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Our initial goal is understand the proof of the following theorem.

Theorem 0.1. Suppose M is a smooth manifold, a complex manifold, or a smooth algebraic variety. Then
the smooth singular infinitesimal cochain complex of M is isomorphic to the de Rham complex of M .

In addition, we want to prove this theorem in a uniform manner for algebraic varieties, smooth manifolds,
and complex analytic spaces, without repeating any arguments.

The abstract machinery we use to achieve this starts with a category of cartesian spaces (Definition 1.1)
such as Am with polynomial maps, Rm with smooth maps, or Cm with holomorphic maps. Then we
construct a category of algebras (Definition 2.5) such as commutative rings, C∞-rings, or entire functional
calculus complex algebras.

1 Cartesian spaces

Definition 1.1. A category of cartesian spaces Cart is a category with finite products that coincides with
one of the three categories defined below. More generally, we allow Cart to be an arbitrary Fermat theory
(Definition 1.14). Used in 0.1*, 1.1, 1.1*, 1.3, 1.6, 1.6*, 1.7, 1.9, 1.10, 1.11*, 1.13, 1.14, 1.15, 1.15*, 1.16, 2.0*, 2.1, 2.2, 2.3, 2.3*, 2.4, 2.4*, 2.5, 2.6,

2.7, 2.7*, 2.9, 2.9*, 3.1*, 3.2, 3.2*, 3.3, 3.4*, 3.5, 3.6, 3.8*, 3.9, 3.10, 4.1, 4.1*, 6.0*, 6.2.

Typically, the commutative monoid of isomorphism classes of objects in Cart equipped with cartesian
product will be isomorphic to N = {0, 1, 2, 3, . . .} with the operation of addition. In this case, we refer to the
number corresponding to X ∈ Cart as the dimension of X. (This is not always true, e.g., for supercartesian
spaces we get the monoid N×N.)

1.2. Algebraic geometry

Definition 1.3. Fix a commutative ring R. (Important examples are R = Z and R = R.) The category
CartR has natural numbers as objects, which are denoted by Am

R . Morphisms Am
R → An

R are polynomial
maps, which can be concretely described as n-tuples (f1, . . . , fn) of polynomials fi(x1, . . . , xm) in m variables
with coefficients in R. Polynomial maps are composed via substitution: the composition of

(g1, . . . , gn):A
m
R → An

R, (f1, . . . , fm):Al
R → Am

R

is
(g1, . . . , gn) ◦ (f1, . . . , fm) = (g1(f1, . . . , fm), . . . , gn(f1, . . . , fm)).

Used in 3.1*, 3.3.

Remark 1.4. The example of a polynomial xp−x with coefficients in R = Z/p, where p is a prime number,
demonstrates the importance of defining polynomials not as a functions on Rm, but as formal expressions,
since the polynomial xp − x vanishes on all elements of Z/p.

1.5. Differential geometry

Definition 1.6. The category CartC∞ has natural numbers as objects, which are denoted by Rm. Morphisms
are smooth (i.e., infinitely differentiable) maps. Morphisms are composed like functions. Used in 3.4*, 3.5.

The category CartC∞ admits all finite products: Rm ×Rn ∼= Rm+n and R0 is the terminal object.

Definition 1.7. We have a canonical product-preserving functor

CartR → CartC∞

that interprets a polynomial map as a smooth function. Used in 3.6.
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1.8. Complex geometry

Definition 1.9. The category Cartω has natural numbers as objects, which are denoted by Cm. Morphisms
Cm → Cn are entire holomorphic maps, i.e., n-tuples of formal power series in n variables with complex
coefficients that are absolutely convergent on the entire Cm. Composition is pointwise. Used in 3.8*, 3.9.

Definition 1.10. We have a canonical product-preserving functor

CartC → Cartω

that interprets a polynomial map as an entire holomorphic function. Used in 3.10.

1.11. The abstract setting: Fermat theories

Fermat theories axiomatize Hadamard’s lemma in the setting of arbitrary algebraic theories that contain
the theory of commutative rings CartZ.

Definition 1.12. (Adámek–Rosický–Vitale [2011, Definition 1.1].) An algebraic theory is a small category
with finite products. A morphism of algebraic theories is a functor that preserves finite products. Used in 1.11*,

1.13, 1.14, 1.16.

Example 1.13. The categories CartR, CartC∞ , Cartω are algebraic theories. The functors CartR → CartC∞ ,
CartC → Cartω are morphisms of algebraic theories.

Definition 1.14. (Dubuc–Kock [1984, §1].) A Fermat theory is a morphism of algebraic theories

ι:CartZ → Cart

such that for any f :L × S → T there is g:L × L × S → T for which the two morphisms L × L × S → T
specified symbolically as

f(l1, s)− f(l2, s) = (l1 − l2) · g(l1, l2, s)

coincide. Here L = ι(A1
Z), −:L×L→ L and ·:L×L→ L are the ι-images of polynomials l1 + l2 and l1 · l2,

which denote morphisms A2
Z → A1

Z in CartZ. Used in 1.1, 1.15, 1.16, 5.3*.

Proposition 1.15. The categories CartR, CartC∞ , Cartω (with obvious maps from CartZ) are Fermat theo-
ries.

Proof. Given a morphism f :A1
R ×Am → A1

R in CartR, we set g(l1, l2, s) = (f(l1, s)− f(l2, s))/(l1 − l2) as a
polynomial, where the quotient is a polynomial because the numerator is a sum of multiples of lk1 − lk2 .

Given a morphism f :R×Rm → R in CartC∞ , we set g(l1, l2, s) = (f(l1, s)−f(l2, s))/(l1− l2) for l1 6= l2,
whereas for l1 = l2 we set g(l1, l2, s) = ∂lf(l, s), the partial derivative with respect to l.

Given a morphism f :C×Cm → C in Cartω, we set g(l1, l2, s) = (f(l1, s)− f(l2, s))/(l1− l2) as a formal
power series. The power series for g is absolutely convergent, so defines a morphism in Cartω.

Example 1.16. We give some interesting examples of algebraic theories that are not Fermat theories:
• Objects are sets; morphisms A → B are continuous maps SA → SB of topological spaces, where the
Sierpiński space S = {0, 1} has open sets {∅, {1}, {0, 1}}. This is not a Fermat theory because it does
not admit a morphism of algebraic theories from CartZ. This example is interesting because it illustrates
that arities can be infinite, which is essential in this case: restricting to sets of certain cardinality will
not produce the same category of product-preserving functors.
•

2



2 From cartesian spaces to spaces

We would like to construct a fully faithful embedding

Cart→ Space,

where Space is a category, whose objects can be interpreted as spaces that are more general than cartesian
spaces.

For example:
• For CartR, we expect Space to contain affine schemes over R (or simply affine schemes if R = Z) as a
full subcategory;
• For CartC∞ , we expect Space to contain smooth manifolds as a full subcategory;
• For Cartω, we expect Space to contain Stein spaces as a full subcategory.

For a moment, we assume that such an embedding exists and explore its properties.
Our strategy is explore a space X by studying functions on X. The latter can be defined formally as

morphisms X → ιA1 in the category Space, where A1 ∈ Cart denotes the object of Cart of dimension 1,
which we interpret as the number line. Likewise, morphisms X → ιAm encode m-tuples of functions on X.
Observe that morphisms X → ιAm+n are in a canonical bijective correspondence with pairs consisting of
morphisms X → ιAm and X → ιAn. We encode this observation using the notion of a product-preserving
functor.

Definition 2.1. Denote by Fun×(Cart, Set) the category whose objects are product-presrving functors
F:Cart → Set (meaning the canonical morphisms F(U × V ) → F(U) × F(V ) and F(1) → 1 are isomor-
phisms for all U, V ∈ Cart) and morphisms are natural transformations. Used in 2.2, 2.3, 2.3*, 2.4, 2.5, 2.6, 2.7, 2.7*, 3.2,

3.6, 3.10, 4.1*, 6.1, 6.3, 6.4, 6.5, 6.6.

We are now ready to formalize the above construction that explores a space X by studying maps of the
form X→ ιAm.

Definition 2.2. Given a fully faithful embedding

ι:Cart→ Space

that preserves finite products, we define a functor

Y: Space→ Fun×(Cart, Set)op

by sending X ∈ Space to the product-preserving functor

Y(X):Cart→ Set, U 7→ homSpace(X, ιU)

and a morphism f :X1 → X2 in Space to the natural transformation

Y(X1)← Y(X2), U 7→ hom(f, ιU), hom(f, ιU):hom(X2, ιU)→ hom(X1, ιU), g 7→ g ◦ f.

Used in 2.2, 2.2*, 2.3, 2.3*, 2.7, 2.7*, 2.9, 5.7, 6.0*, 6.3, 6.3*, 6.4, 6.4*.

Here hom(A,B) = homC(A,B) = C(A,B) denotes the set of morphisms from A to B in a category C.
The functor Y(X) is indeed product-preserving, as long as the functor ι is: hom(X, ι(U ×V )) ∼= hom(X, ιU ×
ιV ) ∼= hom(X, ιU)× hom(X, ιV ).

Proposition 2.3. Given a fully faithful embedding of the form

ι:Cart→ Space,

the restriction of the functor
Y: Space→ Fun×(Cart, Set)op
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along the fully faithful embedding ι produces a fully faithful functor

YCart:Cart→ Fun×(Cart, Set)op

that does not depend on ι and can be described as follows:

Y(X)(U) = homCart(X, U), Y(f)(U) = homCart(f, U).

Used in 2.4.

Proof. Everything except for the fully faithfulness of the restriction of Y follows immediately from the
definition of a fully faithful functor: for any U, V ∈ Cart, the canonical map of sets

homCart(U, V )→ homSpace(ιU, ιV )

is an isomorphism. The restriction of Y is fully faithful by the Yoneda lemma:

homFun×(Cart,Set)op(Y(X1), Y(X2)) = homFun×(Cart,Set)(Y(X2), Y(X1))

= homFun(Cart,Set)(Y(X2), Y(X1))

∼= Y(X2)(X1)

= homCart(X1,X2).

Here the three equalities hold by definition and the isomorphism holds by the Yoneda lemma.

We now turn tables and make an ansatz that Y should be a fully faithful functor even without the
restriction to Cart. The other ansatz that we make here is that Y is essentially surjective, i.e., any product-
preserving functor corresponds to some space. This is less obvious, but will become more clear as we compute
various examples. Combined together, we see that Y should be an equivalence of categories.

Definition 2.4. Given a category of cartesian spaces Cart, the corresponding category of spaces Space is
defined as

Fun×(Cart, Set)op.

The canonical embedding
ι:Cart→ Space

is given by the functor YCart from Proposition 2.3. Used in 2.0*, 2.2, 2.3, 2.3*, 2.4, 2.5, 2.7, 2.7*, 2.8, 2.8*, 2.9, 2.9*, 3.3, 4.1, 5.0*,

5.1*, 5.2, 5.9, 5.11, 5.12*, 5.14, 5.14*, 5.15*, 5.18, 6.0*, 6.1, 6.2, 6.2*, 6.3, 6.4, 6.4*, 6.5, 6.6.

We also introduce a concise notation for the category of product-preserving functors Cart → Set. The
choice of terminology is motivated by the above considerations and the next section, in which specific choices
of Cart yields certain categories of algebras in the usual sense.

Definition 2.5. Given a category of cartesian spaces Cart, the corresponding category of algebras Alg is
defined as

Fun×(Cart, Set),

i.e.,
Alg = Spaceop, Space = Algop.

Used in 0.1*, 2.5, 2.6, 2.7, 2.7*, 2.8, 2.8*, 2.9, 3.2, 3.5, 3.9, 4.1, 5.1*, 5.2, 5.3, 5.9, 5.9*, 5.11, 5.12*, 5.13, 5.14, 5.15, 5.18*.

Remark 2.6. Any category of cartesian spaces Cart is equipped with a product-preserving functor CartZ →
Cart. Restricting along this functor induces a functor

Alg = Fun×(Cart, Set)→ Fun×(CartZ, Set) ' CRing.

(The rightmost equivalence of categories will be established below.) Thus, any category of algebras admits
a forgetful functor to the category of commutative rings, justifying the terminology.

To confirm that we have indeed achieved our goal of making the functor Y an equivalence of categories,
we establish the following result.
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Proposition 2.7. Given ι:Cart→ Space as constructed in Definition 2.4, the functor

Y: Space→ Fun×(Cart, Set)op = Algop

as constructed in Definition 2.2 is an equivalence of categories that is isomorphic to the identity functor
id: Space→ Algop = Space. Used in 2.8*, 6.6*.

Proof. The statement is nontrivial: even though we defined Space = Algop, there is no reason why some spe-
cific functor Y: Space→ Algop should be isomorphic to the identity functor. However, in our case this follows
from the Yoneda lemma again: for any F ∈ Space = Fun×(Cart, Set)op, the object Y(F) ∈ Fun×(Cart, Set)op

is naturally isomorphic to F because for any U ∈ Cart we have

Y(F)(U) = homSpace(F, U) = homFun×(Cart,Set)op(F, U) = homFun×(Cart,Set)(U, F) ∼= F(U).

We now spell out more explicitly how to pass between a space and its algebra of functions.

Definition 2.8. The adjoint equivalence of categories

Spec:Algop → Space, O: Space→ Algop

is given by identity functors. Used in 2.8*, 2.9, 2.9*, 5.1*.

Thus, given an algebra A ∈ Algop, the corresponding space is A = Spec(A) ∈ Space. Given a space
X ∈ Space, the corresponding algebra of functions is A = O(X) ∈ Alg. This choice of fonts will be used below
to distinguish between spaces and algebras.

We remark that Proposition 2.7 proves that O is naturally isomorphic to Y. The new notation O is
justified by the different perspective on this functor: we now interpret O(X) as the algebra of functions on
the space X. Of course, in retrospect, this is exactly what Y does: Y(X)(A1) is precisely the set of maps
X→ A1, i.e., the underlying set of O(X).

We formalize this observation in the following result.

Proposition 2.9. The adjoint equivalence O a Spec of Definition 2.8 is isomorphic to the following adjoint
equivalence. The right adjoint functor is

Spec:Algop → Space, A 7→ (U 7→ homAlgop(A, F(U))),

where F(U) denotes the algebra of functions on a cartesian space U :

F(U) ∈ Algop, F(U):Cart→ Set, F(U)(V ) = Cart(U, V ).

The left adjoint functor is

O: Space→ Algop, A 7→ (U 7→ homSpace(A,G(U))),

where G(U) denotes U ∈ Cart interpreted as an object of Space:

G(U) ∈ Space, G(U):Cart→ Set, G(U)(V ) = Cart(U, V ).

Proof. Both F(U):Cart→ Set and G(U):Cart→ Set are the corepresentable functors of U . The isomorphism
of adjunctions now follows from the Yoneda lemma.

In our case, spaces are encoded by their algebra of functions, so the above definition of Spec and O may
seem quite meaningless. Below, we will see how one can replace Space with an equivalent category, so that
the above correspondence becomes nontrivial. For instance, in the case of Cartω we can replace Space with
the equivalent category of pro-objects in the category of globally finitely presented Stein spaces.
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3 Examples of spaces

3.1. Algebraic geometry

Recall the category CartR from Definition 1.3.

Proposition 3.2. Given a commutative ring R, the category Alg = Fun×(CartR, Set) is equivalent to the
category CAlgR of commutative algebras over R. Used in 3.3, 3.6, 3.10.

Proof. We describe mutually inverse functors going in both directions. Given a commutative algebra A
over R, we construct a product-preserving functor

F :CartR → Set

by sending a cartesian space Am
R ∈ CartR to the set U(A)m, where U(A) denotes the underlying set of the

algebra A. We send a morphism Am
R → An

R given by an n-tuple (f1, . . . , fn) of polynomials fi(x1, . . . , xm)
in m variables with coefficients in R to the map of sets

U(A)m → U(A)n, (a1, . . . , am) 7→ (f1(a1, . . . , am), . . . , fn(a1, . . . , am)),

where in the right side we evaluate the polynomials fi on elements of A using the R-algebra structure of A.
Given a product-preserving functor F :CartR → Set, we construct an R-algebra A as follows. The

underlying set S = U(A) of A is the set F(A1). The various operations on A of arity 0 (i.e., constants), 1,
and 2 are given by evaluating F on the indicated morphisms in CartR:

arity operation morphism polynomial
0 0:S0 → S A0 → A1 0
0 1:S0 → S A0 → A1 1
1 −:S1 → S A1 → A1 −x1

2 +:S2 → S A2 → A1 x1 + x2

2 ·:S2 → S A2 → A1 x1x2

These operations saitsfy the axioms of a commutative algebra because F is a functor. For example,
the associativity of multiplication follows from the fact that F preserves the commutativity of the following
diagram:

A3 (x1+x2,x3)−−−−−−−−−−−→ A2

(x1,x2+x3)

y y(y1+y2)

A2 (y1+y2)−−−−−−−−−−−→ A1,

where we use different variables x, y for different stages of the composition.

The following definition represents a fundamental breakthrough in mathematics.

Definition 3.3. The category of spaces Space constructed from CartZ (Definition 1.3) as described in
Definition 2.4 and which is equivalent to the opposite category of commutative rings by Proposition 3.2, will
be referred to as the category of affine schemes. Likewise, for CartR, where R is a commutative ring, we get
the category of affine schemes over R.

Later we will see how to construct from affine schemes more general spaces like schemes and algebraic
spaces.

3.4. Differential geometry

Recall the category CartC∞ from Definition 1.6.

Definition 3.5. The category C∞Ring of C∞-rings is the category Alg constructed from the category of
cartesian spaces CartC∞ (Definition 1.6) using Definition 2.5.

C∞-rings were introduced by Lawvere in 1967. The theory was then developed by Dubuc. Later, an
expository account by Moerdijk and Reyes [1991] appaeared.

To get a more concrete picture of C∞-rings, we first observe that C∞-rings are, in particular, commu-
tative real algebras.
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Definition 3.6. The forgetful functor
C∞Ring→ CAlgR

is given by the functor
Fun×(CartC∞ , Set)→ Fun×(CartR, Set)

induced by the precomposition with the inclusion

CartR → CartC∞

as in Definition 1.7.

Proposition 3.7. Suppose A ∈ C∞Ring and I is an ideal of the underlying commutative real algebra of A.
Then there is a unique C∞-ring structure on the quotient real algebra A/I such that the quotient map
A → A/I is a morphism of C∞-rings.

Proof. See, for example, Proposition 1.2 in Moerdijk and Reyes [1991].

3.8. Complex geometry

Recall the category Cartω from Definition 1.9.

Definition 3.9. The category EFCRing of EFC-rings (complex algebras with entire functional calculus) is
the category Alg constructed from the category of cartesian spaces Cartω (Definition 1.9) using Definition 2.5.

To get a more concrete picture of C∞-rings, we first observe that C∞-rings are, in particular, commu-
tative real algebras.

Definition 3.10. The forgetful functor

EFCRing→ CAlgC

is given by the functor
Fun×(Cartω, Set)→ Fun×(CartC, Set)

induced by the precomposition with the inclusion

CartC → Cartω

as in Definition 1.10. Used in 2.9*.

Recall that a Stein manifold is a complex manifold that admits a proper holomorphic immersion into
some Cn. More generally, a Stein space is a complex analytic space (i.e., a locally ringed space that is locally
isomorphic to the vanishing locus of some ideal of holomorphic functions on Cn) whose reduction is a Stein
manifold. A Stein spaces is globally finitely presented if it admits a closed embedding in Cn whose defining
ideal is globally finitely generated.

Proposition 3.11. The category of globally finitely presented Stein spaces is contravariantly equivalent to
the category of finitely presented EFC-algebras. The equivalence sends a Stein space to its EFC-algebra of
global sections.

Proof. See Proposition 1.13 in Pridham [2020].

Proposition 3.12. The category of Stein spaces of finite embedding dimension is contravariantly equivalent
to the category of finitely generated EFC-algebras (alias commutative holomorphically finitely generated
algebras). The equivalence sends a Stein space to its EFC-algebra of global sections.

Proof. See Theorem 3.23 in Pirkovskii [2015].
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4 Properties of spaces

Proposition 4.1. Suppose Space is a category of spaces constructed in Definition 2.4 from a category of
cartesian spaces Cart, and Alg = Spaceop is the corresponding category of algebras. Then the category
Alg (hence also Space) admits all small limits and small colimits, and is a locally presentable category.
Furthermore, small limits and sifted colimits in Alg are computed objectwise.

Proof. All cited facts are proved by Adámek–Rosický–Vitale [2011]. Every algebraic category, such as
Fun×(Cart, Set), is complete [2011, Corollary 1.22], cocomplete [2011, Theorem 4.5], locally finitely pre-
sentable [2011, Example 6.22(1)], the forgetful functor Fun×(Cart, Set) → Fun(Cart, Set) preserves limits
[2011, Proposition 1.21] and sifted colimits [2011, Proposition 2.5], i.e., is an algebraic functor.

5 Open and closed subspaces

Our goal in this section is to formalize the notions of open and closed subspaces in the category Space.

5.1. Closed subspaces

What does it mean for a morphism F → X to define a closed subspace in the category Space? Equiv-
alently, what does it mean for the corresponding morphism X → F in the category Alg to correspond to a
closed subspace?

Recall that the Tietze extension theorem proves that any continuous function on a closed subspace of
a normal topological space can be extended to the whole space. There are analogs of this result in the
smooth and holomorphic cases, all formulated in a similar manner for closed subspaces. Therefore, it is quite
reasonable to require that X → F is surjective on underlying sets, or, in more categorical terms, is a regular
epimorphism.

Additionally, the algebra X must be reduced: if xn = 0 for some x ∈ X and n ≥ 0, then x = 0, i.e., X has
no nonzero nilpotent elements. For instance, the surjective homomorphism of C∞-rings C∞(R)→ R[x]/(xn)
that computes the derivatives of order less than n at point 0 geometrically corresponds to an inclusion
Spec(R[x]/(xn))→ R, whose domain will be interpreted later as a subspace of R given by

Spec(R[x]/(xn)) = {x ∈ R | xn = 0},

where the right side must be interpreted using the internal logic of Space, as described below. If n = 1,
then Spec(R[x]/(xn)) = Spec(R) = {0}, which is a closed subspace of R. The algebra R has no nonzero
nilpotent elements. If n > 1, then Spec(R[x]/(xn)) is the (n− 1)st order infinitesimal neighborhood of {0},
whose closure contains the whole formal neighborhood of {0} given by Spec(R[[x]]), where the algebra R[[x]]
has no nonzero nilpotent elements, unlike R[x]/(xn).

Definition 5.2. A closed subspace of a space X is a morphism of spaces F→ X such that the corresponding
morphism of algebras X → F is surjective and F is reduced. Used in 5.3, 5.3*, 5.11, 5.17.

Proposition 5.3. Given X ∈ Alg, the correspondence

I 7→ (X → X/I), (φ:X → F) 7→ (kerφ)

between ideals in the underlying commutative ring of X and isomorphism classes (in the coslice category
X/Alg) of surjective homomorphisms X → F . Under this correspondence, reduced quotients F correspond
to radical ideals I, i.e., I =

√
I, where

√
I = rad(I) = {a ∈ X | ∃n ≥ 0: an ∈ I}. This correspondence

is contravariant: an inclusion F1 ⊂ F2 of closed subspaces (as subobjects of a space X) corresponds to an
inclusion I1 ⊃ I2 of radical ideals, and vice versa. Used in 5.3*, 5.9, 5.9*, 5.11, 5.13*, 5.15, 5.15*, 5.17.

Proof. The first part is valid for any Fermat theory (Dubuc–Kock [1984, Proposition 1.2]) and is proved by
invoking Hadamard’s axiom. The second part is an elementary result about commutative rings.
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Proposition 5.3 can be interpreted as saying that a closed subspace F of a space X is uniquely charac-
terized by the ideal of functions on X that vanish on F.

We now examine the poset of closed subspaces of a space X, which turns out to be isomorphic to the
poset of closed subspaces of a certain topological space, the Zariski spectrum of the corresponding algebra X .

First, we review some material about such posets, treated abstractly (they are known as locales), as
well as their relation to the traditional topological spaces. For more information, see the book by Picado
and Pultr [2012].

Below, we axiomatize the properties of open subsets of a topological space. In this section, we take
them to be the formal complements of closed subspaces introduced above. In the next section, we will see
how to work with open subspaces directly.

Definition 5.4. The category Frm of frames is defined as follows. A frame is a poset F that admits suprema
of arbitrary subsets, infima of finite subsets, and the map a 7→ a ∧ b preserves suprema for any fixed b ∈ F .
A homomorphism of frames f :F → F ′ is a map of posets that preserves arbitrary suprema and finite infima.
Used in 5.5, 5.6, 5.6*, 5.9, 5.9*.

Definition 5.5. The category Loc of locales is defined as Frmop. Used in 5.3*, 5.6, 5.6*, 5.7, 5.8, 5.8*, 5.9.

Definition 5.6. The functor Ω:Top→ Loc sends a topological space X to the poset Ω(X) of open subsets
of X and a continuous map f :X → X ′ to the homomorphism of frames Ω(f): Ω(X ′)→ Ω(X).

Thus, a locale can be thought of as an abstract topological space, in which elements of the poset play
the role of open subsets, but there need not be any underlying set of points.

Any open a ∈ L in some L ∈ Loc induces a locale La ∈ Loc, which as a poset is precisely La = {b ∈ L |
b ≤ a}. There is a canonical map ιa:La → L in Loc, given by the homomorphism of frames b 7→ b∧ a. Thus,
ιa:La → L can be thought of as an inclusion of the open subspace corresponding to the element a ∈ L.

The functor Ω has a right adjoint Sp: Loc→ Top, which can be described as follows.

Definition 5.7. The functor Sp: Loc→ Top send a locale L to the topological space Sp(L) defined as follows.
The underlying set of Sp(L) is the set homLoc(1, L). Every a ∈ L induced a subset Ua = {ιa ◦u | u:1→ La},
and these subsets are precisely the open subsets. Used in 5.6*, 5.7, 5.8, 5.8*, 5.10.

Definition 5.8. A spatial locale is a locale in the essential image of the functor Ω. A sober space is a
topological space in the essential image of the functor Sp. Used in 5.8*.

Consider the adjunction Ω a Sp defined above. A locale L is spatial if and only if the unit L→ Sp(Ω(L))
is an isomorphism. A topological space S is sober if and only if the counit Ω(Sp(S))→ S is an isomorphism.
Thus, Ω a Sp restricts to an equivalence of categories between sober topological spaces and spatial locales.

A topological space S is sober if and only if the closure map on subsets of S with its domain restricted
to singleton subsets and its codomain restricted to irreducible closed subsets (nonempty closed subsets that
cannot be represented as a union of two proper closed subsets) is a bijection. In particular, all Hausdorff
spaces are sober and all sober spaces are T0. On the other hand, there are T1-spaces that are not sober and
there are sober spaces that are not T1.

Proposition 5.9. The poset of radical ideals of any X ∈ Alg is a frame: it admits suprema of arbitrary
subsets, infima of finite subsets, and the map I 7→ I ∧J preserves suprema for any fixed radical ideal J . This
construction can be promoted to a functor Zar:Alg→ Frm, equivalently, Zarop: Space→ Loc. Used in 5.9, 5.10.

Proof. The poset of radical ideals of X only depends on the underlying commutative ring of X , so we assume
X is a commutative ring. The supremum of a family {Ik}k∈K of radical ideals is

rad

(∑
k∈K

Ik

)
.

The infimum of a family {Ik}k∈K of radical ideals is their interesection
⋂

k∈K Ik, which coincides with their
product if K is finite. Finally, for the distributivity property observe that

I ∩ rad

(∑
k∈K

Jk

)
⊂ rad

(∑
k∈K

I ∩ Jk

)
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because any a ∈ I ∩ rad
(∑

k∈K Jk
)
satisfies am ∈

∑
k∈K Jk for some m ≥ 0, but then

am+1 = a · am ∈
∑
k∈K

IJk =
∑
k∈K

I ∩ Jk.

The functor Alg→ Frm sends a morphism f :A→ A′ of algebras to the morphism of frames that sends
a radical ideal I of A to the radical of the ideal generated by its image in A′. Finite infima (which coincide
with finite products of ideals) are preserved: if a ∈

∏
k∈K

√
f∗Ik for a finite set K and ideals Ik < A, then

some power of a belongs to
∏

k∈K f∗(Ik) = f∗(
∏

k∈K Ik), hence a ∈ rad(f∗(
∏

k∈K Ik)). Arbitrary suprema
are preserved: if a ∈ rad(

∑
k∈K

√
f∗Ik), then some power of a belongs to

∑
k∈K′

√
f∗Ik for some finite

subset K ′ ⊂ K, hence some other power of a belongs to
∑

k∈K′ f∗Ik = f∗(
∑

k∈K′ Ik)

Remark 5.10. The topological space Sp(Zar(A)) is the usual Zariski spectrum of a commutative ring (or
algebra) A.

Remark 5.11. Below we will consider subcategories of Alg (or Space) defined by certain finiteness condi-
tions, which result in an essentially small category, i.e., a category that is equivalent to a small category.
The above description of the poset of closed subspaces may then involve different types of radical ideals, e.g.,
germ-determined radical ideals.

5.12. Open subspaces

What does it mean for a morphism U→ X to define an open subspace in the category Space? Equiva-
lently, what does it mean for the corresponding morphism X → U in the category Alg to correspond to an
open subspace?

In many known examples of categories of spaces (such as topological spaces), inclusions of open subspaces
are monomorphisms, but are typically not regular monomorphisms (meaning they do not arise as equalizers
of pairs of continuous maps). Thus, we can expect the corresponding morphism of algebras X → U to be an
epimorphism, but we cannot expect it to be surjective.

A typical example of a nonsurjective epimorphism of algebras is given by localization with respect to a
multiplicative subset: given an ordinary commutative ring A and a subset S ⊂ A, the morphism A → A[S−1]
is an epimorphism of algebras that is typically not surjective. Indeed, we expect that many functions on X

will become invertible once restricted to U. If S is the set of all such functions, by the universal property
of localizations of rings, we have a canonical homomorphism X [S−1] → U . We make an ansatz that this
homomorphism is an isomorphism.

Different multiplicative subsets S of X can give rise to the same localization homomorphism X →
X [S−1].

Definition 5.13. A saturated multiplicative subset of X ∈ Alg is a multiplicative subset S of X such that
S contains all c ∈ X for which

√
(c) contains

⋂
a∈S

√
(a). Used in 5.14, 5.15*, 5.18*.

The last condition can be intuitively explained as follows. Recall that radical ideals of X are in a
contravariant bijective correspondence with closed subspaces of X. The radical ideal

√
(c) corresponds to

the zero locus of c, which is a closed subspace of X. Thus,
√
(c) contains

⋂
a∈S

√
(a) if and only if the zero

locus of c is contained in the union of zero loci of all a ∈ S. In other words, the nonvanishing locus of c
contains the intersection of nonvanishing loci of all a ∈ S. But the latter should coincide with U, which
means that the nonvanishing locus of c contains U, as desired.

Definition 5.14. An open subspace of a space X is a morphism of spaces U→ X such that the corresponding
morphism of algebras X → U is isomorphic (in the slice category X/Alg) to the localization with respect to
a saturated multiplicative subset S ⊂ X . Used in 5.16, 5.17, 6.0*.

We expect a bijective correspondence between open and closed subspaces of any X ∈ Space given by
passing to the complement.

Proposition 5.15. Given X ∈ Alg, the correspondence

I 7→ S = {a ∈ X | I ⊂
√
(a)}, S 7→ I =

⋂
a∈S

√
(a)
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between saturated multiplicative subsets S and radical ideals I in the underlying commutative ring of X is
bijective.

Proof. Given a radical ideal I, consider the subset S = {a ∈ X | I ⊂
√
(a)}. Since

√
(1) = (1) = A, we have

1 ∈ S. If a ∈ S and a′ ∈ S, then aa′ ∈ S because for any b ∈ I we have bm = ac and bm
′
= a′c′ for some

m,m′ ≥ 0 and c, c′ ∈ A, so bm+m′
= aa′(cc′), i.e., b ∈

√
(aa′). Finally, S is saturated since

⋂
a∈S

√
(a) ⊃ I

by construction, so if
√

(c) contains
⋂

a∈S

√
(a), it also contains I.

Given a saturated multiplicative subset S ⊂ X , consider the ideal I =
⋂

a∈S

√
(a). This ideal is radical

because any intersection of radical ideals is again radical.

Suppose that S is a saturated multiplicative subset of X , I =
⋂

a∈S

√
(a), and S′ = {a ∈ X | I ⊂

√
(a)}.

Then S = S′ by definition of a saturated multiplicative subset.

Finally, suppose I is a radical ideal of X , S = {a ∈ X | I ⊂
√
(a)}, and I ′ =

⋂
a∈S

√
(a). By

construction, I ⊂ I ′. To do: Finish the proof.

We conclude by examining the notion of an open cover in the category Space.

Definition 5.16. A family of inclusions of open subspaces Ui → X (i ∈ I) is an open cover of X if the
supremum of Ui for all i ∈ I in the poset of open subspaces of X equals X. Used in 5.16*, 5.18, 6.1.

The following characterization of open covers follows immediately from the formula for suprema.

Proposition 5.17. If open subspaces Ui → X are complements of closed subspaces Fi → X given by radical
ideals Ii of X , then {Ui}i∈I cover X if and only if 1 ∈

∑
i∈I Ii, i.e., 1 ∈ X is a finite sum of elements of Ii.

The following property is crucial for defining sheaves in the next section. Roughly, it says that fusing
elements of an open cover together along their overlapping parts (given by intersections) yields back the
original space.

Proposition 5.18. Given an open cover {Ui → X}i∈I of a space X, the diagram

∐
j,k∈I

Uj ∩Uk
→→
∐
i∈I

Ui → X

is a coequalizer diagram in Space. Used in 6.3*, 6.4*.

Proof. Passing to the opposite category Alg, we have to show that the corresponding diagram

X →
∏
i∈I

Ui →→
∏
j,k∈I

Uj ∩ Uk

is an equalizer diagram. Recall now that the morphisms X → Ui are given by localizations with respect to
saturated multiplicative subsets Si ⊂ X . To do: Finish the proof.
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6 Sheaves as generalized spaces

The idea behind defining the category Space from a category of cartesian spaces Cart is that a space
can be completely described by its algebra of functions.

Some very important examples of spaces cannot be described in this manner. For instance, the complex
projective space of any dimension only admits constant holomorphic functions. We want to include complex
projective spaces in our formalism, which forces us to further enlarge the category Space.

The following construction is formally very similar to the one used to obtain Space from Cart. This is
remarkable, since the aims of the two constructions are quite different.

We would like to construct a fully faithful embedding

κ: Space→ GenSpace,

where Space is a category constructed in Definition 2.4 from a category of cartesian spaces Cart, whereas
GenSpace is a category of generalized spaces that we will construct below.

For example:
• For CartR, we expect GenSpace to contain schemes and algebraic spaces over R as a full subcategory;
• For CartC∞ , we expect GenSpace to contain infinite-dimensional smooth manifolds as a full subcategory;
• For Cartω, we expect GenSpace to contain complex analytic spaces as a full subcategory.

For a moment, we assume that such an embedding exists and explore its properties.
Our strategy is explore a generalized space E by studying maps into E from objects of Space. This

stands in constrast to the construction of Space from Cart, where we studied maps from a space X to an
object of Cart. In particular, instead of (covariant) functors

Cart→ Set

we get (contravariant) functors
Spaceop → Set,

since a morphism P → P′ in Space induces a map of sets

hom(P′,E)→ hom(P,E)

in the opposite direction.
Furthermore, just as before, the resulting functor

hom(−,E): Spaceop → Set

can be expected to preserve (finite) products. Indeed, products in Spaceop are coproducts in Space, i.e.,
disjoint union of spaces, denoted by t. The functor hom(−,E) preserves products if the canonical map

hom(P t P′,E)→ hom(P,E)× hom(P′,E)

is an isomorphism of sets. This can be interpreted as saying that a map P t P′ → E can be identified with a
pair of maps P → E and P′ → E, which is indeed a reasonable property to demand.

However, we can expect more. If P and P′ are open subspaces of Q (not necessarily disjoint) such that
Q = P ∪ P′, we expect that a map Q → E can be identified with a pair of maps P → E and P′ → E whose
restrictions to the intersection P ∩ P′ coincide.

We encode this observation using the notion of a sheaf.

Definition 6.1. Denote by
Funsh(Spaceop, Set)

the full subcategory of Fun(Spaceop, Set) comprising sheaves, i.e., functors

F: Spaceop → Set

12



such that the following gluing property is satisfied: for any open cover {Ui → X}i∈I of a space X the canonical
maps

F(X)→
∏
i∈I

F(Ui)→→
∏
j,k∈I

F(Uj ∩Uk)

exhibit F(X) as the equalizer of the right two maps, i.e., the left map is an injective map of sets whose image
is the subset of the middle term comprising those elements on which the right two maps coincide. Used in 6.2*,

6.3, 6.4, 6.5, 6.6.

Remark 6.2. The same definition can be used to define sheaves valued in any category that admits small
limits, not just Set. The equalizers and products must be taken in this new category. In particular, below
we assume that the embedding

κop: Spaceop → GenSpaceop

is a sheaf (valued in the opposite category of generalized spaces), in the same manner as the functor

ι:Cart→ Space

was previously assumed to preserve finite products.

In particular, the gluing property applied to the cover of U1tU2 by its two summands implies that any
sheaf F preserves binary products. Likewise, if I = ∅ and X = ∅ is the initial object in Space, we see that
F(∅) is singleton set, i.e., F preserve terminal objects, hence also finite products.

We are now ready to formalize the above construction that explores a generalized space E by studying
maps of the form P → E for arbitrary spaces P ∈ Space.

Definition 6.3. Given a fully faithful embedding of the form

κ: Space→ GenSpace

such that the functor
κop: Spaceop → GenSpaceop

is a sheaf, we define a functor
Y :GenSpace→ Funsh(Spaceop, Set)

by sending E ∈ GenSpace to the sheaf

Y(E): Spaceop → Set, P 7→ homGenSpace(κP,E)

and a morphism f :E1 → E2 in GenSpace to the natural transformation

Y(E1)→ Y(E2), P 7→ hom(κP, f), hom(κP, f):hom(κP,E1)→ hom(κP,E2), g 7→ f ◦ g.

Used in 6.6.

By Proposition 5.18, the functor Y(E) is indeed a sheaf, as long as κop is a sheaf: the functor
hom(κ(−),E) preserves whatever limits are preserved by κop.

Proposition 6.4. Given a fully faithful embedding of the form

κ: Space→ GenSpace

such that the functor
κop: Spaceop → GenSpaceop

is a sheaf, the restriction of the functor

Y :GenSpace→ Funsh(Spaceop, Set)

13



along the fully faithful embedding κ produces a fully faithful functor

YSpace: Space→ Funsh(Spaceop, Set)

that does not depend on κ and can be described as follows:

Y(E)(P) = homSpace(P,E), Y(f)(P) = homSpace(P, f).

Used in 6.5.

Proof. Everything except for the fully faithfulness of the restriction of Y follows immediately from the
definition of a fully faithful functor: for any U, V ∈ Space, the canonical map of sets

homSpace(U, V )→ homGenSpace(κU, κV )

is an isomorphism. The restriction of Y is fully faithful by the Yoneda lemma and lands in sheaves (as
opposed to arbitrary functors) by Proposition 5.18.

We now turn tables and make an ansatz that Y should be a fully faithful functor even without the
restriction to Space. The other ansatz that we make here is that Y is essentially surjective, i.e., any sheaf
corresponds to some generalized space. This is less obvious, but will become more clear as we compute
various examples. Combined together, we see that Y should be an equivalence of categories.

Definition 6.5. Given a category of spaces Space, the corresponding category of generalized spaces GenSpace
is defined as

Funsh(Spaceop, Set).

The canonical embedding
κ: Space→ GenSpace

is given by the functor YSpace from Proposition 6.4. Used in 6.0*, 6.2, 6.3, 6.4, 6.4*, 6.5, 6.6.

To confirm that we have indeed achieved our goal of making the functor Y an equivalence of categories,
we establish the following result.

Proposition 6.6. Given κ: Space→ GenSpace as constructed in Definition 6.5, the functor

Y :GenSpace→ Funsh(Spaceop, Set)

as constructed in Definition 6.3 is an equivalence of categories that is isomorphic to the identity functor.

Proof. Same as the proof of Proposition 2.7.
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