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Fermions and Bosons

In physics, fermions are a certain class of particles. The classic example is an electron.
Another class of particles is called bosons. The classic example here is photons. Fermions
make up ordinary matter while bosons are typically characterized as force carriers.

The so called statistics of a particle refers to how identical particles are distributed over
the accessible energy states of a system.To this day, there are only two observed types of
statistics: Fermi-Dirac statistics and Bose-Einstein statistics. This is where the names
fermion and boson originate from.
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Fermions and Bosons

Another well-known characterization of particles is their spin: a particle can have either
integer spin (e.g., 0, 1, . . .) or odd half-integer spin (e.g., 1/2, 3/2, . . .). Spin has no
classical analog.

Theorem
The Spin-Statistics Theorem. A particle is a boson if and only if it has integer spin. A
particle is a fermion if and only if it has odd half-integer spin.
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Fermions and Bosons

An important consequence of this is related to how the respective wave functions of
bosons and fermions behave.

Theorem
The wave function for a system of bosons is symmetric, while the wave function for a
system of fermions is antisymmetric.

Example
Consider two-particle systems | ΨB(x , y) ⟩, | ΨF (x , y) ⟩ of bosons and fermions,
respectively. Then

| ΨB(y , x) ⟩ = | ΨB(x , y) ⟩,
| ΨF (y , x) ⟩ = −| ΨF (x , y) ⟩.
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Symmetric Bilinear Forms

Definition
A symmetric bilinear form is a map

Q : V × V → K

that is symmetric in its argument. It is called non-degenerate if for each v ̸= 0 ∈ V there
exists a vector w ∈ V such that Q(v ,w) ̸= 0.
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The Pseudo-Orthogonal Group O(s, t) of Indefinite Scalar Products

Example
1. Denote by Rs,t the vector space Rs+t with standard basis e1, . . . es+t and the standard
symmetric bilinear for η defined by

η(ei , ei ) = 1 ∀1 ≤ is

η(ei , ei ) = −1 ∀s + 1 ≤ i ≤ t

η(ei , ej) = 0 ∀i ̸= j .

The signature of this space is (s, t), and we call Rs,t the real vector space of signature
(s, t).

Example
Minkowski spacetime is the real vector space Rs,1 (or equivalently R1,t ; both are common
in the literature).
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The Pseudo-Orthogonal Group O(s, t) of Indefinite Scalar Products

Example

2. Consider Cd . The non-degenerate standard symmetric complex bilinear form q, given
on the standard basis {ei}1≤i≤d , is

q(ei , ei ) = +1 ∀1 ≤ i ≤ d ,

q(ei , ej) = 0 ∀i ̸= j .

In particular, every non-degenerate symmetric bilinear form on an R-vector space V has a
well-defined signature (s, t).
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The Pseudo-Orthogonal Group O(s, t) of Indefinite Scalar Products

Theorem
Every non-degenerate symmetric bilinear form Q on an R- or C-vector space V is
isomorphic to one of those found in examples 1 and 2. In particular, every non-degenerate
symmetric bilinear form on an R-vector space V has a well-defined signature.

Note: For a C-vector space, we cannot have a well-defined signature; consider
multiplication by i .
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The Pseudo-Orthogonal Group O(s, t) of Indefinite Scalar Products

Definition
Let V be a K-vector space with a non-degenerate symmetric bilinear form Q. Then the
psuedo-orthogonal group of (V ,Q) is defined as the automorphism group of Q. That is,

O(V ,Q) = {f ∈ GL(V ) | Q(fv , fw) = Q(v ,w) ∀v ,w ∈ V }.

Example
In particular, the groups O(1, t), O(s, 1) are called Lorentz groups, where:

O(s, t) = {A ∈ GL(V ) | η(Av ,Aw) = η(v ,w) ∀, v ,w ∈ Rs+t}.
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The Pseudo-Orthogonal Group O(s, t) of Indefinite Scalar Products

Some properties of pseudo-orthogonal groups:
▷ The group O(s, t) is a lineaer Lie group.

▷ If both s, t ̸= 0, then O(s, t) is not compact.

▷ Let o(s, t) be the associated Lie algebra of O(s, t). Then

o(s, t)⊗R C ∼= o(s + t)⊗R C.

11 / 52



The Pseudo-Orthogonal Group O(s, t) of Indefinite Scalar Products

Example
▷ SO(s, t) = {A ∈ O(s, t) | detA = 1} is called a proper or special pseudo-orthogonal

group.

▷ O+(s, t) = {A ∈ O(s, t) | A has time-orientability + 1} is called a orthochronous
pseudo-orthogonal group.

▷ SO+(s, t) = SO(s, t) ∩ O+(s, t) is called a proper orthochronous pseudo-orthogonal
group.

One last note before moving on: The subgroup SO+(s, t) is the connected component of
the identity in O(s, t).
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Clifford Algebras

Definition
Let V be a K-vector space (K = R or C) equipped with a symmetric bilinear form Q. A
Clifford algebra of (V ,Q) is a pair (Cl(V ,Q), γ) where
▷ CL(V ,Q) is an associative K-algebra with unit element 1.

▷ γ : V → CL(V ,Q) is a linear map with

{γ(v), γ(w)} = −2Q(v ,w) · 1 ∀v ,w ∈ V .
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Clifford Algebras

Definition
(Con’t)
▷ If A is another associative K-algebra with unit element 1 and δ : V → A is a K-linear

map with

{δ(v), δ(w)} = −2Q(v ,w) · 1 ∀v ,w ∈ V

then there exists a unique algebra homomorphism ϕ : CL(VQ) → A such that the the
diagram below commumtes.
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Clifford Algebras

Note: Such structures actually define a category, which I will denoteKAlg(Q). Taking the
obvious choice of objects and morphisms, we can instead define a Clifford algebra as the
initial object inKAlg(Q).

Morally speaking we can view the linear map γ as a linear square root of the symmetric
bilinear form −Q. It suffices to demand that

γ(v)2 = −Q(v , v) · 1.
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Clifford Algebras

We claim that Clifford algebras exist and in fact are unique up to isomorphism. Uniqueness
is trivial. Existence on the other hand requires some elbow grease.

Theorem
For every finite-dimensional K-vector space V with a symmetric bilinear form Q, there
exists a Clifford algebra CL((V ,Q), γ).
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Clifford Algebras

Proof.
(Sketch) Consider the tensor algebra of a K-vector space V , which we denote T (V ). Let
J(Q) denote the two-sided ideal in T (V ) generated by

{v ⊗ v + Q(v , v) · 1 | v ∈ V }.

Define:

CL(V ,Q) := T (V )/J(Q).
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Clifford Algebras

Some basic corollaries are as follows:

Theorem
The image of the vector space V under γ generates CL(V ,Q) multiplicatively.

Theorem
If Q = 0 then there exists an algebra isomorphism from (CL(V , 0), ·) ≃ (Λ∗V ,∧)

where γ is given by the standard embedding of V into Λ∗V .

Theorem
Suppose that dimK V = n with orthonormal basis {ei} for (V ,Q). Then the elements
{γ(ei 1) · · · · · γ(ei k) span Cl(V ,Q) as a vector space. In particular, this implies

dimK Cl(V ,Q) ≤ 2n.
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More on Exterior Algebras

Theorem
There exists a canonical isomorphism of vector spaces

Λ∗V → Cl(V ,Q)

given by

ei 1 ∧ . . . ∧ ei k 7→ γ(ei 1) · · · γ(ei k).

In particular, we have

dimK Cl(V ,Q) = 2n.
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More on Exterior Algebras

Theorem
Let (Cl(V ,Q), γ) be a Clifford algebra. Then the linear map γ : V → Cl(V ,Q) is
injective.
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Structure Theorems

Recall that the usual tensor algebra can be decomposed as the sum of its even and odd
parts; we can piggyback off of this and realize Clifford algebras in the same way. That is to
say, we have

Cl(V ,Q) = Cl0(V ,Q)⊕ Cl1(V ,Q).

where the first term is the even part and the second is the odd part. With this comes the
structure of a Z/2-graded associative algebra. In particular, we can view the even part as
being a subalgebra of Cl(V ,Q).
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Structure Theorems

Theorem
There exists an isomorphism of complex associative algebras

Cl(s + t) ≃ Cl(s, t)⊗R C.

That is, complex representations of Cl(s, t) are equivalent to complex representations of
Cl(s, t).
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Structure Theorems

These last two slides lead to some structure theorems, as one would hope for. These
characterize the Clifford algebras depending on n = s + t (for the complex case) and
n = s + t and ρ = s − t (for the real case). More details can be found in Hamilton (Tables
6.1, 6.2, 6.3, and 6.4). In particular, the dimension of V depends on n.
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Spinors

Definition
The vector space of Dirac spinors is △n := CN . The corresponding Dirac spinor
representation of the complex Clifford algebra is:

ρ : Cl(n) → End△n.

Definition
The bilinear map

Rw ,t ×△n → △n

(X ,ψ) 7→ X · ψ = ρ(γ(X ))ψ

is called the mathematical Clifford multiplication of a spinor with a vector. The physical
Clifford multiplication is simply the mathematical one but multiplied by −i .
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Spinors

Theorem
Consider the restriction of the Dirac spinor representation to the even subalgebra Cl0(n).
If n is odd, the induced representation is irreducible; if n is even, the induced
representation can be decomposed as:

Cl0(n) ≃ End(△+
n )⊕ End(△−

n ).
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Spinors

Definition
The group of invertible elements in Cl(s, t) is defined by

Cl×(s, t) = {x ∈ Cl(s, t) | ∃y ∈ Cl(s, t) : xy = yx = 1}.

Theorem
Cl×(s, t) is an open subset of Cl(s, t) and is therefore a Lie group.
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Spinors

Some notation:

S s,t
+ := {v ∈ Rs,t | η(v , v) = +1}

S s,t
− := {v ∈ Rs,t | η(v , v) = −1}

S s,t
± := S s,t

+ ∪ S s,t
− .
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Spinors

Theorem
The following subsets of CL(s, t) form subgroups of Cl×(s, t):

Pin(s, t) = {v1 · · · vr | vi ∈ S s,t
± }, r ≥ 0

Spin(s, t) = Pin(s, t) ∩ Cl0(s, t)

Spin+(s, t) = {v1 · · · v2pw1 · · ·w2q | vi ∈ S s,t
+ ,wj ∈ S s,t

− , p, q ≥ 0}.

In the case (s, t) = (n, 0), we denote these instead as Pin(n) etc. These subgroups inherit
the subset topology from Cl(s, t). These three subsets are respectively called the pin, spin,
and orthochronous spin groups.
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Spinors

There is a well-defined map

R : Pin(s, t)× Rs,t → Rs,t

(u, x) 7→ (−1)deg(u)uxu−1.

This also yields a map

λ : Pin(s, t) → O(s, t)

u 7→ Ru := R(u,−)

which corresponds to reflections in the hyperplane v⊥ ⊂ Rs,t . Also note that λ is a
continuous homomorphism.

Theorem
(Cartan-Dieudonnè Theorem) Every element of O(s, t) can be written as a composition of
at most 2(s + t) reflections in v⊥i with vectors vi ∈ S s,t

± .
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Spinors

Theorem
▷ λ is open and surjective with kernel {±1}.
▷ The preimages of λ of the subgroups SO(s, t),SO+(s, t) are respectively equal to

Spin(s, t),Spin+(s, t) and thus are open subgroups of Pin(s, t).
▷ The restrictions of λ

Spin(s, t) → SO(s, t)

Spin+(s, t) → SO+(s, t)

are surjective with kernel {±1}.

Theorem
We can define unique Lie group structures on Pin,Spin, Spin+ so that λ is a smooth
double covering of the Lie groups.
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Spinors

For n ≥ 3 the λ maps

Spin(n) → SO(n)

Spin+(n, 1) → SO+(n, 1)
Spin+(1, n) → SO+(1, n)

are the universal coverings. This is related to the fact that the fundamental groups of
SO(n),SO+(1, n),SO+(n, 1) are Z/2.
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Spinors

Now that we have a bunch of Lie groups, we of course have corresponding Lie algebras
with the typical commutator [x , y ] = xy − yx .

Definition

M(s, t) := span{eiej ∈ Cl(s, t) | 1 ≤ i < j ≤ s + t}

M is a vector space, and in particular a Lie subalgebra of cl×(s, t) with dimension

1
2
(s + t)(s + t − 1).

In fact:

spin+(s, t) = M(s, t).
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Spinors

We end this section with a nice result

Theorem
The differential of the map

λ : Spin+(s, t) → SO+(s, t)

is given by

λ∗ : spin
+(s, t) → so+(s, t)

λ∗(z)x = [z , x ] = zx − xz

for all s ∈ Rs,t . For any z ∈ spin+(s, t), we can recover z from its image λ∗(z) via

z =
1
2

∑
k<l

η(λ∗(z)ek , el)ηkηlekel .
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Majorana and Weyl spinors

Recall for a Dirac spinor with even n:

Cl0(n) ≃ End(△+
n )⊕ End(△−

n ).

The left-hand side is called a left-handed Weyl spinor, and similarly the right-hand side is
called a right-handed Weyl spinor.
If a spinor representation △ admits a real structure σ, we call it a Majorana spinor.
There are also symplectic versions of Majorana spinors.
If σ commutes with the projection map of a Dirac spinor onto (for instance) its
left-handed Weyl spinor component, we call △ a Majorana-Weyl spinor. There are a
variety of different ways to view Majorana spinors (e.g., Majorana but not Weyl, Majorana
and Weyl but not Majorana-Weyl, etc.); see Table 6.6.
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Majorana and Weyl spinors

By themselves, Weyl spinors are not sufficient to describe massive particles, such as
electrons. But nothing is lost; considering both left-handed and right-handed components
simultaneously, we can handle massive particles.
With the possible exception of neutrinos, none of the particles in the standard model of
particle physics are represented by Majorana spinors. However, such spinors do appear in
supersymmetric theories. But, who knows if supersymmetry is a real thing. So then, are
Majorana particles worth studying (physically speaking)?
Yes! In the context of condensed matter, there are quasiparticles that have been observed
to behave as Majorana particles.
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Majorana and Weyl spinors

Take a Dirac spinor Ψ. We can then write it as

Ψ = (u+, u−)

where u+ and u− are left- and right-handed Weyl spinors. What about Majorana spinors?
Given this above decomposition, we can get ourselves a Majorana spinor by taking:

ΨM = (u+,−iσ2(u+)
∗).
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Spin Structures and Spinor Bundles

Definition
Let M be a smooth manifold. A pseudo-Riemannian metric g of signature (s, t) is a
section g ∈ Γ(T ∗M ⊗ T ∗M) that defines at each point x ∈ M a non-degenerate,
symmetric bilinear form

gx : TxM × TxM → R

of signature (s, t).

Here, Γ is in reference to what is called a chirality operator; for sake of brevity, this is not
discussed much here. Morally speaking, Γ refers to the handedness of Weyl spinors. In
Cl(1, 3) there are so called γ = iΓ matrices that generate the representation Cl(1, 3) via
certain anti-commutation relationships. In particular, there are four γ i , 1 = 0, 1, 2, 3 we
start with, and we can construct γ5 := iγ0γ1γ2γ3.
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Spin Structures and Spinor Bundles

Recall that the frame bundle has the structure of a principal O(s, t)-bundle.

Definition
▷ (M, g) is called orientable if the frame bundle can be reduced to a principal

SO(s, t)-bundle under the embedding SO(s, t) ⊂ O(s, t).
▷ (M, g) is called time-orientable if the frame bundle can be reduced to a principal

O+(s, t)-bundle under the embedding O+(s, t) ⊂ O(s, t).
▷ (M, g) is called orientable and time-orientable if the frame bundle can be reduced to

a principal SO+(s, t)-bundle under the embedding SO+(s, t) ⊂ O(s, t).

An orientation of M is just an orientation of TM. Time-orientation is a bit trickier. TM
admits maximally g -positive definite vector subbundles W → M, of which any two are
homotopic. A time-orientation then is a choice of orientation on W .

38 / 52



Spin Structures and Spinor Bundles

Suppose (M, g) is oriented and time-oriented. Denote the SO+(s, t)-frame bundle by

πSO : SO+(M) → M

and recall the double covering λ : Spin+(s, t) → SO+(s, t).

Definition
A spin structure on M is a Spin+(s, t)-principal bundle

πSpin : Spin+(M) → M

with a double covering

Λ : Spin+(M) → SO+(M)

such that the diagram (next slide) commutes.
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Spin Structures and Spinor Bundles
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Spin Structures and Spinor Bundles

Definition
Two spin structures

Λ : Spin+(M) → SO+(M)

Λ′ : Spin+(M)′ → SO+(M)

are called isomorphic if there exists a Spin+(s, t)-equivariant bundle isomorphism

F : Spin+(M) → Spin+(M)′

such that the diagram (next slide) commutes.

41 / 52



Spin Structures and Spinor Bundles
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Spin Structures and Spinor Bundles

Theorem
(Existence and Uniqueness of Spin Structures)
▷ The frame bundle SO+(M) admits a spin structure if and only if the second

Stiefel-Whitney class of M vanishes, i.e., w2(M) = 0.
▷ If SO+(M) admits a spin structure, then there is a bijection between the set of

isomorphism classes of spin structures on M and the cohomology group H1(M;Z/2).
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Spin Structures and Spinor Bundles

Definition
Let Spin+(M) → M be a spin structure on M and

κ : Spin+(s, t) → GL(△)

the spinor representation. Then the (Dirac) spinor bundle is the associated complex vector
bundle

S = Spin+(M)×κ △

over M. Sections of S are called spinor fields or spinors. Note that the spinor bundle may
depend on the choice of spin structure.
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Spin Structures and Spinor Bundles

Theorem
Let S → M be the spinor bundle associated to a spin structure.
▷ There exists a well-defined bilinear Clifford multiplication

TM × S → S

(X ,ψ) 7→ X · ψ

on the level of bundles, restricting to a map TpM × Sp in every point p ∈ M. This
map also induces a well-defined Clifford multiplication of forms with spinors.

▷ If the dimension n of M is even, then S splits as a direct sum of complex Weyl spinor
bundles S = S+ ⊕ S−, where S± = Spin+(M)× κ△±.
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Spin Structures and Spinor Bundles

Definition
Let △ = △n be the complex spinor representation of Cl(s, t). Fix a constant δ = ±1 and
consider non-degenerate R-bilinear forms

⟨−,−⟩ : △×△ → C

with the following properties:
▷ ⟨X · ψ,ϕ⟩ = δ⟨ψ,X · ϕ⟩
▷ ⟨ψ,ϕ⟩ = ⟨ϕ,ψ⟩∗

▷ ⟨ψ, cϕ⟩ = c⟨ψ,ϕ⟩ =∗ ψ,ϕ⟩
for all X ∈ Rs,t ,ψ,ϕ ∈ △, c ∈ C.
Such a form is called a Dirac form.
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The Dirac Operator

For this last section, we play a bit fast and loose. Mostly we are concerned about getting
the idea across, and sweep the technical aspects under the rug.
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The Dirac Operator

Definition
The Dirac operator D : Γ(S) → Γ(S) on the spinor bundle S is defined by:

Dψ = ηabea · ∇ebψ.

Choosing a local section e = (e1, . . . , en) of SO+(M) (called a vielbein), we can write
more explicitly

Dψ = iΓa
(
dψ(ea)−

1
4
ωabcΓ

bcψ

)
.

As one would expect, this definition is independent of our choice of local vielbein. This
can be seen by the composition of maps
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The Dirac Operator

Theorem
If the dimension n of the manifold M is even, then the Dirac operator D maps

D : Γ(S±) → Γ(S∓).

That is, D takes sections of S+ to sections of S− and vice versa.
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The Dirac Operator

Theorem
(Dirac Operator is Formally Self-Adjoint) Let M be a manifold without boundary. If the
Dirac form satisfies δ = −1, then the Dirac operator D : Γ0(S) → Γ0(S) is formally
self-adjoint, i.e.,

⟨Dϕ,ψ⟩S,L2 = ⟨ϕ,Dψ⟩S ,L2

for all spinors ϕ,ψ ∈ Γ0(S).
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The Dirac Operator

Finally, we arrive at the Dirac Lagrangian. Fix the following data:
▷ an n-dimensional oriented and time-oriented pseudo-Riemannian spin manifold (M, g)

of signature (s, t)

▷ a spin structure Spin+(M) together with a complex spinor bundle S → M

▷ a Dirac form ⟨−,−⟩ (not necessarily positive definite) on the Dirac spinor space
△ = △n with associated Dirac bundle metric ⟨−,−⟩S
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The Dirac Operator

Definition
The Dirac Lagrangian for a (free) spinor field ψ ∈ Γ(S) of mass m is defined by

LD [ψ] = ℜ⟨ψ,Dψ⟩S −m⟨ψ,ψ⟩S .

The term ℜ⟨ψ,Dψ⟩S is called the kinetic term and m⟨ψ,ψ⟩S is called the Dirac mass
term.

The Lagrangian should be real, so taking the real part (in the kinetic term) is necessary.
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