii) is complete. If z € A’ N Bap, then Sp(z) € By N Banys by

ll) But egn2T€2n43€2n+2 = [B : A]41162n+2, so that indeed S, (a:) € Bi N Banya.
The remaining statement in iii) follows as in ii). The fact that S, does not depend
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on the choice of the orthonormal basis can be deduced easily from the fact that
two orthonormal bases of B over A differ by a unitary in an amplification of A
(Pimsner and Popa [1986]). The first two equaltities in v) are straightforward and
the rest of v) is a consequence of ii) and iii). Finally, vi) is obvious by Theorem
2.11. O

Definition 2.14 The map S, : A’ N Bany1 — B N Banys (resp. Snlans,,
A’ N By, — B} N Banta) is called the 2-shift on A’ Bony1 (resp. on A'N Bag).

Remark 2.15 One can of course define in a similar way a 2-shift from B'NB,
to B, N Bpya. The “orthonormal basis approach” to the 2-shift can be found in
(Pimsner and Popa [1986]) and the “spatial approach” using J’s in (Ocneanu [1988],
Ocneanu [1991(a)], see also Popa [1990], Choda and Hiai [1991]). It is shown in
(David) that both points of view coincide. Note that the 2-shift actually defines
a trace preserving *-isomorphism between the standard invariants of AC B and
By C By (resp. BC By and By C B3).

Let us discuss briefly another set of special operators contained in the affine
Hecke algebra associated to a subfactor, the so-called Fourier transforms
(Ocneanu [1988] and [1991(b)], see also Bisch [1994(a)]).

Definition 2.16 Let A C B be an inclusion of I, factors with finite index and
let AC B C® By C® By C ... be the basic construction. We define linear maps
6, ¢ and ¢, : B'0\ Bryy — A'N By by ¢.(z) = [B: A]k_t_zEBk(xeleg ... €kEE+1)s
¢i(z) = [B : A|*P Ep, (exr16k - - .e2e1z) and ¢ie(z) = (B : A Ep,
(€xs16k .- -€2e1T€1€7 . .. xeki1). We call ¢r, ¢y and - the left, resp. right, resp.
9-sided Fourier transform on B’ N Biyi.

Let us remark that other normalizations of the above defined maps can also be
found in the literature and that these maps are the classical Fourier transforms for
finite groups in the case where the subfactor is obtained as a crossed product by
a finite group (see Ocneanu [1991(b)]). Various combinations of shifts and Fourier
transforms will give interesting linear maps on the higher relative commutants. For
instance, the maps 4 can be written as such a composition. To see the usefulness
of the maps defined in 2.16, let us prove the following (well-known) proposition.

Proposition 2.17 Let AC B C By C By C ... be as above. Then dim A’ N
By, = dim B’ N By41, for all k.

Proof Let ¢, : B' N By+1 — A’ N By be the Fourier transform as defined in
2.16. If ¢.(z) = 0, then exioze; ...exr1€x12 = 0 and hence exyoze; = 0. Using
an orthonormal basis of B over A, we get ex42x = 0 and hence z = 0. Thus
dim A’ N By, > dim B’ N Bi41. Using the Fourier transform on A’ N By, we see
that dim 4} N Bx—, > dim A’ N By > dim B’ N By1, where B D A D Aj is the
downward basic construction. But the 2-shift is an isomorphism between AiNBi_1
and B’ N Byy1 (Theorem 2.13), so that all dimensions coincide. O

3 Principal graphs, reduced bimodules and the fusion algebra
associated to a subfactor

Let N € M be an inclusion of II; factors with finite index and let N C M C*
M, C® M, C ... be the associated Jones tower of 1I; factors. We have seen
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above that the Hilbert spaces L2(M,), n > 0 (My = M), are natural N-N, M-
M, M-N resp. N-M bimodules via the action a-%-b = axb a, bin N or M,
:1; € M, C L*(M,) (extended to all of L%(M,) by continuity). Observe that if

: L3(M,)) — L?(M,) denotes the modular conjugation, we could have written
this action as a- & - b = mp(a)J, 7, (b)* J,.(&), where m,, denotes the representations
introduced in Proposition 2.2, since 7y, |5 is left multiplication. In this section, p will
denote the N-M bimodule 5 L?(M) s with the above action a-£-b = aJob*Jp(€),a €
N,be M and ¢ € L*(M). As we have seen after Remark 1.17, the contragredient
bimodule p is then just L?(M) as M-N Hilbert bimodule with the actions as above
(exchanging N and M of course). Throughout this section we will work with N-
N and N-M bimodules. It is a trivial exercise to rewrite all the statements for
M-M and M-N bimodules. We will use the notation for bimodule multiplication
introduced in 1.20.

The following two results are well-known. We include the proofs for the conve-
nience of the reader.

Proposition 3.1 Let N C M be an inclusion of I, factors with finite index
and associated N-N resp. N-M bimodules L*(M,,) as defined above. Then

a) nL2(My) ®m ML*(M)y = NyL2(M,)n as N-N bimodules.

b) NL3(M,)®n nL*(M)y = NL?*(Mniy)um as N-M bimodules.
Thus, if we let p = yL*(M)n be as above, we have

i) (pp)" = NL2(My_1)N as N-N bimodules.
it) (pp)" = ML*(My)ar as M-M bimodules.
ili) (pp)"p 2 NL*(Mn)m as N-M bimodules.

iv) (pp)"p = ML*(M,)n as M-N bimodules.

Proof As in the proof of Lemma 1.14 we see that yL?(M,,) ®up L*(M)y =
~L*(M,)n as N-N bimodules. Let us prove b). By Proposition 1.5 we know that
the right N-bounded vectors in L?(M,,) (resp. left N-bounded vectors in L?(M))
are given by M, (resp. M). As usual, we will abuse notation and write just z
instead of & for the vector # = x(Ir,) € M, C L2(M,,).

Define a map T : M, ©® M — L?(My;) by

T(Z:::,-@y1 M : N szen+1€n -€e2€1Y;.
7

Note that (a,b)y = En(ab*), a, b € M. We compute,

(1 @y, 22 ®y2) = (m1<y1:y2>N7z2)Lz(Mn)
= (z1En(1113), T2) = trar, (2521 En (1133)),
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for all z; € My, y; € M, i =1, 2. On the other hand we have,

(M : NJ™*1 (71641 .- €191, T2€ns1 - 'elyZ)LZ(Mﬂ“)
=[M : N]"*tr(zziens1 - - 1¥193€1 - - en+t1)
=[M: NP ttr(zsz1 En (115 )ens1 - - - e2€1€2 - en+1)
= [M : Nltr(z3z1 En (1193)ens1) = tr(z321 En (3195))

= {z1 ®y1,72 D Y2)-

This implies that 7' is well-defined and induces an isometry, again denoted by T,
from nL2(M,)®n nLE (M) to ~L?(M, 1) which is clearly a morphism of N-M
(or even M-M) bimodules. Observe that My41 = Mnent1 M, (by which we mean
the linear span of elements of the form aen1b, @, be M), My = Mp_1enMn_1,
which implies that M1 = Myen416nMp_1 and by induction we obtain My41 =
Mpéniien-..e1M. From this we deduce that our map T is surjective and hence
b) is shown.

The proof of i)-iv) is now immediate by induction using a), b) (and of course
associativity of the bimodule tensor product, Proposition 1.12) O

Proposition 3.2 The higher relative commutants associated to an inclusion
of I, factors N C M with finite index are spaces of bimodule intertwiners. More
precisely, one has,

N' O Many1 = Homy.n(vL*(Mn)w),
N' N M, = HomN,M(NLQ(Mn)M),
M' N Man & Hompg-m (L (M) ),

MO Manyy 2 Hompy (L2 (Mo)n).-

Proof Let us prove the first identity. Denote as in Section 2 by 7, the represen-
tation of N C M, on L?(M,). Then by (Pimsner and Popa [1988], see Proposition
2.1), Ta(N) C mn(My) C Tn(Mant1) C B(L*(MS,)) is the basic construction. Thus,

Homy n (vL2(Mp)w) = Tn(NY Na(NP) N B(L* (M)
= 7"n(]\r)( n (Jnﬂ'n(N)Jn), N B(Lz(Mn))
= Trn(N, n M2n+1) =~ N'N M2n+17

where J,, denotes as usual the modular conjugation on L*(M,). For the second
identity we use the last statement of Proposition 2.2, and then the proof is identical.
The remaining two identities are shown in the same way. O

We will show next that the principal graphs of a subfactor can be viewed
as “principal fusion rules” for certain bimodules associated to the vertices of these
graphs (see also Ocneanu [1988], [1991(a)] and [1991(b)], Jones and Sunder [1996]).
If we denote by (I',I") the principal graphs of N C M, then I will describe the
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principal part of the Bratteli diagram of C = N'NN Cc NNnM c N'nM, C

cand Mthat f C=M'NM Cc MNM; C MNM; C.... Let us re-
call first the definition of the principal graphs (Goodman et al. [1989], see also
(Popa [1990], 2.1, 2.2, 3.5), (Wenzl [1988], 1.1, 1.2)). We will describe the con-
struction of I'. Since N’ N Mapi1, n > —1, (resp. N’ N Ma,, n > 0) are fi-
nite dimensional C*-algebras, they are multimatrix algebras and we suppose that
their simple summands are indexed by a set K, n > —1 (resp. L,, n > 0) (set
M_y = N, My = M). Let 22,43 be the central support of egnys in N’ N Manya
(observe that zzn43 = \{uezniau"|u € U(N' N Mani2)} (Popa [1990], 2.1)),

then (N( n M2n+3)z2n+3 = span(N’ n M2n+2)82n+3(N/ n M2n+2) di)f= an+3 and
N' N Manya & (NN Mapy2)zonts C (N' N Manys)2znss is (isomorphic) to the
(algebraic) basic construction of N’ N Many1 € N' N Manyo. In other words,
N’ N Ma,.3 has a direct summand (which is the 2-sided ideal Y2,,3 generated
by eani3 in N’ N Mapy3), that is isomorphic to the basic construction of the fi-
nite dimensional algebras N’ N My,y1 C N’ N Mapyo. Furthermore, note that
€an+3(N' N Many3)eamss = (N N Mani1)e2ni3. Due to the properties of the basic
construction we get a natural isomorphism ¢ : Z(N' N My,41) — Z(Yanys) (the
centers), which sends a projection ¢ € Z(N’ N Mz,41) to the unique projection
G € Z(Yany3) satisfying geont3 = Geonys (§ = JqJ, where J is the modular conju-
gation on N’ N Mgy, 2). Thus, if g is the identity of the k-th simple summand in
N'N Many1, k € Ky, then § = ¢(gx) is the identity of a simple summand in Yan43
(and hence N'N Mo, 43), indexed by some k € Kyq1. Themapk € K, - k € Kn 11
identifies K,, with a subset of K, and we will henceforth regard K, as a subset
of K, using this identification. Recall that K, 1\K,, is usually refered to as the
“new stuff” (Goodman et al. [1989]). If pr € N’ N May1 is a minimal projection
< gk, then prezny3(N' N Monya)presnta = pe(N' N Moni1)prezn+s = Cpreanys,
i.e., px€an+3 is a minimal projection in N’ N Mo, 3. Since prezni3 = PrQreonys =
Prdeants = (preants)d, where § = ¢(gx), we have that preanis < ¢, so that
Pr€ants is contained in the simple summand of N’ N My, 3 indexed by k. Thus,
the identification k¥ € K, — k € K,+1 as described above, can be obtained in
the following equivalent way: Let p; be a minimal projection in the k-th simple
summand of N’ N My, 41, k € K, let k € K, 41 be the index of the simple sum-
mand in N’ N Map, 3, which contains the minimal projection pie2n+3, then the map
ke K, — ke K, is precisely the above described identification.

The same analysis can be carried out for N’ N Ma, C N’ N Man41, and we get
an identification of L, as a subset of L,+;. Namely, if p; is a minimal projection
in the I-th simple summand of N’ N My, then peany2 is a minimal projection in
a simple summand of N’ N May, 13, indexed by some [ € L,1. The map l € L, —
[ € L,,;1 identifies as before L,, with a subset of L,.;. Using these identifications,
we set K = J,»_; Kn and L = J,,5o Ln. Note that K_; = {k_1} is a singleton,
since NN N = C. Thus, if we denote by Gn = (Gxi)kek.,, teL,,, the inclusion
matrix of the unital inclusion N’ N My, 1 C N’ N May4o, where Gy denotes the
multiplicity with which the k-th simple summand of N’ N Man41 sits in the I-th
simple summand of N’ N My, 42, then the transpose matrix GY, is the inclusion
matrix for NN Mzp 42 < Yan13 (this follows again from the properties of the finite
dimensional basic construction (Jones [1983])). In particular, G, is a “submatrix”
of the inclusion matrix Hy, 41 = (Hlk)leL,.+1, kEKni1r for N’ﬁM2n+2 C N’ﬂM2n+3,
where Hj; denotes as before the multiplicity with which the I-th simple summand of
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N’ Map 4 sits in the k-th simple summand of N’ "M Many3. More precisely, we have
Hix = G, | € Lpt1, k € Ky, C Kpy1. Thus, there is a unique “K x L” matrix G =
(Gxi)kek, 1eL, such that (Gxi)keK,, i€Lny, 18 the inclusion matrix for N'NMan+1 C
N'N Mz, 42 and ((le)kEKn+1, leLn“)t is the one for N’ N Map42 C N'N Msnys
(see Popa [1990]). We construct now a bipartite graph I' in the following way. The
vertices of T are defined to be the set K U L and there are Gii, k € K, | € L, edges
between a vertex k € K and a vertex | € L. T is then called the principal graph of
N C M. Recall that T has a distinguished vertex *, which is the vertex denoted by
k_, above. Equivalently, we could have constructed I' in the following way: The
vertices of T are {k_; }ULoUKo\K_1UL1\LoUK 1 \Kq - -- = KUL as before. Let +
denote the vertex k_; and connect * to each I € Ly according to the multiplicity Gui,
I € Lg. Then connect each [ € Lo to the vertices k € Ko\K_1 according to their
multiplicity Gri, k € Ko\K_1, | € Lg, then each k € Ko\K_1 tol € Li\Lo etc.
(“the new stuff is connected only to the old new stuff’ (Goodman et al. [1989])).
Observe that this procedure results in the same bipartite graph with distinguished
vertex * as the previous one, since for example each k € K., viewed as an element
of K41, is connected to I € L, with the same multiplicity G as { € Ly is to
that same k, viewed now as an element of K, (this is just a rewording of what was
described above as “GY is a submatrix of Hyy1”). The details of all this can be
found in (Goodman et al. [1989] or Popa [1990]).

The principal graph I" is constructed in the same way, using sets K!,n>0,
indexing the simple summands of M’ N Ma,, and L!, n > 0, indexing the simple
summands of M’ N Ma,,1. We obtain a “K’ x L'” matrix G' = (Gyp)rek, ver
as above. Observe that I' has again a distinguished vertex ¥’ = kj, if we denote
K} = {kb} (i.e., k} is the index of the simple summand C in M NM=C).

Suppose now that we are given the principal graphs (I'I') of N C M with
distinguished vertices * resp. *'. Then we obtain the matrices G, G’ via

4
Ar = GO, g) X. resp. Ap = ((Go,)t CO"), where Ar (resp. Arv) are the

adjacency matrices of the graphs T' resp. I". If we denote by I'even (resp. Tlven)
and Toqq (resp. I[,44) the vertices with even (odd) distance from * (resp. '), then
it is obvious that K = Teven (resp. K’ =T%, ) and L = Toaq (resp. L' = I'qq)-
In particular, K_; = {*} and K,, n > 0, is the set of even vertices with distance
< 2(n+1) from *, whereas Ly, is the set of odd vertices with distance < 2n+1 from
#. Similarly for K’ and L/, (caution, the index of K}, is shifted by one compared
to Ky).

We proceed with showing that each index k € K (resp. [ € L) can be viewed as
a uniquely determined irreducible N-N (resp. N-M) bimodule and we show in the
next section that the numbers Gy; are dimensions of spaces of certain N-N resp.
N-M bimodule intertwiners.

Let p € N’ N Many1 (resp. g € N’ N Mjy,) be a projection and let m, be the
representation of My, Man41 on L?(M,) coming from the n-step basic construction
for N C M, (Proposition 2.2). Recall that mn|ar,,, is equal to the representation of
My, on L2(M,) coming from the n-step basic construction for M C M,, (Propo-
sition 2.2, last statement). The Hilbert space mn(p)L*(My,) (resp. 7o (0) L2 (My))
is then an N-N (resp. N-M) bimodule in a natural way. Namely, since mn{P)
(resp. mn(q)) is an N-N (resp. N-M) intertwiner of the N-N (rc;sp\ N-M) bi-
module L2(M,), we have that a - m(p)(Z) - b = ﬂn(p)(m) = am,(p)(z)b, for all
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a,b€ N and x € M, (resp. a-m,(q)(Z) b= ﬂ"(q)(a/HJ) = awmx)b, for all
a € N, be M). Since m,|p is left multiplication, this action can be rewritten as
a-Tn(p)(€) - b= mp(a) Jnmn(b)*Jnmn(p)(£), a, b € N, € € L?(M,) and similarly for
T (q)-

Definition 3.3 Letp € N'NMany1, resp. ¢ € N'NMa,, n > 0, be projections.
We denote by m,(p)L(M,.), resp. m,(q)L*(M,) the N-N resp. N-M bimodules
with above defined actions and we will call them the reduced bimodules associated
to N C M. Similarly for M' N\ May, and M’ N\ My, 1.

Note that one sometimes simply writes pL?(M,,) when the representation is
understood. Also, observe that the space of left resp. right N (resp. M) bounded
vectors of a reduced bimodule clearly contains 7, (p)(Mp,) resp. m,(q)(M,) as a
dense subspace, a remark that will be used later on, when we define bimodule
morphisms on various tensor products of reduced bimodules.

Lemma 3.4 Letp € N' N Mani1 (resp. p € N'N May,) be a projection. Then
o (p)L3(My,) is an irreducible N-N (resp. N-M) bimodule if and only if p is
minimal in N' N Maniq1 (resp. N' 0 My,).

Proof The space of N-N intertwiners of m,, (p) L?(M.,) is isomorphic to (N p)'N
PMan41p, which is equal to Cp, iff p is minimal. Similarly for the second state-
ment. []

Lemma 3.5 Let p; and ps be equivalent projections in NN Map11 (resp. N'N
May,). Then mo(p1) L3 (M) & ma(p2)L*(M,,) as N-N bimodules (resp. as N-M
bimodules). Furthermore, if p € N' N Ma,41 (resp. p € N' N Ma,) is a projection
which is an orthogonal sum p = Z:;l pi of projections p; € N' N Many1 (resp.
pi € N'N M), 1 < i <k, then mo(p)L3(My) = @F | mn(pi)L2(M,) as N-N
(resp. N-M ) bimodules.

Proof If v € N' N Many1 (resp. N’ N My,) is the partial isometry between py
and po, then 7, (v) gives the desired bimodule equivalence. The rest is obvious. O

Next we will show that each k € K (resp. | € L) labels precisely one irreducible
N-N (resp. N-M) bimodule contained in &,(pp)" (resp. ®»(pp)"p). This will be
accomplished by choosing a minimal projection in the k-th (resp. [-th) simple
summand of a higher relative commutant and considering the associated reduced
bimodule. The previous lemma shows that this reduced bimodule will not depend
on the particular choice of the minimal projection as long as they are in the same
simple summand. What we need to show however is that this reduced bimodule does
not depend on the level of the higher relative commutant, i.e. minimal projections
indexed by & (resp. !) in any higher relative commutant N’ N My, ;1 (resp. N' N
May,), n > 0, give equivalent reduced N-N (resp. N-M) bimodule. It is of course
enough to establish this equivalence for reduced bimodules in two consecutive higher
relative commutants N' N Moy, C N' N Moy (resp. N' N My, C N' N Map12).

Lemma 3.6 a) Let p € N' N Ma, 41 be a projection, n > 0.
i) (n=0). m(pes)(y) = pyes, for ally € M;.
it) mni1(peznts)(y) = [M : N]z"EX,Il:'::l(pyel c.enfn)en...€1, for all y €

Myy1,n > 1
b) Let g € N' N\ May,, n > 0, be a projection (My = M).
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i) (n=0). m(ge2)(y) = ¢Em(y), for all y € M.
ii) (n=1). ma(qges)(y) = qyea, for ally € M.

i) Mg (gerns2)(y) = M 1 NPUEM (qyes . e fu)en e, Jor all y €
Mn+1: n 2 2.

Proof The proof uses the explicit expression for the representations Tk given
in Proposition 2.2. We prove first a). If y € M, then mi(pes) Wy) = [M
NJ2Ep, (pesyfi) = [M : N°pyEu, (esezerezes) = pyer and a), i) is shown Let
y € Mpi1, n > 1. Then mop1(Peants)(y) = [M : NI"P2Ey ii‘:3(]3€2n+3yfn+1) by

2.2. Observe that fr,41 = [M NI"tlensa ... €an2fn€onss- - - enra2. We compute

the conditional expectation EM:’:; (pean+3y. fn+1) Let z € M, then

tr(zpyeantafnir) =[M: NI"ttr(zpyesntsenta - €an+2fn€ints - .€n+2)
= [M : N|*~'tr(zpyen+t2 - - - €2n+1fneons1 o €nt2€2n43)
= [M : N]"~%tr(zpye; ... en frn - ..e1)

=[M: N]"‘Qtr(zE%::f(pyel co.enfa)en...€1),
where we used Lemma 2.3 ii) in the third equality. Thus mn41(peant3)(y) = [M
N]Z"E'M"‘"“(pyel .enfn)en . ..€1 as claimed.
We prove b) next. If y € M, then mi(ge2)(y) = [M : N)2Ewm, (geayfi) =
[M : N] 3gEM(y)Enm, (eze1e3e2) = qEn(y) and b), i) is shown. If y € M3, then

m( 964)(11) (M : NJ3Epp,(qeayfo) = [M : NJqyEpr,(eafe) = [M : N|°quEns, (e
(esezer)(eqesez)(eseses)) = qyes and the proof of b), ii) is complete. Finally, let
n>2and y € May1. Then mp1(geznt2)(y) = [M : N]"“Eﬁi"jf(qeznnyfnﬂ)
(Proposition 2.2). We compute the conditional expectation as in a), il). Let z €
Mn+1, then

tr(zqesntayfnr1) =M : N"Plir(zqyesnioenia . .- 2ni2fnlonts - -€nt2)

= [M : NJ*2tr(2qyenta - - - €2nfn€on - - - Ent2€ans2)
=[M:N]"~ 3tr(zqyeg...enf"en...eg)

=[M: N]"‘%r(xEAA,}!::a(qyeg ceeenfn)en...€2),
where we used Lemma 2.3 iii). Thus 7, 1(geznt2)(y) = [M : NJ*"~ 1]:7"‘“'”r1 (qye2
..enfn)en...e as claimed. O
Theorem 3.7 Let p € N' N Manyy (resp. ¢ € N' N Myy,) be a projection, let
Tn, Tni1 e as in Proposition 2.2 and let Mapq C®2"+2 Moy o Co2n+3 Moy be a
part of the tower associated to N C M. Then
2 NN 2
7n(p) L (Mn) = oy (peznts) L (Mnt1)
N-M

7|'rz(q)Lz(JMn) = 7"n+1(qe2n+2)L2(Mn+l)

as N-N resp. N-M bimodules, n > 0 (Mg = M).
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Proof We will use Lemma 3.6 to define explicit bimodule isomorphisms. These
maps will be related to the Fourier transforms defined in Definition 2.16. Let us
begin with showing the equivalence of the N-N bimodules. Suppose first that
n > 1. Define a linear map T 1rn+1(pezn+3)L2(Mn+1) — ma(p)LA(M,) by
T(7I'n+1(p62n+3)(?})) [M N] M2"+l (py61 enfn)/\: Yy € Myy1. T will be
later extended by continuity to all of 7rn+1(pegn+3)L2(Mn+1). To simplify the no-
tation, we will omit hats as usual. Recall that M,, 11 = M,eny1€,...e1M. Thus,
ify = aepy1...€1b, a € My, b € M, we get En, (paentien...e1bey...enfn) =
EMn(paEN(b)enH“.egelez en+1fn) = [M N]_"EM (paEN b)fn) = [M :
N~ 7, (p)(aEn(b). Hence T(mat1(pean+a)(Mnt1)) C ma(p)L*(My) is a
subspace, which is clearly dense. Note that e,i1fr, = frnént+1 = fn (see Propo-
sition 2.1). Recall that if w € M,41, then there is a unique w’ € M, with
went1 = wenyi, namely w' = [M : N]Ep, (wepy1). Thus wenyy = [M :
N]E, (weni1)ent1. This will be used in the computations below. Let now z,
Yy € Mp41. Then, using Lemma 3.6, we calculate the inner product,

(mnt1(pe2nts)(@), Tni1 (Pe2n+3) (D))
= [M:N*tr(er ... en(Bn,,, (pyer ... enfn)) B, (prer .. enfa)en .. e1)
= [M : NP ltr(en (Entoy, (pYe1 - - enfn)ens1) (Enny. (pTe1 . . enfn)eni))

= [M: NP"tr(e, (EII\\/I/‘{:"1 (EM’"’rl (pyer - enfn)en+1)en+1)*

Jr
(Epir (Mt (per .. enfn)ens)entn))

= [M : NP™3tr(enensi Eap2™* (pyer ... enfu) En* (€1 ... en fn)ensi)
= [M : NPm*1te(BR (pye ... en fo) EAE™ (pwes - . enfn).

Thus T extends to an isometry 7,41 (pean+3)L?(Mny1) — 7 (p)LE(My,), which
is onto as seen above. T is an N-N bimodule morphism because,

T(a- Tns1(penss)(@) - b) = T(Wn+1(l7€2n+3)(;y\b))

= [M: N]*

(paybe; ... enfa)"
[M N] aEM (;Dye1 enfn)b)/\

=q- T(Trn+1 (P62n+3)('g)) - b,

for all a, b € N. This shows the equivalence of the N-N bimodules in the theorem
for n > 1. If n = 0, we define a linear map T : m;(pe3)L?(M;) — mo(p)L3(M)
by T(wl(peg)(gj)) = [M : N]%EM(pyel)A, y € Mj. Since M; = Me; M, we
have for y = aeid, a, b € M, that Ex(paeibe;) = Ep(paEn(b)e;) = [M :
N]~'mo(p)(aEn (b)) (fo = €1). Hence En(pyes)" € mo(p)L*(M), for all y € My
and T'(m1(pes)(M,)) is clearly dense in mo(p)L?(M). If =, y € My, we compute
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(using Lemma 3.6),
(TFl(Pes)(i')wﬂl(p%)(@)) = tr(ely*Pxel) = tf((Pyel)*(Pzel))
=[M: N]Ztr((EM(pyel)el)*EM(mel)el)
=[M: N]tr(EM(pyel)*EM(p:tel))‘

As before, T extends to a surjective isometry, which is an N-N bimodule mor-
phism and establishes therefore the equivalence of the above N-N bimodules in the
case\?/e: p?r.oceed with the proof of the equivalence of the reduced N-M bimod-
ules as in the statement of the theorem. According to Lemma 3.6, we have two

special cases n = 0, n = 1 and the general case n > 2. Let us start with the
general case. We define a linear map T : Tnp1(geanta) L2 (Mpi1) — ma(@) L? (Mn)
by T(Tn+1(geant2)(@) = [M : NEEpt (ques - enfu)", ¥ € Mayr. T will
be later extended to all of Tni1(qezns2)L?(Mni1) by continuity. Since My =
Myens1.-.e2Mi, we have for y = a€ns1---€2b, @ € Mny1, b € M;, that
Eﬁi”“(qaenﬂ ...esbes...enfn) = Eum,(qeEnm (b)en+1 - - - e3€2e3 . censifn) =
M : N|""*'Ey, (qaEn(b)fn) = [M : N]~?m,(q)(aEpm(b)). Thus we get that
T(1rn+1(qez,1+2)(Mn+1)) € ma{q)L*(M,) is a subspace, which is clearly dense.
Let 7, y € My4+1 and compute, using Lemma 3.6, the inner product,

(Tws1(ge2n+2)(&), 1 (ge2n42) )
=M : NJ*"~2tr(ez ... en (B (qyez - cenfn)) Entny: (g2 - €nfn)en - .e3)
= [M : NP*tr(en (En.,. (qyez - - enfr)ent1) Ent,. (qmen .. -enfn)ent1)
= [M : NP 2tr(en (Eﬁ:“ (Eﬁ::t‘(qyeg . enfn)en“)em_l)*
E%:“ (EI\A//I[::tl (qzes .- enfn)3n+1)€n+1)
=[M: N]E'n+2tr(:z,L¢3,1+1E1\"21~+1 (ayez - ~€nfn)*Eﬁ:"“(qa:ez - cenfa)ens)
=[M: N]3"tr(Eﬁ:"“(qy€2 e enfn)*E%:ﬂ-H (qzez---enfr))-

Thus T extends to an isometry Tpt1(gezn+2) L*(Mnt1) = Tn (q)L*(My), which
is surjective as seen above. T is an N M bimodule morphism, since

T(a- i (@ens2) @) -b) = T(Tns1(geansa)(@vh))
=[M: N]%EMn(qegn”aybez s enfn)/\
=[M : N|% (aEm, (qeznt2yez - - .enfrn)b)"

=a- T(Tfn+1(q62n+2)(g)) -b,
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for all a € N and b € M. This establishes the desired N-M bimodule equivalences
for n > 2. If n = 0, define a linear map T : m1(ge2) L2(M1) — mo(g)L2(M) by
T(r1(ge2)(®)) = aEum(y) = mo(q)(Em(y)), y € My. By Lemma 3.6 b), i), T extends
to a surjective isometry w1 (gea) L2(M1) — mo(g)L?(M), which is an N-M morphism
by a similar computation as above. This completes the proof in the case n = 0.
Finally, the case n = 1. Define a linear map T : m2(qes) L2(M2) — 71 (q) L% (M)
by T(m2(qea)(®)) = [M : NI Ejf*(que2)", y € My. Note that EN2(qyfi) = [M :
N]~1E}{(qyes), for all y € M,. Hence E%f(qyeg) € m(q)LA(M,), for all y € My,
by a similar argument as above, using M> = MieM1. Thus T (mz(ges)(My)) C
m1(g)L%(M,) is a dense subspace. Let z, y € M, and compute the inner product
(m2(ge) (), m2(ged) (@) = tr(eay’qmes) = [M i NPtr((En,(qyez)es)”
Eu, (qres)e;) = [M : Nltr(Ep, (que2)* Ear, (gze)) (Lemma 3.6). Hence T ex-
tends to an isometry mi(ge2)L?(M1) — mo(q)L2(M), which clearly onto and an
N-M bimodule morphism since T'(a - m2(ges) - b) = T(wz(qe4)(a/g-;\b)) = [M :
N|% Epr, (qesaybes) = [M : N)zaE, (geayes)b = a-T(m2(ges)(9)) b, foralla € N,
b€ M. Thus the proof of the theorem is complete. O

Remark 3.8 The above proof simplifies if p = 1 or ¢ = 1. Let us con-
sider p = 1. Since Ey,, (fn) = [M @ N] "enq1, we get for y € My that
Tnti(eznsa)(y) = [M : NJ*"ye1...enEn, ., (fa)en...e1 = yer (Lemma 3.6). It
is then easy to see that the map T : Tpi1(eans3) L3 (Mni1) — L*(M,), defined
in the proof of the previous theorem, simplifies to T(7rn+1(e2n+3)(ﬁ)) = (M :

N]"T“EMn (yer...ens1)", y € Myy1. Similarly in the case ¢ = 1.

Corollary 3.9 Let N C M be an inclusion of I, factors with finite index,
and let T' be the principal graph of C = NNNN C NNNnM C NNnM; C ....
Then there is a bijection between Teyen (Tesp. Toaa) and the set of equivalence
classes of irreducible N-N (resp. N-M) sub-bimodules of @,~_; nL?(M,)n (resp.
D> NL3(Mn)nr), where M_y = N, Mg = M. More precisely, if & € Teven (Tesp.
B € Toda), choose a minimal projection pa (resp. qg) in the a-th (resp. B-th)
simple summand of N' N Map41 (resp. N'N My, ), where n is such that a (resp. 3)
occurs as the index of a simple summand of N'NMaynt1 (resp. N'NMa,). Then the
(equivalence class of the) irreducible N-N (resp. N-M) bimodule 7, (po)L*(M,)
(resp. mn(qs)L?(M,)) does not depend on the choice of n and the choice of the
manimal projection in the a-th (resp. 3-th) simple summand of N' N Man41 (Tesp.
N'N May,) (where 7, is as in Proposition 2.2).

Proof The fact that 7, (ps)L?(M,) does not depend on which minimal projec-
tion one chooses in the a-th simple summand of N’ N My, was shown in Lemma
3.5. Furthermore, this bimodule is irreducible by Lemma 3.4. If we choose a min-
imal projection p, in the a-th simple summand of N’ N Mpy,,; and a minimal
projection p, in the a-th simple summand of N’ N Mz, 41, some n < m, then p,
is equivalent t0 po€2n+3€2n+5 - - - €2nt2k+1 (for an appropriate k), which is a min-
imal projection in the a-th simple summand of N’ N My, 4. Applying Theorem
3.7 k times, we obtain 7, (po)L3(My) = (o) L? (M) as N-N bimodules. Note
that by Propositions 3.1 and 3.2 we get all the irreducible N-N sub-bimodules of
@D.,.>_; ~nL*(M,)n in this way. The statement about the N-M bimodules is shown
in the same manner. [
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All the statements in 3.4-3.8 and their proofs can of course be rewritten for the
higher relative commutants M’ Mz, and M "M Mans1, M-M and M-N bimodules.
Note that we work then with the same representations m, since the representation
of M>,, on L?(M,,) coming from the basic construction of N C M, restricted to Man
is equal to the one coming from the basic construction of M C M, (Proposition
2.2). Let us state the result analogous to the previous corollary for the sake of
completeness.

Corollary 3.10 Let N C M be an inclusion of Il factors with finite indez,
and let T' be the principal graph of C = M'NM C MM, CcMNMC....
Then there is a bijection between Tl (resp. Tiqq) and the set of equivalence
classes of irreducible M-M (resp. M-N) sub-bimodules of @5 mL?(Mn)um (resp.
@®,>0 ML*(Mp)n ), where Mo = M. More precisely, if @ € T, (resp. B € Toqa),
choose a minimal projection p, (resp. qg) in the a-th (resp. B-th) simple summand
of M' 0\ Ma,, (resp. M’ N Myny1), where n is such that a (resp. [3) occurs as
the index of a simple summand of M’ 0 M, (resp. M'N Myny1). Then the
(equivalence class of the) irreducible M -M (resp. M-N) bimodule T (pa) L2 (M)
(resp. mn(qa)L*(Mp)) does not depend on the choice of n and the choice of the
minimal projection in the o-th (resp. B-th) simple summand of M "N My, (resp.
M’ N Many1)-

By Corollaries 3.9 and 3.10 it makes sense to talk about the N-N (resp. M-M,
N-M, M-N) bimodule o € Teven (r€sp. B €T ¥ € Toad, § € [}4q), Which
is the terminology we will use below. We discuss next the conjugate of a reduced
bimodule.

Proposition 3.11 Let p € N' N Mani1, 4 € N’ N Ma, be projections and
let yn : N’ 0 Mani1 — N’V Mani be defined by Tn(Yn(®)) = JnTn(2)*Jn, T €
N' N Mapi1 (see 2.4). Then,

-N

N
T LE(M,) = 7a(va(p))L*(M,) as N-N bimodules and,
- M-N
@I (M) = ma(va(@))LA(M,) as M-N bimodules.
Thus conjugation ~ defines an involution on Ieven and a bijection between Loda and
Todar
Proof We will show that the bimodule equivalences are implemented by the

modular conjugation J,, : L*(M,) — L*(M,). Recall that m, (p)(&) € M, for all
£ € My. Then Jo(mn(p)(2)) = Jamn(p)Jn(£7) = n(Yn(p))(2*). Furthermore,

( Jn(""n(p)(i))’Jn(7"7!(?)(@))),n(%(l,))p(M’l)
= tra, (Tn (3 (@) (F)) Tn (W (D)) (7)) = trng, (Tn )W) (7a(p)(2))")

= (Trn(p)(g)vﬂn(p)(j))"ﬂ(p)[}(Mn) = (Wn(p)(j)#ﬂn(p)(g))m‘
for all z, y € M,, where the third equality follows from Lemma 2.4 iv). Thus
J,, is a linear, surjective isometry from ma(p)L2(M,) — (1 (p)) L3 (My,). Let
a, b€ N, then J,(b- ma(p)(2) - @) = Jn(a* ﬂ’n/(p)\(.'t) b)) = Jn(wn(p)(m)) =
(ra@)@a5)")" = (@' ma@)@P?)")" = (b (p)(@))a)" = b Ju(maP)(E)) @



Bimodules and Higher Relative Commutants 45

for all x € M,,. Thus J, implements an N-N bimodule equivalence and the first
identity is shown.

To prove the second one, observe that m,(vn(q)) = Jnn(q)Jn € Jnmn(N' N
Man)Jn = Tn(M' N Many1), since Jpmn(M)'J, = m,(May,) by Proposition 2.2.
Thus 7, (¥n(g)) is an intertwiner of the M-N bimodule L?(M,,), so that the second
equivalence indeed makes sense as an equivalence of M-N bimodules. As in the
first part, one now shows that J,, implements this desired equivalence.

The first bimodule equivalence shows that, given the N-N bimodule a € Leven,
the conjugate N-N bimodule is again a reduced bimodule and hence labelled by
some & € Teven. This map is well-defined by 3.9 and clearly an involution. Similarly,
since v, (q) € M’ N Many 1, the conjugate of an N-M bimodule S € o4 is an M-N
bimodule indexed by a 3 € T" ;4. Again, this map is well-defined by 3.9 and 3.10
and clearly a bijection. [

It goes without saying that we also have an involution on I', .. The conjugation

(or contragredient map) v € Toda — ¥ € Tlgq gives an identification of T'oqq and
T 44 and induces a permutation on the even levels as we have shown above. Observe
that the fact that the conjugate of a reduced N-N resp. N-M bimodule is indexed
by the vertices of the principal graphs follows of course already from Proposition 3.1
and the Remark 1.17. Let us point out that Proposition 3.11 in conjunction with
Theorem 2.6 (using A = N, B = M,) gives an explicit formula for the conjugate
bimodule by calculating a projection in a higher relative commutant.

Let us now define the (full) fusion algebra associated to a subfactor. Observe
that this can be done without knowing what exactly the result of the relative tensor
product of two reduced bimodules is. Namely, if &, 8 € Teven (resp. Thyep), then o
and (is an N-N (resp. M-M) sub-bimodule of y L?(N)y, (0p)* (resp. mL?(M)ns,
(Bp)*) for some k > 1. Hence af = a @y B (resp. a ® f) is a sub-bimodule of
(pB)?* (vesp. (pp)?*) and can therefore be decomposed as (N-N case)

aﬁ: Z N;g')’»

Y€l even

where the integers Nzﬂ denote the multiplicity of the irreducible N-N bimodule
v in the N-N bimodule o8, ie., Nzﬁ = dim Homy.n (v, @f). Similarly for M-M
bimodules with Teyen replaced by I', ...

Unfortunately, we cannot multiply two N-M bimodules «, 8 € Toaa. However,
the products @ @ 3 and a Qs B can be formed and will, with the same reasoning
as above, be sub-bimodules of (5p)* resp. (pp)*, for some k. Hence they can be
decomposed into an integer linear combination of the irreducible bimodules in T ey
resp. Teven-

Rather than giving a definition of an abstract fusion algebra and identifying
the one coming from subfactors as such, let us stay with subfactors and define what
we mean by the fusion algebra associated to a subfactor.

Definition 3.12 Let N C M be an inclusion of I, factors with finite index
and denote by (T',T") the principal graphs as above.
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i) (N-N part) Let ZT even be the formal Z-linear combinations of the set {ala €
Teven}. We define a multiplication on Zleven by

af=a®nB= Y Nigm

Y€Teven

where N5 = dim Homy_n (7,08), &, 8, 7 € Teven, and estend it to all of
ZT oven by linearity, respecting the distributivity law.

ii) (M-M part) Let ZT',.,, be the formal Z-linear combinations of the set {aja €
T, en}. We define o multiplication on ZT n by

af=a®uB= Y, My

V€M even

where M5 = dim Homu—m(v,08), o, 8,7 € T yen, and eztend it to all of
I, . by linearity, respecting the distributivity law.

Recall that the contragredient map induces an involution ~ : ZTleven — Lleven
and ™ : ZTen — ZT% . We denote by § = §ncm = (ZT evens L fyen,”) the two
Z-algebras with involution defined as above and call § the fusion algebra (or fusion
ring) associated to N C M.

Observe that we have two distinguished selfcontragredient bimodules *
(=~ L*(N)n) and # (=m L2(M)ar) in Teven T€Sp. Thyen. Clearly, ZTeven and
ZT".. are unital (the units are * resp. ), associative algebras (since bimodule
multiplication is associative !) over Z with a natural trace defined using the square
root of the index of the bimodule (i.e., of the associated subfactor) in the usual way
(see remark after Definition 1.1). We can replace Z by C to get complex algebras.

If we let L (resp. R) be the left (resp. right) regular representation of §, i.e.,
Lo(B) = af (resp. Ra(f) = B&), o, B € Z@even (resp. ZI'%,,), then the matrix
representation of Lo (resp. Ra), @ € Teven, in the basis B = {v|7 € Teven} i8
given by La = (NJg), ser... 80d Ra = (N3s)., ger..., and similarly for M-M
bimodules and T, (v is the row index and § the column index of the matrix).
Observe that Nj, = NF,. Furthermore, since Nis = NE,, we have Ly = (L)t
and similarly Rs = (Ro)® (as matrices as above). In particular, the N-N bimodule
@ € Toven is selfcontragredient iff the matrix Lo is symmetric. Similar statements
hold for T, and M-M bimodules.

We let ZT'waq be the formal Z-linear combinations of the set {ajo € Toad} and
similarly for ZI", ;4. We define a multiplication ZToad X ZI 34 — Zleven by

af=a®uB= Yy Pl
V€l even
where P); = dim Homy_n (v,aB), @ € Toaa, B € T/ 44> 7 € Teven, extended by
linearity as before. Similarly we define a multiplication : ZT 44 % Zlodd — Zlgyen
by
af=adyB= Y Qi
Y€ bven
where Q)5 = dimHomp—u(v,08), @ € Toaq, B € Toaa, 7 € Ty en, extended
by linearity. Furthermore we have products ZTeven X Zlodd — ZTodd; Ll tyen ¥
ZT 44 — LT 44, Zlodd X Ll4yen — Zloaa and ZI' 44 X LT eyen — LT}y defined
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in a similar way. Thus we can regard for instance o € ZI'ogq as a matrix L,
ZI' 44 — ZTleven (the matrix representation is with respect to the obvious bases) or
as a matrix Ry @ ZI', 3q — ZI%,, etc. This point of view allows us to perform fusion
rule calculations by multiplying matrices and solving matrix equations (Section 5,
see also Bisch and Haagerup [1996]).

Definition 3.13 Let N € M, T', IV be as above. We call Fran = Frun(N C
M) = (Zl"even,ZI‘even,Zl‘odd,Zl"odd,') with 'mvolutwn and various multiplications
(“even x even”, “even X odd”, “odd x even”, “odd x odd” and “odd x odd”)
defined as above the full fusion algebra associated to NCM. The N-N and M-M
part of Fran (what we called the fusion algebra associated to N C M in Definition
3.12) is called the even part and the N-M (resp. M-N) parts are called the odd
part of Frun-

In the next lemma we collect some of the properties of the structure constants
of the fusion algebra associated to a subfactor.

Proposition 3.14 Let N C M be an inclusion of II, factors with finite indez.
Let (N]g)a,64€Teven be the structure constants of the N-N part of the fusion algebra
SNem- Then

i) (unit) NJx = Ny = 6oy, for all @, v € Teven-

ii) (associativity)
S M- Y N,
7Y,€€E even 7,€€ even

fOT all Q, ﬂ! 7 € r‘even
iii) (involution) N, a[, = lic-’ for all a, B, ¥ € Teven-

iv) (Frobenius reciprocity) N 8 =Nos=Ng 8 ~ for all o, B, v € Teven-

Proof The properties of the structure constants follow immediately from the
indicated properties of the algebra. iv) is a reformulation of Corollary 1.21 iv)-
vi).

It is clear that similar statements hold for the M-M part of the fusion algebra
and that various compatibility conditions between the N-N, M-M, M-N and N-M
parts imply conditions on the other structure constants as well. We will leave it to
the reader to list them. Note that we will usually identify I', ;4 with T'oqq using the
contragredient map. We end this section with a definition.

]?eﬁmtlon 3.15 The matrices
o NO = (N]g)y,06Ten (resp. N = (N3 yernen)s @ € Teven,

1
i MO(!) = ( ﬂ)’y,ﬁérgven (TesP M( D= (Mgu)'y,ﬂel"e\,en); a€ revenr
are called the fusion matrices associated to N C M.

Note that the principal graphs T', IY of N C M do not determine the fusion alge-
bra completely in general (see, for instance (Bisch [1994(b)], 3 + v/3 example)) and
additional information is needed to calculate the fusion matrices (namely the “or-
thogonality information” contained in the commuting squares formed by the higher
relative commutants). Let us remark that the fusion matrices can be interpreted
as principal graphs of reduced subfactors - more on this in Section 5.
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4 Bimodule tensor products and higher relative commutants

We show in this section how the bimodule tensor product of two reduced bi-
modules associated to a subfactor can be recovered as a product of projections in
the higher relative commutants. Furthermore, we will identify the multiplicities Gkl
occurring in the principal graphs as dimensions of spaces of bimodule intertwiners.

Recall that the simple summands of N' N May41 are indexed by K, and those
of N’ N May, by Ly. As before, we denote by m, the representation of Man, Mont1
on L?*(M,) coming from the basic construction of N C M,, and Gy, are the en-
tries of the matrix G associated to the principal graph I' (see the discussion after
Proposition 3.2).

Proposition 4.1 Let g € N' N My, C N' 0 My, be a projection. Then,
+

Tn(@) L2 (M) ®p LA(M)y = (7a(q) ®n id,, 12 (vyy ) (L2 (Mn) ®nm LA(M))
= 1, (q) [ (Mn)

as N-N bimodules. Thus, if ¢ = i, | € Ln, is @ minimal projection in the l-th
simple summand of N' 0 Man,, then

N-N
71'n(‘ﬂ)LZ(IVIn) = @ le”n(Pk)Lz(Mn):
k€EKn

as N-N bimodules, and hence
dim Homn.N (Trn(pk)L2(Mn)7Wn(ql)Lz(Mn) ®u LA(M)n) = G,

where pi is a minimal projection in the k-th simple summand of N "M Mansi,
ke Kny.

Proof Observe that since ¢ € N’ N Man1, ﬂn(q)Lz(Mn) is indeed an N-N
bimodule. The equivalence of the first two bimodules follows from Proposition 1.15
iii). The equivalence of the first and third bimodule is immediate by Lemma 1.14.
Now let g; be as in the statement of the proposition. Since the I-th simple summand
of N' N My, sits with multiplicity Gk in the k-th simple summand of N "N Man+1
(by definition of the principal graph), the third equivalence is obvious by Lemma
3.5 (by G 7o (pr) L3 (M,,) we mean G copies of the bimodule 7 (pk) L2 (M) as
usual). Since the reduced bimodules Ton(pk) L2 (M), k € Kny, are irreducible N-N
bimodules, the last statement is immediate from the third bimodule equivalence. [

Corollary 4.2 The embedding from Homn-a(nL*H(Mp)m) — Homn.n(nL?
(M,)N), given by T (x) = T (3) ®M iy L2 (M) T € N’ N\ Ma,, coincides with the
inclusion N' N May, € N' N Many1, given by the principal graph T

Proposition 4.3 Letp € N’ (O Mapy be a projection, then

Ta(0) L2 (M) ®n LF(M)ar = mn(p) ®n idy12(M)u (L*(M,) ®n L*(M))
= i1 (p) LA (Mrs1)

as N-M bimodules. Thus, if p = Pk, k € Kn, is @ minimal projection in the k-th
simple summand of N' N Many1, then

N-M
Tn1(Pe) L (Mng1) = @ Gt T (@) L (Mnt1)

l€Ln+1
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as N-M bimodules, and hence
dim Hompps (Tnt1(@) L (Mn1), Tn(pi) L (M) ®n L2 (M) pr) = G,
where q; is a minimal projection in the I-th simple summand of N' N Map42.

Proof The equivalence of the first and the second bimodule is obvious by
Proposition 1.15 iii). We will show the equivalence between the first and the third
bimodule. Recall that m,4+1(p)(yen+t1...€12) = Tn(D)(Y)en+1 ... €12, forally € M,
and z € M by Proposition 2.5. Also, recall that 7, (M,) is dense in the space of right
N-bounded vectors of 7, (p)L*(M,). Define a linear map T : m,(p)(M,) ® M —
Tt (P)LA (M) by T{ma(p) (@) ® 2) = (M 1 NI /2, (p)(yensien .. €12),
y € M, z € M (as usual we will omit “hats” in the calculation below). Then we
have for y; € My, z, € M,i=1,2:

[M: N (T () (W1€nt - €121), Tt (P) (Y2ena1 - €122)) a1
= [M : NI"*tr(25er ... ent1(mn (P)(42)) T () (W1)Ens1 - - - €121)
= [M : NI Pr((mn () (42)) T (0) (¥1)€ns1 - - - €12125€1 - €nt1)

= (M NI Hr((mn () (y2)) 7n (0) (1) En (2123)
€nyl-..€2€1€2. .. €n+1)

= [M : N]tr((m(p) (y2)) 7 (0) (91) En (2125 )en+1)
= tr((ma (P) (42))* T () (31) En(2227))
= (ﬂn(p)(yllev 22) N, ”n(p)(@ﬂ))bz()\,{n)

= (ma(p) (Y1) ® 21, T (p) (y2) ® 22),

which implies that T is well-defined, factors through N, ) and induces an isometry
from 7, (p)L(My,) ®n L2(M)p t0 myi1(p)L3(Mpt1), which is clearly onto since
M, 1 = span{aepii€n...e1b|a € M, b € M} (see proof of Proposition 3.1) is
dense in L?(M,,41). It is easy to see that T is an N-M map, so that the equivalence
of N-M bimodules between the first and the third bimodule is established.

Now let px be as in the statement of the proposition. Since the k-th simple
summand of N’ N Mo, sits with multiplicity Gy; in the [-th simple summand
of N' N Mypya, I € Lpya, the third equivalence is again obvious by Lemma 3.5.
The last statement follows immediately from this equivalence and the fact that the
reduced bimodules 7, 11(g;)L?(Mpn41) are irreducible N-M bimodules. [

Corollary 4.4 The embedding from Homy.n(nL?(My,)n) — Homy.p(nL?
(Mpy1)m), given by mn(z) — Tn(x) ON tdy12(ar)p, T € N' N Many1, coincides
with the inclusion N' N Myp 1 C N' N Mapya, given by the principal graph T.

Remark 4.5 i) Propositions 4.1 and 4.3 characterize the entries in the ma-
trizr G = (le) ek IEL (K = Teven, L = Toqq) as dimensions of certain inter-
twiner spaces and we could of course define the principal graphs using these dimen-
sions. Clearly, similar propositions hold for the principal graph I and M' N Moy,
M' N Mapy1, M' 0 Moo - the proofs are the same (use again Proposition 2.2,



50 Dietmar Bisch

last statement). Namely, we have that the inclusion Hompr (M L2 (M) m) —
Hompr.n (L2 (My)w), given by ma(z) — mn(2) ®r id,, 12wy, ond the inclusion
Homarn (m LA (My) ) — Homaras (L (Mnt1)m), given by mn(z) — mn(2) @
idyL2(M)y» coincides with the inclusions M’ N Ms, C M' 0\ Mapy1, resp. M'N
Man+1 C M' N Mayyz. In the notation introduced in Definition 1.20, the last
statements of Propositions 4.1 and 4.8 (also formulated for I') read

G’Y5 = ('Ys 6p> = <’7P, 6): vE Tevens 6 € Toaa,
G;’E’ = (’Yl"slp) = <7,ﬁv 5’>v '7/ € Féven’ & e F:)dd'

i) The multiplicities of the embeddings M' N Man C N "N Myn and M’ N\ Mapt1 C
N’ Many1 can be described in a similar way. More precisely, these inclusions co-
incide with the embeddings Homarar (s L2(Mn) M) — Hompy_p(nL2(Mn)u), given
by ma(x) — idyr2(an, ®m ma(x), and the one from Homp N (L2 (M) n) to
Homn.n (NLA(M,)n), given by mn(x) — idy 12(a),, @M Tn () (i€, multiplication
by nL2(M) s from the left). The multiplicities can then immediately be calculated
using Frobenius reciprocity. We find that the multiplicity of the a-th simple sum-
mand of M’ O May, (resp. M’ N May1) in the B-th simple summand of N' 0 My,
(resp. N' O\ Mzni1), @ € Doy (resp. o € Thyy), B € Toaa (resp. B € Teven) s
given by (pa, B) = (@, Bp) = G, 5, since B € Toyq (resp. (pa, B) = (B,ap) = Gpq;
since & € Toaa) (see i) and Corollary 1.21), where p = NL*(M)y as usual. Thus
we have recovered all the multiplicities of the embeddings,

NNM,,, C NN My C N'N Mapt2
U U @]
M N My, C M/ﬂMzn.H C M' N Mayy2

as dimensions of spaces of bimodule intertwiners. Observe that the role of the
conjugate ~ (or contragredient) map is displayed nicely in this bimodule picture of
the above embeddings.

We will now show how the bimodule tensor product of reduced bimodules can
be determined by computing certain products of projections associated to these
reduced bimodules. The idea of how to do this has been known to experts for some
time (see also Goodman and Wenzl [1990]), we were however unable to find any
references in the literature. We will obtain a procedure that allows us to calculate
the fusion algebra associated to certain subfactors quite easily (as for instance the
subfactors in (Bisch and Jones [1995])). Let v : N’ N Magp1 — N’ N Mgy be
the surjective, linear *-antiisomorphism defined by mx(v(z)) = Jemi(z)*Jk, T €
N’ O Mag41 (apply Lemma 2.4 with A = N, B = My). Then shogi1 = Yor41m
N'NMaygy1 — Mby . ,NMyky3 is a trace preserving, surjective *-isomorphism (by the
remark before Lemma 2.9 and Corollary 2.12 with A = N, B = My, B; = Mak41
and B3 = Myry3), which we call the ((2k + 2)-) shift on N' N Magy1. Note that

shokt1 is a shift as in Definition 2.14: if we let A= N, B = M, in Theorem 2.13,
then shok. is the 2-shift which we denoted there by Sp (2.13 vi)). Similarly, we get
a trace preserving, surjective *-isomorphism shgx = Yorye : M’ "MMax — MMMy
(by the remark before Lemma 2.9 and Corollary 2.12 with A = M, B = Mj), which
is again a shift as in Definition 2.14. Note that yax(x) € Mg, N My for all €
M\ Moy, since mag (Yok(2)) € Jormar(M'NMog)Jox = wor{ Mg N Mag). Yai|mrnnts,
is therefore a linear, surjective *-antiisomorphism M’ N Moy — My, N Myk.
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Theorem 4.6 a) Let p, ¢ € N’ N My,q1 be projections and let sha,y; :
N'N Maniy — My, 1 N Mynys be the shift as defined above. Then,

() LA(M) @8 Tn()) L2 (Mp) 'S i1 (p homsr (@)L (Manss)

as N-N bimodules. Furthermore p shanyi(q) € N' N Myn13 is a projection with

trace trM4n+3 (P shony (Q)) =My, (p)trM2n+l (Q)
b) Let p, ¢ € N' N My, be projections and let yon, : N' 0 Moy — M, 0 Myny1 be
defined as above. Then,

L) o T ITW) | A 0) S 7 0o LA
= W2n(m2n(Q))L2(M2n)

as N-N bimodules. Furthermore, pyan(q) € N' N Myn11 is a projection with trace

trM4n+1 (WQW(Q)) = tern (p)trM4n+1 (’YQn(Q))'
¢) Let p, ¢ € M" N Moy, be projections and let shan : M' N Moy, — Mb, N My, be
the shift as above. Then,

M-M
Tn(P)LH(Mn) @ n (@)L (Mn) = an(p shan(q)) L*(Man)

as M-M bimodules. Furthermore, p shy,(q) € M’ N My, is a projection with trace

tras,,, (P shan()) = trar,, (P)tras,, (g)-
d) Let p, ¢ € N' N May, be projections and shgyi1 : N' 0 My, — Mb, N Myyio be
the shift as above, restricted to N' N Ma,. Then,

- M-M
Tn(P)L2(Mn) N Tn (@) L2 (My) = Tn (Y (9)) L2 (M) ®n Tn(Q) L* (M, )
M-M
2 Toni1(Yn(P) shani1(q))L?(Manyr)
as M-M bimodules. Furthermore, v,(p) shont+1(q) € N' N Myn42 is a projection
with trace tras,, ., (Yn(p) shani1(0)) = trag,.,, (T (P))tTrs, (9)-

Proof Let us start with the proof of a). Observe that p and sha,,1(g) are
commuting projections, so that p shon11(q) € N’ N Myny3 is again a projection
w1th trace as stated in the theorem (by Corollary 2. 12) We define a linear map

: Ta(P) (M) © mn(@)(Mp) — onyr(p Sh2n+1(¢I) L} (Many1) by T(mn(p)(£) ®

7rn(q) @) = [M : NJ" D210 1 (b shoni1(0))(@fad), T, y € My, fn the Jones
projection for N C M, (Proposition 2.1 i)). The fact that T is well-defined will
follow from a computation of the inner products below. Recall that My, =
M, faM, def span{zf,y|z, y € M,} and that the Radon-Nikodym derivatives
satisfy (mn(q)(§1), Ta(9)(f2))n = (§1, ™ (@) (d2))~, Y1, y2 € My (Proposition 1.15
ii)). Furthermore, we have

Tonr1 (P $h2ns1(@)@Fn) = Tans1 (Yans 170 () T2ns1 (0) (ZFnp)
= Jont1T2n+1 (Ve (@) ") an+i (p/z}n\y)
= Jons1 (1 (@) y* frz*p)")

= (p2frymm ()",



52 Dietmar Bisch

ince Tonsalaty, s, is left multiplication. Let 2, yi € Ma, i = 1, 2. We compute
( Ta(P)(@1) ® Tn(9)(§1), T (P)(£2) ©® (@) (d2)) =
= (7a(P) (@) {7 (@)(§1), T (@) (82)) 5, Tn(P)(E2)) 12as,)
= () (@Y (517 (2)))))s T () ED) 1o

= toar, (@3ma(@) (@) ENT (01 (ma(9)(92))7))

where we used in the third and fourth equality that m,(p) is a right N -module
intertwiner. Next we calculate,

( T (@) (#1) ® 7 (@)(31)), T (7 (P) (£2) @ (@) (82))) 12015011
— (M N (w1 (p shans1(@) @1Sa80): Z2Fn2) L0t
= (M : N ((p21 fatn 1 (@) (@2a82)") 2 (a0 0)

— M N™ tragy, . (U3 o321 ftn 1 (0)

= [M : N"trag,,. (250 fat ()5 )

= (M Nty (250 (9) @0) o (T (@) (32)) F)

= M N Pn, ., (@5 (0) (@) BN (01 (7n(@) (82))) Fr)
= trar, (237 () (@) EN" (31 (7 (0) (92))°))

= (7(p)(@1) ® Tn(9) (1), T (P) (d2) ® 7 (0) (B2

where we used in the fifth equality that pzifn = T (p) (1) fr and Ya(Q)y3fn =
T (@) @) frn = (7n(q)(y2))*fn by Lemma 2.4 i) and iii) (applied to A =
N, B = My, B = Mons1, &1 = fn). Thus the above defined linear map T
is well-defined and induces an isometry, still denoted by T : ma(p)L2(My) ON
Tn (Q)L2 (Mn) - 772n+1(p ShZ&+1(Q))L2(M2n+1)‘ Since T(a : (Wn(p) (i) ®7rn(Q)(@)) :
B) = T(m(p)(@2) ® ma(9)(¥h)) = (pazfuybra()” = (apfaym(@)" = a-
T(ﬂ'n(p)(i) ® Ta(g)(§)) - b, for all a, b € N, we have that the induced map T
is an injective N-N bimodule morphism (by definition of the N-M bimodule struc-
ture on the relative tensor product, see the remark after Definition 1.11), which is
onto, since Tant1(P shan+1(q))(Man+1) is dense in Tont1(p Shans1(@) LA (Man1)-
This completes the proof of a).

Since the arguments for b)-d) are similar, we will be brief. To keep the no-
tation simple, we will omit all the “hats” (it should be clear from the proof of
a) where they need to be used). Let us prove b). Recall that m,(q)L?(My) =
7 (Y (q)) L?(My) as M-N bimodules (Proposition 3.11), which proves the first iden-
tity. To prove the second one, define a linear map T : 1o (p) (M) On (Y (9)) (M) —
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Tan (PY2n (9)) L2 (M) by
T (7 (p)(2) @ T (3(0)) (&) = [M : NI" 1o (0720 (0)) (90,

for all z, y € M,,, g, the Jones projection for M C M, (Proposition 2.1ii)). Observe
that 7,(v(q)) € Tn{M' N Many1) and m2n(12n(9)) € Jonmon(N' N My,)Jo, =
Ton(My, 0 Myn+1). In particular, pyan(g) € N’ 0 Myni; is a projection with
above stated trace. Furthermore, recall that My, = M,g, M,,. We compute for z;,
y; € M,,, i =1, 2 (omitting “hats”)

( T (P)(21) ® Tn (¥ (@) (1), Tn(P)(z2) ® Tn (0 (2)) (¥2))
= (1 (p) (21 Epp" (11 (Ta (W (@) (2))")) s 22)

=try, (z§7rn(p)(:c1)EAA}I” (nimnl@)(®3)))

since 7, (n(q))(¥2)* = mn(q)(y3) by Lemma 2.4 iv). We also used in the second
equality that m,(p) is a right M-module map. Since man|n,, is left multiplication,
we have T, (p)(2) ® T (12 (0))(§)) = PZGnTq; T, Y € Mn. Thus

( T(mn(p)(@1) ® T (1(2))(¥1)), T (7 (p)(@2) @ 70 (Y2 () (¥2))) L2 (a1,
= [M : NI"trat,, (2301909193 9n)
= M : N]*trag,,, (237 (0) (1) E3g™ (4170(0) (43)) )
= tra, (23 (p)(@1) By (117 (9)(33)))

= (ma(p) (1) ® Tn (10.(@)) (1), 7n (P) (2) @ T (7 (2)) (32)),

where we used that pz1gn = mn(p)(%1)9n, q¥59n = T (0)(¥5)gn, by Lemma 2.4 ii)
(applied to A = M, B = M,). Note that we also use that m, is the representa-
tion coming from the basic construction of M C M, (Proposition 2.2). As before,
T is well-defined and induces an isometry m,(p)L3(Mn) ®n mn(¥n(g)) LA (M,) —
Ton(PY2n (@) L?(May), which is clearly an N-N bimodule morphism (note that
Yn(q) € M’ N M2y, +1) and surjective with the same argument as above.

Next we prove c). It is clear that p shon(g) is a projection in M’ N My,
with trace stated above (proof as in a)). The proof of c) proceeds now as the
proof of a), namely one shows that the linear map T : () (M) © 7rn(q)(M
20(p shan(q))L*(Man) defined by T (0 (p) (£)&7n(q) (§)) = m2n(p Shzn(q))(:vgny)
(pTgny 1 (2))", T, y € My, gn as in Proposition 2.1 ii), is well-defined and induces
the desired equivalence of M-M bimodules.

Finally, the proof of d). Since m,(p)L2(M,) = mn(vn(p))L*(M,) as M-N
bimodules, by Proposition 3.11, the first identity follows. The second one is now
shown precisely as in a) (with v,(p) in place of p). Observe that the T defined there
is actually an M-M bimodule morphism since v, (p) € M’ N Man41 (thus 7. (vn(p))
is a left M-module map) and since ¢ € N’ N My, (thus m,(q) is a right M-module
map). Since shoni1(q) € Mb,i1 N Manyo, it is clear that yn(p) shany1(q) €
N’ N Myn2 is a projection with trace as stated above. This completes the proof of
the theorem. O
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Remark 4.7 i) Observe that a) of the previous theorem gives a formula for the
bimodule tensor product of two reduced N-N bimodules, b) for the one of a reduced
N-M with o reduced M-N bimodule, c) for the one of two reduced M-M bimodules
and finally d) for the tensor product of a reduced M-N with a reduced N-M bi-
module. Since we have explicit formulas of the antiisomorphisms vk and the shifts

shon+1 and shy, in terms of the e;’s and orthonormal bases (Theorem 2.6, The-
orem 2.11, Theorem 2.13), we can calculate the (full) fusion algebra associated to
a subfactor by computing products of projections in the higher relative commutants
(as given by the theorem) and decomposing the resulting bimodules into irreducibles
according to Lemma 38.5. This method proves to be very useful if the higher relative
commutants of the subfactor are known in detail (for instance for the subfactors in
(Bisch and Jones [1995])). We will give some applications elsewhere.
i) If we use Theorem 3.7 in conjunction with Theorem. 4.6, we have explicit for-
mudas for the bimodule tensor product of any two reduced bimodules mn(p) L2 (M)
and 7, (q) L2 (M) (embed the projections in the same higher relative commutant
using 8.7 and compute the bimodule tensor product according to 4.6) and we could
abstractly define a product on the (equivalence classes of ) projections in the higher
relative commutants in this way.
i) Associativity of the bimodule tensor product of reduced bimodules can be proved
using 4.6 (see Remark ii)). It amounts to showing that certain projections, obtained
by using the formulas in 4.6, are equivalent.

5 Fusion algebra calculations and reduced subfactors

5.1 Reduced subfactors Let N C M be an inclusion of II; factors and
let M, be the II; factors in the associated Jones’ tower. If p € N' N M, (resp.
p € M’ N M,,) is a projection, we call Np C pMnp (resp. Mp C pMyp) a reduced
subfactor. We will discuss in this section only reduced subfactors of the form
Np C pM,p and leave it to the reader to reformulate everything for those of
the form Mp C pM,p. Note that (Np)' N pM.p = p(N' N M,)p, so that the
reduced subfactor is irreducible iff the projection p is minimal in N "N M, We
will usually assume that p is minimal when we talk about reduced subfactors,
although this is not necessary for the statements below. Furthermore, observe that
[pMyp : Np] = trar, (p)tras (p)[Mn : N] (which is called a local index of N C M).
A good way to deal with fusion questions regarding reduced subfactors is to use
the endomorphism picture (tensor N C M with B(H), H an infinite dimensional
Hilbert space, consider the resuiting algebras in their standard representation and
define an endomorphism using a common cyclic and separating vector), which makes
statements regarding the fusion algebra of reduced subfactors rather obvious. To
keep this article self-contained, we will however stay in the II; setting.

Let us start with the basic construction for reduced subfactors. The following
lemma is well-known (see, for instance Bisch [1994(a)] or Wenzl [1988]) - we include
a proof here for the convenience of the reader.

Lemma 5.1 Let A C B be II, factors with finite index and let A C B C B be
the basic construction. Let p € A'NB be a projection, let ¢ = vo(p) = JpJ € B'NBy,
where J : L(B) — L*(B) denotes the modular conjugation. Then,

Apq C (pBp)g C pgBipg
is (isomorphic to) the basic construction for (Ap C pBp) = (Apq C (pBp)a)-
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Proof Let us denote by tra, trg, trp, the unique normalized traces on the
II; factors A’ = A’ N B(L*(B)), B, B;. Recall that trp, (Jz*J) = tra(z), for
all z € A’, by uniqueness of the trace. Furthermore, we have that [(pBp)q :
Apq] = [pBp : Ap| = tra(p)tre(p)[B : Al. Similarly, [pgBipq : (pBp)q] =
trg, (¢)tre (q)[pBip : pBp] = trg, (q)trB!(q)[B A]. But trp,(g) = tra(p) and
trp/(q) = trymy(JgJ) = trp(p), so that both indices coincide. Observe that
pq = gp and pges = pes (Lemma 24 iii)), where es : LAB) — L?*(A) is the
orthogonal projection. Now define e = trp, (p) "'pge qu We get that trygp, pele)
= trp, (p)~'trp, (pa) 'trs, (eapq) = trp, (pg) (B : A7 = tru(p) ttra(p)” 1[
A)7!. Furthermore, an easy calculation (using pges = pea) shows that e? =
e € pgBipg. We will apply the abstract characterization of the basic construc-
tion (Pimsner and Popa [1988]) to show that pgB)pq is the basic construction for
Apg C (pBp)q. Since we clearly have that e commutes with Apq, we only need to
check

EPIgiP(e) = trp(p)~Mtra (p) ' [B : Al 'pg.

Note that E5 (peap) = [B : Al"'p and trpyp,pq(pgzpq) = trpB, p(pzp), for all
z € B. Thus, if z € B, we have

trpg5ypg (PaTPGEAPG) = trp, (zpeap)trp] (g)trs, (p) !
= [B : A]ilter (Q)_ltrBL (p)—ltrBl (zp)
= [B: A]""trp, (@) M55 (zp)
= [B : A" 'trp, (¢) " trpg 5, pe (PazpO),
so that Eggg;zq(pqe,;pq) = [B: A]7*trp, (q) "1pg as desired. O
Recall that if p € A is a projection, the basic construction for pAp C pBp is
pAp C pBp C pBip with Jones projection peap.
Next we identify the iterated basic construction for reduced subfactors. Let
N C M be an inclusion of II; factors with finite index. By (Pimsner and Popa
[1988]) we have that N C M,, C Mapt1 C Mz, C Myni3 C ... is the basic con-
struction for N C M,,. Denote as in the discussion before Theorem 4.6 by Vr+1)ntr
the surjective, linear *-antiisomorphisms N'N Moy 1ynt2r+1 = N NMy(ry1ynt2ria

(note that N C M, 1yn4r C Ma(ry1)nt2r+1 is the basic construction), restricted to

M (r—1) N M(r42)n+rr1, Which yields a surjective *-antiisomorphism M

N
ra+(r—1)
M(r+2)n+r+1 - M:-n+(1~_1) n M(r+2)n+r+1 (Mrn+rfl C M(r~+—1)n+r C M(r+2)n+r+1

is the basic construction).

Corollary 5.2 Let N C M be an inclusion of I, factor with finite index and
let p € N' N M, be a projection. Consider the reduced subfactor Np C pM,p,
set A = Np and B = pM,p and let A C B C By C --- C By, be the iterated
basic construction. Set g0 = p, q1 = GoYn(q0)s- -+ = Gr—1Vrntr—-1(gr-1). Then
qr € (qr—er'n-H'—IQT—l),OQTﬁlM(r+l)n+rqr71 and ACBC By C---CByis
(isomorphic to) Ngx C qxMar C ... @Mk 1)ntkGk-

Proof The proof is a straightforward induction, using Lemma 5.1.1 and the
comment after the lemma. O
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Observe that it follows that reduced subfactors of reduced subfactors are re-
duced subfactors of the original inclusion. In particular, the vertices of the prin-
cipal graphs of reduced subfactors can be identified with subsets of the vertices
of the principal graphs of N C M, and the fusion algebra of a reduced subfac-
tor can be read off the fusion algebra for N € M. Let p € N’ N Many1 (resp.
¢ € N’ 0 My,) be a projection and consider the reduced N-N (resp. N-M) bi-
module & = 7, (p)L2(My,) (resp. 8 = mn(q)L?(My,)) (see Proposition 2.2). Then
Hompy_n(a) = (Np)’ N pMan11p and since ad = T (p) L* (M) ®n 7n(p) L2 (My) =
Tans1 (D¥ens1(P)) L2 (Mzns1) by 3.11 and 4.6 a), we have Homy.y(a@) & (Np
Y2r41(P)) O PY2n+1(P) Man3pYan+1(p). Similarly, Homn.p (8) = (N@)' N qMazng
and since BB = ma(q)L3(Mn) ®nr Tn(@) L3 (Mn) = m2n(¢72n(g))L?(Man) by 4.6
b), we have Homn_n(88) = (Ngr12a(9))' N ¢Y¥2rn (@) Man 119721 (g). Thus, tensoring
repeatedly with o, & (resp. 3, ) from the right we get (M_, = N, My = M).

Proposition 5.3 Consider the reduced subfactors Np C pMani1p, p € N'N
Many1 a projection, and Ng C gMsng, ¢ € N "'\ My, a projection and let the
bimodules o and B be as above. Furthermore, define projections pp = p, p1 =
P0Y2041(P0)s - -5 Pr = Pr1V2rmi2r—1(Pr-1); G0 = & @ = Qo72e{@0),---s & =
gr—172rn+r-1(@r—1). Then,

(i) Homn.n((ad)k) = (NP%—I)/ N posk—1 (Mok(2n+1)+2k—1)P2k-1-

(i) Homn-n((aa)*a) = (NPZk)( N pok (M(2k+1)@n+1)+2k ) P2k
(iii) Homy.n((BB)*) = (Naak-1) N qar—1 (Makn+26-1)g2k-1-
(iv) Homn.p ((BB)*8) = (Nq2k), N gok (Ma(2k+1)n+24) 2k

As in Propositions 4.1 and 4.3 one can then determine the principal graphs
for the reduced subfactors. Let us consider first a reduced subfactor of the form
Np C pMapi1p, p € N' N Mzniy 2 minimal projection. By Corollary 5.1.2 (or
5.1.3) we see that the even and odd vertices of the principal graphs are subsets of
Toven (I, IV denote as before the principal graphs of N C M). The even (resp.
odd) vertices are obtained by decomposing (a@)* (vesp. (ad)ka), for all k € N,
into irreducible N-N bimodules. Let  be such an even vertex and 6 an odd one.
As in 4.1 and 4.3 one shows that the number of edges between these two vertices is
obtained as (ya, 6). Note that all computations here involve only N-N bimodules.
Next, let us consider a reduced subfactor of the form Ng C qMonq, ¢ € N' N Moy,
a minimal projection. Again, by Corollary 5.1.2 (or 5.1.3) we see that the vertices
of the principal graphs of this reduced subfactor are (identified with) subsets of
Teven and Togq (one graph) (resp. T, and I'44 (the other graph)). The even
(resp. odd) vertices are obtained by decomposing (BB)F (resp. (8B)8), k € N,
into irreducible N-N (resp. N-M) bimodules. Let v be such an even vertex and 6
an odd one, then the number of edges is again given by (73, 6) (N-M bimodules).
We leave it to the reader to formulate the analogue of Proposition 5.1.3 and the
above discussion for the other principal graph of a reduced subfactor (replacing a
by &, 8 by B). Furthermore, as mentioned above, observe that the fusion algebra
can be read off the fusion algebra for N C M for both types of reduced subfactors.

5.2 Computation of the fusion algebra associated to a subfactor
The calculation of the fusion algebra for an inclusion of II; factors N C M can
sometimes be carried out by purely (linear) algebraic methods (see, for instance
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Bisch [1994(b)], Haagerup [1994], Izumi [1991], Ocneanu [1991(b)], Sunder [1992],
Sunder and Vijayarajan [1993], for other methods see Bisch and Haagerup [1996],
Goodman and Wenzl [1990], Kawahigashi [1996], Kosaki et al., Wassermann [1995],
Remark 4.7), since algebraic/combinatorial properties of the fusion matrices (for
instance the fact that they have only nonnegative integer entries) are sometimes
enough to calculate the bimodule tensor products. However, as soon as the princi-
pal graphs of the subfactor have multiple edges or quadruple points, these algebraic
manipulations may not be enough to determine the fusion algebra completely (see,
for instance (Bisch [1994(b)], 3+ v/3 example) and additional information must be
used to determine the fusion algebra (see, for instance (Kawahigashi [1996]) for a
solution for the 3 + v/3 example). We will give a method that allows us to calcu-
late in many cases the fusion algebra associated to a subfactor by solving matrix
equations and we will illustrate this method with an example.

Let N C M be an inclusion of II; factors with finite index and let p =
~L*(M)n be as before. Let (I',T") be the principal graphs of N C M and de-
note by G and G’ the associated matrices (see the discussion after Proposition
3.2). As shown after Definition 3.12, we can regard R, (resp. R;), right multipli-
cation by § (resp. p), as a matrix ZI'oaq — ZTeven (resp. Zleven — ZIogq). If
we let By = {a|a € Teven} and By = {B|B € Toaa} be the canonical bases of
ZToyen Tesp. ZT'oqq, then the matrix representation of R, (resp. R;) with respect
to these bases is G (resp. GY), ie. (Rp)ag = (&, 8p) = Gag, and (Rp)ﬁa =
(ap,B) = Gap, @ € Teven, B € Toaa (Remark 4.5). Thus Ry = (GGY)"
(R * Zleven = Ll even) and Rppynp = (GGE)"G (Rippnp : LToaa — Zleven)
Let N' N M2n+l = @kEKn A£2n+1), A§c2n+l) = Ma£2n+l) ((C), and N' N Mzn =
Dicr., A§2"), A;Q") o Ma‘(Zn) (C). Denote the irreducible N-N (resp. N-M) bi-
modules indexed by Ky, C Teven (resp. Ly C Todq) (see the discussion after Propo-
sition 3.2 for the notation) by ax, k € K, (resp. 8, I € Ly,). Then Proposition 3.1
and Lemma 3.5 imply

(a) (pp) KRN Biex, a,(f"“)ak as N-N bimodules, n > 0.
(b) (pp)"p = ®Dicy, al(zn)ﬁl as N-M bimodules, n > 0.
The right regular representation yields the following matrix equations:

(1) (GG‘)n+1 = Y ke, afnﬂ)Rak, n >0 (all matrices are “I'even X Ceven”
matrices).

2) (GGHY"G = MR ,n>0 all matrices are “T'even X Toaq”
leL, U B
matrices).

The matrices appearing in the equations (1.1) and (1.2) have nonnegative in-
teger entries and the matrix R,, (corresponding to the distinguished vertex *) is
the identity matrix. Note also, that if N C M is irreducible, the irreducible N-M
bimodule indexed by lp € Lo = {lo} is precisely p = yL?*(M)ur, so that the cor-
reponding matrix Rg, is given by G. Furthermore, if the involution on Zl'eyey is
trivial (this happens for instance if the indices of the N-N bimodules & € Teyen,
i.e., the Jones indices of the corresponding reduced subfactors, are distinct, since
the indices of @ and & coincide), then all matrices R,, are symmetric. Further-
more, the dimension vector @2"+1) for the dimensions of the simple summand of



58 Dietmar Bisch

N’ Many1 can be calculated as @D = (GG‘)”H(*), n > 0, and the one for
N’ A Moy is obtained as @22 = G*a@?"*1). In many situations, for instance
when the principal graph has at most triple points, this information is enough to
solve the matrix equations (1) and (2). In particular, a solution of (1) gives the
right regular representation of the fusion algebra ZTeven- Note that one obtains
a similar set of matrix equations for the other principal graph T with associated
matrix G’ (replacing N’ N My by M’ N M, etc.). If we can solve both sets of matrix
equations, the full fusion algebra (Definition 3.13) associated to N C M can be
determined simply by multiplying matrices (i.e., we compute the fusion algebra in
its right regular representation). The fusion calculations in (Bisch [1994(b)]) were
carried out using this procedure. Let us also point out that we can read off the prin-
cipal graphs of the reduced subfactors from the matrices Rq, resp. Rg,. Namely,
the matrices associated to these principal graphs are precisely the matrices Rq,
resp. Rpg, restricted to the vertices appearing in the decomposition of (aka'k)",
(aka'k)nak, n € N, and similarly for 8, (by Proposition 5.1.3 and the discussion
afterwards). Let us illustrate this algorithm with the example of a subfactor with
principal graph Eg. (See Figure 1)

ao a1 az

Bo B B2
Figure 1 The principal graph Eg

1
We let Teven = {0, @1, @2}, @0 = *, Toad = {00, 1,2} and G = | 1

Since the principal graph is finite, we will have to solve only finitely many matrix
equations. Note that a subfactor N C M with principal graph Eg has depth 4 (the
depth is the longest distance of a vertex in the principal graph to the distinguished
vertex ) and Jones index [M : N] = 4cos’ f; (Goodman et al. [1989]). Recall that
there are two non-isomorphic hyperfinite subfactors with this principal graph and
that both principal graphs are given by Ee. The simple summands of N’ N M are
indexed by G or Ly = {0}, those of N'N M3 by fo, 81, Bz or L, = {0,1,2} and those
of N' N May,, by Bo, B1, B2 or L = L, = L1, n > 1. Similarly, the simple summand
of NN N = C is indexed by ag or K_; = {0}, the simple summands of N'nM;
are indexed by ag, a; or Ko = {0,1} and those of N "N Mapy1 are indexed by ao,
a1, apor K = K, = K1 = {0,1,2}, n > 1. The dimension vectors @™ for N'N M,
are @V = GGL(x) = (1,1,0), &® = Gta® = (2,1,1), @ = Ga® = (2,4,1) and
@ = Gta@® = (6,4,5). Since N C M has finite depth, the matrix equations (1)
and (2) reduce to the following set of four equations:

(i) GG* = Ry + Ra, -
(ii) (GGY)* = 2Ry + 4Ra, + Ray-



Bimodules and Higher Relative Commutants 59

(iii) (GG*)G = 2Rg, + Rg, + Rg,.
(iv) (GG!)G = 6Rgs, + 4R, + 5Rg,.

100 010
Since Roy, = [0 1 0], weget Ry, = |1 2 1| and hence R,, = (G’Gt)2 -
00 1 010
0 0 1
2Ro, —4Ro, = [0 1 0]. Since N C M is irreducible we have Rg, = G as
1 00
remarked above. It is then easy to solve the remaining equations and we obtain
010 001
Rg,=1|1 0 1|,Rs,= |1 1 1]. This yields the following fusion rules (we
010 1 00
write ap = 1):
Eg
1 oy a2
1 1 (s3] Qg
[« %1 [o%1 14201 + a2 a
as [+ 23 oy 1

1 21
For instance we have R2 = [2 6 2| = Ruy + 2Ra, + Ray = Ragt20, +as-

1 21
The decomposition of R:‘; ,asa linear combination of R,,’s can be read off the first
row of the matrix R? ,- In the same way we calculate the remaining fusion rules.

Es
Bo B B2
a; Bo+ 61+ 62 Bo + B2 Bo+ B+ B2
a B2 B Bo
Es
Bo B Bo
Bo 1+o a1 a1 + o
B o1 1+ay ay
62 oy + aq 14+ G

Note that the involution on the N-N part (and M-M part) of the fusion algebra
is trivial. Since I' = I' = Fj, the above tables actually determine the full fusion
algebra associated to N C M. Furthermore, as explained in Section 5.1, we can
read off the principal graphs of the reduced subfactors easily. Before we do this, let
us briefly work out the local indices. Recall that if N C M is an extremal inclusion
of II; factors with finite index, principal graph I" and associated standard matrix
G, and if we denote by § = (s), cx and t=(t) 1c;, the normalized trace vectors
on the higher relative commutants N’ N Ma,4+1 resp. N’ N M, (normalized such
that s. = 1), then GG'5 = [M : N|3, G'5 = [M : N)i, G = 5, G'GT = [M : N|.
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If we let £ = (5,[M : N]%f), then Apé = M : N]%fand £ is the normalized vector
whose entries are the square roots of local indices, i.e., the indices of the reduced
subfactors associated to minimal projections in the higher relative commutants
(see for instance Popa [1994]). Let us now come back to the Eg subfactor discussed
above. If we let ¢t = [M : N} = [|G|I> = 4cos® {5, then & = (1, — 1,12 — 4t +
2), T = (1,52, =361 and € = (Lt — Lt — 4t + 2,v4, 51, £=34), where

the entries of € are in the order ap, a1, o2, Bo, B1, B2 Note that 3 — 5t2 +
5t —1 =0 (¢ is a zero of the characteristic polynomial of GG?). Thus the local
indices are the squares of the entries of £, which are given by ind = (1,t-1)Y2=
7.4641016...,1,4cos? %,2,4cos” f5). Let us now determine the principal graphs
of the reduced subfactors with these indices. Choose a minimal projection p; (resp.
g;) in the i-th (resp. j~th) simple summand of N'NMj (resp. N'NM>) and consider
the reduced subfactors Np; C piMap;, i € K = {0,1,2} (resp. Ng; C q; Magq;,
j € L =1{0,1,2}). Note that all other reduced subfactors (associated to minimal
projections) are isomorphic to one of these. Their indices are given by the vector
ind above, where the first three entries are the indices of Np; C piMsp;, i =0, 1, 2,
and the last three those of Ng; C ¢;M2g;,5 =10, 1, 2. The index of Npy C poM3po
is one, so we are done (this also follows from the fact that Ra, is the identity
matrix). The even vertices of Np1 C p1 Msp; are computed by decomposing the
tensor powers (alél)k, k € N, into irreducible N-N bimodules and the odd ones

by doing the same to (alél)kal, k € N (note that &; = a;). We read from the
first fusion table, that even and odd vertices of this reduced subfactor are therefore
identified with ap, a1 and az. The number of edges between o and «; are given
by {(a;01,a;) (Section 5.1), so that the matrix associated to the principal graph is
precisely Ro, (both principal graphs actually coincide). Thus the principal graph
is given by

Figure 2

The same analysis for Nps C paM3p2 shows that the even vertices, which are
calculated by decomposing (azézg)k = a?f = ay into irreducibles, are given by ao,
and similarly, we get that the odd ones are given by just az. The number of edges
are {apaz, ) = 1, so that we have again an index 1 subfactor, confirming our index
calculation above. The reduced subfactor Ngo C goMqo is given by the bimodule
Bo, which is equal to p = ~L2(M)yy, as remarked above, so that we just get another
copy of N C M. Let us consider the reduced subfactor Nq; C g1 M2q;. The even

vertices are calculated by decomposing (31 51) * into irreducibles, which yields (using
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the second and third table) the labels a and a;. Similarly, decomposing (6 Bl)k B
yields 3, and the edges are calculated as (@001, 81) = 1, (0151, 01) = 1. Thus the
principal graph is given by

o 51 (651

Figure 3

which confirms again our index calculation (we have an index 2 subfactor). Finally,
we consider Ngz C g2Mgq,. Decomposing tensor powers of B2 and fp into irre-
ducibles results in the even vertices ag, a1 and as and the odd vertices fy, 3; and
B2. Calculating the edges, we get (aof2,80) = 0, (@0f2,51) = 0, (@0f2, B2) = 1,
(1, B2) = 1, {a1fa, B1) = 1, {a1B2,B0) = 1, (022, B0) = 1, {a2B2,51) = O,
(a2, B2) = 0, from which it follows that the principal graph is given by Figure 1
(thus the other principal graph is given by the same figure). The fusion algebras of
the reduced subfactors can be read off the above tables.
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