\def\R{{\bf R}} \def\YM{{\rm YM}} \def\GL{{\rm GL}} \def\Z{{\bf Z}} \def\U{{\rm U}} \def\C{{\bf C}} Konrad Waldorf. Classical Gauge Theory and Matter Fields. References: G.~Naber: Topology, Geometry, and Gauge Fields. D.~Bleecker: Gauge Theory and Variational Principles. Notation: $M$ is a spacetime (oriented Lorentz manifold). Definition. A Yang-Mills theory over~$M$ consists of a Lie group~$G$ (gauge group), Ad-invariant bilinear form~$\kappa\colon g\otimes g\to\R$ on the Lie algebra~$g$ of~$G$, principal $G$-bundle~$P$ over~$M$, fields are connections $\omega\in\Omega^1(P,g)$, action functional is $S_\YM(\omega)=2^{-1}\int_M\|F_\omega\|^2_\kappa$. Yang-Mills equation: $D^\omega*F_\omega=0$ and $D^\omega F_\omega=0$. Definition: A gauge transformation is a bundle automorphism $g\colon P\to P$. Remark: We can identify gauge transformations with $G$-equivariant map $\tilde g\colon P\to G$. We have $r_{\tilde g}=g$. Equivariance means $\tilde g(p\gamma)=\gamma^{-1}\tilde g(p)\gamma$. Remark: If $P$ is a principal $G$-bundle, $\rho\colon G\to\GL(V)$, then we have a bijection between $\Omega^k_\rho(P,V)$ and $\Omega^k(M,P\times_\rho V)$. We have $\psi\in\Omega^k_\rho(P,V)$ if $r_\gamma^*\psi=\rho(\gamma^{-1})(\psi)$. Theorem: $S_\YM$ is gauge-invariant: $S_\YM(\omega)=S_\YM(g^*\omega)$. Definition: A classical electromagnetic field theory is a Yang-Mills theory with $G=U(1)$. If we remove a line from 3-dimensional space, then we observe Aharonov-Bohm effect. If we remove a point, then we observe magnetic monopoles. Definition: If $G$ is a gauge group, then a matter type for~$G$ is a quadruple $T=(V,h,\rho,f)$ such that $V$ is a finite-dimensional real vector space (internal state space), $h\colon V\otimes V\to\R$ is a real bilinear form on~$V$, $\rho\colon G\to\GL(V)$ is an isometric representation of~$G$: $h(\rho(g)v,\rho(g)w)=h(v,w)$ (transformation behavior), $f\colon V\to\R$ is a smooth $\rho$-invariant function: $f(\rho(g)v)=f(v)$ (self-interaction potential). Definition: Let $(P,G)$ be a Yang-Mills theory over~$M$, $T$ a matter type for~$G$. A field for~$P$ of type~$T$ is a section $\phi\colon M\to P\times_\rho V$. The action functional is $S_T(\omega,\phi)=2^{-1}\int_M\|D^\omega\phi\|^2_h+*(f(\phi))$. Remark: We have two options: (a)~Keep $\omega$ fixed, consider $S_\omega(\phi)=S_T(\omega,\phi)$. (b)~Consider $S(\omega,\phi)=S_\YM(\omega)+S_T(\omega,\phi)$. Notice that $(\omega,\phi)$ extremizes~$S$ iff (1)~$\phi$ extremizes $S_\omega$ (Euler-Lagrange); (2)~$\delta^\omega F_\omega=J^\omega(\phi)$ (inhomegeneous field equation). Here $\delta^\omega=*D^\omega*$. Example~1: $G=\{e\}$, $P=M$. A scalar field is a field of matter type $(\R,h,{\rm id},f)$ with $f(x)=-m^2x^2$. $S(\phi)=\int_M\|d\phi\|+m^2\phi^2$. Euler-Lagrange equation in this case is Klein-Gordon equation $(\Delta^2+m^2)\phi=0$. Example~2: $\pi^-$-meson: charge $n\in\Z$, no spin. Yang-Mills theory $(P,\U(1))$. Matter type $(\C,h,\rho_n,f)$. Here $\rho_n$ is the $n$th power represetation of~$\U(1)$ on~$\C$, $f(z)=-m^2|z|^2$ and $h(z_1,z_2)$ is left as an exercise. Euler-Lagrange equation is $(\Delta^\omega+m^2)\phi=0$. Here $\Delta^\omega=\delta^\omega D^\omega$. \bye