
| Global theory of elliptic operators 

By M.F. ATIYAH 

§1. Fredholm operators and K-theory. | 

In recent years the problem of computing the index of an elliptic differ- 

ential operator on a closed manifold (or on a manifold with boundary) has 

been successfully solved [3] by the use of a new branch of algebraic topology 

(K-theory). Further investigation has brought to light many fundamental 

connections between elliptic operators and K-theory and in this lecture I want 

to present a new view-point on these matters. | 

The best place to start is with abstract functional analysis which provides 

the natural meeting ground of algebraic topology and partial differential equa- 

tions. So let H be complex Hilbert space (infinite-dimensional and separable) 

and let us recall that a Fredholm operator T on His a bounded linear operator 

~~ on H such that . | | 

(1.1) T and T* have finite-dimensional null-spaces (or kernels) 

and | | 

(1.2) T has closed range (so that Im (T)=(Ker T*)L). 

The index of T is then defined by | | 

index T'=dim Ker T—dim Ker T*. 

The basic properties of the index of Fredholm operators are 

(13) If Tis Fredholm and A is compact, then T+ A is Fredholm and | 

index (T+ A)=index T; | 

| (1.4) if T is Fredholm, and if S is a bounded operator sufficiently | 

| near in norm to T, then S is also Fredholm and | 

index S=index T'. - 

If we topologise & (the space of Fredholm operators on H) by the norm topo- 

logy, then (1.4) asserts that 

index: ¥F—Z 

| is a continuous map to the integers Z. It is trivial that this map is surjective 

and not hard to show that two operators with the same index are in the same 
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component of #. Thus the index induces a bijection 

1.5) | t(F)—Z 

where 7, denotes the set of path-components. | 

Suppose now that X is a compact space and that 7: X— & is a continuous 

map, so that 7, is a family of Fredholm operators depending continuously on 

the parameter x € X. If dim Ker T, is independent of x the family of vector 

spaces Ker T, forms a vector bundle Ker T over X and similarly for Ker T*. 

We can then define the index of the family by 

EE index T=[Ker T]—[Ker T*] € K(X) 

where K(X) is the abelian group generated by the semi-group of vector bundles 

| over X (up to isomorphism). If Ker T, has a variable dimension we can com- 

pose with a projection (see [1] or [2]) to reduce to the previous case. It 

turns out (see [1]) that T—index T defines a bijection of the set [X, F] (of 

homotopy classes of maps X— &) onto K(X ). The composition of operators 

in & corresponds to the addition in K(X) and adjoints correspond to negatives. 

For X a point we then have | | | 

K(poin) = n(F)=Z. | 

The group K(X) is a contravariant functor of X, depending only on the 

homotopy of X. It has many of the formal properties of cohomology, and 

one can prove [1] that 

| KX) ®zR = H"(X; R) : 
where R is the real field and H® denotes the direct sum of all even-dimen- 

sional cohomology groups. In fact if we replace the algebra of operators on 

H by a von Neumann factor of type Il, and define Fredholm operators as in 

[4], the corresponding K-groups turn out to be" actually isomorphic to He". 

Now, as is well-known, a topological space not only has cohomology groups 

H*(X), it also has homology groups H,(X). These are covariant functors of 

X and are, in a certain sense, dual of cohomology. If we take real coefficients 

and make some reasonable assumptions on X (for example that it is a compact 

polyhedron)”, then H,(X; R) is in fact the dual of the finite-dimensional vector 

space HX; R). For integer coefficients the relation is more complicated but 

one can define H (X; Z) by putting | | 

H(X,Z)=HYYDyX; Z) 

| where DyX is a Spanier-Whitehead N-dual of X: we embed X in some Eucli- 

~ 1) See a forthcoming article by I.M. Singer published by Arbeitsgemeinschaft fiir 

Forschung des Landes Nordrhein-Westfalen, Diisseldorf, 1969. 

2) These assumptions will be made from now on. |
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dean space RY! and take DyX to be a deformation retract of the complement 

RY*1—X. By the same device we can define® a covariant K-functor, namely 

we put | 

| K(X)=K(D,yX). | | 

In the next two sections I shall explain how this covariant—or homology type 

—K-functor is related to elliptic operators. | 

NoTE. Partly for reasons of symmetry and partly to help to distinguish 

the two different K-functors we shall now write K° instead of K. Thus K° 

is contravariant, K, is covariant. oo | | 

§ 2. Elliptic operators. | oo | | 

I shall now recall a few basic facts concerning linear elliptic differential 

operators on closed manifolds. If P is such an operator (acting on scalar 

functions, vector-valued functions or more generally on sections of a vector 

bundle) it has an order m and if we introduce the Sobolev spaces H® (func- 

tions f all of whose partial derivatives up to order s are in L?) we can regard 

P as a bounded operator P: H s_ Hs-™ The ellipticity of P implies ‘that it 

has a parametrix (inverse modulo lower order) and hence that it is a Fred- 

holm operator. It therefore has an index which (because of the regularity of 

solutions of elliptic equations) is independent of s. The index theorem of [3] 

shows how the index of P can be calculated in terms of the geometrical data 

provided by P and the underlying manifold X. | 

Of course for a differential operator (other than the trivial case of a multi- 

plication) the order m is a positive integer. However using the larger class 

of pseudo-differential operators [3] one can reduce to the case of order 0, ob- 

- taining what used to be called singular integral operators. 

An elliptic operator (of order zero) therefore gives rise to a Fredholm 

operator on Hilbert space. There is however more structure in the elliptic 

operator which has been ignored on passing to the Hilbert space. To reinstate 

this further structure we must make use of the fact that our Hilbert spaces 

are not just abstract vector spaces but are in fact function spaces. Thus 

they not only admit multiplication by complex scalars but also by complex 

~ scalar-valued functions on X. A differential operator does not of course com- 

mute with multiplication by functions, but it does commute modulo a lower 

~~. order operator. | 

se Thus if P is a differential operator of order m ‘with C= coefficients and | 

if f is a C~ function, the commutator Pf—fP is a differential operator of 

3) There are also other (equivalent) definitions, see [7]. |
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order m—1 with C= coefficients. For pseudo-differential operators P of order 

zero one even has the following result: for any continuous function f, the 

commutator Pf—fP is a compact operator. 
We have now arrived at a property of pseudo-differential eperators which 

can be abstracted out and applied to general topological spaces. Thus let X 

be any compact Hausdorff space, C(X) the ring of continuous complex-valued 

functions on X, and let H,, H, be two Hilbert spaces which are continuous 

C(X)-modules (that is, we have uniformly continuous *-algebra homomorphisms 
of C(X) into the algebras of bounded operators on H, and H,). A bounded 

linear operator | 

oo P:H —H, 

will be called an operator on X if | 

(2.1) for any fe C(X) the commutator Pf—fP is a compact operator. 

P will be called an elliptic operator on X if, in addition, it is a Fredholm 

operator. There is then another operator Q on X such that QP—I and PQ—I 

are both compact (where I denotes the identity operator). 

The set of all elliptic operators on X will be denoted by Ell (X). This 

definition abstracts out the interaction between elliptic operators and multi- 

plication by functions. It does not attempt to give any abstract analogue of 

the local representation (or symbol) of a differential operator. We shall return 
to this question later. a. i 

§3. From elliptic operators to K,. | | | | 

In this section I shall show how to define a map | 

| | - Ell(X)— K(X), 

that is we shall associate to each elliptic operator on X (in the sense of §2) 

an element of K(X). Moreover every element of K(X) can be shown to 

arise in this way so that we can think of elliptic operators on X as repre- 

sentative “cycles” for the “homology ” group K,(X). This will be explained 
in §4. | | | 

When X is a point, an elliptic operator on X is just an abstract Fredholm 

operator and hence defines an element of K°point). But rather formally 

one has | Ca | 

K, (point) = K°(point) | 

and so we get our map Ell (point)— K,(point). In fact, since K°point) = Z, 

given by the index, our map just assigns to each operator its index. 

Consider next the dependence of Ell (X) on X. If f: X—Y is a continuous
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map of compact spaces, we get a homomorphism of rings f*: C(Y)— C(X). 
If Hy, H, are Hilbert space modules for C(X) they can then be viewed, using 

f*, as C(Y)-modules. In this way an elliptic operator on P: H,— H, on X can 

be viewed as an elliptic operator on Y, thus f induces oo 

oo fx: EN(X)—ENl(Y), | oo | 

so that elliptic operators depend covariantly on the underlying space. In 

particular, if Y is a point, 

oo | ~~ Ell(X)— Ell (point) — K (point) = Z Co 

is given by P— index P. oo 
The main construction we need is one which defines a “ cap-product” be- 

tween a “cycle” and a “cocycle”. More precisely, given P< Ell (X) and a 

vector bundle VV on X we shall define a new element Pn VeEll(X). For 

fixed P and variable V the map V—index (PV) will then extend by lin- 

earity to a homomorphism | oo 

K(X)—Z. | oo | | | 

In this way (varying P) we will obtain a map I 

oo Ell (X)— Hom, (K%X), Z). | EE 

This is nearly what we want, because one has a homomorphism | oo 

oo K\(X)— Hom (KX), Z) . 

which becomes an isomorphism after tensoring with the rationals. Thus our 

construction will certainly give a map | Co 

EX) — K(X) ®2Q oo 

To refine this, and remove @Q, a further argument is needed and we shall 

return to this later. For the moment we concentrate on defining our “ cap- 

product ”. | | | _ 

Given a vector bundle VV on X one can always find (see [1]) a complemen- 

tary bundle, that is a vector bundle W on X so that V@ W is isomorphic to 

a trivial bundle X X C¥. This is the same as saying that there is a con- 

tinuous map of X into the projections in C¥ oo | 

T: X—Proj(C¥) | oo 

~ so that V is isomorphic to the bundle of kernels of T. Given such a T and 

an elliptic operator P: H,— H, on X we ‘shall define a new elliptic operator Q 

on X. First we define projection operators T,, T, on H{', HY respectively® 

as follows. Let ¢, +, ey be the standard basis of C7”, then for each xe X, 

4) HY=H,®C¥ fori=1,2. oo .
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T(x) is given by oo | | | N | 

T(x)e; =X TH(x)e; oo 

where the T(x) are continuous functions of x. Since H, is a C(X)-module 

we can multiply any u € H, by the function T¥ to get T%ue H,, We can 

therefore define a bounded operator 7, on HY by 

| T(u®e)=STu®e. 

T, is defined similarly. Note that T, and T, are C(X)-module homomorphisms 

and so the decompositions | 

| HY =TH¥DPA-T)H¥ DE | 

| HY =T,HY®(1—-THHY 

commute with the action of C(X). Moreover, since [P, f] is compact for any 

fe CX), we deduce that T,P—PT, is compact®. We now consider the opera- 

tor Q=T,PT, as an operator T,HY —T,HY. For any fe C(X) 

| [Q, f1="T.LP, FIT, : oo 
and so is compact. If P’ is a parametrix for P (an inverse modulo compact 

operators) then Q’= T.P'T, is a parametrix for Q: 

QQ=T.P'T,T,PT,= TP PT, +T P(T,B—-BT)T, 

_ | = T, modulo compact operators. | 

| QQ’ = T, similarly. | oo | | 

| Thus Q Ell (X) as required. 

The operator ( is the cap-product we set out to define. Since it depends 

on the choice of the family T of projections and not just on the bundle V (of 

kernels of T) it is better to write Q =P T, rather than PV. However 

the various choices of T (and the associated integer N) turn out to be equi- 

valent in an appropriate sense. In particular index (PNT) depends on V and 

not on T and so T—index (PNT) still defines (for fixed P) a map oo 

3.1) | K(X)—~Z. | | 

REMARK. The Hilbert spaces T,HY and T,HY depend only on V and not 
on T. In fact, the space of continuous sections of V is a C(X )-module M(V), 

| and | | i oo | i ATL 

| TiH{ =H; Qeay M(V), 1=1,2. | | ) 

If P actually commuted with C(X'), then Q would simply be PX I, where I is 

5) We denote by P: HY — HY the natural extension PRI of P.
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~ the identity on M(V). Since P does not actually commute with C(X), @ can- | 

~ not be defined so simply, hence the need to introduce the complementary 

bundle W and the projections T. | oo | 

We next generalise this cap-product construction as follows. In addition 

to our space X take another compact space Y (which will play the role of a 

parameter space). Given P< Ell (X) and a vector bundle V on XXY (with a 

defining map T: XXY —ProjC?) we perform the above construction over each 

point ye Y. We get a continuous family of elliptic operators @(y) and hence 

(ignoring the C(X)-structures) a continuous family of abstract Fredholm opera- 

tors,” in other words we get an element of K%Y). For fixed P and varying 

V we get in this way a homomorphism | 

3.2) oo KY XXY)— KY) 

which generalises (3.1). | | | | 

Although the homomorphism (3.1) does not determine an element of K(X) 

(only an element of K(X)®,Q) the homomorphisms (3.2)—for general Y—do 

determine an element of K(X). First we remark that general cohomological 

theory shows that one always has a pairing 

3.3) K(X)QK (XX Y)—K*(Y) | 

called the “slant product”. Moreover if Y=DX is a dual of X, as in §1, 

there is a fundamental element” ue K%(Xx DX), and multiplication by gz in 

(3.3) induces the duality isomorphism | Ny BN | | 

| K(X)—-K'DX). | 
A general reference for these remarks is [7]. Hence applying the homo- 

morphism (3.2) to the element pe K%XXDX) we obtain finally the required 

element associated to P in K%(DX)=K,(X). Thus we have defined a natural 

map B | 

G4) 2 Ell (X)— K(X) BR 

| as required. Since (3.4) is obtained by assigning to each P< Ell (X) the index 

of an associated family of Fredholm operators, we shall call the map (3.4) the 

K-index. Thus for Pe Ell(X), we have oo 

6) Actually the Hilbert spaces on which these operators act also vary with y but 

this is not a serious point: using Kuiper’s Theorem [6] we can make the Hilbert spaces 

constant. | | | 
7) The element pz may be defined as follows. Recalling that D,yX is a deforma- 

tion retract of R2N+1—X, we define f: Xx DX—S2¥ by taking f(x,y) to be point 

where the directed line xy meets a very large sphere S2¥NC R2N+1. Then p= f*(a) 

where a = K9(S2¥) is the basic Bott element. |
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a. oo ~ K-index Pe K(X). oo 

~ In the next section we shall discuss how much is known about the K- 

index, and in particular, what its relation is to the index theorems for opera- 

tors on differential manifolds. 

~ §4. Operators on manifolds. | 

: For a manifold, ordinary homology and cohomology are related by Poin- 

caré duality. Corresponding relations exist in K-theory. For our present 

purposes these are best put in the following form. | | 

~~ Let TX, NX denote respectively the tangent bundle and normal bundle® 

of a compact differentiable manifold X. Let K%TX), K°(NX) denote the K- 

groups with compact support (obtained by forming one-point compactifications 

as explained in [3]). Then there is a natural isomorphism 

(4.1)  @: K(TX)— KNX). 

On the other hand, as a simple consequence of the definition given in §1 of 

K,, we have a natural isomorphism | | 

(4.2) | | ¢: K(X)— KNX). oo 

~~ Now let Diff-Ell (X) denote the class of pseudo-differential operators of 

order zero acting on C= vector bundles as in [3]. Our motivation for intro- 

ducing Ell (X) in §2 was precisely because there is an inclusion | 

| oo ~ Diff-Ell(X)C Ell (X). 
For Pe Diff-Ell (X) one has a symbol o(P), given from the local expression 

for P, and this symbol defines an element [o(P)]  K%TX) called the symbol 

- class of P (see [3, §6)). | | 

We then have the following main theorem. | 

THEOREM (4.3). If P is an elliptic pseudo-differential operator of order 

zero on a compact C= manifold, we have | | 

¢(K-index (P))= ¢[a(P)]. | 

In other words if we use the isomorphisms (4.1) and (4.2) to identify K(X) 

and K°TX), the K-index is “equal” to the symbol class. The significance 

of this is of course that the symbol class is defined by local data while the K- 

index is defined globally. 

Theorem (4.3) gives an equality in the group KNX), or equivalently in 

K(X). If we apply the homomorphism K(X)— K,(point)= Z, (4.3) gives an 

| 8) Relative to some C> embedding of X in R”, with n= dim X mod 2.
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| equality between integers which is precisely the formula for index P given in 

[3]. Theorem (4.3) is thus a generalisation of the main theorem of [3] and 

it is proved by essentially the same methods. In fact, it is really a con- 

sequence of the index theorem for families of elliptic operators.” 
As a consequence of (4.3) it follows that, for a manifold X, | | 

| CElL(X)— K(X) 

is surjective (since even Diff-Ell (X)— K(X) is surjective). On the other hand, 

a result of Conner-Floyd [5] implies that, for any space X and any element 

& e K(X), there exists a C=-manifold M, an element » € K,(M) and a con- 

tinuous map f: M— X so that £=f.(»). Since we have commutative diagram 

Co EM) —ElI(X) | | 

| KM) — K(X), 
it then follows that oo 

(4.4) Ell (X)— K(X) 1s surjective. | | 

BE This result justifies us in thinking of elements of Ell (X) as representative 

cycles for the “homology ” group K(X). | | | 

A natural question which arises is whether it is possible to describe ex- 

plicitly the equivalence relations which must be imposed on our “cycles” to 

| produce the “homology”. There are some obviously necessary relations 

including homotopy, but whether these are also sufficient seems to be a dif- 

ficult question. - 

What I have outlined here is really just the beginning of an attempt at 

developing a significant theory of operators on spaces other than C*-manifolds. 

I hope that more can be done in particular on spaces such as piece-wise linear 

"manifolds or complex analytic spaces where there is some further structure. 

The main problem would then be to find some substitute for the symbol in 

terms of local data. | | oo oo 
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