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Abstract. We prove in this paper that the tensor product of reduced 

bimodules associated to a subfactor can be recovered as a product of 

certain projections in the higher relative commutants associated to the 

subfactor. After giving an elementary introduction to bimodules of II; 

factors and their relative tensor product, we prove various formulas relat- 

ing the representations of the Jones tower coming from different k-step 

basic constructions and show that the natural shift on the higher rel- 

ative commutants, defined by two consecutive modular conjugations of 

the tower, can be computed in terms of orthonormal bases and the Jones 

projections e;. We give a detailed account of how the principal graphs 

of a subfactor can be recovered by calculating dimensions of intertwiner 

spaces of certain (reduced) bimodules and show that each vertex of the 
principal graphs represents a unique reduced bimodule. Then we de- 

fine the (full) fusion algebra associated to a subfactor and prove that 

this fusion algebra can be calculated by computing products of certain 

projections in the higher relative commutants of the subfactor. Explicit 

formulas for these products are given. Finally we discuss reduced sub- 

factors and give a procedure to compute the fusion algebra. of a subfactor 

in those situations, when the principal graphs are simple. We show the 

relation to reduced subfactors and discuss in detail the example of a ’ 

subfactor with principal graph Fs to illustrate the general algorithm. 

Introduction 

In this paper we prove various facts about bimodules associated to a subfactor, some 

of which are known to experts, but whose proofs are not readily available in the 

literature. We refer to (Connes [1994], Sauvageot [1983]), (see also Ocneanu [1988], 
Ocneanu [1991(a)], Popa [1986]) for some of the original papers on bimodules, 
and to (Anantharaman-Delaroche [1993], Denizeau and Havet [1993(a)] [1993(b)], 
Ocneanu [1991(b)], Sunder [1992], Yamagami [1993]), for additional material (see 
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also Bisch [1994(b)], Bisch and Haagerup [1996], Evans and Kawahigashi [1996], 
Haagerup [1994], Goodman and Wenzl [1990],Izumi [1991], Jones and Sunder [1996], 
Longo [1989][1990], Popa [1994],Sunder and Vijayarajan [1993], Wassermann [1995], 
and Wenz! [1988]). The above list of citations is by no means intended to be com- 
plete. 

Here is a detailed description of the sections below. We begin in Section 1 with 

an elementary introduction to bimodules associated to a pair of II; factors, define 

Connes’ relative tensor product of two such bimodules and prove that this bimodule 

tensor product is associative (Proposition 1.12). We discuss bimodule intertwiners 

and state the Frobenius reciprocity theorem (Theorem 1.18). Finally, we show that 

the direct sum of bimodules is compatible with the bimodule tensor product. Most 

of the material in this section can be found in (Connes [1994], Sauvageot [1983], 
Ocneanu [1988] and [1991(a)], Popa [1986], see also Sunder [1992]). 

Section 2 contains material that is needed in Sections 3 and 4 to establish the 

bimodule interpretation of the principal graphs associated to a subfactor and to 

identify the tensor product of reduced bimodules as a product of certain projections 

in the higher relative commutants of the subfactor. We discuss the representations 

of the tower of II; factors associated to a subfactor N C M coming from the k-step 

basic constructions, i.e., the basic construction for the inclusion N C Mj (resp. 

M C My) and prove various formulas relating them (Lemma 2.4, Propositions 2.2, 

2.5). Next, we discuss the natural shift on the higher relative commutants. We 

show that the “spatial” definition using the modular conjugations is the same as 

the “abstract” one using the Jones projections e; and orthonormal bases (Theorems 

2.6 and 2.11). We do this for an inclusion of II; factors of the form A C B Cc By, 

which we apply then to A = N, B = M,, (resp. A = M, B = M,) in Section 

4. We give explicit formulas of the J - J-map and the shift in terms of the e;’s 

and orthonormal bases, which are useful for the computation of tensor products 

of reduced bimodules associated to a subfactor. We also discuss briefly Ocneanu’s 

Fourier transform and give a simple application to illustrate the usefulness of this 

map. 

In Section 3 we show that the higher relative commutants associated to a 

subfactor can be viewed as spaces of N-N resp. N-M resp. M-N resp. M- 

M bimodule intertwiners. After recalling the definition of the principal graphs 

of a subfactor in some detail, we prove that each even (resp. odd) vertex of the 

principal graphs represents in a unique way a reduced N-N (M-M) (resp. N-M 

(M-N)) bimodule, i.e., a bimodule of the form pL?(M,,), where p is a projection in 
N'NMapi1 (resp. M'NMay, NN May, M'N Ma, 1). This is done by writing down 

an explicit isomorphism between these bimodules. We identify the contragredient 

(or conjugate) of a reduced bimodule as another reduced bimodule by calculating 

the projection in the higher relative commutants to which this conjugate reduced 

bimodule is associated (Proposition 3.11). We give then the definition of the (full) 
fusion algebra associated to a subfactor, including all possible bimodule products, 

i.e. the products of N-N (resp. M-M) bimodules with themselves (called the even 

part of the full fusion algebra, or simply the fusion algebra) and the products of 

N-M (resp. M-N) with M-N (resp. N-M) bimodules, called the odd part (where 
we form the relative bimodule tensor product over N resp. M of course). We list 

briefly the properties of the structure constants (which are dimensions of spaces of 

bimodule intertwiners) appearing in this definition.
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We prove in Section 4 that the edges (including multiplicities) of the principal 

graphs can be recovered by computing dimensions of certain intertwiner spaces of 

(reduced) bimodules, thus, together with the results of Section 3 (the identification 

of the vertices of the principal graphs as reduced bimodules), establishing the bi- 

module picture of the prinicipal graphs as “principal” fusion rule matrices, due to 

Ocneanu. This uses some of the results of Section 2, in particular various formulas 

involving the representations of the tower of II; factors associated to a subfactor 

coming from different k-step basic constructions. We have to work spatially all 

the time, since reduced bimodules are obtained by an action of a projection in a 

certain higher relative commutant on a Hilbert space L?(M}) (Propositions 4.1 and 
4.3). In Theorem 4.6 we prove that the bimodule tensor product of two reduced 

bimodules {over N or M), associated to projections p and q say, can be calculated 

as a product of projections in the higher relative commutants, involving the mod- 

ular conjugations and the shift from NN My, 41 to My, ; N My, 3 for example. 

Roughly, we obtain the tensor product of these two reduced bimodules by fixing 

p and shifting ¢ far enough in a higher relative commutant so that the shifted ¢ 

commutes with p and consider then the reduced bimodule associated to this new 

projection. This reduced bimodule turns out to be the bimodule tensor product 

of the two reduced bimodules associated to p and q. We do this for all cases in 

Theorem 4.6. Combining this theorem with the explicit formulas that we proved in 

Section 2 for the shift and the J - J-map (in terms of e;’s and orthonormal bases), 

we obtain an explicit procedure, that allows us to calculate the fusion algebra of 

a subfactor whenever the higher relative commutants are well understood. Appli- 

cations of this to the subfactors in (Bisch and Jones [1995]) for instance will be 
presented elsewhere. 

Section 5 contains a discussion of the basic construction of reduced subfactors 

and their relation to reduced bimodules. We give a simple method to compute the 

(full) fusion algebra associated to a subfactor by solving matrix equations and then 

calculating products of the resulting matrices. When the principal graphs of the 

subfactor are not too complicated (for instance if they contain at most triple points), 

the fusion algebra can be computed completely in this way. For instance, all the 

calculations in (Bisch [1994(b)]) were performed using the method presented in this 
section. We show how the principal graphs of the reduced subfactors associated to 

an inclusion of II; factors can be determined from the fusion algebra and remark 

that their fusion algebra can be read off the fusion algebra of the original inclusion. 

Let us point out that this is rather obvious, when we use the endomorphism picture 

for bimodules (see for instance Longo [1989] and [1990], Izumi [1991]) (properly 
infinite case). However, to keep the paper self-contained, we stay in the II; setting. 

To illustrate the method presented in this section, we discuss in detail the example 

of a subfactor with principal graph Eg, calculate the full fusion algebra associated 

to such a subfactor, and give a full discussion of the associated reduced subfactors. 

1 Preliminaries on bimodules 

Let A and B be II; factors. We denote by B°P the opposite algebra of B, i.e. 

B°? = B as Banach spaces and the multiplication is defined by b; - by = baby, 

bi, bo € B. B°P is of course a II; factor. Recall that an A-B bimodule H is by 

definition a pair of commuting normal (unital) representations of A and B°P on the 

Hilbert space H. We usually denote the left action of A and the right action of B
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(which is by definition the left action of B°?) by a-£-b, where a € Abe B, eH. 

The notion of (unitary) equivalence of bimodules is recalled in the next definition. 

Definition 1.1 Let A and B be II, factors and let H and K be two A-B 

bimodules. We say that H and K are (unitarily) equivalent if there is a unitary 

uw: H— K such that u(a-€-b) =a-u(€)-b, foralla € A, be B, { € H. We write 

AHg = sKpg. Furthermore we denote by 

Homu.p(H,K) = {T € B(H,K)|T(a-£:b) = a-T(£)-, for alla € A, b€ B, { € H} 

the space of A-B intertwiners from H to K. If H = K, we write Homy g(H) for 

Homa.p(H, H). 

Observe that Homa. g(H) = A’ N (B°?)’ Nn B(H) is a von Neumann algebra. 

Recall that an A-B bimodule H is called irreducible, if A’ N (BP?) nN B(H) = C. 

Suppose that (B°P)’ N B(H) is again a II; factor (i.e. the coupling constant of B°” 

on H is finite), then one defines the index of the A-B bimodule H to be the Jones 

index of the subfactor A C (B°PY N B(H). If [(B°P)’ : A] < oo, then Homy.5(H) 

is a finite dimensional C*-algebra (Jones [1983]). We will sometimes say that the 

two A-B bimodules H and K are isomorphic (as A-B bimodules), which means 

that there is a bijective A-B intertwiner 7 from H to K. The unitary in the polar 

decomposition of T implements a unitary equivalence as defined above. We will 

mostly be concerned with equivalence classes of A-B bimodules. 

Let A C B be an inclusion of II; factors with finite Jones index and denote by 

tr the trace on B. As usual we let L2(B) be the completion of B in the norm || - [|2 

induced by the trace, in other words, L?(B) is the GNS Hilbert space with respect 

to tr. Then 1 = 1p € L%(B) is the cyclic and separating vector, and we write b 

for b(1), i.e. b € B viewed as a vector in L?(B) is denoted by b. As usual we let 

J : L*(B) — L?*(B) be the conjugate linear isometry obtained by extending the 

map b — b* to all of L2(B) by continuity. L?(B) is a left B-module (hence a left 

A-module), where B acts by left multiplication. L?(B) is also a right B-module 

(and hence a right A-module) with the action £ -b = Jb*J(£), b€ B, § € L*(B). 
L?(B) becomes in this way a B-B (resp. A-B, B-A, A-A) bimodule. 

Lemma 1.2 Let A, B be II; factors and let m; : A — B(H;), ¥; : B® — 

B(H,), © = 1, 2, be (nonzero) normal representations of A and BP such that 

mi(A) C (BP), i = 1, 2. We define two A-B bimodules aH1p and sHap by 

a-&-b=m(a)i(b)E, forallE € Hi, a € A, be B®, i=1, 2. 
i) If aH1p =a Hap as A-B bimodules, then there is a surjective *-1somorphism 

8 : 1 (BP) — 4o(B°P) such that 8(m1(A)) = m2(A). Furthermore, the Murray- 

von Neumann coupling constants of ¥1(B°P) on Hy and of 12(B°P) on Hy coincide. 

ii) Assume that the Murray-von Neumann coupling constants satisfy dim, (gery Hi 

= dimy, (gory Ho < 00. Suppose that there is a surjective x-isomorphism 0 : 

1 (BP) — 13(B°P)’ such that 6(my(A)) = m2(A). Then there are automorphisms 

Y € AutA, ¢ € AutB and a unitary uv : Hy — Ha, such that u(m (a)ya(b)€) = 

m2(w(a))2(d(0))(w(€)), for all € € Hy, a € A and b € B®. Thus 4H p is equiva- 

lent to aH p, with A and B actions twisted by automorphisms of A resp. B. 

Proof If 4H, 5 = sHap, then by definition of unitary equivalence of bimod- 

ules, there exists a unitary u : Hy — Hj such that u(m(a)y1(b)¢) = m2(a)¥2(b)u(§), 

foralla€ A, be B°P, ¢ € Hy. Thus § = Adu does the job.
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Suppose that ii) holds. The condition on the coupling constants implies that 

6 is spatial, i.e. @ = Adu, u : Hy — H» a unitary. Hence Adu is a surjective 

s-isomorphism from 1; (B°P) onto 95 (B°P) and therefore ui; (b)u* = 1h2(¢(b)), for 

all b € B°P and some automorphism ¢ € Aut B°® = Aut B. Similarly, there is a 

¥ € Aut A such that um (a)u* = m2(¥(a)), a € A. The rest is clear. [J 

Note that the lemma shows that the Murray-von Neumann coupling constants 

and the subfactor associated to a bimodule determine the bimodule only up to 

automorphisms. If we consider the B-B bimodule L*(B) with action z-¢ -y = 

zJO(y)*J(€), =, y € B, £ € L*(B), 6 € Aut B an outer automorphism, we see that 

the automorphisms are indeed necessary. 

We will define in Section 3 the fusion algebra associated to a subfactor and 

describe in Section 4 its multiplication law in terms of projections in the higher rel- 

ative commutants. To understand this multiplication, let us start with recalling the 

definition of the relative tensor product (Connes [1994], see also Sauvageot [1983], 

Popa [1986], Ocneanu [1991(a)]). 

Definition 1.3 Let A be a II; factor with trace tr and let H be a left A-module. 

A vector £ € H is called a (left A-) bounded vector in H if there is a constant 

c= c(€) such that ||a€|| < cllall2, for all a € A, where ||all2 = tr(a*a)z. We denote 

by HO the set of left A-bounded vectors in H. Similarly for right A-modules (i.e. 

left A°P-modules) and right A-bounded vectors. 

Remark 1.4 It is easy to see that AH® C H® and A’H® C H®. From this one 

deduces immediately that H® is dense in H. 

Proposition 1.5 Let A C B be an inclusion of II, factors with [B: A] < 00. 

Consider the B-B (resp. A-B, B-A, A-A) bimodule L*(B) as defined above. Then 

the left (right) A-bounded vectors and the left (right) B-bounded vectors coincide 

and are given by B. 

Proof Let us prove that the left A-bounded vectors in L?(B) are given by 

B. If b € B, then |lab|22p, = tr(abb*a*) < [bl|*[all3, for all a € A. Thus 

B c L%(B)°, the set of left A-bounded vectors. Conversely, let £ € L?(B)°. Then 

there is a constant c¢(€) such that |laéllz < c(€)l]lallz, for all a € A. Thus Re : 

A — L2(B), R¢(a) = a€, extends by continuity to a bounded linear map L(A) — 

L?(B). Let A C B C°® B; be the basic construction and consider the composition 

Ree : L2(B) — L*(B). Note that a1R¢(d) = mag = Reai(d), a, a1 € A, so 

that Ree € A’ N B(L?(B)). But B; = JA'J and hence there is an z € By with 

Ree = Jz*J € B(L*(B)). By (Pimsner and Popa [1986]) there is a unique y* € B 

with z*e = y*e. Thus Ree = Jz*Je = Jz"eJ = Jy*Je, which implies that 

Ree(l) = RD) =¢= Jy*e(1) = 4, so that indeed & € B as desired.— The same 

proof (with e = 1) shows that the set of left B-bounded vectors in L?(B) is also 

given by B. From this it follows immediately that the set of right B-bounded (resp. 

right A-bounded) vectors in L*(B) is again B. 0 

Remark 1.6 The following slightly more general statement (which can be de- 

duced from 1.5) holds: If H is an A-B bimodule with finite indez, then the left 

A-bounded vectors in H and the right B-bounded vectors in H coincide (see for 

instance Sunder [1992], II. Proposition 4).
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Definition 1.7 Let A be a II; factor and H a left A-module, let £, n € HC. 

We let {(£,m)4 € A be the operator in A defined by 

(z€,m)g = tr(z(&,n) a), for all z € A. 

Note that (£,71)a exists and is unique by the Radon-Nikodym theorem (note 

that |(z*z€,m)| < c(€)c(n)||z||2). The uniqueness of the Radon-Nikodym derivative 
implies immediately the following lemma. 

Lemma 1.8 Let A be a II, factor and H a left A-module. Let ¢&, n € HY, 
a € A. Then we have 

i) (-,-)a is C-linear in the first variable. 

ii) (€,ma=n&% 

iii) (at, na = all, ma. 

iv) (€,€)a > 0. 

Observe that (£,an) a = (£,n) aa*, which is an easy consequence of ii) and iii). Fur- 
thermore, it is easy to show that if n;,...,n, € H?, then (nism) a) 1<i <n €EA® 

M,,(C) is a positive operator (consider A® M,,(C) on H" and identify ((n;,7;) A), ; 

as the Radon-Nikodym derivative ((n1,...,m)% (M1, ---,7n)") agm, (cy, Which is 
positive by 1.8 iv), applied to the left A ® M,(C)-module H"). 

Similarly one can define a right Radon-Nikodym derivative, which is done in 

the next definition. 

Definition 1.9 Let A be a I, factor and H a right A-module (i.e., a left 

A°P_module), let £, n € H°. We let (£,m)% € A be the operator in A defined by 

(nz, &) nm = tr(z(€,n)%), forall ze A 

Let us collect the properties of the right Radon-Nikodym derivative as in 

Lemma 1.8 for the left Radon-Nikodym derivative. 

Lemma 1.10 Let A be a II, factor and H a right A-module. Let ¢, n € H?, 
a € A. Then we have 

i) (+, is C-linear in the second variable. 

if) (€,ma = (na) 
iii) (la, ma = a*{€,m%- 

iv) (§,6)3 = 0. 
Observe that (£,ma)% = (£,1)%a, which follows immediately from ii) and iii). As 
above, we have that if n1,...,7, € H°, then (6:10) 1 <i jn € AQ M,(C)is a 

positive operator (use again an amplification trick). Co 
If A C Bis an inclusion of II; factors, then L?(B) is a natural A-B bimodule 

with the action a -¢-b = aJb*J(£), a € A, b € B, ¢ € L?(B), as we have 

seen above. We have that (b1,b3)4 = E4(b1b}), where E4 : B — A is the trace 
preserving conditional expectation. Similarly, L?(B) is a natural B-A bimodule 

and (b1,b2)5 = E4(b1bs), bi, by € B. 

We are now ready to recall the definition of the relative tensor product of two 

bimodules. Let A, B, C be II; factors, let H be an A-B bimodule and K a B-C
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bimodule and denote by H® (resp. K°) the right (resp. left) B-bounded vectors 
in H (resp. K). Consider the algebraic tensor product H° ® K° and define for 
Yi ®m, 2&5 ®n; € Ho K° 

Seem) gon) => (&mn}) 5, Eu, (1.1) 
i J 4d 

where (n;,7}) 5 is the Radon-Nikodym derivative of z € B — (zn;, n}) with respect 

to trp as above (definition 1.7) and (-,-),, is the inner product on H. Similarly, 
let (£:,€;)% be the Radon-Nikodym derivative of z € B — (57, &:) with respect to 

trp. Then we have for ¢;, £; € HO, ni, 7f € K° 

Elm, Ea = tre ((mi, 15) BE), €)%) 

= tra ((&}, &) 5m nj) B) 

= ((§,&) Bm mj) K 

and thus we have on H° ® K° 

Oem, Y gon) => ((& 5mm). (1.2) 
i J J 

We leave it to the reader to check that (-,-) as defined in (1.1) or (1.2) is a 
(possibly non-degenerate) inner product on H® ® K°. Note that (1.1) is actually 

defined on H ® K° and (1.2) on H° © K. 
We let Ni. y be the null space of this inner product and define H ®g K to be 

the completion of H° ® K°/N.., in the norm induced by (-,-) on H® ® K°/N;. , 
(Connes [1994], see also Sauvageot [1983]). 

Definition 1.11 Let A, B and C be II; factors, then H®p K as defined above 

is called the bimodule tensor product (or the relative tensor product over B) of the 

A-B bimodule sHg and the B-C bimodule gKc. We denote the equivalence class 

of the the vector 3, & ®n; in HOO K°/N.y by >, & ®@p mi or [3 & @ mi). 

It is easy to see that H®p K is an A-C bimodule: If welet ). &;®n; € HGK?C, 

then we have an A-C action viaa- (3, & ®m) -c =), (a&;) ® (nic). To show that 
this defines a left A-action and a right C-action on the relative tensor product, 

one proves that |la-Y", & ® mill < [alll 35; & @ mill and similarly for the right C- 
action. This inequality is shown by using an amplification trick and the remark 

about positivity of ((m:,7;)4), ; after Lemma 1.8 (resp. Lemma 1.10). We leave the 

simple details to the reader. Since this induces in a natural way an A-C bimodule 

structure on the relative tensor product H ® g K, we denote this A-C bimodule by 

AH ®p Kc.
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Consider the quotient map ¢ : H* © K° — 4H ®p Kc, defined by ¢(5>_, & ® 

ni) =»; & ®p mi. Then 

IY 6 ®pmlkesn <O &®mY &®m) 

= (&mom)B:&i)y 
1] 

<> l&i(mas ms) Bla 
12%] 

< (maxi; (mim) 1) D_II&ill zr lI; ar 
i,j 

Thus ¢ extends by continuity to a map, still denoted by ¢ : H © K 0» AH ®p 
Kc. Similarly, using (1.2) instead of (1.1) in the above estimates, we see that ¢ 

extends by continuity to a map ¢ : H 0 K —» 4H ®p Kc. In particular, we 

get that ¢(H © K°) and ¢(H° © K) are dense in 4H ®p Kc and we could have 
defined 4H ®5 Kc equally well by using (1.1), defined on H © K° and taking 

the separated completion as above, or by using (1.2) on H° ® K and taking the 

separated completion. As we have just shown, all three ways of defining 4H ® Kc 

coincide (see also Popa [1986]). Associativity of the bimodule tensor product is now 

immediate and we include a proof for the convenience of the reader. 

Proposition 1.12 Let A, B, C and D be II, factors and let \Hp, sKc and 

cLp be bimodules. Then 

(aH ®p Kc) ®c Lp = AH ®5 (Kc ®c Lp) 

as A-D bimodules. 

Proof Tt follows from the paragraph preceding the proposition that the com- 

position of the quotient maps H° © (K°®L%) — HO (K®c L) —» H®s(K®cL) 
is continuous with dense image. Similarly, the composition of the quotient maps 

(HOOK ®L® —» (Hep K) © L® —» (H ®p K) ®c L is continuous with dense 
image. The result follows now from (H° © K®) © L° ® Ho (K° © L%). OO 

Lemma 1.13 Let A, B, C be II, factors and let s4Hp and pKc be A-B resp. 

B-C bimodules. Then £b®gn = E@pbn forallé € HY, n€ K° (or€ € H, n € K°, 

or£ € H°, ne K), where H® (resp. K°) denotes the right (resp. left) B-bounded 

vectors in H (resp. K). 

Proof By definition of £®p7 (Definition 1.11 and the remarks afterwards) we 

need to show that £&b®n — £ ® by € Ny. y, which follows immediately from Lemma 

1.8 (resp. 1.10). O 

Lemma 1.14 Let A and B be II; factors and let 4Hp be an A-B bimodule. 

Consider the A-A bimodule L2(A) and the B-B bimodule L*(B). Then 4L*(A)®4 

Hp = sHp and 4H ®p L?*(B)p = sHp (all equivalences as A-B bimodules). 

Furthermore, if A C B is an inclusion of II; factors and we regard L*(B) as a B-A 

bimodule, then 4Hg ®p L?(B)a = aHa (as A-A bimodules). 

Proof We know that L2(A)° = A. Define a linear map T : A® H — H by 

T(@®E) =at, a € A, £ € H Observe that (4;,a;)% = aja, for &;, a; € A (we
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regard L?(A) as a right A-module here). Thus 

ITO ai @&)lh = (ab a)m => (a, 8:96) 
i i,j ij 

= OY a ®&, > a ® &i)s 

which shows that T' is well-defined, factors through N(. ., and hence induces a 

surjective (since A is unital) isometry, still denoted by T', from 4L?(A) ®4 Hp — 

aHpg, which is clearly an A-B intertwiner. This establishes the first equivalence 

and the remaining ones are shown in the same way, using the left Radon-Nikodym 

derivative. [OO 

Next we discuss briefly morphisms (intertwiners) between bimodules. 

Proposition 1.15 Let A, B, C be II) factors and let sHp, sKgp, aH;p, 

Kio, 1 =1,2, be bimodules. Let R: aHp — aKp and S: sHig — aHyp be 

A-B intertwiners and let T : gKyc — pKa be a B-C intertwiner. Then 

i) R maps left A-bounded (resp. right B-bounded) vectors of H to left A-bounded 

(resp. right B-bounded) vectors of K. 

ii) If n,n are left B-bounded vectors in K;, then the Radon-Nikodym derivatives 

satisfy (T(n), T(n'))g = (T*T(n),n")s = (n, T"T(7)) 5. 

ili) There is a unique A-C intertwiner S®pT : aH1 ® Kic — aH: ®p Ka¢ 

such that S@p T(E ®p Nn) = [SR T(E ®n)], for all £ € H® (right B-bounded 
vectors) and nn € K° (left B-bounded vectors), where |] is as in Definition 
1.11. Furthermore, if S and T are bimodules isomorphisms, then so is S ®p 

T. 

Proof The proof is straightforward. If £ € H is a left A-bounded vector, then 

leR(E)x < |RIlla€lla < c(€)l|allz, for all a € A (we used the notation of 1.3). 
Thus R(£) is a left A-bounded vector in K. The same argument applies for right 

B-bounded vectors and hence i) is shown. 
Let us show ii). We have seen in i) that T'(n), T(r’) are left B-bounded vectors 

in K5. By definition of the Radon-Nikodym derivative we have (bT'(n),T(n’)) Ky = 

tra (5(T(n), T(7))5), for all b € B. But (¢T(n),T(n))., = (Tn). TG), 
= (T*T(n),b*n’) = tra (b(T*T(n),7') 8), b € B, which implies the first equality 
by uniqueness of the Radon-Nikodym derivative. The second equality is shown in 

the same way. 

We proceed with the proof of iii). Let us denote by (-,-); the inner product on 

H 6 K°, i = 1,2 (see Definition 1.11). Let } .&®mn; € He K,°, and let ST 

be the usual tensor product of S and T. Then S®T(},& ®@ mi) € H.' © K,° by 
i) and using ii) we obtain,
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(STD &em),SeT() & em): 

= 3 (SENT), (1) 5, SE) , = (SSE (TT (0), 13) 5).&5) 
1,3 4,3 

= (3 SSE) @T* Tm), Y_&@mh = (SST TD _&®m),) &®mh 

<IS* ST TID _& © mill Fro0k.0; 

so that SQT(N¢..y,) C N¢.,,- Thus we get an induced map, still denoted by S®T, 

from H:° ® Ki°/N..y, — Ho K3°/N,.y,, which is continuous by the above 

computation and therefore extends to a map from 4H; ®p Kic — aH2 ®p Ka, 

denoted by S®pT. S®p T is clearly an A-C bimodule morphism and satisfies by 

definition S®p T(Y_;& ®m) = [S®T (YX; & ® m:)]. The uniqueness is clear by a 
density argument. Finally, if § and T are bimodule isomorphisms, S$ ®p T is also, 

which can be easily deduced from the above calculation. O 

Definition 1.16 Let A, B be II, factors and let H be an A-B bimodule with 

actions denoted by aéb, a € A, b€ B, { € H. We define a B-A bimodule pH 4 (also 

denoted by 4 Hp ) as H, the conjugate Hilbert space, with the B-A action defined by 

b-§-a=a*{b*, where { denotes the vector ¢, considered as an element in H. The 

B-A bimodule gH 4 is called the conjugate (or contragredient or adjoint) of the A- 

B bimodule nH. An A-A bimodule H is called selfcontragredient if sHa = aHa 

as A-A bimodules. 

Remark 1.17 ) Let H be a right A-module with right A action denoted by &a, 

Ec H, ae A Then Hy is a left A-module with left A action a-£ = £a* (Definition 

1.16). Clearly, the right A-bounded vectors H 0 and the left A-bounded vectors " 

coincide. Thus tra(a(€, Ma) = (a £1) 5 = (n€a*)y = (18,6); = tra(a(€&, na), 
for allé, ne H°, a € A. Hence (£,7)a = (€,1)%, for all €, n € HO. 
i) Let A, B, C be II, factors, and let sHp, Kc be bimodules. Then 4H ®p Kc = 

cK®pH 4 as C-A bimodules. Let us briefly sketch a proof of this statement. Define 

a linear map TK 0H — AH ®g Kc, by T(7®E) =£R®p 1, Ech, feR’. 

Then we get for & € H°, i; € K°, i = 1,2, 

(&®8m,&®s ) enka 

= (£®8M2,6 ®BM) , pox, = E2®Mm,& OM) = ((€1,&2)Bm2m) 

= ((61,€2) Bm) = (n2, ((€1,6)B) 'm) x = (61, &)B) Mm, M2) = 

= (7: (61,62), M2) = (Mm ®&,Mm® &2) 50 om 

Thus T is well-defined and induces an isometry K ©H ING) z0 0 — aH ®p Kc, 

which is clearly a C-A bimodule morphism (note that c- (7® &) - a = 7c* ® a*§,
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which maps under T to a*£ @pnc* =c-£ Rp n-a, c€C,a€ A) and extends by 

continuity to an injective C-A bimodule morphism ¢K ®g Hy — 4H ®p Kc. It 
15 easy to see that this map is also surjective. 

11) It is obvious that 4Hg = sHpg as A-B bimodules. 

BA 
Recall that if A C B is an inclusion of IT; factors, then 4L?(B)g = gL?(B)4, 

where the bimodule equivalence is realized by the modular conjugation J : L? (B) — 

L?(B), since J, viewed as an operator L2(B) — L?(B), is a linear surjective isom- 

etry, satisfying J(b- £-a)= J(a*zb*) =bz*a = bJ(2)a=0b-J(Z) a, for all a € A, 
be Band & € BC L*B) (note that the inner product on L2(B) is defined as 
(& 7) = (n, €) 125) &, n € L*(B) as usual). Finally, let us state the Frobenius 

reciprocity theorem. 

Theorem 1.18 Let A, B and C be II; factors. 

i) Let AHp, AKp be A-B bimodules. Then the following vector spaces are 

naturally isomorphic: Homa. p( AHp, 4Kp) = Homp_4( BK a, Ha). 

Let AHg, pKc and oLc be bimodules with finite index. Then the following 
vector spaces are naturally isomorphic: 

if) Homuy c( aH ®p Kc, ale) = Hom p( aHg, aL ®c Kp). 

iii) Homa. c( 4H ®p Kg, Alc) = Homp.c( Kc, sH ®a Le). 

Proof We will only give a hint of the proof. Let T € Homa g( 4aHg, 4aKB) 

and consider T* : K' — H defined by (§,T*(n)), = (T(¢),n),, £ € H, n € K. 
Then it is immediate that T*(a-n-b) = a-T*(n)-b, forall a € A, b € B and 
ne K. Thus T* € Homu.g( Kg, AHg). Now we consider T* as an operator 

K — H, defined by T*(f7) = T*(n). T* is clearly linear and satisfies T*(b- 7 - a) = 
T*(a*nb*) = T*(a*nb*) = a*T*(n)b* = b-T*(n) -a = b-T*(7) - a, for all a € A, 
be B,ne€ K. Thus T* € Homp s(aKg, aHg) and the map T — T* is the 

desired natural isomorphism in i), which is an algebra isomorphism if H = K. This 
proves i). 

Using the properties of of the contragredient bimodule and i), it is immediate 

that ii) and iii) are equivalent. Using again i) and Lemma 1.14, we see that it is 

enough to show that Homy g{ 4Hp, AKg) = Homa a( aL*(A) 4, AK ®p pHa) 

which is left as an exercise (see for instance Ocneanu [1991(a)], Sunder [1992] for 
details). O 

Remark 1.19 Let sHp, sKp be A-B bimodules with finite index. Then 

Homu.g( aH, AK) and Homa p( AKp, aHg) are naturally anti-isomorphic and 

hence isomorphic. From the first part of the proof of Theorem 1.18, we see that the 

map T € Homa g( aHp, aK) — T* € Homa. p( aKp, AHB) is a conjugate lin- 

ear, surjective isomorphism, which implies the claim. 

Before we end this section, let us introduce some notations, which will be used 
later on. 

Definition 1.20 Let A, B, C be II; factors and let a = sHp, B= oKg, v= 

Lc be A-B resp. B-C bimodules. The A-C bimodule sHr®p gLc will be denoted 

by ay. Furthermore, we let (a, 3) = dimg Homa.g( AHp, KB).
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Observe that if o and 3 were endomorphisms, one would write ya = yo a, 

rather than ay. Frobenius reciprocity can now be rewritten in the following way. 

Corollary 1.21 Let A, B, C be II; factors. 

i) Let a = sHp and B = AKp be A-B bimodules with finite index. Then 

(a, 8) = (B,a), {a, 8) = (B, a). 

Consider the bimodules « = sHg, 3 = Kc and v = aL¢ as in Theorem 

1.18. Then 

ii) (8,7) = (a, 70). 

iii) (aB,7v) = (8,a). 

From these identities it follows that, 

iv) (8,7) = (v,aB) = (7,af). 

v) {v,aB) = (B,7a) = (Ba). 

vi) (v,@f) = (@ #7) = (a,7B). 

Proof i)-iii) is just a rewriting of Theorem 1.18 and Remark 1.19. iv)-vi) 

follows by applying the rules i)-iii). O 

Finally, let us show that the relative tensor product is compatible with direct 

sums of bimodules. 

Definition 1.22 Let A and B be II, factors and let sHg, AKp be A-B bi- 

module. The Hilbert space H @ K becomes an A-B bimodule with the action 

a- (Edn) -b=(a-&E-b)®d(a-n-b),€ H ne K,ae A, be B. Itis 
called the direct sum of the bimodules sHg and sKp and denoted by AHp $4 Kp. 

Recall that the inner product on H & K is given by (€®n,& @&n') = (§,6)u + 

(mn) kK, &, 1 € H, ug n €K. 

Proposition 1.23 Let A, B, C be II; factors and let AHp, AKp and gL¢ be 

bimodules. Then 

(4aHp® 4aKp)®p Lc = (4H ®p Lc) ® (4K ®5 Lo) 

as A-C bimodules. 

Proof First observe that (H & K )° = H° ® K° (right B-bounded vectors). 

Then, let us define a linear map T': (H & K)° OL — (HL) & (K°©L°) by 

T(Eem®¢)=(E®)dn®(), £€ H, ne KC ( € L°. We have,
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( (> (& On) ® Gi), TO) (& 7) ® Gi) (Hoo LO) (KOO LY) 
i i 

= E®G) em), (eg) em eG) 
i,j 

=) (6 ® 6, & ® {moore + (© Giymj ® GG) koro) 
1,5 

= > (8:6 Gi), &)y + (m:{<s, $5) B, m5) kK) 

1,3 

=> ((&®m) (6:8) B&G © Mm) pax 
1,5 

=O (Eom) ®G) (Eon) 8G) maker 

Note that Ni. 00 0160020, = Me gogro © Ny gogro- Thus Tis well- 

defined and induces a map between the quotient spaces, which is continuous and 

hence extends by continuity to a map T : (4H ® aKp) ®p Lc — (4H ®5 

Lc) ® (aK ®p Le). Tt is clearly injective by the above calculation and obviously 

an A-C bimodule morphism. Surjectivity of T' can be shown in various ways. For 

instance, one can define amap S: (H°® L%) @ (K° © L°) — (H° ® K°) ® L® by 

S(Ci(@em)e(X,vi®u))=2(&o0) en +X,0®v)®u; & € Hm, 
pi € L° v; € KO, which is clearly the inverse of T. As above, one shows that S 
extends to an injective A-C bimodule morphism from ( 4H ®5 Lc) ® (aK ®p Lc) 
to ( AH ® aK B) ®p Lc, and hence the surjectivity of T follows. [OO 

2 Shifts, Fourier transforms and the k-step basic construction 

We discuss in this section the k-step basic construction, various natural rep- 

resentations of the higher relative commutants associated to it, and the natural 

shift on the higher relative commutants. Some of the material in this section is 

known to specialists and can be found partially in the literature (see, for instance 

(Ocneanu [1988], {1991(a)] and [1991(b)], Pimsner and Popa [1986] [1988], David, 

Choda and Hiai [1991]). 
Let us fix an inclusion of II; factors N C M with finite index and let 

NcMco*" My Cc®*MC... 

be the associated Jones tower with e; € Mj, obtained by iterating the basic con- 

struction My_; C My C+" Myy1 = { My, ex+1}” C B(L?(My)). The next result 
is quoted from (Pimsner and Popa [1988]) and follows from the abstract character- 
ization of the basic construction given there. 

Proposition 2.1 Let N C M be an inclusion of II, factors with finite index. 

Let 

fx = [M : NIEE+D/2(ep | ex a. e1)(ext2€k41 .€2) cee (ear “es er) (ezk+1 “on €k+1)s 

gr = M : NJEE=1/2(ep | ex a. e2)(er+2€k+1 ee e3) cee (e2k—-1 . ex) (eax SN €k+1)- 

Then 

i) Let N C My Cv Moy: be the basic construction, i.e., fe : L2(My) — L3(N) 
is the orthogonal projection and Maxi = {My, fr}” C B(L*(My)). Then 
there is a surjective x-isomorphism ¢ : Mag+1 — Magy such that ¢( fx) = fr



26 Dietmar Bisch 

and ¢(z) = x, for all x € My. We will say briefly that N C My Cf Moy: 
is the basic construction with projection fx. 

il) M C Mj C9 My is the basic construction with projection gy. 

We will have to work with explicit representations of the higher relative com- 

mutants N' N Mag; and M MN May, on the Hilbert space L2(My). If x € My, we 

denote by # the vector z(1p,) € L?(My), where 14, is the cyclic and separating 

vector in L?(My). Furthermore, let Ji : L*(My) — L?(Mj) be the modular conju- 
gation, Jy (£) = x*, £ € My. Ji is then an antilinear isometry on L?(M) satisfying 

J, 2 = id. Let us denote by 7, the (necessarily faithful) representation of My, Marq 

obtained from the basic construction of N C M; C B(L?*(My)). Let us be more 
precise (see also (David, 1.5.6), (Jones and Sunder [1996])). 

Proposition 2.2 The representation my of My, Magi on L?(My) as defined 

above satisfies mi (x)(2) = TZ, for all 2 € My, C L?*(My), x € My, and mi (2 fry) (2) = 
TEN* (yz)", for all fry € Magy, x, y, 2 € My, fr as in 2.1 and Ey* : My — 

N the trace preserving conditional expectation. Thus Moky1 = mr(Moky1) = 

Jkme(N) Ji. More generally, we have mp(z)(§) = [M : N** Ey, (zy fi)”, for all 

TE Mok 41, ES M;. If zx € My, y € My, then mr (2)(§) = (M : N*Ep, (zyge)” 

and hence Jpmi(M) Ji, = mi (Mag). 

Proof The first part is precisely the definition of 7, written in detail. Since 

Msk+1 = span{afrb|a,b € Mi}, it is enough to show the formula for mx (z)(§) for 

elements x = afib, a, b € Mj (we omit the hats to keep the notation simple). 

But En, (afkbyfi) = aEN* (by) Ear, (fe) = [M : N]=*+DaEMx (by). Thus indeed 
m(afkb)(y) = aEM (by) = [M : N*1 Ep, (afeby fr) as desired. Finally, since 
My, = span{agib|a,b € My}, it is enough to show the last formula for elements 

T = agrb, a, b € My. Observe that fi = [M : N)*gi(e;...ex)(eaks1...€xs1), SO 
that 

me(ageb)(y) = [M : NPP**1 Ep, (agrbygi(er -- - ex)(e2k41 x41) 

= [M : N)2k+1g EMs (by) Em, (gx (ex en er) {e2k+1 [SPN €k+1)) 

= [M : NI*"'aEp* (by) Er, (fi) = aBjg* (by) 

= [M : N]*En, (agbygr)- 

Thus my My, _is equal to the representation coming from the basic construction 

M C My, C My, € B(L?*(My)) and hence Jymp(M)' Jy, = mp (May) as claimed. [J 

Observe that if x € Mog41, y € My, there is a unique element w € Mj, such that 

zyfi = wfi, namely w = [M : NIFH EVE (oy fy) (Pimsner and Popa [1986]). 
Thus mk (z)(§) = wb. 

The fact shown above, that the representation coming from the basic construc- 

tion of M C Mj, is equal to m|as,, (note that my is a priori in the representation 

coming from the basic construction of N C Mj), will be used several times later 

on. Note also that by choosing a tunnel M > N OD N; O ... and performing the 

basic construction for N; C My C B(L?*(My)), we can actually represent each M,, 

on L2(Mj). The next lemma contains some useful identities, which will be used in
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Proposition 2.5 and Lemma 3.6 to show how the above defined representations are 
related. 

Lemma 2.3 Let fi be the projection for the k-step basic construction as in 
2.1. Then 

i) frerti€k...e1fip1 = exqr€k...€1fkr1, k>0. 

ii) €k+2€k +3. €2k+1frezk+1 ce Ck43€k42 = €1€2... ex frex ...€2€1, k > 1. 

iif) €k+2€k+3 - - - €2k fk€ok - €k4+3€k+2 = €2€3...€, [reg ... e363, k > 2. 

Proof i): We have fi = [M : NIF=+D/2(¢p 1 egpi1)--- (ey... exy1), since 
fr = fr. Before we start the proof, let us do a special case, which illustrates the 
mechanism of the proof: 

frezezerfs = [M : NP3[M : N|8(eseqes)(ezezeq)(ereaes)(ezese; )(eseseser) 

(esesezez)(eseseses)(ereseses) 

= [M : N|¢[M . N|(eseses)ez(eseq)er(esesezer)(eseseser)(eseseqes) 

(ereseseq) 
=[M: Nlbes(eses)ezer(ezezer)(eseseses)(eseseqes)(ereseses) 

= [M : N]Seseqer(esezener)(eseseser)(eseseqes)(eregeses) 

= ezezey f3. 

The proof in general works the same way: 

frers1 ex...e1 fet 

= [M : NPD NJEFDCD2 (0 1 ee) (es. esa) 
(e1 PEN er+1){€k+1 TN e1)(ext2 ce e1) ee (eak+3 ce ek+2) 

= [M : NJ*FDEFD/2[Ar . NJEE=1/2(gp 1 egy) (ea(es.. . exq2)) 
e1(er42 “es esezeq) cee (e2k+3 IN €k+2) 

= [M : N=+HDEED/2 [pr NjE-DE=2)/2(g, Co€gkgy) 

(es(esq AP ek+3))ezer(eseser) {enya “en €2) see (e2k+3 - eks2) 

=[M: ND) (k+2)/2[ pp : N)E=2(k=3)/2(¢, Ce .egpg1) 

(es(es ...erta))eseser(esezeser)(esesesen)(exra --. €3) 

tet (e2k+s3 .e .€k4+2) 
= (M : NCD R42) /2[ pp : N|E=3)(k=0/2(¢, ee €2k+1) cee 

(e5...exts5)esezezei(eseq ...e1)(eges ...ex)(er...e3) 

(ek+s5 ves €4) ce (e2k+3 ce ek+2) 

=[M: ND E+2)/2[ pp : NJE=Dk=i=1)/2(¢, | Ce egry1) 

(ej+2 “o €k+j+2)€j+1€5 “oe e1(ej+2€541 ee e1)(ej+3 a. ea) 

(€k+j+2 ces €i+1) te (eak+3 en €k+2) 

= [M : NJ6+DE+D/ 20, 1 e(ensr-.-e1)(€pyz...€1) 

(e243 - -- €x42) 
= €k41---€1 frst. 

Thus the proof of i) is complete. ii) and iii) are proved in a similar way, using 

the commutation relations of the Jones projections e;. Let us just indicate the 

proof of it). Set Jue (ex+1 a es)(ex+2 Cen es) ce (eak—2 IN er )(eak—1 cen €k+1), i.e. 
k—2 —1 

hi is [M : Nm x the Jones projection for M; C Mj, C Moy,_1, then 

€k+2 C241 k€2%t1.- Chan =€1... exfrer...e1 = [M : NI" hiiie. O 

Next we review the shift on the higher relative commutants. Let us change 

notation for a while and consider an inclusion of II; factors A C B with finite
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index. Let A C B C°* Bj be the basic construction and denote by (my, L*(B)) 
the standard representation of A C B C B; on L*(B). Let Jy : L?*(B) — L*(B) 
be the modular conjugation and define vo(z) = mgt Jomo (2)* Jo, rz € AN By, 

ie, mo(v(x)) = Jomp(x)* Jy. The properties of the basic construction imply that 

JoBJy = B’ and JoA' Jy = By (Jones [1983]), so that Jo (A n Bi) Jo = A n By 

(note that all algebras are represented on L?(B), so that we omit 7. If we treat 

A" N By as an abstract (finite dimensional) algebra and we want to emphasize 
that it is represented on L?*(B), we write mo(A’ N B;)). Thus 5, defines a map 

Yo: A'NBy — A'NB; (viewed abstractly as finite dimensional algebras). It is easy to 

see that yo is a surjective, unital, linear *-anti-isomorphism from A'NB; — A'NB; 

such that v§(z) = z, for all z € A’ NB). Note that one often writes briefly 

oz) = Joz* Jo, x € A’ N By, when the representation is understood. 

The next lemma contains a number of identities which will be useful in the 
next section. 

Lemma 2.4 Let A C B be an inclusion of II, factors with [B : A] < co. Let 
A C B C* By be the basic construction and denote by (mg, L?(B)) the standard 
representation of AC B C By on L%(B). Let yy: ANB, — A'NB; be defined by 
Yo(z) = m5 Jomo (z)* Jo, xz € A'N By as above. Then, 

i) mo(z)(a1-€ a2) = a1-mo(x)(€)-az, for allay, az € A, £ € L*(B), x € A'NB, 
where ay - £ - ay = mo(a1)Jomo{az)* Jo(€). Thus mo(z) is an A-A intertwiner 
of the A-A bimodule L*(B). 

ii) Let x € By, y € B, then mo(z)(§) € B. If we view the element mo(z)(§) as 
an element in B, denoted by mo(x)(y), then mo(z)(y)er = zye; (in By). 

iti) We have vo(z)yer = yzey for allz € A'NB, y € B. 

iv) We have mo(yo(p))(y*) = (mo(P)(®))", for all projections p € A’ N By and 
y € B. 

Proof We set m7 =m, e =e;, vy = and J = Jj. A 

i): Let 2 € ANB, a1, a2 € A and b € B. Then n(z)(a; - bay) = 

m{x)m(a1)Jm(az)* J(b) = m(a1)Jn(az)* n(x) (b), since z € A’ N By. 

ii): By Proposition 2.2 we have that 7(z)(§) = [B : A]Eg(xye;,)", for all y € B, 
z € By. Thus n(z)(y)e, = [B : A]Eg(zye1)e; = zye; by the comment after 
Proposition 2.2. 

iii): Let z € A'N B and y € B. We verify the equality in the representation 7. 

Hence 7(y(z))n(y)m(e) (8) = Jr ()* JWEA®)) = J(z* Ea (8) y*) = yaBa(b), 
b € B, where we used that |p is left multiplication. On the other hand 

m(yze)(b) = yzE4(b), b € B, so that indeed Y(z)ye = yxe as claimed. 

iv): Let p € A’ N B; be a projection and let y € B. Then (7(p)(®))" = 

T(x (p)@) = Ir (@)IG") = n(+(0)) 3"). 
0 

The following proposition shows how the representations my, mx, (see Propo- 

sition 2.2) are related, when restricted to the higher relative commutants associated 
to NC M.



Bimodules and Higher Relative Commutants 29 

Proposition 2.5 Let wy (resp. wpy1) be the representations of My, Magi 

(resp. Myy1, Magis) on L2(My) (resp. L?(Mgy1)) as in 2.2. Let x € N'N Magy1, 
y € My and 2 € M. Then mi(x)(y)ext1€k ---€12 = Tpr1(z)(yexsi1€k -.-€12) as 
vectors in L?(Myy1). 

Proof First observe that mi (z)(y) € My and mxi1(z) (vers -- .e12) € My 

(proposition 2.2), so that the above equality indeed makes sense in My; (to keep 

the notation simple we omit “hats” as usual). Furthermore, as in 2.4 i), we see that 

Te1 (2) (w2) = Thr1(@)er1Tr41(2) Terr (w) = Jip1Tet1 (2) Torre (2) (w) = 
Tr+1(x)(w)z, for all x € N' NM Magi1, w € Mii, 2 € M, since mi41]ps is left mul- 

tiplication and Jg+1mk41(M) Jerr = Ter1 (Mago) (by the last part of Proposition 

2.2). Thus we have mi41(z)(vert1€k -..€12) = Trr1(x)(yerr1€k...€1)2, and it is 

therefore enough to show the identity in the proposition for z = 1. Next, recall that 

Msy.+1 = span{afib|a,b € Mi}, so that it will be sufficient to show the identity 

for x = afb, a, b € My. By Proposition 2.2, we have, 

me(afib)(y)ertier...e1 =[M: NIFH EL (afebyfr)ensiex - en 

= [M : NFL aEN* (by) By™ (f)ensiex . -. e1 

= aEN* (by)er+1ex cL. €1. 

The right-hand side is calculated using Lemma 2.3 as follows, 

rrr {afib) (vek+iex...61) =[M: NIF+2 E22 (a fibyeg rex co.e1fres1) 

=[M: NJk+2 ppreesa (afrbyfreriren - e1furr) 

= [M : NJ**2aEN* (by) Epy™ (ex srk. €1 fri) 

= aEN* (by)ex tix ...€e1, 

which completes the proof. O 

Next we give a short proof of a well-known formula for vg (see for instance 

(Ocneanu [1991(a)], David)). 

Theorem 2.6 Let A C B be an inclusion of II) factors with finite index, let 

A C B C® Bj be the basic construction and let {m;},c; C B be a finite basis of B 

over A, such that b=, m;Es(m}b), for allbe B. Let x € A'N By, then 

v(x) =[B: AY Ep(eym;z)eim;. (2.1) 
sel 

Proof As above, let m = my denote the representation of By on L?(B) coming 

from the basic construction, let e = e¢; and J = Jy. Then we have for all b € B,
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ze A’ NB, 

[B: A] 3 m(Es(emz))m(e)n(mf)(b) =[B: A] _m(Es(emiz))(Ea(m{b)) 

=[B: AY (Es(emizEa(m;b)))" =[B: Al(Ep(ed_miEa(mib)z))" 

= [B: AlEp(ebx) = [B : A)(Ep(e(m(z*)(b))*))" = (r(z*)(b"))* 

= Jn(z)*J (b) = ©(7(2))(b), 

where we used that (ebz)* = z*b*e = m(z*)(b*)e by Lemma 2.4 ii). O 

Recall that {m;}iz1,..n+1 C B (n <[B: A] <n+1) is called an orthonormal 

basis of B over A if Eg(mim;) = 0, i # j, Ea(mim;) = 1,1 <i <n, and 

Ea(m} mp1) is a projection in A (Pimsner and Popa [1986]). Any such basis 

satisfies 3, mierm} = 1, b = >, miEa(m;b), for all b € B. Note that in the 

above theorem we do not require that {m;}:cr is an orthonormal basis of B over A. 

Any finite basis will do. Furthermore, observe that the formula for ~yo(z) does not 

depend on the choice of the basis, since the left-hand side in (2.1) is independent 

of such a choice. 

Proposition 2.7 Let A C B be an inclusion of II factors with finite index and 

let {m;}icr be a finite orthonormal basis of B over A. Let tras be the normalized 

trace on A’ = A’ nN B(L*(B)) and consider the map 

¢(z) = [B: AI7HY mami, 

z € A. Then ¢ is the unique tras -preserving conditional expectation from A'—B 

(C B(L*(B)). 

Proof We first show that ¢(A’) C B'. Let A C B C° Bi be the basic con- 

struction, J : L2(B) — L?(B) the modular conjugation, and recall that [J,e] = 0, 

B, = JA'J, By = span{aeb|a,b € B}. Let aeb € By, a, b € B, then ¢(Jaebd) = 

[B : A", miJaJeJbJm; = [B : A|7' 3; JaJmiemiJbJ = [B : A" JabJ € 

B’. Thus indeed ¢(4A’) C B'. We clearly have ¢(b') = ¥', for all b’ € B’ (since 

S.mimt = (B : A)), ¢(z*) = ¢(z)*, ¢((4)+) C (B')+ and ¢(bac) = bg(a)c, 
b,c € B', a € A". Furthermore, if x = JaebJ € A’, a, b € B, then tra (¢(z)) 

= [B : A tra(JabJ) = [B : Al rp, (J(JabJ)*J) = [B : Al" trp, (b*a*) 

= trp, (b*ea*) = tra (JaebJ) = tra (z). O 

Since the tr 4/-preserving conditional expectation is unique, the above formula 

does not depend on the choice of the orthonormal basis. 

Corollary 2.8 Let A C B be II; factors with finite index and let yo : A'NB; — 

A’ NB, be defined as above. Then trp, (vo(z)) = tra(z), for all z € AN By.
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Proof By Theorem 2.6 we have, 

trp, (vo(z)) = [B : A) trp, (Ep({eym;z)eymy) = > tr, (ermizm]) 

= [B: Altrp, (e1¢(x)) = [B : Altra (Jo(z)*e1 J) 

= [B: Altra (Jo(z)* Jer) = [B: Altra (EE (Jp(z)*J)ey) 

= [B: Altrg(Jo(z)*J)tra (er) = trp(Jo(z)* J), 

since J¢(z)*J € A’NB and hence EE (J¢(z)*J) = trg(Jo(z)*J). Thus trg, (vo(x)) 
= trp, (Jo(x)*J)) = tra (¢(z)) = tra (z) by the previous proposition. [0 

Next we will discuss the shift from A’ NB; — Bj N Bs. Let J; : L*(B;) — 
L%(B;) be the modular conjugation and consider the basic construction A C B; C 
m1 (Bs) = Jy A’ Ji, where we denote, as before, by 7; the representation of By, Bs on 

L?(B;). Then, as above, we get a linear *-antiisomorphism +; : A’ Bs — A’ N Bs 

such that m1 (v(x) = Jim {x)* J, x € A n Bs. Since Jim (A Nn BJ: = m1 (Bj Nn 

Bs), we have that vy, (AN By) = B] N Bs. Hence the composition vv, : A’ NB; — 

Bj N Bj is a surjective *-isomorphism, which is called the shift from A’ N B; to 

Bi N By (here it is just the 2-shift, but later we will take for instance A = N, 

B = Mj and we will obtain a shift from N' nN Magy) to My, ; N Myry3) (see 

Ocneanu [1988], Ocneanu [1991(a)]). Note that one sometimes writes Jy JozJoJ1 
instead of v;-yo(z), when all the representations are understood. We will deduce an 

explicit formula for the shift in terms of a basis and the Jones projections ej, es 

and ez. 

Lemma 2.9 Let A C B be an inclusion of II; factors with finite index and let 

A C B Ct Bj be the basic construction. Then 

i) ES (ze1yb1) = Ea(zEg(eiybh)), for all z, y € B, by € By (Es = E§, 
Ep = EB"). 

ii) Ea(zEg(e1yb1)) = Ea(Ep(bize1)y), for allz, y€ B, by € A'N By. 

Proof The proof of i) is trivial and ii) follows from the uniqueness of the trace 

preserving conditional expectation E% Bi — A. O 

Next we prove some identities which will be needed later on. 

Proposition 2.10 Let A C B be an inclusion of II) factors with finite index 

and let A C B C® Bj be the basic construction. Let {m;}ic; be a finite orthonormal 

basis of B over A. Then {[B: Alzmieim;}i jer is a (not necessarily orthonormal) 
basis of By, over A satisfying 

bi =[B:A]> mierm;Ea(m}Ep(eimiby)) 
J 

= [B : A “mieym; ER ((mieym;)*by) 

1,J 

=[B: A]> Ea(Ep(bymier)m;)mieim;, for all by € By. 
J 

Futhermore, if x € A’ By, then x = [B : A] dij Es(m;Eg(eim;z))mjerm;.
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Proof It is easy to see that {[B : AT me Vier is an orthonormal basis of 

By over B. Thus, if by € By, we get by = [B : A]>_, me; Eg(eym}b;). But 

Egleym?b) = 2 m; E4(m}Eg(eim;by)), so that b, = [B : A] di; mieim; 

Es(mjE B(eymb;)), which shows the first equality. The second one follows from 

Lemma 2.9 i). Since by = [B : A]>.. Ep(bim;e1)eym! and Eg(byme;) = 

>; E4(Eg(bimier)m;)ms, the third formula follows. The expression for z € 

A’'N By follows from this and Lemma 2.9 ii). [J 

The next theorem gives an expression of the “spatially defined” shift (using 

J's) (Ocneanu [1988] and [1991(a)]) in terms of an orthonormal basis and the Jones 
projections e; (Pimsner and Popa [1986]). The second formula below is well-known 

(Ocneanu [1991(a)], Pimsner and Popa [1986], see also David). 

Theorem 2.11 Let A C B be an inclusion of II) factors with finite index and 

let y17vo be the shift from A’ N By to BN Bs as defined above. Then 

MY0(z)er = [B: Al%ejeazezeze, 

for all z € A'N By. Thus, if {m;}ic1 is a finite orthonormal basis of B over A we 
have 

my(z) =[B: AJ? > miererzezererms, 

iel 

for allz € A’ N B;. 

Proof Let {m;}ic; be an orthonormal basis of B over A with m; = 1, so 

that Ea(m]) =0, if ¢ # 1, and E4(m}) = 1 (this can be assumed without loss of 
generality since A is a factor). Then {[B : AF mierm;}i je 1 is a basis of B; over 

A satisfying the hypothesis of Theorem 2.6 (with B; in place of B) by Proposition 

2.10. Set ry; = [B: Alzmeym;, and let A C B; cf Bj be the basic construction 

with projection f = [B : Aleseieze; (Proposition 2.1). If z € A’ N By, we have by 
Theorem 2.6 that, 

ner = (Br: AY Es, (frum) frie 
i,j 

= [B: AP(Q_ Es, (Nriyn(@)fri)e 
i,j 

=[B: A] OO “miesmjvo(z) fmierms)er 
iJ 

=[B: ARS “mierm; Ep(ermiz)eimjeer eseamiermyes 

ijk 

= [B : APD "erm; Ep(eymyz)ermyesermeseze; 

jk 

= [B: Al%erex([B: A] "Ea(m;Ep(eymyz))mjeim])eseze; 
Jk 

= [B : A)%ejeszezeqe, 

where the last equality follows from Proposition 2.10. The formula for -y;7g is now 

immediate since }_, mem? =1. OO 

Corollary 2.12 The shift v1 : A’ N By — B{ MN Bj is trace preserving, i.e., 

tra, (myo(z)) = trp, (z), for allz € A’ N By.
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Proof We calculate trp, (m170(z)) = [B : AP*Y; trp, (miei eazezeseym;) = 

[B : AY, trp, (miei Ep(x)ezerm}) = Yoitre, (m: ES" (x)erm}) = trp, (3, mie 

mi)trp, (z) = trp, (z), forallz € ANB. O 

Although not needed in this paper, we include for the sake of completeness a 

few words about the 2-shift and the Fourier transforms, both of which are partic- 

ular operators in the affine Hecke algebra associated to a subfactor (Jones [1994], 

Jones [1996]). For the next theorem, see (Pimsner and Popa [1988]). 

Theorem 2.13 Let A C B be an inclusion of II; factors with [B : A] < oc. 

Let AC B C® By C2 By C ... be the basic construction and define maps Ty, : 

Al MN Ban — A MN Bop+t3 by T(z) = [B : Ante ey cn 42T€2n43€2042 €92€1, 

for all x € A’ N Bony. Let {m;}ier be a finite orthonormal basis of B over A and 

set Sp (x) = 3, miTn(z)m}, x € AN Bany1. Then we have, 

i) To(z*) = (Tn(x))*, Ta(z*z) 2 0, T,. (zy) = To(z)Tn(y), for allz € A'N 

Bani1, Tu(1) = er. Furthermore trp, (Tn(z)) = [B : Al"Yrp,, (x), for 

alze AN Bony. 

ii) Sp(x) € By N Banys for all xz € A’ N Bangi. Thus Sy, : A'N Bangs — 

B| N Banys is a unital x-isomorphism, which is onto and trace preserving, 

tT Bynss (Sn(T)) = tre, 1 (x), ze A'n Bony. 

iii) Sp(x) S Bj N Bopt2 for all x € A’ nN By,. Thus Sn ay: : A'N Bg, — 

BN Bany2 is a unital x-isomorphism, which is onto and trace preserving. 

iv) The definition of Sy does not depend on the choice of the orthonormal basis. 

v) Sn+1|A'NBonis - Sn, Sn+1lanBan = Sp|A'Ban . Thus (Sn)nen defines a 

trace-preserving surjective x-isomorphism S : U,A'NB, — UnBiNB, 

such that S(A’ 0 By) = By N Byya. 

vi) So: ANB; — Bj N Bs satisfies So = 71%. 

Proof The easy verification of i) is left to the reader. To show ii), let = € 

AN Banyt, bi, ba € B. Then, 

bie1ba Sn (x) = [B : APH "by Ba (bomi)eres E27 42T€2043 es€1Mm 

= (B : APY “mE a(mbyEa(bami))eres co X24 3. exerm; 

i,j 

= [B : APY “mene “E204 2Z€243 ese Ea (m;b1Ea (bam; ))m; 

i,J 

= (B : AP) “mies ce €2n42T€2n 43. - ezeym;bierbs 

J 

= Sp (z)bre1bs, 

since YE A(bom;)m; = ba. Hence S,(z) € BiNBanys as claimed. The fact that S,, 

is a unital *-homomorphism, which preserves the trace, follows immediately from i). 

Thus S, is injective. Since dim A’ 0 Bypy1 = dim Bf N Bap y3, Sp is also surjective 

and the proof of ii) is complete. If z € A’ N Bay, then S,(z) € B] N Bangs by 

ii). But €2n4+2T€2n4+3€2n+2 — [B : Al" lzean a, so that indeed Sn (x) 1S Bj Nn Banyo. 

The remaining statement in iii) follows as in ii). The fact that S, does not depend
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on the choice of the orthonormal basis can be deduced easily from the fact that 

two orthonormal bases of B over A differ by a unitary in an amplification of A 

(Pimsner and Popa [1986]). The first two equaltities in v) are straightforward and 

the rest of v) is a consequence of ii) and iii). Finally, vi) is obvious by Theorem 

2.11. O 

Definition 2.14 The map Sn : A’ 0 Bypy1 — Bj N Bangs (resp. Solan, 

A’ N By, — BN Banta) is called the 2-shift on A’ N Bony (resp. on A’ 0 Bay). 

Remark 2.15 One can of course define in a similar way a 2-shift from B'NB, 

to By, N Bnt2. The “orthonormal basis approach” to the 2-shift can be found in 

(Pimsner and Popa [1986]) and the “spatial approach” using J's in (Ocneanu [1988], 

Ocneanu [1991(a)], see also Popa [1990], Choda and Hiai [1991]). It is shown in 

(David) that both points of view coincide. Note that the 2-shift actually defines 

a trace preserving *-isomorphism between the standard invariants of AC B and 

Bi C B; (resp. BC By and Bo C Bs). 

Let us discuss briefly another set of special operators contained in the affine 

Hecke algebra associated to a subfactor, the so-called Fourier transforms 

(Ocneanu [1988] and [1991(b)], see also Bisch [1994(a)]). 

Definition 2.16 Let A C B be an inclusion of II; factors with finite index and 

let AC BC By C® By C... be the basic construction. We define linear maps 

¢, ¢1 and ¢r : B'N Brgy — A'N By by é-(z) = [B: AF Ep, (zeres . .. exert), 
k+4+2 k42 

é(z) = [B : A" Ep, (exs1ek...e2e17) and d(x) = [B : A" Ep, 
(exi1€k .. €x€1T€1€2 ...Exexy1). We call gr, Py and ¢y, the left, resp. right, resp. 

2-sided Fourier transform on B' MN B41. 

Let us remark that other normalizations of the above defined maps can also be 

found in the literature and that these maps are the classical Fourier transforms for 

finite groups in the case where the subfactor is obtained as a crossed product by 

a finite group (see Ocneanu [1991(b)]). Various combinations of shifts and Fourier 

transforms will give interesting linear maps on the higher relative commutants. For 

instance, the maps 7x can be written as such a composition. To see the usefulness 

of the maps defined in 2.16, let us prove the following (well-known) proposition. 

Proposition 2.17 Let AC BC By C By C ... be as above. Then dim A’ N 

By, = dim B' N Biya, for all k. 

Proof Let ¢, : B' N Byy1 — A’ N By be the Fourier transform as defined in 

2.16. If ¢.(x) = 0, then exioze; ...exr1ex+2 = 0 and hence exyoTe; = 0. Using 

an orthonormal basis of B over A, we get exo = 0 and hence z = 0. Thus 

dim A’ Nn Bx > dim B’ N Biy1. Using the Fourier transform on A’ MN By, we see 

that dim A} N Bix; > dim A’ N By > dim B’ N Bg, where B D AD A, is the 

downward basic construction. But the 2-shift is an isomorphism between A] NBy_1 

and B’ N Biy1 (Theorem 2.13), so that all dimensions coincide. [J 

3 Principal graphs, reduced bimodules and the fusion algebra 

associated to a subfactor 

Let N C M be an inclusion of II; factors with finite index and let N C M C*! 

M, C®2 M, C ... be the associated Jones tower of II; factors. We have seen
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above that the Hilbert spaces L%(M,,), n > 0 (My = M), are natural N-N, M- 

M, M-N resp. N-M bimodules via the action a -%-b = azb, a, bin N or M, 

& € M, C L?*(M,) (extended to all of L?(M,) by continuity). Observe that if 
Jn + L3(M,) — L?(M,) denotes the modular conjugation, we could have written 
this action as a - & - b = wm, (a) Jom, (b)* Jo (£), where m,, denotes the representations 
introduced in Proposition 2.2, since 7, | 5s is left multiplication. In this section, p will 

denote the N-M bimodule x L?(M) with the above action a-£-b = aJob* Jo(€), a € 
N, be M and ¢ € L2(M). As we have seen after Remark 1.17, the contragredient 

bimodule p is then just L2(M) as M-N Hilbert bimodule with the actions as above 

(exchanging N and M of course). Throughout this section we will work with N- 

N and N-M bimodules. It is a trivial exercise to rewrite all the statements for 

M-M and M-N bimodules. We will use the notation for bimodule multiplication 
introduced in 1.20. 

The following two results are well-known. We include the proofs for the conve- 
nience of the reader. 

Proposition 3.1 Let N C M be an inclusion of II, factors with finite index 

and associated N-N resp. N-M bimodules L?(M,,) as defined above. Then 

a) NL*(M,) ®u mL*(M)y = yL?*(M,)n as N-N bimodules. 

b) ~L?(M,) ON NLE(M) py > NLA (Mp1) um as N-M bimodules. 

Thus, if we let p= ny L*(M)p be as above, we have 

i) (pp)™ = NL? (M,,_1)n as N-N bimodules. 

ii) (pp)™ = ML? (Mp)n as M-M bimodules. 

iii) (pp)"p = NL?*(M,)m as N-M bimodules. 

iv) (pp)"p = ML*(M,)n as M-N bimodules. 

Proof As in the proof of Lemma 1.14 we see that yL?>(M,) ®p L*(M)y = 
~L?(M,)n as N-N bimodules. Let us prove b). By Proposition 1.5 we know that 

the right N-bounded vectors in L?(M,) (resp. left N-bounded vectors in L?(M)) 
are given by M,, (resp. M). As usual, we will abuse notation and write just = 
instead of # for the vector & = x(1ar,) € M, C L*(M,). 

Define a map T : M,, ® M — L?*(M,;,) by 

T(> = ® Yi) = M : NF > ziensien ...€2€1%Y;. 

Note that {(a,b)ny = En(ab*), a, b € M. We compute, 

(x1 ®y1, 22 Qy2) = (z1 (Y1,92)N: 22) 2a, 

= (21 En(1193), 72) = tra, (2321 En (1195)),
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for all z; € My, y; € M,i=1, 2. On the other hand we have, 

(M : NJ! (z1€n+1 ...€1Y1,T26n41 + €192) 13 (a) 

= [M : Nt tr(z3z1€nt1- 1519361 - + en+1) 

= [M : N|"* tr (aba En (Y195)ent1 - -- €2€1€2- en+1) 

= [M : Nltr(e521 En (1195 )ens1) = tr(z3z1 En (1133) 

= (z1 ® 1,72 @ Y2)- 

This implies that T is well-defined and induces an isometry, again denoted by T, 

from xy L2(M,)®n nL*(M)p to ~L2(Mj, +1) a which is clearly a morphism of N-M 

(or even M-M) bimodules. Observe that Mp1 = Me, 1M, (by which we mean 

the linear span of elements of the form aens1b, a, be My), M;, = M,_1e.Mp_1, 

which implies that M41 = Mpept1€nMn_1 and by induction we obtain Mp1 = 

Mpenii€n...exM. From this we deduce that our map T is surjective and hence 

b) is shown. 
The proof of i)-iv) is now immediate by induction using a), b) (and of course 

associativity of the bimodule tensor product, Proposition 1.12) O 

Proposition 3.2 The higher relative commutants associated to an inclusion 

of II; factors N C M with finite index are spaces of bimodule intertwiners. More 

precisely, one has, 

N'O Many 2 Homy n(n L*(Mz)n), 

N' nM, =~ Homa (nL? (Mp) um), 

M' nN Ms, = Hompg-n (ma LA(Mp) um), 

MNMyw = Homan (mm LA(Mp)n)- 

Proof Let us prove the first identity. Denote as in Section 2 by 7, the represen- 

tation of N C M,, on L?(M,,). Then by (Pimsner and Popa [1988], see Proposition 

2.1), Tn(N) C mp(Mp) C Tn(Man41) C B(L2(M,,)) is the basic construction. Thus, 

Homp ny (NL2(Mn)n) =ma(N)'N Tn (NPY NM B(L*(My)) 

= tn (NY N (Jomo (N) JR) 0 B(L* (My) 

= 1 (N' 0 Mapy1) = N' 0 Many, 

where J, denotes as usual the modular conjugation on L?*(M,). For the second 

identity we use the last statement of Proposition 2.2, and then the proof is identical. 

The remaining two identities are shown in the same way. O 

We will show next that the principal graphs of a subfactor can be viewed 

as “principal fusion rules” for certain bimodules associated to the vertices of these 

graphs (see also Ocneanu [1988], [1991(a)] and [1991(b)], Jones and Sunder [1996]). 

If we denote by (I',T’) the principal graphs of N C M, then T' will describe the
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principal part of the Bratteli diagram of C = NNN Cc NNNM Cc N' NM, C 

and Mthat f C= MnNnMc M NM Cc MNM, C.... Let us re- 

call first the definition of the principal graphs (Goodman et al. [1989], see also 

(Popa [1990], 2.1, 2.2, 3.5), (Wenzl [1988], 1.1, 1.2)). We will describe the con- 
struction of I. Since N' N Ms,1, n > —1, (resp. N' N Maz, n > 0) are fi- 

nite dimensional C*-algebras, they are multimatrix algebras and we suppose that 

their simple summands are indexed by a set K,, n > —1 (resp. L,, n > 0) (set 

M_; = N, My = M). Let 23,13 be the central support of eany3 in N' 0 Mopys 

(observe that 29,43 = V{uezntsu*|u € U(N' N Mani2)} (Popa [1990], 2.1), 

then (N' Nn Mos, 13)2on+3 = span(N’ Mn Mop 0)eant3(N' Nn Mo,y0) def Yonts and 

N' N Mapa & (N'N Mopy2)zonts C (NN Mayys)zanys is (isomorphic) to the 

(algebraic) basic construction of N' N Mapy1 C N'N Mayo. In other words, 

N' N Mas, 3 has a direct summand (which is the 2-sided ideal Y,43 generated 

by esny3 in NN Ma, .3), that is isomorphic to the basic construction of the fi- 

nite dimensional algebras N’ N Ms,11 C N' N May, 2. Furthermore, note that 

ean+3(N' MN Manys)eants = (NN Mani1)eznys. Due to the properties of the basic 

construction we get a natural isomorphism ¢ : Z(N' N Mp,41) — Z(Yon43) (the 
centers), which sends a projection ¢ € Z(N' N Man41) to the unique projection 

G € Z(Yan 3) satisfying gesnt3 = deants (§ = JqJ, where J is the modular conju- 

gation on N’' N Mz, 2). Thus, if gx is the identity of the k-th simple summand in 

N'N Manga, k € Ky, then § = ¢(qx) is the identity of a simple summand in Y2n3 

(and hence N'NMzp 43), indexed by some k € Kyi. Themapk € K;, = k € Kn 

identifies K,, with a subset of K, 1; and we will henceforth regard K,, as a subset 

of K,,1 using this identification. Recall that K,1\K,, is usually refered to as the 

“new stuff” (Goodman et al. [1989]). If pr € N' N My, is a minimal projection 

< gk, then preany3(N' N Manis)preonts = Pr(N' 0 Mani 1)preants = Cpreznys, 
i.e., preanya is a minimal projection in N' N May, 13. Since preoni3 = prGreansa = 

prGean+s = (Prean+3)q, where § = ¢(qx), we have that pgeanis < g,_so that 
Prean+3 is contained in the simple summand of N "MN May, 3 indexed by k. Thus, 

the identification k¥ € K,, — k € K,y1 as described above, can be obtained in 

the following equivalent way: Let py be a minimal projection in the k-th simple 

summand of N' \ Ma, 11, k € Kp, let k € K, 1 be the index of the simple sum- 

mand in N' gd M My, +3, which contains the minimal projection pgezny3, then the map 

ke K, — ke K,y, is precisely the above described identification. 

The same analysis can be carried out for N' N Ms, C N' N Myp,41, and we get 

an identification of L,, as a subset of L,;. Namely, if p; is a minimal projection 

in the I-th simple summand of NN Ma,, then pie2,12 is a minimal projection in 

a simple summand of N' N May, +g, indexed by some | € L,+1. The map! € L, — 

le L,4, identifies as before L,, with a subset of L,;. Using these identifications, 

we set K =|J,-_; Kn and L = J,;5q Ln. Note that K_; = {k_} is a singleton, 
since NNN = C. Thus, if we denote by Gr, = (Gki)kek,., leL,,, the inclusion 

matrix of the unital inclusion N’' N Ma,.1 C NN Ms,12, where Gg; denotes the 

multiplicity with which the k-th simple summand of N' N Ma, 4 sits in the [-th 

simple summand of N’ N My, 12, then the transpose matrix GY, is the inclusion 

matrix for NN Ma, yo — Yan. 3 (this follows again from the properties of the finite 

dimensional basic construction (Jones [1983])). In particular, G%, is a “submatrix” 
of the inclusion matrix Hny1 = (Hik)icL, ye, k€Knyrs Or N'NMopyo C N'N Map ys, 

where Hj; denotes as before the multiplicity with which the I-th simple summand of
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NN Map 4g sits in the k-th simple summand of N "MN Man 43. More precisely, we have 

Hy = Gri, l € Lyy1, k € Kp, C Kpy1. Thus, there is a unique “Kx L” matrix G = 

(Gri)kek, 1eL, such that (Gri)kek,, iL, 11 1S the inclusion matrix for N'NMo,+1 C 

N' 0 Many2 and ((Gri)keKoir, tern)’ is the one for N' N Manio C N'N Mans 

(see Popa [1990]). We construct now a bipartite graph I" in the following way. The 

vertices of I are defined to be the set KUL and there are Gi, k € K, | € L, edges 

between a vertex k € K and a vertex | € L. T is then called the principal graph of 

N C M. Recall that T has a distinguished vertex *, which is the vertex denoted by 

k_, above. Equivalently, we could have constructed I' in the following way: The 

vertices of I are {k_1 }ULoUKo\K_1UL1\LoUK1\Kp"-- = KUL as before. Let x 

denote the vertex k_; and connect * to each [ € Lg according to the multiplicity Gu, 

| € Ly. Then connect each | € Lo to the vertices k € Ko\K_; according to their 

multiplicity Gri, k € Ko\K_1, | € Lg, then each k € Ko\K_, tol € Li\ Ly etc. 

(“the new stuff is connected only to the old new stuff” (Goodman et al. [1989])). 

Observe that this procedure results in the same bipartite graph with distinguished 

vertex x as the previous one, since for example each k € Ky, viewed as an element 

of Kn41, is connected to | € L, with the same multiplicity Gx; as | € Ly is to 

that same k, viewed now as an element of K,, (this is just a rewording of what was 

described above as “G?, is a submatrix of Hy11"). The details of all this can be 

found in (Goodman et al. [1989] or Popa [1990]). 
The principal graph I" is constructed in the same way, using sets K/, n>0, 

indexing the simple summands of M' N My, and L!,, n > 0, indexing the simple 

summands of M’ N Ma, 41. We obtain a “K’ x L"” matrix G' = (Gyyp)vek', ver 

as above. Observe that I" has again a distinguished vertex *' = ky, if we denote 

Kj = {kj} (i-e., kj is the index of the simple summand C in MnNnM=C). 

Suppose now that we are given the principal graphs (I',)I") of N C M with 

distinguished vertices x resp. *'. Then we obtain the matrices G, G' via 
! 

Ar = (or 5) x. resp. Arp = (ey 7) where Ar (resp. Ar) are the 

adjacency matrices of the graphs I" resp. I". If we denote by I'even (resp. Thyen) 

and Taq (resp. I 4,) the vertices with even (odd) distance from * (resp. *'), then 

it is obvious that K = even (resp. K' =T(,.,) and L = Todd (resp. L' =TL4q)- 

In particular, K_; = {*} and K,, n > 0, is the set of even vertices with distance 

< 2(n+1) from *, whereas Ly, is the set of odd vertices with distance < 2n+1 from 

%. Similarly for K/ and L!, (caution, the index of Kj, is shifted by one compared 

to Kp). 
We proceed with showing that each index k € K (resp. | € L) can be viewed as 

a uniquely determined irreducible N-N (resp. N-M ) bimodule and we show in the 

next section that the numbers Gy; are dimensions of spaces of certain N-N resp. 

N-M bimodule intertwiners. 

Let p € N' 0 Myny1 (resp. ¢ € N'N My) be a projection and let 7, be the 

representation of My, Ma, 41 on L?(M,,) coming from the n-step basic construction 

for N C M,, (Proposition 2.2). Recall that 7n|n,, is equal to the representation of 

Mj, on L?(M,) coming from the n-step basic construction for M C M,, (Propo- 

sition 2.2, last statement). The Hilbert space m,(p)L*(M,) (resp. mn (q) L2 (My) 

is then an N-N (resp. N-M) bimodule in a natural way. Namely, since 7n(D) 

(resp. mn(q)) is an N-N (resp. N-M) intertwiner of the N-N (resp. N-M) bi- 

module L2(M,,), we have that a m,(p)(£) - b = Tn (p)(azb) = am, (p)(z)b, for all
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a, be Nand z € M, (resp. a-mn(q)(Z) b= Tn (q)(azb) = amn(q)(x)b, for all 
a € N, be M). Since m,|p is left multiplication, this action can be rewritten as 

a mp (p)(€) - b= mn(a) umn (b)* Jnr (p)(£), a, b€ N, € € L?(M,) and similarly for 

mn (q). 

Definition 3.3 Letp € N'NMany1, resp. ¢ € N'NMay,, n > 0, be projections. 

We denote by m,(p)L?(M,), resp. m,(q)L?(M,) the N-N resp. N-M bimodules 
with above defined actions and we will call them the reduced bimodules associated 
to NC M. Similarly for M' N\ My, and M’' N My, 11. 

Note that one sometimes simply writes pL?(M,,) when the representation is 

understood. Also, observe that the space of left resp. right N (resp. M) bounded 

vectors of a reduced bimodule clearly contains 7, (p)(M,) resp. m,(q)(M,) as a 

dense subspace, a remark that will be used later on, when we define bimodule 

morphisms on various tensor products of reduced bimodules. 

Lemma 3.4 Let p € N'N Mani (resp. p € N' N Ma, ) be a projection. Then 

Tn(p)L2(M,) is an irreducible N-N (resp. N-M) bimodule if and only if p is 

minimal in N' 0 Manyq (resp. N' 0 May,). 

Proof The space of N-N intertwiners of mo, (p) L*(Mp,) is isomorphic to (NV p)'N 
PpMa,41p, which is equal to Cp, iff p is minimal. Similarly for the second state- 

ment. [J 

Lemma 3.5 Let p; and ps be equivalent projections in N'N May; (resp. N'N 

Ma,). Then mo (p1)L3 (My) = ma(p2)L*(M,) as N-N bimodules (resp. as N-M 
bimodules). Furthermore, if p € NN Ma,41 (resp. p € N' N May) is a projection 

which is an orthogonal sum p = Yr pi of projections p; € N' Nn Many; (resp. 

pi € NN My), 1 <i <k, then mo(p)L3(M,) = @r_, mn (pi) L2(M,,) as N-N 
(resp. N-M) bimodules. 

Proof If v € N'N Mant (resp. N'N My,) is the partial isometry between p; 

and po, then m,(v) gives the desired bimodule equivalence. The rest is obvious. [J 

Next we will show that each k € K (resp. | € L) labels precisely one irreducible 

N-N (resp. N-M) bimodule contained in @&,(p5)"™ (resp. @n(pp)"p). This will be 
accomplished by choosing a minimal projection in the k-th (resp. [-th) simple 

summand of a higher relative commutant and considering the associated reduced 

bimodule. The previous lemma shows that this reduced bimodule will not depend 

on the particular choice of the minimal projection as long as they are in the same 

simple summand. What we need to show however is that this reduced bimodule does 

not depend on the level of the higher relative commutant, i.e. minimal projections 

indexed by k (resp. l) in any higher relative commutant N’ N My, (resp. N'N 

Ms,.), n > 0, give equivalent reduced N-N (resp. N-M) bimodule. It is of course 

enough to establish this equivalence for reduced bimodules in two consecutive higher 

relative commutants N' N May, 1 C NN Maps (resp. N'N My, C N' NM Mayo). 

Lemma 3.6 a) Let p € N'N Ma,1 be a projection, n > 0. 

i) (n=0). m(pes)(y) = pyer, for ally € My. 

ii) mni1(peents)(y) = [M : Nr Ep" (pyes .enfn)en...€1, for ally € 
Mpa, n > 1. 

b) Let g € N' N Ma, n > 0, be a projection (Mg = M).
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i) (n=0). m(ge2)(y) = ¢Em(y), for ally € M,. 
ii) (n=1). m(ges)(y) = qyez, for ally € Ms. 

iii) Tn+1(g€2n+2)(Y) = (M : NPL Eyer (ayes ---enfn)en--€2, for ally € 

Moy, n > 2. 

Proof The proof uses the explicit expression for the representations mx given 

in Proposition 2.2. We prove first a). If y € Mi, then mi(pes)(y) = [M : 

N2E, (pesyfi) = [M : N>pyEn, (esezeresea) = pyer and a), i) is shown. Let 

y € Muy, n> 1. Then mni1(pe2n+3)(y) = [M : NI" 2 Ey" (pean tay frt1) by 

2.2. Observe that fre: = [M : N|""le,ia...eani2fn€oni3-- enya. We compute 

the conditional expectation Ep (peansay fn+1). Let z € Mp4, then 

tr(zpyesn+afnsr) =[M: NI" ltr(zpyesntsensz -- €2nt2fn€onts. cent) 

= [M : NI" tr(zpyent2 - - - €2n+1fne2nt1 e€nt2€2n43) 

= [M : NI" %tr(zpye; ...en fren - er) 

=[M: NI" tr(zEpt (pyey ...enfn)en --. e1), 

where we used Lemma 2.3 ii) in the third equality. Thus mn41(peant3)(y) = [M : 

ET ovine (pyer ...enfn)en...€1 as claimed. 

We prove b) next. If y € Mj, then m(ge2)(y) = [M : NEw, (geayfr) = 

[M : NPqEwm(y)En, (e2e1esez) = qEn(y) and b), 1) is shown. If y € My, then 

mo(gea)(y) = [M : NPE, (qeay fo) = [M : NPqyEn,(eaf2) = [M : N°qyEns, (eq 
(esezer)(esezer)(eseses)) = qyez and the proof of b), ii) is complete. Finally, let 

n>2andy € M,,,. Then mpy1(geant2)(y) = [M : NI"? Epi (geznt ay fut) 

(Proposition 2.2). We compute the conditional expectation as in a), ii). Let z € 

Mata, then 

tr(rgesni2yfnr1) =[M: N|"Pltr(zqyesn santa. - - €2nt2 fronts. -€nt2) 

= [M : NI" %tr(zqyeni2 - - -€2nfnezn - €n+2€2n+2) 

=[M: NI"—3tr(zqyes c..enfnén... e2) 

=[M: NI*Str(z Eyre (ques... enfn)en -.. ez), 

where we used Lemma 2.3 iii). Thus m,41(ge2nt2)(y) = [M : NPL Eye (ques 

...€nfn)én ...e2 as claimed. O 

Theorem 3.7 Let p € N' N Mani (resp. ¢ € N' N May) be a projection, let 

Tn, Tnt1 be as in Proposition 2.2 and let Mon 1 C+? Map C28 Moa, 3 be a 

part of the tower associated to N C M. Then 

2 NN 2 
n(p)L (M,) = Tn+1(Pe2n43)L (Mra) 

N-M 
TQ) LA (My) 2 Tapa(geznt2) LAM) 

as N-N resp. N-M bimodules, n > 0 (My = M).
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Proof We will use Lemma 3.6 to define explicit bimodule isomorphisms. These 

maps will be related to the Fourier transforms defined in Definition 2.16. Let us 

begin with showing the equivalence of the N-N bimodules. Suppose first that 

n > 1. Define a linear map T : Tni1(peoni3)L?(My1) — wa(p)L3(M,) by 
. antl n ) T (mp s1(peanta)(@) = [M : NI*F Epp (pyer ...enfn)", y € Moy. T will be 

later extended by continuity to all of mm, 1(pean+3)L?(My41). To simplify the no- 

tation, we will omit hats as usual. Recall that M, 1, = M,e,t1€,...e1M. Thus, 

ify =ae,i1...e1b, a € My, b € M, we get Ep, (paepyi€n...e1bey...enfn) = 

Ey, (paEn(b)enyr...e2e1€2...€n41fn) = [M : N] "En, (paEn(b) fr) = [M: 
N= Or (p)(aEn(b)). Hence T(mn+1(Pe2n+3)(Mny1)) - Tn (p)L*(M,) is a 
subspace, which is clearly dense. Note that e,i1f, = faént1 = fn (see Propo- 

sition 2.1). Recall that if w € M,41, then there is a unique w’ € M, with 

weny1 = Wept1, namely w = [M : N|Epy, (wenq1). Thus we, = [M : 

N]Eum, (went1)ent1. This will be used in the computations below. Let now z, 
y € My, 1. Then, using Lemma 3.6, we calculate the inner product, 

(Tn+1(pean+3)(E), Tni1 (Penta) (D)) 

= [M : N*"r(ey ...en (Em, (pyer enfn)) En, (pre; co enfn)en...€1) 

= [M : NP" tr(en(En,,, (yer... enfr)ent1) (En, (per... enfr)ens)) 

— . 3n+3 Mop41 Moni * 
= [M:N] tr(en (Ex (Bp? (pyer ...enfr)ent1)ens1) 

(Be (54 per enfoonsr) ens) 
=[M: NP 3tr(enent1 Ey (pyes .. cenfn) Eni" (prey .o-enfn)ent1) 

_ . 3n+1 Monta + Man 1 = [M : Nj tr(Ey"" (pyer . . . en fn) Ep (pe enfn))- 

Thus T extends to an isometry 7,11 (pegn+3) [2 (Mnt1) — 7, (p) L?(M,,), which 
is onto as seen above. T' is an N-N bimodule morphism because, 

T(a- Tni1(Peant3)(d) -b) = T(ns1(peznts)(ayd)) 

ntl A = [M : N72 Ej, (paybe; ...en fn) 

= [M : N)*2* (aE, (pyes . . . en fn)D)" 

=a T(mn+1(pean+3)(9)) - b, 

for all a, b € N. This shows the equivalence of the N-N bimodules in the theorem 

for n > 1. If n = 0, we define a linear map T' : m (pes)L2(M1) — mo(p)L2(M) 
by T(mi(pes)(®)) = [M : N|2Euy(pye1)”, y € M;. Since M; = Me; M, we 
have for y = aeib, a, b € M, that Ey(paeiber) = Ep(paEn(bler) = [M : 

N]7'mo(p)(aEn(b)) (fo = €1). Hence Em(pyer)” € mo(p)L*(M), for all y € M, 
and T(r (pes)(Mi)) is clearly dense in mo(p)L*(M). If x, y € M;, we compute
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(using Lemma 3.6), 

(m1 (pes) (2), m1 (pes)(@) = tr(ery™prer) = tr((pye1)* (pze1)) 

=[M: N2tr((Em(pyer er) Em(pzen)er) 

=[M: Nltr(Enm(pyer)* Em(pzer))- 

As before, T extends to a surjective isometry, which is an N-N bimodule mor- 

phism and establishes therefore the equivalence of the above N-N bimodules in the 

case n = 0. 

We proceed with the proof of the equivalence of the reduced N-M bimod- 

ules as in the statement of the theorem. According to Lemma 3.6, we have two 

special cases n = 0, n = 1 and the general case n > 2. Let us start with the 

general case. We define a linear map T': Trni1(qeans2) D2 (Mnt1) = mn) L? (My) 

by T(mns1(ge2n42)(@)) = [(M : N)% Epp (que: . cenfn)™ y € Mpta. T will 

be later extended to all of Tny1(gezn+2)L?(Mny1) by continuity. Since Mp1 = 

M,eni1...eaM;, we have for y = aepy1...€2b, a € Mp1, b € My, that 

Ep (qaent1 ...exbes...enfn) = Eu, (qaEy (bent: -- - e3e2€3. ens1fn) = 

[M : N]™"*'Ey, (qaEn(b) fn) = [M : N]=?"m,(q)(aEn(b)). Thus we get that 

T (nt1(geans2)(Mns1)) C mn(q)L*(M,,) is a subspace, which is clearly dense. 

Let z, y € M1, and compute, using Lemma 3.6, the inner product, 

(Trns1(gezn+2)(E), Tni1(ge2n+2)(9)) 

=[M: N])*~2tr(e; .. cen (EM (ques .. cenfn)) En, (gre coienfn)en..- ez) 

= [M : NJ**tr(en (EM... (qye2 enfn)ent1) En, (qzes... enfn)ent1) 

= [M : NP***2tr (en (Ep (Exe? (ques... enfn)ent)ent1)” 

Ey (Ere? (qzez... enfrn)en+t1)€nt1) 

=[M: NP" 2tr(enent1 Eye (ques - cenfn) Epi (qzes co enfn)ent1) 

= [M : NP tr(EM2 (qyer...enfn)* Eni (aze2 en fn))- 

Thus T extends to an isometry Tnp1(qeznt2) L*(Mny1) — mn (q)L*(M,), which 

is surjective as seen above. T' is an N-M bimodule morphism, since 

T(a : Tns1(ge2ns2)() ’ b) = T (nt1(gezn+2)(ayd)) 

=[M: N|% Ep, (gean+20ybes en fu)" 

= [M : N|% (aE, (geant2ves - -- enfn)b)" 

= a T(mnt1(ge2n+2)(D)) +b,
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for all a € N and b € M. This establishes the desired N-M bimodule equivalences 

for n > 2. If n = 0, define a linear map T : m1(ge2) L2(My) — mo(q)L(M) by 

T(mi(ge2)(9)) = ¢Em(y) = mo(q)(Em(y)), y € Mi. By Lemma 3.6 b), i), T extends 
to a surjective isometry m1 (ge2) L%(M:1) — mo(q) L?(M), which is an N-M morphism 

by a similar computation as above. This completes the proof in the case n = 0. 

Finally, the case n = 1. Define a linear map T : m2(geq) L2(M3) — m1(q)L?(My) 
by T(m2(qes)(d)) = [M : N13 E32 (qye2)", y € M,. Note that Ey (qyf) =[M : 

N]1E}f* (qyes), for all y € M,. Hence Ey (qyez) € m1(q)L%(M,), for all y € My, 

by a similar argument as above, using Ms = Mies M;. Thus T (m2 (ges) (My) C 

71(q)L?(M) is a dense subspace. Let z, y € M; and compute the inner product 

(m2(qed)(2), m2(qea)(§)) = tr(eayqrez) = [M : NPtr((Ewm, (que2)es) 
En, (qzez)ez) = [M : Nltr(En, (qye2)* En, (qze2)) (Lemma 3.6). Hence T ex- 
tends to an isometry m(gez)L*(M:1) — mo(q)L%(M), which clearly onto and an 

N-M bimodule morphism since T'(a - m2(geq) - b) = T(m2(gea)(ayb)) = [M : 

N]% En, (gesaybes) = [M : N]zaEw, (geaye2)b = a-T (m2(ges)(§)) -b, for alla € N, 
b € M. Thus the proof of the theorem is complete. [OJ 

Remark 3.8 The above proof simplifies if p = 1 or ¢ = 1. Let us con- 

sider p = 1. Since En, (fn) = [M : N] "eps1, we get for y € Myyq that 
Tnt1(e2n+3)(y) = [M : NJ*"ye1...enEum,,,(fa)en...e1 = yer (Lemma 3.6). It 
is then easy to see that the map T : mny1(eany3)L? (Mp1) — L3(M,), defined 
in the proof of the previous theorem, simplifies to T(7ns1(e2n+3)(D)) = [M : 

N|*F Ey, (yer ...ent1)”, y € My yi. Similarly in the case q = 1. 

Corollary 3.9 Let N C M be an inclusion of II, factors with finite index, 

and let T' be the principal graph of C = NNN C NNnM c NnM; C .... 

Then there is a bijection between Teyen (resp. Toga) and the set of equivalence 

classes of irreducible N-N (resp. N-M) sub-bimodules of @,,~_, nL*(M,)n (resp. 

@D,.>0 NL (Mp) ), where M_y = N, My = M. More precisely, if a € Teven (resp. 

B € Toda), choose a minimal projection p, (resp. qg) in the a-th (resp. [(3-th) 

simple summand of N'N Map+1 (resp. N'N Ma, ), where n is such that a (resp. 3) 

occurs as the index of a simple summand of N'N May (resp. N'NMs,,). Then the 

(equivalence class of the) irreducible N-N (resp. N-M) bimodule 7, (ps )L?*(M,) 
(resp. Tn(qs)L%(M,)) does not depend on the choice of n and the choice of the 
minimal projection in the a-th (resp. B-th) simple summand of N' N Many: (resp. 

N'N Ma,,) (where mm, is as in Proposition 2.2). 

Proof The fact that 7, (ps) L?(M,,) does not depend on which minimal projec- 

tion one chooses in the a-th simple summand of N' N My, ; was shown in Lemma 

3.5. Furthermore, this bimodule is irreducible by Lemma 3.4. If we choose a min- 

imal projection p, in the a-th simple summand of N' N Ms, ; and a minimal 

projection p, in the a-th simple summand of NN Mas, ,1, some n < m, then p, 

is equivalent to py€2,13€2n+5-.- €2nr2k+1 (for an appropriate k), which is a min- 

imal projection in the a-th simple summand of N' N Ms, 1. Applying Theorem 

3.7 k times, we obtain m, (pa) L*(M,) = Tm (Po) L? (My) as N-N bimodules. Note 
that by Propositions 3.1 and 3.2 we get all the irreducible N-N sub-bimodules of 

D,.>_1 ~L?(M,)y in this way. The statement about the N-M bimodules is shown 

in the same manner. [J
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All the statements in 3.4-3.8 and their proofs can of course be rewritten for the 

higher relative commutants M "My, and M'"Mzni1, M-M and M-N bimodules. 

Note that we work then with the same representations mn, since the representation 

of My, on L?(M,,) coming from the basic construction of N C M,,, restricted to Ma, 

is equal to the one coming from the basic construction of M C M, (Proposition 

2.2). Let us state the result analogous to the previous corollary for the sake of 

completeness. 

Corollary 3.10 Let N C M be an inclusion of II, factors with finite index, 

and let I" be the principal graph of C= M'NM C M'0NM,; C MnNM C.... 

Then there is a bijection between T'. (resp. Tiga) and the set of equivalence 

classes of irreducible M-M (resp. M-N) sub-bimodules of D0 um L2(Mpy) wm (resp. 

®, 50 MLA (My)N), where Mg = M. More precisely, if @ € To, (resp. 8 €Thqq), 

choose a minimal projection po (resp. qg) in the a-th (resp. B-th) simple summand 

of M' N My, (resp. M' 0 Many), where n is such that a (resp. B) occurs as 

the index of a simple summand of M' N My, (resp. M' 1 Many). Then the 

(equivalence class of the) irreducible M-M (resp. M-N) bimodule Tn (Pa) L? (Mp) 

(resp. m.(qe)L*(My)) does not depend on the choice of n and the choice of the 

minimal projection in the a-th (resp. B-th) simple summand of M' N Ma, (resp. 

M' 0 Many). 

By Corollaries 3.9 and 3.10 it makes sense to talk about the N-N (resp. M-M, 

N-M, M-N) bimodule & € Leven (resp. 8 € I ven> ¥ € Todd, 8 € Thyq), which 

is the terminology we will use below. We discuss next the conjugate of a reduced 

bimodule. 

Proposition 3.11 Let p € N' 0 Mapi1, ¢ € N' 0 Ma, be projections and 

let vn : N'N Many1 — N' 0 Mania be defined by mn (n(x) = Jn (2) In, T € 

N' 0 Mani (see 2.4). Then, 

NN 
np) L2(M,) = Tn(m(p))L?(M,) as N-N bimodules and, 

_  __ M-N 
TL? (My) = ma(1a(e))L*(M,) as M-N bimodules. 

Thus conjugation ~ defines an involution on Coven and a bijection between Todd and 

Dla. 
Proof We will show that the bimodule equivalences are implemented by the 

modular conjugation J,, : L?(M,) — L*(M,). Recall that 7a (p)(2) € M, for all 

x € My. Then Jo (ma (p)(2)) = Jn7n(p)Jn(2") = Tn (Yn (p))(&"). Furthermore, 

( Tn (7a ()(@)), In (72) (D))) 1. (on (py £2000) 

— trag, (Tn (3 (P)(")) Tn ((0))(@)) = trar, (7a (1) (0) (Ta (P)(2))") 

= (ma (@)(@), Ta (P)(E)) 1 (pyr2(Mn) = (tn (0)(@), 7 (0) 9) sorry 

for all z, y € M,, where the third equality follows from Lemma 2.4 iv). Thus 

J,, is a linear, surjective isometry from Ta) L2(My) — Tn(va(p))L? (My). Let 

a, be N, then J, (b-m,(p)(®) - a) = Ju(a*- (0) () br) = Jn (mn (p) (aT) = 

* «\)* A * *\* A * A NAY 

((ra(p)(@*2b*))")" = ((@* ma (P)(@)67)7)" = (b(mn(p)(2)) a)" =b-Jn (ma (p)(2)) a
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for all z € M,,. Thus J, implements an N-N bimodule equivalence and the first 

identity is shown. 
To prove the second one, observe that m,(vn(q)) = Jumn(q)Jn € Jumn(N'N 

Mop) Jn = mo(M' 0 Many), since Jomo (M)' Jn = mp(May) by Proposition 2.2. 

Thus 7, (y,(q)) is an intertwiner of the M-N bimodule L*(M,,), so that the second 

equivalence indeed makes sense as an equivalence of M-N bimodules. As in the 

first part, one now shows that J, implements this desired equivalence. 

The first bimodule equivalence shows that, given the N-N bimodule a € I'gyen, 

the conjugate N-N bimodule is again a reduced bimodule and hence labelled by 

some @& € even. This map is well-defined by 3.9 and clearly an involution. Similarly, 

since v,(q) € M’'N Map 1, the conjugate of an N-M bimodule 8 € T'oqq is an M-N 

bimodule indexed by a 3 € TI ;,. Again, this map is well-defined by 3.9 and 3.10 

and clearly a bijection. O 

It goes without saying that we also have an involution on I',,,. The conjugation 

(or contragredient map) v € Toqa — 7 € I'Lyq gives an identification of T'oqq and 

I" 44 and induces a permutation on the even levels as we have shown above. Observe 

that the fact that the conjugate of a reduced N-N resp. N-M bimodule is indexed 

by the vertices of the principal graphs follows of course already from Proposition 3.1 

and the Remark 1.17. Let us point out that Proposition 3.11 in conjunction with 

Theorem 2.6 (using A = N, B = M,) gives an explicit formula for the conjugate 

bimodule by calculating a projection in a higher relative commutant. 

Let us now define the (full) fusion algebra associated to a subfactor. Observe 

that this can be done without knowing what exactly the result of the relative tensor 

product of two reduced bimodules is. Namely, if @, 8 € Teven (resp. Tyeq), then a 

and (is an N-N (resp. M-M) sub-bimodule of 5 L?(N)n, (pp) (resp. mL*(M)n, 
(Pp)¥) for some k > 1. Hence af = a ®n 3 (resp. a ®u 3) is a sub-bimodule of 
(pp)?* (resp. (pp)**) and can therefore be decomposed as (N-N case) 

af = > N, ass 

YET even 

where the integers Nos denote the multiplicity of the irreducible N-N bimodule 

~ in the N-N bimodule ap, i.e., N,s = dim Homy_n (7, @8). Similarly for M-M 

bimodules with Teven replaced by I'l... 
Unfortunately, we cannot multiply two N-M bimodules «, 8 € ['caq- However, 

the products @ ® y 3 and a ® ps 3 can be formed and will, with the same reasoning 

as above, be sub-bimodules of (5p)* resp. (pp)*, for some k. Hence they can be 
decomposed into an integer linear combination of the irreducible bimodules in I... 

resp. Teven- 

Rather than giving a definition of an abstract fusion algebra and identifying 

the one coming from subfactors as such, let us stay with subfactors and define what 

we mean by the fusion algebra associated to a subfactor. 

Definition 3.12 Let N C M be an inclusion of II, factors with finite index 

and denote by (T',T") the principal graphs as above.
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i) (N-N part) Let ZT even be the formal Z-linear combinations of the set {ala € 

Leven}. We define a multiplication on ZYeven by 

aB=ad@nB= », Nim 
YET even 

where N]; = dim Homy_n (v.28), a, 8, 7 € Leven, and extend it to all of 

ZT even by linearity, respecting the distributivity law. 

ii) (M-M part) Let ZT',, be the formal Z-linear combinations of the set {aja € 

Ten}. We define a multiplication on ZT en bY 

aB=a®upB= ) My, 
YE even 

where M], = dim Hompr—m (7,28), a, B, v € Then, and extend it to all of 

ZI. by linearity, respecting the distributivity law. 

Recall that the contragredient map induces an involution ~ : ZT even — Zleven 

and ~ 1 ZT, op — Zhen. We denote by § = nem = (ZT evens ZT fens) the two 

Z-algebras with involution defined as above and call § the fusion algebra (or fusion 

ring) associated to N C M. 

Observe that we have two distinguished selfcontragredient bimodules * 

(=x L2*(N)n) and *' (=n L?*(M)py) in Teven resp. Tiven: Clearly, Zl even and 

ZI". are unital (the units are * resp. «'), associative algebras (since bimodule 

multiplication is associative !) over Z with a natural trace defined using the square 

root of the index of the bimodule (i.e., of the associated subfactor) in the usual way 

(see remark after Definition 1.1). We can replace Z by C to get complex algebras. 

If we let L (resp. R) be the left (resp. right) regular representation of §, i.e., 

Lo(8) = of (resp. Ra(B) = Ba), a, B € Zl'eyen (resp. ZI',,,), then the matrix 

representation of L, (resp. Ra), @ € Teyen, in the basis B = {77 € Teven} is 

given by Lo = (N26), ser..., and Ro = (Na), ger... and similarly for M-M 

bimodules and TI, (7 is the row index and 3 the column index of the matrix). 

Observe that NJ, = NZ. Furthermore, since NJ; = NZ, we have Ls = (La)t 

and similarly Rs = (Ra)? (as matrices as above). In particular, the N-N bimodule 

a € Toven is selfcontragredient iff the matrix L,, is symmetric. Similar statements 

hold for T',,, and M-M bimodules. 

We let ZT'oqq be the formal Z-linear combinations of the set {aa € Toda} and 

similarly for ZI" ,,. We define a multiplication ZT oqq X ZT 34 — Zl even by 

af=a®upB= D Pls 
Eleven 

where P); = dimHomy_n (v.08), a € Toad, B € I 4a» 7 € Leven, extended by 

linearity as before. Similarly we define a multiplication : ZT 4g X Load = Llgyen 

by 
af =a®nN f= > Qs 

YET Gren 

where Q); = dimHomy um (v,aB), a € Tyg B € Toad, 7 € Deven, extended 

by linearity. Furthermore we have products Zleven X Zl'oaa — ZT oad, ZY en % 

ZT 44 — ZT 44, Zlodd X Llyen — Zlodd and ZI" j4 X ZT even — ZI',44 defined
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in a similar way. Thus we can regard for instance a € ZI'oqq as a matrix L, : 

ZI" 44 — ZT even (the matrix representation is with respect to the obvious bases) or 

as a matrix Ry : ZI 44 — ZI, etc. This point of view allows us to perform fusion 

rule calculations by multiplying matrices and solving matrix equations (Section 5, 

see also Bisch and Haagerup [1996]). 

Definition 3.13 Let N C M, T', TV be as above. We call Fran = Frun(N C 

M) = (ZT even, LT lyons ZT oad, ZL 44,7) with involution and various multiplications 

(“even x even”, “even X odd”, “odd x even”, ‘odd x odd” and “odd x odd” ) 

defined as above the full fusion algebra associated to N C M. The N-N and M-M 

part of Fran (what we called the fusion algebra associated to N C M in Definition 

8.12) is called the even part and the N-M (resp. M-N) parts are called the odd 

part of run. 

In the next lemma we collect some of the properties of the structure constants 

of the fusion algebra associated to a subfactor. 

Proposition 3.14 Let N C M be an inclusion of II, factors with finite index. 

Let (N35) a,8,7€T even be the structure constants of the N-N part of the fusion algebra 

“3 NCM- Then 

i) (unit) NJ« = NJy = bay, for all a, vy € Teen. 

ii) (associativity) 

> NN= YD Nas, 
7,€€l even v¥,€€ even 

for all a, B, 7 € Teven. 
iii) (involution) NJ, = Nga for all a, B, ¥ € Teven- 

iv) (Frobenius reciprocity) N] 5 = No = NZ, for all a, B, ¥ € Leven. 

Proof The properties of the structure constants follow immediately from the 

indicated properties of the algebra. iv) is a reformulation of Corollary 1.21 iv)- 

vi). O 

It is clear that similar statements hold for the M-M part of the fusion algebra 

and that various compatibility conditions between the N-N, M-M, M-N and N-M 

parts imply conditions on the other structure constants as well. We will leave it to 

the reader to list them. Note that we will usually identify I', jy with ['oqq using the 
contragredient map. We end this section with a definition. 

Definition 3.15 The matrices 

hd Ng = (N 3 5),68€ even (resp. NY = (Nja)7,B€T even )s ac Leven, 

l r o ME) = (M2) per, (resp. ME) = (Mga) per...) @ € Dien, 
are called the fusion matrices associated to N C M. 

Note that the principal graphs I', I" of N C M do not determine the fusion alge- 

bra completely in general (see, for instance (Bisch [1994(b)], 3 + v/3 example)) and 
additional information is needed to calculate the fusion matrices (namely the “or- 

thogonality information” contained in the commuting squares formed by the higher 

relative commutants). Let us remark that the fusion matrices can be interpreted 

as principal graphs of reduced subfactors - more on this in Section 5.
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4 Bimodule tensor products and higher relative commutants 

We show in this section how the bimodule tensor product of two reduced bi- 

modules associated to a subfactor can be recovered as a product of projections in 

the higher relative commutants. Furthermore, we will identify the multiplicities Gri 

occurring in the principal graphs as dimensions of spaces of bimodule intertwiners. 

Recall that the simple summands of N 'N Map are indexed by K,, and those 

of N’ N My, by Ly. As before, we denote by 7, the representation of May, Mani 

on L?(M,) coming from the basic construction of N C M, and Gy, are the en- 

tries of the matrix G associated to the principal graph I' (see the discussion after 

Proposition 3.2). 

Proposition 4.1 Let q € N' 0 Ms, C N' 0 Map be a projection. Then, 

rn (@ LA (My) ®pr LAM) n= (mn(0) ®t id 12 (ary) (LP (Mn) Ont L*(M)) 
= mag) 2 (My) 

as N-N bimodules. Thus, if g = a, | € Ln, 5 0 minimal projection in the l-th 

simple summand of N' 1 Man, then 

2 NN 2 
mn(@) LA (My) = ED Grmn(pr) I (Mn), 

k€EKn 

as N-N bimodules, and hence 

dim Hompn-N (mn (pr) L* (My), Tn(q) L* (My) Om L?(M)n) = Gi, 

where pi is a minimal projection in the k-th simple summand of N "Nn Mansi, 

ke Ky. 

Proof Observe that since ¢ € NN Man, 7 (q) L? (My) is indeed an N-N 

bimodule. The equivalence of the first two bimodules follows from Proposition 1.15 

iii). The equivalence of the first and third bimodule is immediate by Lemma 1.14. 

Now let ¢; be as in the statement of the proposition. Since the [-th simple summand 

of N' N Ms, sits with multiplicity Gi: in the k-th simple summand of N "0 Mania 

(by definition of the principal graph), the third equivalence is obvious by Lemma 

3.5 (by Gx mn (pr) L2 (My) we mean Gy, copies of the bimodule on (pk) L2 (Mp) as 

usual). Since the reduced bimodules Tn (pk) L* (Mn), k € Kn, are irreducible N-N 

bimodules, the last statement is immediate from the third bimodule equivalence. [1 

Corollary 4.2 The embedding from Homn-m(NLAH(Mp)m) — Homp.n(nL? 

(M,)N), given by Ton (2) = mn (2) ®m dy L2(M)ns T € N' 1 Ms, coincides with the 

inclusion N' 0 Man C N' NM Map 1, given by the principal graph T. 

Proposition 4.3 Let p € N' Nn Ma, be a projection, then 

Ton (p) L2 (My) RN L*(M) nm = Tn(P) ®N id L2 (Mm (L? (Mn) Nn L? (M)) 

> 7541p) L* (M11) 

as N-M bimodules. Thus, if p= pk, k € K,,, is a minimal projection in the k-th 

simple summand of N' N Man 1, then 

2 NM 2 

Tong (Pr) LP (M1) = PD Gri Tna1(q) L* (Mn) 

l€Ln+1
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as N-M bimodules, and hence 

dim Hom pn. (mn41(@) L* (Mp1), 7 (pk) LP (Mn) @n L*(M) pr) = Ga, 

where q; is a minimal projection in the l-th simple summand of N' N Ma, 1. 

Proof The equivalence of the first and the second bimodule is obvious by 

Proposition 1.15 iii). We will show the equivalence between the first and the third 

bimodule. Recall that 7, +1(p)(yent1...€12) = Tn (D)(Y)ent1 ...e1z, for ally € M, 

and z € M by Proposition 2.5. Also, recall that 7,(M,) is dense in the space of right 

N-bounded vectors of m,(p)L?(M,). Define a linear map T : m,(p){(M,) © M — 

Tn41(P)L? (Mp1) by T(ma(p)(9) ® 2) = [M : NJ™HD 2m (p) (yeni ren. €12), 
y € M,, 2 € M (as usual we will omit “hats” in the calculation below). Then we 

have for y; € Mp, z, €e M,i=1, 2: 

[M : NJ" (Tng1(p)(y1€nt1 -- €121), Tn 1 (P) (Y2€ns1 - -- €122)) 12 (ar) 

= [M : N]"*ltr(z5er ... entr (mn (P) (2) Tn (0) (Y1 ) Engi - - €121) 

= [M : N]""Ltr (mn (p) (12) Tn (D) (W1)Ens1 - . - €12173€1 - . . €nt1) 

= [M : NI" tr (mp) (y2))* mn (p) (41) En (2123) 
€nt1...€2€1€2... €nt1) 

= [M = Ntr((m (0) (42) 7 (0) (31) En (2125 )ent1) 

= tr((mn () (42) * 7 (0) (1) En (2227) 

= (mn (0) (41) (21, 22) N, Tn (D)(¥2)) Las) 

= (mn (p)(y1) ® 21, mn (P) (y2) ® 22), 

which implies that T is well-defined, factors through N(. ., and induces an isometry 

from 7, (p)L?(M,) ®n L*(M) ar t0 mpni1(p)L2(Mp41), which is clearly onto since 
M, 1 = span{aenii€e,...e1b]a € M,, b € M} (see proof of Proposition 3.1) is 

dense in L2(M,, 1). It is easy to see that Tis an N-M map, so that the equivalence 

of N-M bimodules between the first and the third bimodule is established. 

Now let py be as in the statement of the proposition. Since the k-th simple 

summand of N' N My, 1 sits with multiplicity Gy; in the [-th simple summand 

of N'N May42, I € Ly, the third equivalence is again obvious by Lemma 3.5. 

The last statement follows immediately from this equivalence and the fact that the 

reduced bimodules 7,1 (q;)L?(M,41) are irreducible N-M bimodules. [J 

Corollary 4.4 The embedding from Homy_n(nL*(M,)n) — Homn.p (nL? 
(Mp1) uM), given by mp(z) — 7a(z) ON dy r2(ar)s, T € N' 0 Many, coincides 

with the inclusion N' N Map, C N' 0 Maya, given by the principal graph IT. 

Remark 4.5 i) Propositions 4.1 and 4.3 characterize the entries in the ma- 

tric G = (Gr) perc (K = Teven, L = Toaa) as dimensions of certain inter- 

twiner spaces and we could of course define the principal graphs using these dimen- 

sions. Clearly, similar propositions hold for the principal graph T' and M' 1 Ma, 

M' NN Mapi1, M' 0 Ms, 2 - the proofs are the same (use again Proposition 2.2,
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last statement). Namely, we have that the inclusion Homa pm (mL (My) ym) — 

Homan (Mm LE(M)N), given by mn(x) — n(x) ®a id, 12(aryy, and the inclusion 

Homarn (mu LEM) Nn) — Homar-ar (mL? (Mya) um), given by ma(z) — mo (z) Nn 

idy L2(M)y» coincides with the inclusions M' N Ms, C M' 0 Ma,yq, resp. M'N 

Mypy1 C M' 0 Mapyo. In the notation introduced in Definition 1.20, the last 

statements of Propositions 4.1 and 4.3 (also formulated for I) read 

Gs = (7, 8p) = (vp, 8), YE Levens 6 € Toda, 

Gls ={v,8'p) = (vp, ¥), Y € Tovensy 6" €Toaq- 

ii) The multiplicities of the embeddings M' NM, CN NM, and M' 0 Mani C 

N'N Mapn41 can be described in a similar way. More precisely, these inclusions co- 

incide with the embeddings Hom apr (mL? (My) um) — Homa (nL2(Mp) um), given 

by mo(x) — idy ram), OM T(x), and the one from Homan (mm L2(My)N) to 

Hompn.n(NL2(Myp)N), given by mn(x) — idyr2(ar)y OM n(x) (i.e., multiplication 

by nL2(M)p from the left). The multiplicities can then immediately be calculated 

using Frobenius reciprocity. We find that the multiplicity of the a-th simple sum- 

mand of M' 0 My, (resp. M' N Ma,y1) in the B-th simple summand of N' Nn Ms, 

(resp. N' NM Many1), a € Tho, (resp. a € TV 44) B € Toga (resp. B € Teven) 18 

given by (pa, B) = (a, Bp) = G, 5, since f € Tpyq (resp. (pa, 8) = (8,ap) = Gp a 

since & € T'oaq) (see i) and Corollary 1.21), where p= NyL*(M)u as usual. Thus 

we have recovered all the multiplicities of the embeddings, 

NM, C N' NM C N' NM Mypyo 

U U U 

MnNM,, C M nM C M 0 Maio 

as dimensions of spaces of bimodule intertwiners. Observe that the role of the 

conjugate ~ (or contragredient) map is displayed nicely in this bimodule picture of 

the above embeddings. 

We will now show how the bimodule tensor product of reduced bimodules can 

be determined by computing certain products of projections associated to these 

reduced bimodules. The idea of how to do this has been known to experts for some 

time (see also Goodman and Wenz! [1990]), we were however unable to find any 

references in the literature. We will obtain a procedure that allows us to calculate 

the fusion algebra associated to certain subfactors quite easily (as for instance the 

subfactors in (Bisch and Jones [1995])). Let vx : N' N Magy1 — NN Mag, be 

the surjective, linear *-antiisomorphism defined by mx (x(x) = Jxme(x)* Jk, = € 

N’ 0 Magy (apply Lemma 2.4 with A = N, B = My). Then shagi1 = Yor+17% 

N'NMagt1 — Mj 1M Myyy3 is a trace preserving, surjective *-isomorphism (by the 

remark before Lemma 2.9 and Corollary 2.12 with A = N, B = My, By = Mag 

and Bs = Myky3), which we call the ((2k + 2)-) shift on N' 0 Mag41. Note that 

shy 1 is a shift as in Definition 2.14: if we let A= N, B= M;. in Theorem 2.13, 

then shor is the 2-shift which we denoted there by Sp (2.13 vi)). Similarly, we get 

a trace preserving, surjective *-isomorphism shox = Yorvk : M "MMay — Mj NM 

(by the remark before Lemma 2.9 and Corollary 2.12 with A= M, B = My), which 

is again a shift as in Definition 2.14. Note that Yor (Z) € Mj, MN My for all z € 

M' 0 Moy, since mar (Yok (2) € Joxmar (MN Mag) Jo = mar(Map NM Mar). Yor |MnMas 

is therefore a linear, surjective *-antiisomorphism M’ NM My, — Mj, N My.
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Theorem 4.6 a) Let p, ¢ € N' N Ma,y1 be projections and let shg,, : 

N'O Many1 — Mj, 1 0 Mypnys be the shift as defined above. Then, 

2 2 NN 2 
Tn (p)L* (My) @n Tr(q)L* (Mp) = 7on41(p shant1(q))L*(Mani1) 

as N-N bimodules. Furthermore p shoni1(q) € N' N My, 3 is a projection with 

trace oS. (p shana (9) = trp, (PItrMa ys (9)- 
b) Let p, ¢ € N' 0 Ma, be projections and let yon, : N' 0 May, — Mb 0 Mynyq be 
defined as above. Then, 

2 Tarr ev 2 2 
Tn (P) LH (Mp) @um Tn(Q) LAH (My) = Tn (P) LA (My) nm Tn (vn (q))L? (My) 

N-N 
= Ton (Yen (9) L2 (May) 

as N-N bimodules. Furthermore, pyan(q) € N' N My, 11 18 a projection with trace 

trMyp a (pr2n(9)) = tra, (Ptr, (y2n(9)). 

c) Let p, g € M' N Ma, be projections and let sha, : M' 0 My, — Mj 1 My, be 
the shift as above. Then, 

2 2 MM 2 
Tn (P)L? (Mn) @nr mn (q) LP (My) = Ton (p shan (q))L* (May) 

as M-M bimodules. Furthermore, p sha, (q) € M' 0 My, is a projection with trace 

tra, (p shan(q)) = tras, (P)tras,, (9)- 
d) Let p, ¢ € N' 1 My, be projections and shoni1 : N'N My, — Mj, 0 Manto be 

the shift as above, restricted to N' N Ma,,. Then, 

- ) M-M ) ) 
Tn(P)L? (Mn) Nn mn(Q)L* (Mn) = mn(1n(p))L* (My) ®N mn(q)L*(M,) 

M-M 
2 mont1(Vn(p) shan11(q)) L*(Many1) 

as M-M bimodules. Furthermore, v,(p) shan+1(q) € N' N My, 10 is a projection 

with trace ta, ., (Yn (P) Shon+1(q)) = tTM,, 4, (Vn (P)) 0M, (9). 

Proof Let us start with the proof of a). Observe that p and sha, 1(q) are 

commuting projections, so that p shop+1(g) € N' NM My, 3 is again a projection 

with trace as stated in the theorem (by Corollary 2.12). We define a linear map 

T : ma(p)(Mn) © mn(@)(Mn) — T2n41(p shont1(q))L* (Many) by T (mn (p)() ® 

Tn(q)(§)) = [M : N]®+D 2m, 1 (p shont1(9))(@ fay), 2, y € My, fn the Jones 
projection for N C M, (Proposition 2.1 i)). The fact that T is well-defined will 
follow from a computation of the inner products below. Recall that My, 1 = 

M, fo M, wef span{z fry |x, y € M,} and that the Radon-Nikodym derivatives 

satisfy (mn (q)(91), Tn (@)(F2))~v = (G1, mn (a) (2) nv, Y1, y2 € M, (Proposition 1.15 
ii)). Furthermore, we have 

Ton+1(P shon11(9)) (x fry) = T2n4+1(V2n+1Vn(9))T2n+1(P) (2 fry) 

= Jont172n41 (1 (0) *) Jon+1 (PZ fry) 

= Jon+1(((@)*y* faz*p)") 

= (Pz fry (@))",
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since Ton+1| Many, 18 left multiplication. Let zs, yi € Mn, i =1, 2. We compute 

( Tn (P)(E1) ® Tn (q) (51), Tn (P) (£2) ® (9) (92) = 

= (00 (0) (31) (Ta (9) (§1)> Tn (0) (2) 2 Tn (PY (22) p21) 

= (ra) (21 B4" (31 (70) (02))))) 7 (P) (82) ar, 

= tra, (23m (P)(@) EN" (41 (1 (9)(82)))) 

where we used in the third and fourth equality that ma(p) is a right N-module 

intertwiner. Next we calculate, 

( T{n(p) (81) © 7a) (3), T (RP) (22) & Tn(@) 2) gaat, 

= (M : NH (mona (p shan 1(9))(@1 fn¥1)s T2fa¥2) [2 (ayn 1) 

= (M : NJ ((pz1 fan (0), (@2fn¥2)") L2( Manin) 

= (M : NI" MM, 00 (43 fn 2pT1 fuy17m(0)) 

= [M : NJ" Ltrag,, oo (@5021 fot Wn (@)93 Fn) 

= [M : NPM, (z3mn(p) (21) fot (mq) (2))" fn) 

= [M : NI" traps (z3mn (0) (21) EN" (v1 (7n(q)(92))*) fr) 

= tra, (23m (P)(@1) EN" (11 (mn(@)(32))%)) 

= (map) (E1) ® Tn (a) (#1) Tn (Pp) (£2) ® Tn (9) (92), 

where we used in the fifth equality that pzifn = Tn(p)(z1) fr and W(@Qys fn = 

Tn(Y(@)(¥3) fn = (mn(q)(y2))* fn by Lemma 2.4 ii) and iii) (applied to A = 

N, B = M,, B, = Msi, &1 = fn). Thus the above defined linear map T' 

is well-defined and induces an isometry, still denoted by T : m,(p)L*(M,) ®n 

7n(@) LA (My) = Tan 1(p Shans1(9))L? (Mzn+1). Since T(a- (mn (p)(®) ® ma (9)(9))- 

b) = T(ma(p)(@2) ® ma(Q)@h) = (Pazfuyb1n(@)” = (apzfry1n(g))" = a: 

T(mn(p)(2) ® 7n(q)()) + b, for all a, b € N, we have that the induced map T' 

is an injective N-N bimodule morphism (by definition of the N-M bimodule struc- 

ture on the relative tensor product, see the remark after Definition 1.11), which is 

onto, since mant1(P shont1(q)) (Many) is dense in Tony1(P shon+1(9))L% (Mant1)- 

This completes the proof of a). 

Since the arguments for b)-d) are similar, we will be brief. To keep the no- 

tation simple, we will omit all the “hats” (it should be clear from the proof of 

a) where they need to be used). Let us prove b). Recall that mn(q)L2 (My) = 

Tn (Yn (q)) L? (My) as M-N bimodules (Proposition 3.11), which proves the first iden- 

tity. To prove the second one, define a linear map T + 7a (p) (My) Om (Yn (@)) (Mn) —
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Ton {DY (9) L* (My) by 

(1a (9)(@) © 0 (10(@)(@)) = IM + NT" (p100(0)) (E00). 
for all z, y € My, gn, the Jones projection for M C M,, (Proposition 2.1ii)). Observe 

that m,(7.(q)) € mn(M’' N Mani1) and mon (Y2n(q)) € Jonmon(N' N Man)Jan = 
Ton (Mj, 0 Myny1). In particular, pyan(q) € N' 0 Myni; is a projection with 

above stated trace. Furthermore, recall that Ms, = M,g,M,. We compute for z;, 

Yi € M,,, i =1, 2 (omitting “hats”) 

{ Ta (P) (21) ® Tn (2) (y1), Tn (P) (m2) ® mn (1m (9) (v2) 

= (ma(p) (21 E27" (1 (mn (10.(0)) (12))*) ) , 22) 

= tr, (25m (p) (1) Epp (117 (9)(43))) 

since 7, (Vn(q))(y2)* = mn(q)(y3) by Lemma 2.4 iv). We also used in the second 
equality that 7, (p) is a right M-module map. Since man |us,, is left multiplication, 

we have T'(m,,(p)(£) ® mn (yn (9))(9)) = PZgnyy, ©, y € My. Thus 

( T(r (p)(@1) ® Tn(¥(@)) (11), T (Mn () (22) ® Tn (Va(@))(¥2))) 12 (at, 

= [M : N]"trar,,, (23PT190Y19Y5 9n) 

= [M : N|"trar,,, (23700 (0) (m1) Eng” (170 (0) (43) 95) 

= tra, (2370 (0) (@1) Er” (3179) (43) 

= (mn (p)(€1) ® Tn (1n(@)) (41), Tn (P) (22) ® Tn (1m (@)) (52), 

where we used that pz1g, = mn (p)(21)gn, q¥39n = Tn(q)(¥3)gn, by Lemma 2.4 ii) 
(applied to A = M, B = M,). Note that we also use that =m, is the representa- 

tion coming from the basic construction of M C M,, (Proposition 2.2). As before, 

T is well-defined and induces an isometry m,(p)L?3 (My) ®n Tn (1a (q))L2(M,) — 

Ton (P¥2n(q)) L? (May), which is clearly an N-N bimodule morphism (note that 
Yn(q) € M' N Ma,+1) and surjective with the same argument as above. 

Next we prove c). It is clear that p sho,(g) is a projection in M' N My, 

with trace stated above (proof as in a)). The proof of c) proceeds now as the 
proof of a), namely one shows that the linear map T : 7, (p) (My) © Tn (q)(My) — 

Tan (p shan (q))L*(M3n) defined by T (mn (p)(£)®7n (4) (5) = m2n(p shan (9))(Zgn¥) = 
(prgnyyn(g))", z, y € My, gn as in Proposition 2.1 ii), is well-defined and induces 

the desired equivalence of M-M bimodules. 
Finally, the proof of d). Since 7,(p)L2(M,) 2 mn{vn(p))L*(M,) as M-N 

bimodules, by Proposition 3.11, the first identity follows. The second one is now 

shown precisely as in a) (with 7, (p) in place of p). Observe that the T" defined there 
is actually an M-M bimodule morphism since v,(p) € M'N Msp: (thus 7, (vn (p)) 
is a left M-module map) and since ¢ € N’' N My, (thus m,(g) is a right M-module 

map). Since shont1(q) € Mj, 1 N Manto, it is clear that v,(p) shany1(q) € 

N'N My, 42 is a projection with trace as stated above. This completes the proof of 

the theorem. [O
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Remark 4.7 i) Observe that a) of the previous theorem gives a formula for the 

bimodule tensor product of two reduced N-N bimodules, b) for the one of a reduced 

N-M with a reduced M-N bimodule, c) for the one of two reduced M-M bimodules 

and finally d) for the tensor product of a reduced M-N with a reduced N-M bi- 

module. Since we have explicit formulas of the antiisomorphisms vk and the shifts 

shoni1 and sho, in terms of the e; 's and orthonormal bases (Theorem 2.6, The- 

orem 2.11, Theorem 2.18), we can calculate the (full) fusion algebra associated to 

a subfactor by computing products of projections in the higher relative commutants 

(as given by the theorem) and decomposing the resulting bimodules into irreducibles 

according to Lemma 3.5. This method proves to be very useful if the higher relative 

commutants of the subfactor are known in detail (for instance for the subfactors in 

(Bisch and Jones [1995])). We will give some applications elsewhere. 

#4) If we use Theorem 3.7 in conjunction with Theorem 4.6, we have explicit for- 

maulas for the bimodule tensor product of any two reduced bimodules mn (p)L2 (My) 

and Tm (q)L?(M,,) (embed the projections in the same higher relative commutant 

using 3.7 and compute the bimodule tensor product according to 4.6) and we could 

abstractly define a product on the (equivalence classes of) projections in the higher 

relative commutants in this way. 

wi) Associativity of the bimodule tensor product of reduced bimodules can be proved 

using 4.6 (see Remark ii). It amounts to showing that certain projections, obtained 

by using the formulas in 4.6, are equivalent. 

5 Fusion algebra calculations and reduced subfactors 

5.1 Reduced subfactors Let N C M be an inclusion of II; factors and 

let M,, be the II; factors in the associated Jones’ tower. If p € N' NM, (resp. 

p € M' 0 M,) is a projection, we call Np C pMyp (resp. Mp C pM,p) a reduced 

subfactor. We will discuss in this section only reduced subfactors of the form 

Np C pM,p and leave it to the reader to reformulate everything for those of 

the form Mp C pM,p. Note that (Np) NpMpp = p(N' N M,)p, so that the 

reduced subfactor is irreducible iff the projection p is minimal in Nn M,. We 

will usually assume that p is minimal when we talk about reduced subfactors, 

although this is not necessary for the statements below. Furthermore, observe that 

[pM,,p : Np| = tra, (p)try (p)[Mn : N] (which is called a local index of N C M). 

A good way to deal with fusion questions regarding reduced subfactors is to use 

the endomorphism picture (tensor N C M with B(H), H an infinite dimensional 

Hilbert space, consider the resulting algebras in their standard representation and 

define an endomorphism using a common cyclic and separating vector), which makes 

statements regarding the fusion algebra of reduced subfactors rather obvious. To 

keep this article self-contained, we will however stay in the II; setting. 

Let us start with the basic construction for reduced subfactors. The following 

lemma is well-known (see, for instance Bisch [1994(a)] or Wenzl [1988]) - we include 

a proof here for the convenience of the reader. 

Lemma 5.1 Let A C B be II; factors with finite index and let AC B C Bj be 

the basic construction. Let p € A'NB be a projection, let ¢ = yo(p) = JpJ € B'nBy, 

where J : L2(B) — L*(B) denotes the modular conjugation. Then, 

Apq C (pBp)q C paBipg 

is (isomorphic to) the basic construction for (Ap C pBp) = (Apq C (pBp)q).
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Proof Let us denote by tra, trp, trp, the unique normalized traces on the 

IT; factors A” = A’ Nn B(L*(B)), B, Bi. Recall that trp, (Jz*J) = tra (x), for 
all z € A’, by uniqueness of the trace. Furthermore, we have that [(pBp)q : 
Apq) = [pBp : Ap] = tra (p)trg(p)[B : A]. Similarly, [pgBipq : (pBp)q] = 
trp, (Qtr (q)[pB1p : pBp] = trp, (q)trp(q)[B : A]. But trp, (q) = tra(p) and 
trp: (q) = tryps(JqJ) = trg(p), so that both indices coincide. Observe that 

pq = gp and pges = pes (Lemma 2.4 iii)), where e4 : L%(B) — L?(A) is the 
orthogonal projection. Now define e = trp, (p)~'pgeapg. We get that tryq5, pele) 

= trp, (p) "trp, (pg) trp, (eapq) = trp, (pg)~'[B : Al! = trp(p) tra (n)~'[B : 
A]7'. Furthermore, an easy calculation (using pges = pes) shows that e? = 

e € pgBipg. We will apply the abstract characterization of the basic construc- 

tion (Pimsner and Popa [1988]) to show that pgBipq is the basic construction for 
Apq C (pBp)q. Since we clearly have that e commutes with Apq, we only need to 
check 

EPILIP(e) = trp(p) ‘tra (p)'[B : Al lpg. 

Note that Eg'(peap) = [B : A"'p and tIpgBipe(PaZTPY) = trpp,,(pzp), for all 
x € B. Thus, if z € B, we have 

tTpeBipe(PGTPgEAPG) = trp, (zpeap)irp! (q)trs, (p)~! 

= (B : A] rp, (9) trp, (p) "tra, (zp) 

= [B: A] "trp, (¢)"trpp, (zp) 

=[B: A" trp, (9) 'ttpgB, pe (PaTPY), 

so that EPIZYP9(pge pq) = [B: A] trp, (q) "'pq as desired. O 

Recall that if p € A is a projection, the basic construction for pAp C pBp is 

pAp C pBp C pBip with Jones projection pep. 

Next we identify the iterated basic construction for reduced subfactors. Let 

N C M be an inclusion of II; factors with finite index. By (Pimsner and Popa 

[1988]) we have that N C M,, C Ma,41 C M3p40 C Manis C ... is the basic con- 

struction for N C M,,. Denote as in the discussion before Theorem 4.6 by Vr +1)n+r 

the surjective, linear x-antiisomorphisms N'N Mri 1ynt2r+1 = NN Mari 1yns2rtt 

(note that N C M(;41yntr C Ma(rt1)nt2r41 is the basic construction), restricted to 

Mon NM; 42)n+r+1, which yields a surjective *-antiisomorphism Moy Nn 

Mai2ynrt1 = My, ony O Migyngrst (Mrngr—1 © Mey1ynir C Mri2yntri 
is the basic construction). 

Corollary 5.2 Let N C M be an inclusion of II factor with finite index and 

let p € N' NM, be a projection. Consider the reduced subfactor Np C pM,p, 

set A= Np and B = pM.p and let A C B C By C --- C By be the iterated 

basic construction. Set 0 =D 1 = go¥n{g0), sees qr = Gr—1Yrntr—1(gr-1). Then 

@ € (r—1Mrnir—1r-1) Ngr—1M(41yn4r@r—1 and AC BC By C --- C By is 
(isomorphic to) Nqx C qe Mar C ... qeM(ky1)ntrd- 

Proof The proof is a straightforward induction, using Lemma 5.1.1 and the 

comment after the lemma. [OQ
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Observe that it follows that reduced subfactors of reduced subfactors are re- 

duced subfactors of the original inclusion. In particular, the vertices of the prin- 

cipal graphs of reduced subfactors can be identified with subsets of the vertices 

of the principal graphs of N C M, and the fusion algebra of a reduced subfac- 

tor can be read off the fusion algebra for N C¢ M. Let p € N' N Many: (resp. 

g € NN My,) be a projection and consider the reduced N-N (resp. N-M) bi- 

module a = m,(p)L3(M,) (resp. B = mn(q)L*(My,)) (see Proposition 2.2). Then 

Homy.n (a) & (Np) NpMzy11p and since ad = Tn (p)L2 (My) ®N Tn (p) L2 (My) = 

Tont1(P¥ons1(P))L?(Many1) by 3.11 and 4.6 a), we have Hompy.y(ad) = (Np 

Yont1(P)) N PY2nt1(P) Man+3py2n+1(p). Similarly, Homp.m (8) = (Ng) NgMang 

and since 88 = mn (gq) L? (My) Om mn (q)L% (My) = Ton (@y2n (9) L* (Man) by 4.6 

b), we have Homn.n (88) = (Ngv2n(g))' N qv2r (Q) Man+1q72n(q). Thus, tensoring 

repeatedly with a, & (resp. 8, 8) from the right we get (M_y =N, My=M). 

Proposition 5.3 Consider the reduced subfactors Np C pMy, 1p, p € N'N 

My, a projection, and Ng C qMang, q € N' N My, a projection and let the 

bimodules a and B be as above. Furthermore, define projections po = p, p1 = 

PoY2n+1(P0)s +s Pr = Pr-1Y2rn42r-1(Pr-1), 0 = 4, q1 = q0Y2n(Q0),- 5 Gr = 

Gr—1Y2rn+r—1(@r—1)- Then, 

(i) Homn.n((a@)*) = (Npa—1)’ MN pok—1(Mak(2nt1)+2k-1)P2k—1- 

(i) Homn.n((ad)ka) = (Np2x)’ 0 pak (M(2k+1)(2n+1)+2k) D2 

(iii) Homn-n((BA)F) = (Ngak—1)’ NM gok—1(Makn+2k—1)Q2k—1- 

(iv) Homn.n((BB)F8) = (Nga) 0 gor (M24 1)n+2k) G2k- 

As in Propositions 4.1 and 4.3 one can then determine the principal graphs 

for the reduced subfactors. Let us consider first a reduced subfactor of the form 

Np C pMans1p, p € N' N Mani a minimal projection. By Corollary 5.1.2 (or 

5.1.3) we see that the even and odd vertices of the principal graphs are subsets of 

TCeven (I, TV denote as before the principal graphs of N C M). The even (resp. 

odd) vertices are obtained by decomposing (a@)* (resp. (aa)*a), for all k € N, 

into irreducible N-N bimodules. Let 7 be such an even vertex and é an odd one. 

As in 4.1 and 4.3 one shows that the number of edges between these two vertices is 

obtained as (ya, 6). Note that all computations here involve only N-N bimodules. 

Next, let us consider a reduced subfactor of the form Ng C qMsnq, q € N'N Ma, 

a minimal projection. Again, by Corollary 5.1.2 (or 5.1.3) we see that the vertices 

of the principal graphs of this reduced subfactor are (identified with) subsets of 

Toven and Toga (one graph) (resp. Tf. and I'[4,4 (the other graph)). The even 

(resp. odd) vertices are obtained by decomposing (BB)* (resp. (BB)*B), k € N, 

into irreducible N-N (resp. N-M) bimodules. Let 7 be such an even vertex and 6 

an odd one, then the number of edges is again given by (v3,6) (N-M bimodules). 

We leave it to the reader to formulate the analogue of Proposition 5.1.3 and the 

above discussion for the other principal graph of a reduced subfactor (replacing 

by &, 8 by 3). Furthermore, as mentioned above, observe that the fusion algebra 

can be read off the fusion algebra for N C M for both types of reduced subfactors. 

5.2 Computation of the fusion algebra associated to a subfactor 

The calculation of the fusion algebra for an inclusion of II; factors N C M can 

sometimes be carried out by purely (linear) algebraic methods (see, for instance
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Bisch [1994(b)], Haagerup [1994], Izumi [1991], Ocneanu [1991(b)], Sunder [1992], 
Sunder and Vijayarajan [1993], for other methods see Bisch and Haagerup [1996], 

Goodman and Wenzl [1990], Kawahigashi [1996], Kosaki et al., Wassermann [1995], 
Remark 4.7), since algebraic/combinatorial properties of the fusion matrices (for 
instance the fact that they have only nonnegative integer entries) are sometimes 

enough to calculate the bimodule tensor products. However, as soon as the princi- 

pal graphs of the subfactor have multiple edges or quadruple points, these algebraic 

manipulations may not be enough to determine the fusion algebra completely (see, 

for instance (Bisch [1994(b)], 3 + v/3 example) and additional information must be 
used to determine the fusion algebra (see, for instance (Kawahigashi [1996]) for a 
solution for the 3 + v/3 example). We will give a method that allows us to calcu- 

late in many cases the fusion algebra associated to a subfactor by solving matrix 

equations and we will illustrate this method with an example. 

Let N C€ M be an inclusion of II; factors with finite index and let p = 

~L?*(M)p be as before. Let (I, I") be the principal graphs of N C¢ M and de- 

note by G and G’ the associated matrices (see the discussion after Proposition 

3.2). As shown after Definition 3.12, we can regard R, (resp. Rj), right multipli- 

cation by p (resp. p), as a matrix ZI'oqqa — Zleyven (resp. Zleven — Zlogq). If 

we let By = {a|a € T'even} and Bs = {3|8 € Tyqa} be the canonical bases of 

ZT yen resp. ZI'oqq, then the matrix representation of R, (resp. Rj) with respect 

to these bases is G (resp. GY), i.e. (Ro) us = (a, 8p) = Gap, and (Bs) ga = 

(ap,B) = Gap, @ € Teven, B € Toad (Remark 4.5). Thus R50 = (GGY)" 

(R(pp)» * ZL'even — ZT even) and Ripp)np = (GGY)"G (Rpp)np * Zlodd — Zl even). 

Let N'N Mansi = Ger, Ap" ATH) = Meni (C), and N' 1 My, = 
Dicer APD ABN > po, (C). Denote the irreducible N-N (resp. N-M) bi- 

n a, 

modules indexed by K,, C T'even (resp. L, C I'oaq) (see the discussion after Propo- 

sition 3.2 for the notation) by ax, k € K,, (resp. 3;, | € Ly). Then Proposition 3.1 

and Lemma 3.5 imply 

(a) (op)" =~ Pex, al?" gy as N-N bimodules, n > 0. 

b) (00) "0 = Pics. &*™B; as N-M bimodules, n > 0. 

The right regular representation yields the following matrix equations: 

(1) (aet)™** = 3 eK. a’ R,,, n> 0 (all matrices are “T'even X Leven” 
matrices). 

(2) (GGY"G => ler, a{*™ Ry, n>0 (all matrices are “Teven X Toda” 
matrices). 

The matrices appearing in the equations (1.1) and (1.2) have nonnegative in- 
teger entries and the matrix R,, (corresponding to the distinguished vertex x) is 

the identity matrix. Note also, that if N C M is irreducible, the irreducible N-M 

bimodule indexed by ly € Lg = {lp} is precisely p = xL?*(M)ys, so that the cor- 

reponding matrix Rg, is given by G. Furthermore, if the involution on Zl'¢ven is 

trivial (this happens for instance if the indices of the N-N bimodules a € Teven, 

i.e., the Jones indices of the corresponding reduced subfactors, are distinct, since 

the indices of a and & coincide), then all matrices R,, are symmetric. Further- 

more, the dimension vector @?**V) for the dimensions of the simple summand of
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N' 0 May 41 can be calculated as gn+l) — (GG) (x), n > 0, and the one for 

N' 1 Mayo is obtained as d+?) = Gta?n+1). In many situations, for instance 

when the principal graph has at most triple points, this information is enough to 

solve the matrix equations (1) and (2). In particular, a solution of (1) gives the 

right regular representation of the fusion algebra ZT even. Note that one obtains 

a similar set of matrix equations for the other principal graph I ’ with associated 

matrix G (replacing N' N My by M’N Mj, etc.). If we can solve both sets of matrix 

equations, the full fusion algebra (Definition 3.13) associated to N C M can be 

determined simply by multiplying matrices (i.e., we compute the fusion algebra in 

its right regular representation). The fusion calculations in (Bisch [1994(b)]) were 

carried out using this procedure. Let us also point out that we can read off the prin- 

cipal graphs of the reduced subfactors from the matrices R,, resp. Rg. Namely, 

the matrices associated to these principal graphs are precisely the matrices Ro, 

resp. Rp, restricted to the vertices appearing in the decomposition of (ana), 

(aka) ax, n € N, and similarly for 8; (by Proposition 5.1.3 and the discussion 

afterwards). Let us illustrate this algorithm with the example of a subfactor with 

principal graph Eg. (See Figure 1) 

Bo Ba B2 

Figure 1 The principal graph Eg 

1 00 

We let Ceven = {ao, a1, 2}, ag = *, Codd = {Bo, $1, B=} and G = : 1 ) . 

0 01 

Since the principal graph is finite, we will have to solve only finitely many matrix 

equations. Note that a subfactor N C M with principal graph Fg has depth 4 (the 

depth is the longest distance of a vertex in the principal graph to the distinguished 

vertex x) and Jones index [M : N| = 4cos® f; (Goodman et al. [1989]). Recall that 

there are two non-isomorphic hyperfinite subfactors with this principal graph and 

that both principal graphs are given by Eg. The simple summands of N' NM are 

indexed by fo or Ly = {0}, those of N'NM; by So, Br, B2 or L1 = {0,1,2} and those 

of N' 0 Ma, by Bo, B1, Bz or L = L, = Li, n > 1. Similarly, the simple sumnmand 

of N'N N = C is indexed by ag or K_; = {0}, the simple summands of N' NM, 

are indexed by ag, a1 or Ko = {0,1} and those of N'N Man, are indexed by ag, 

ai, az or K = K, = K; ={0,1,2},n > 1. The dimension vectors @™ for N'NM,, 

are 3) = GG») = (1,1,0), a = Gta® = (2,1,1), a® = Ga? = (2,4,1) and 

a@® = G'@® = (6,4,5). Since N C M has finite depth, the matrix equations (1) 

and (2) reduce to the following set of four equations: 

(i) GG* = Roy + Ra, 

(ii) (GGY)® = 2Raq + 4Ra, + Ray.
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(iii) (GGYHG = 2Rp, + Rg, + Rg,. 

(iv) (GG')’G = 6Ry, + 4Rgs, + 5Rz,. 

1 00 010 

Since Ra, = [ 1 y , we get Ry, = f 2 ) and hence R,, = (Gat)? — 
0 01 010 

0 01 

2R,, —4R,, = & 1 )) Since N C M is irreducible we have Rg, = G as 
1 00 

remarked above. It is then easy to solve the remaining equations and we obtain 
010 0 01 

Rg =|{1 0 1),Rg, = [1 1 1]. This yields the following fusion rules (we 
f 1 ) f 0 ) 

write ag = 1): 

BE 0] 
I US Va 

1 2 1 

For instance we have RZ = § 6 3 = Roy + 2Ra, + Roy = Rag+20; 40m 
1 21 

The decomposition of R2 as a linear combination of R,,’s can be read off the first 

row of the matrix RZ. In the same way we calculate the remaining fusion rules. 

BE 00000000] 
I EY: 

Loe | 8 [BB] 

EZ 
| | BK [BB] 
| Bo | 14a [| on [orto | 

Note that the involution on the N-N part (and M-M part) of the fusion algebra 

is trivial. Since I' = IY = Eg, the above tables actually determine the full fusion 

algebra associated to N C M. Furthermore, as explained in Section 5.1, we can 

read off the principal graphs of the reduced subfactors easily. Before we do this, let 

us briefly work out the local indices. Recall that if N C M is an extremal inclusion 

of II; factors with finite index, principal graph I" and associated standard matrix 

G, and if we denote by § = (si) rex and f= (t) Jez, the normalized trace vectors 

on the higher relative commutants N' N Ma, 4+1 resp. N’ NM», (normalized such 

that s, = 1), then GG'§ = [M : N|§, G's = [M : N|t, Gt = §, G'Gt = [M : NJi.
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If we let € = (5,[M : N]zt), then Arf =[M : N)z€ and £ is the normalized vector 

whose entries are the square roots of local indices, i.e., the indices of the reduced 

subfactors associated to minimal projections in the higher relative commutants 

(see for instance Popa [1994]). Let us now come back to the Eg subfactor discussed 

above. If we let t = [M : N] = [|G||* = 4cos® &, then § = (1, ~ 1,12 — 4t + 

2), © = (1,458, £=341) and = (,t—-1,t2-4t + 2, Vi, 5}, =, where 

the entries of £ are in the order ao, a1, 2, Bo, Bi, Bz. Note that t3 — 5t2 + 

5t — 1 = 0 (¢ is a zero of the characteristic polynomial of GG*). Thus the local 

indices are the squares of the entries of £, which are given by ind = (1,(t — 1)? = 

7.4641016 ...,1,4 cos? =, 2,4 cos? 75). Let us now determine the principal graphs 

of the reduced subfactors with these indices. Choose a minimal projection p; (resp. 

g;) in the i-th (resp. j-th) simple summand of N’NMs (resp. N'N M3) and consider 

the reduced subfactors Np; C p;Msp;, i € K = {0,1,2} (resp. Ng; C g; Mag, 

j € L = {0,1,2}). Note that all other reduced subfactors (associated to minimal 

projections) are isomorphic to one of these. Their indices are given by the vector 

ind above, where the first three entries are the indices of Np; C p;Msp;, 1 =0,1, 2, 

and the last three those of Ng; C ¢;M2q;, 5 =0, 1, 2. The index of Npy C poMapo 

is one, so we are done (this also follows from the fact that R,, is the identity 

matrix). The even vertices of Np; C p1 Msp; are computed by decomposing the 

tensor powers (ra), k € N, into irreducible N-N bimodules and the odd ones 

by doing the same to (rar) ar, k € N (note that &; = a1). We read from the 

first fusion table, that even and odd vertices of this reduced subfactor are therefore 

identified with ag, cy and az. The number of edges between «a; and «; are given 

by (asa, a) (Section 5.1), so that the matrix associated to the principal graph is 

precisely R,, (both principal graphs actually coincide). Thus the principal graph 

is given by 

* 

Figure 2 

The same analysis for Np, C pa Mzp2 shows that the even vertices, which are 

calculated by decomposing (apa) = a?F = ap into irreducibles, are given by ao, 

and similarly, we get that the odd ones are given by just az. The number of edges 

are {oo2, as) = 1, so that we have again an index 1 subfactor, confirming our index 

calculation above. The reduced subfactor Ngo C goM qo is given by the bimodule 

Bo, which is equal to p = ~L?(M) pr, as remarked above, so that we just get another 

copy of N C M. Let us consider the reduced subfactor Ng; C qi M2q1. The even 

vertices are calculated by decomposing (53151) * into irreducibles, which yields (using
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the second and third table) the labels ag and ay. Similarly, decomposing (5 By)" Je 
yields 3; and the edges are calculated as (apf, 51) = 1, {(@151, 81) = 1. Thus the 

principal graph is given by 

ao 51 a1 

Figure 3 

which confirms again our index calculation (we have an index 2 subfactor). Finally, 

we consider Ngz C ¢2Mgq,. Decomposing tensor powers of Jz and 3; into irre- 

ducibles results in the even vertices ag, a; and ap and the odd vertices fp, 3; and 

Bz. Calculating the edges, we get (of, 80) = 0, (82,51) = 0, {of2, 52) = 1, 

(a1Ba, 82) = 1, {1fB2,51) = 1, (a1fa, Bo) = 1, {@2f2, fo) = 1, (202,41) = 0, 
{a2f8s, 82) = 0, from which it follows that the principal graph is given by Figure 1 

(thus the other principal graph is given by the same figure). The fusion algebras of 

the reduced subfactors can be read off the above tables. 
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