\def\R{{\bf R}} \def\curl{\mathop{\rm curl}} Daniel Berwick Evans. Maxwell's equations and classical electromagentism. Fields: $E$, $B$: time dependent vector fields on~$\R^3$. $\div E=\rho/\epsilon_0$, $\curl E=-\partial B/\partial t$, $\div B=0$, $c^2\curl B=j/\epsilon_0+\partial E/\partial t$. $\rho$ is ``charge density'' (coulombs per cubic meter), $j$ is ``current'' (coulombs per second per square meter). Gau\ss' law is an application of Stokes' theorem: $q/\epsilon_0=\int_U\rho/\epsilon_0=\int_U\div E=\int_{\partial U}E\cdot n$. Ampere's law: $-\int_D\partial B/\partial t=-d\Phi_B/dt=\int_D\curl E=\int_{\partial D}E\cdot ds$. No magenetic charges (monopoles): $\curl B=0$. If $\rho=j=0$ then we get a symmetry between $E$~and~$B$. Charge conservation: $\div j/\epsilon_0=-\div(\partial E/\partial t)=-(\partial/\partial t)\div E =-(\partial/\partial t)\rho/\epsilon_0$, hence $\div j=-\partial\rho/\partial t$. Static examples: $\partial B/\partial t=\partial E/\partial t=0$. Point charge: If $\rho=\delta(x)$ and $j=0$, then $E=\pm(4\pi\epsilon_0)^{-1}r/|r|^3$ and $B=0$. Wave solutions: $\rho=j=0$. $E=(0,E_y,E_z)$, $B=(0,B_y,B_z)$. $E_y=f(x-ct)+g(x+ct)$, $E_z=F(x-ct)+G(x+ct)$, $cB_z=f(x-ct)-g(x+ct)$, $cB_y=-F(x-ct)+G(x+ct)$. Wave with speed of propogation~$c$. Solenoid solution: $E=0$ outside some cylinder, $\rho=0$ everywhere, $B$ is pointing upwards, $j$ goes around the cylinder. $\int B\cdot ds=|B|h=j/(\epsilon_0c^2)=jnh/(\epsilon_0c^2)$. $|B|=jn/(\epsilon_0c^2)$. $n$ is the number of turns per length. \bye