# $\begin{array}{l} \mbox{Higher Lie integration I} \\ \mbox{$L_{\infty}$-algebras and the Chevalley-Eilenberg construction:} \\ \mbox{The stuff we integrate} \end{array}$

#### Emilio Verdooren

#### Texas Tech University Dept. of Mathematics and Statistics

## The Maurer-Cartan form

Let G be a Lie group with Lie algebra  $\mathfrak{g}$ , and for any  $g \in G$  let  $L_g: G \to G$  denote the left translation by g:

$$L_g(h) = gh.$$

Observe that:

- $L_g$  is a diffeomorphism for each g
- $TL_{g^{-1}}: T_g G 
  ightarrow T_e G$  is an isomorphism for each g

• 
$$T_eG \cong \mathfrak{g}$$

#### Definition

Denote by  $\omega_G \in \Omega^1(G, \mathfrak{g})$  the *(left-invariant) Maurer-Cartan form* on G. Given  $g \in G$  and  $v \in T_g G$ , we define

$$(\omega_G)_g(v) = (TL_{g^{-1}})v.$$

 $\omega_G$  is the unique left-invariant 1-form on G.

#### Definition

Let  $f : M \to G$  be a smooth map valued in a Lie group G. The *(left)* Darboux derivative of f is the g-valued 1-form  $\omega_f = f^* \omega_G$ .

Moral:

• For  $f: M \to N$ ,

 $Tf:TM \rightarrow TN$ 

is usually referred to as "the derivative of f", but Tf still contains information about f

• In the case that N = G a Lie group, the composition:

$$TM \xrightarrow{Tf} TG \xrightarrow{\omega_G} \mathfrak{g}$$

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

has the effect of forgetting the data of f and keeping only the information about the "honest derivative of f"

Example:

- Take  $f : \mathbb{R} \to \mathbb{R}$
- Then  $Tf : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$  with

$$Tf(x,v) = (f(x), f'(x)v)$$

• Recall that  $\mathbb{R}$  is a Lie group with Lie algebra  $\mathbb{R}$ , and Maurer-Cartan form given by  $dt : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  where  $t : \mathbb{R} \to \mathbb{R}$  is the identity function and thereby

$$dt(x,v) = v$$

• The Darboux derivative  $\omega_f$  is then given by

$$(\omega_f)_x(v) = f'(x)v$$

## The nonabelian fund. theorem of calculus

Observation: Since  $\omega_G$  satisfies:

$$d\omega_G + \frac{1}{2}[\omega_G, \omega_G] = 0$$

and d is natural, we have

$$d\omega_f + \frac{1}{2}[\omega_f, \omega_f] = 0$$

#### Theorem

Let G be a Lie group with Lie algebra  $\mathfrak{g}$ , M a manifold, and let  $\omega \in \Omega^1(M; \mathfrak{g})$  such that  $d\omega + \frac{1}{2}[\omega, \omega] = 0$ . Then, for each  $p \in M$ , there exists an open neighborhood  $p \in U$  and smooth function  $f: U \to G$  such that  $\omega|_U = \omega_f$ . f is unique up to translation by an element in G.

## The Chevalley-Eilenberg algebra of a Lie algebra

#### Definition

Let  $\mathfrak{g}$  be a (finite-dimensional) Lie algebra, denote by  $\mathrm{CE}(\mathfrak{g})$  the differential graded algebra whose underlying graded algebra is given by the Grassmann algebra on the dual of  $\mathfrak{g}$ :

$$\operatorname{CE}(\mathfrak{g}) = \wedge^{\bullet} \mathfrak{g}^*,$$

and whose differential is given on generators by the dual of the Lie bracket on  ${\mathfrak g}$  considered as a linear map, with an added sign:

$$-[-,-]^*:\mathfrak{g}^*\to\mathfrak{g}^*\wedge\mathfrak{g}^*,$$

and extended by the graded Leibniz rule.

Remark:

 For g a finite-dimensional vector space, dg-structures on ∧<sup>•</sup>g\* are in bijection with Lie algebra structures on g

Emilio Verdooren (TTU)

## Interlude: Lie algebra cohomology and extensions

#### Definition

Given a short exact sequence of Lie algebras:

$$0 
ightarrow \mathfrak{h} 
ightarrow \mathfrak{e} 
ightarrow \mathfrak{g} 
ightarrow 0$$

one says that  $\mathfrak{e}$  is an extension of  $\mathfrak{g}$  by  $\mathfrak{h}$ . When  $[h, -]_{\mathfrak{e}}$  vanishes for any  $h \in \mathfrak{h}$ , the extension is said to be central. Two extensions are equivalent when we have a diagram:



#### in which f is an isomorphism.

Emilio Verdooren (TTU)

#### Proposition

Let  $\mathfrak{g}$  be a Lie algebra and M a left  $\mathfrak{g}$ -module. The second degree cohomology of  $\mathfrak{g}$  with values in M is in bijective correspondence with equivalence classes of central extensions:

$$M 
ightarrow \mathfrak{e} 
ightarrow \mathfrak{g}$$

Of particular interest to us is the case when  $M = \mathbb{R}$ . Proof sketch in one direction:

- $\bullet$  The cohomology of  ${\rm CE}(\mathfrak{g})$  is precisely the real valued Lie algebra cohomology of  $\mathfrak{g}$
- From the definition of  $CE(\mathfrak{g})$  we see that a 2-cocycle is a linear map

$$u:\mathfrak{g}\wedge\mathfrak{g}\to\mathbb{R}$$

such that

$$\mu(g_1, [g_2, g_3]) + \mu(g_2, [g_3, g_1]) + \mu(g_3, [g_1, g_2]) = 0$$

Proof sketch cont'd:

• Take the following exact sequence of vector spaces:

 $\mathbb{R} \to \mathfrak{g} \oplus \mathbb{R} \to \mathfrak{g}$ 

• Endow  $\mathfrak{g} \oplus \mathbb{R}$  with the bracket

$$[(g_1, t_1), (g_2, t_2)]_{\mathfrak{g} \oplus \mathbb{R}} = ([g_1, g_2], \mu(g_1, g_2))$$

•  $[-,-]_{\mathfrak{g}\oplus\mathbb{R}}$  satisfies the Jacobi identity as a result of the fact that  $\mu$  is a cocycle

· · · · · · · · ·

## Flat forms as morphisms of dga's

#### Proposition

Let  $X \in Man$  and  $\mathfrak{g}$  be a Lie algebra, there is a bijection (of sets):

$$\mathsf{DGCA}(\mathrm{CE}(\mathfrak{g}),\Omega(X))\cong\Omega^1_\flat(X;\mathfrak{g}),$$

where on the right we have the set of flat g-valued one-forms on X.

Proof sketch in one direction:

 Given ω ∈ Ω<sup>1</sup><sub>b</sub>(X; g) define a map ψ : CE(g) → Ω(X) by defining it on a generator α ∈ g\*:

$$\psi(\alpha) = \alpha \circ \omega$$

we verify that  $\psi$  respects differentials

• 
$$\psi(\mathbf{d}_{\rm CE}\alpha) = (\mathbf{d}_{\rm CE}\alpha) \circ (\omega \wedge \omega) = -\alpha([\omega \wedge \omega])$$

• 
$$d_{\mathrm{dR}}(\psi(\alpha)) = d_{\mathrm{dR}}(\alpha \circ \omega) = \alpha \circ d_{\mathrm{dR}}\omega$$

•  $d_{\mathrm{dR}}(\psi(\alpha)) - \psi(d_{\mathrm{CE}}\alpha) = \alpha(d_{\mathrm{dR}}\omega + [\omega \wedge \omega]) = \alpha(0) = 0$ 

Let G be a Lie group with Lie algebra  $\mathfrak{g}$ .

- The non-abelian fund. theorem of calculus tells us that flat g-valued 1-forms are locally equivalent to smooth *G*-valued functions modulo translation
- The proposition on the previous slide then gives way to an isomorphism of sheaves on Man:

 $\mathsf{DGCA}(\mathrm{CE}(\mathfrak{g}),\Omega(-))\cong y(G)/G$ 

 Consider the smooth singular complex of y(G)/G, which we will denote by Sing(y(G)/G) ∈ sSet. This is the simplicial set given by:

$$[n] \mapsto \mathsf{Sh}(\mathsf{Man})(y(\mathbf{\Delta}^n), y(G)/G)$$

where  $\Delta^n$  is a model for the smooth *n*-simplex (we will define this in detail later, for now just think of  $\mathbb{R}^n$ )

• We have a weak equivalence of simplicial sets

$$\mathbf{cosk}_2(\mathrm{Sing}(y(G)/G)) \simeq \mathbf{B}G$$

We'll revisit this example with a proof when we introduce the integration machinery proper, this is just meant to be a preview!

イロト イヨト イヨト -

#### Definition

An  $L_\infty$ -algebra is given by that data of  $\mathfrak{g}$  a graded vector space, together with linear maps

$$I_k:\wedge^k\mathfrak{g}\to\mathfrak{g}$$

of degree k - 2 for  $k \ge 0$ , subject to the generalized Jacobi identity  $\mathcal{J}_n = 0$  for all  $n \ge 0$ , where  $\mathcal{J}_n$  is the following sum:

$$\sum_{p=1}^{n} (-1)^{p(n-p)} \sum_{\sigma \in \mathsf{unshuff}(p,n-p)} (-1)^{\sigma} \varepsilon(v_{\sigma}) I_{n-p+1}(I_p(v_{\sigma(1)},...,v_{\sigma(p)}),v_{\sigma(p+1)},...,v_{\sigma(n)})$$

in which  $(-1)^{\sigma}$  denotes the sign of  $\sigma$  as a permutation, and  $\varepsilon(v_{\sigma})$  denotes the total Koszul sign imparted by permuting the  $v_i$  by  $\sigma$ .

イロト イヨト イヨト ・

Let's have a look at the first few generalized Jacobi identities:

- $\mathcal{J}_1 = \mathit{l}_1 \circ \mathit{l}_1 = 0$  says that  $\mathit{l}_1$  is a chain differential
- $\mathcal{J}_2 = -l_2(l_1(v_1), v_2) + (-1)^{|v_1||v_2|} l_2(l_1(v_2), v_1) + l_1(l_2(v_1, v_2)) = 0$ from this one can derive the equality:

$$l_1(l_2(v_1, v_2)) = l_2(l_1(v_2), v_1) + (-1)^{|v_1|} l_2(v_1, l_1(v_2))$$

which says  $l_1$  is a graded derivation of  $l_2$ 

•  $\mathcal{J}_3 = 0$  is quite a long expression, but its contents are the following ...

## Generalized Jacobi identity cont'd

Let  $f : \wedge^3 \mathfrak{g} \to \mathfrak{g}$  denote the following linear map:

$$f = \sum_{\sigma \in \text{shuff}(2,1)} \varepsilon(\sigma, -, -) l_2(l_2(-, -), -),$$

where  $\varepsilon(\sigma, v_1, v_2)$  is the total sign contribution from  $\sigma$  and the Koszul rule. Consider the following diagram:



The equality  $\mathcal{J}_3 = 0$  is equivalent to the statement that  $l_3$  is a chain homotopy between f and 0.  $\mathcal{J}_n = 0$  for n > 3 encode higher homotopy coherences: homotopies between homotopies between ...

- Ordinary Lie algebras
  - Take  $\mathfrak{g}$  concentrated in degree 0 with  $l_k = 0$  for all  $k \neq 2$
  - $I_2$  defines a Lie bracket on  $\mathfrak{g}_0$
- Differential graded Lie algebras
  - Take  $\mathfrak{g}$  to be an arbitrary graded vector space with  $l_k = 0$  for all k > 2
  - $\mathcal{J}_1$  gives that  $\mathit{l}_1$  is a differential
  - $l_2$  is a bracket and  $\mathcal{J}_2$  gives that  $l_1$  is a graded derivation of  $l_2$  as we have seen
- The line Lie *n*-algebra  $\mathbf{b}^{n-1}\mathbb{R}$ 
  - Take  $\mathfrak{g}$  concentrated in degree n with  $\mathfrak{g}_n = \mathbb{R}$
  - Take all brackets to be trivial

## Examples of $L_\infty$ -algebras cont'd: The string Lie 2-algebra

Recall the definition of the Killing form:

#### Definition

Let  $\mathfrak{g}$  be a Lie algebra and consider the linear map defined for each  $X \in \mathfrak{g}$ 

 $\operatorname{ad}(X):\mathfrak{g}\to\mathfrak{g}$ 

given by

$$\operatorname{ad}(X)(Y) = [X, Y].$$

The Killing form

 $\langle -, - \rangle : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ 

is the symmetric non-degenerate bilinear form given by:

 $\langle X, Y \rangle = \operatorname{tr}(\operatorname{ad}(X)\operatorname{ad}(Y)).$ 

## Examples of $L_\infty$ -algebras cont'd: The string Lie 2-algebra

The finite-dimensional or *skeletal* model of the string Lie 2-algebra is defined as follows (does the underlying vector space look familiar?):

#### Definition

Let  $\mathfrak{g}$  be a Lie algebra of compact type, denote by  $\mathfrak{str}_{\mathfrak{g}}$  or simply  $\mathfrak{str}$  the  $L_{\infty}$ -algebra comprised of the following data:

$$\mathfrak{str}=\mathfrak{g}\oplus\mathbb{R}$$

as a graded vector space. The brackets are given by:

- $l_1 : \mathbb{R} \to \mathfrak{g}$  is trivial
- $l_2 : (\wedge^2 \mathfrak{g}) \oplus (\mathfrak{g} \wedge \mathbb{R}) \oplus (\wedge^2 \mathbb{R}) \to \mathfrak{g} \oplus \mathbb{R}$  is trivial except for in degree 0 where  $l_2(g_1, g_2) = [g_1, g_2]_{\mathfrak{g}}$
- $I_3$  is trivial except for in degree 0 where  $I_3|_{\wedge^3\mathfrak{g}}$ :  $\wedge^3\mathfrak{g} \to \mathbb{R}$  is given by  $I_3(g_1, g_2, g_3) = \langle [g_1, g_2]_\mathfrak{g}, g_3 \rangle$

э

<ロト < 四ト < 三ト < 三ト

#### Definition

Let  $\mathfrak{g}$  be a degree-wise finite-dimensional  $L_{\infty}$ -algebra. The Chevalley-Eilenberg algebra of  $\mathfrak{g}$  has as its underlying graded algebra the shifted symmetric algebra of  $\mathfrak{g}^*$ :

$$\operatorname{CE}(\mathfrak{g}) = \operatorname{Sym}(\mathfrak{g}[1]^*)$$

and whose differential is given on generators by the sum of the duals of the brackets:

$$d_{\mathrm{CE}(\mathfrak{g})} = \sum_{k} I_{k}^{*}$$

and extended by linearity + the graded Leibniz rule.

Remark:

• For a degree-wise finite-dimensional graded vector space  $\mathfrak{g}$ , dg-structures on  $\operatorname{Sym}(\mathfrak{g}[1]^*)$  are in bijection with  $L_{\infty}$ -structures on  $\mathfrak{g}$  Let's immediately unpack this definition, let  ${\mathfrak g}$  be an  $L_\infty\text{-algebra}:$ 

• The shifted symmetric algebra  $\operatorname{Sym}(\mathfrak{g}[1]^*)$  looks like the following graded vector space:

$$\operatorname{Sym}(\mathfrak{g}[1])\cong\operatorname{Sym}(igoplus_p\mathfrak{g}_{2p+1}^*)\otimesigwedge(igoplus_q\mathfrak{g}_{2q}^*)$$

So we have  
• 
$$CE(\mathfrak{g})^1 \cong \wedge^1 \mathfrak{g}_0^*$$
  
•  $CE(\mathfrak{g})^2 \cong Sym^1(\mathfrak{g}_1^*) \oplus \wedge^2 \mathfrak{g}_0^*$   
•  $CE(\mathfrak{g})^3 \cong \wedge^3 \mathfrak{g}_0^* \oplus \wedge^1 \mathfrak{g}_2^* \oplus (Sym^1(\mathfrak{g}_1^*) \otimes \wedge^1 \mathfrak{g}_0^*)$   
• ...

To see how the differential works it's best to look at a concrete example ...

Recalling that stt has underlying graded vector space given by  $\mathfrak{str}_0 = \mathfrak{g}$  and  $\mathfrak{str}_1 = \mathbb{R}$ , we have that:

- $CE(\mathfrak{str})^1 \cong \mathfrak{g}^*$
- $\operatorname{CE}(\mathfrak{str})^2 \cong \wedge^2 \mathfrak{g}^* \oplus \mathbb{R}$
- $\operatorname{CE}(\mathfrak{str})^3 \cong \wedge^3 \mathfrak{g}^* \oplus \mathfrak{g}^*$
- $\operatorname{CE}(\mathfrak{str})^4 \cong \wedge^4 \mathfrak{g}^* \oplus \wedge^2 \mathfrak{g}^* \oplus \mathbb{R}$

The only non-trivial bracket data are the following maps:

$$I_2|_{\wedge^2\mathfrak{g}} = [-,-] : \wedge^2\mathfrak{g} \to \mathfrak{g}$$

and

$$I_3|_{\wedge^3\mathfrak{g}} = \langle [-,-],-\rangle : \wedge^3\mathfrak{g} \to \mathbb{R}$$

Thus the differential is computed as follows:

• In degree 1

$$d_{\mathrm{CE}(\mathfrak{str})}:\mathfrak{g}^* o\wedge^2\mathfrak{g}^*\oplus\mathbb{R}$$

is given by  $[-,-]^\ast+0$ 

In degree 2

$$d_{\mathrm{CE}(\mathfrak{str})}:\wedge^2\mathfrak{g}^*\oplus\mathbb{R}\to\wedge^3\mathfrak{g}^*\oplus\mathfrak{g}^*$$

is given on  $\wedge^2\mathfrak{g}^*$  by extending  $[-,-]^*$  by the graded Leibniz rule to produce values in  $\wedge^3\mathfrak{g}^*$ , and on  $\mathbb R$  by  $\langle [-,-],-\rangle^*+0$ 

 In degrees ≥ 3 everything follows from the extensions of what happens in degrees 1 and 2 The underlying graded vector space of  $\mathfrak{str}$ ,

$$\mathfrak{str}=\mathfrak{g}\oplus\mathbb{R}$$

is the same as we previously saw in the context of the central extension associated to a 2-cocycle, this is no coincidence.

#### Definition

Let  $\mathfrak{g}$  be an  $L_\infty\text{-algebra, a }\mathfrak{g}\text{-cocycle of degree }n$  is a morphism of  $L_\infty\text{-algebras:}$ 

$$\mu:\mathfrak{g}\to\mathbf{b}^{n-1}\mathbb{R},$$

or equivalently, a morphism of their Chevalley-Eilenberg algebras:

$$\operatorname{CE}(\mathbf{b}^{n-1}\mathbb{R}) \to \operatorname{CE}(\mathfrak{g})$$

### $\mathfrak{str}$ as a central extension cont'd

The definition is unpackaged as follows:

- A morphism CE(**b**<sup>n-1</sup>ℝ) → CE(𝔅) picks out an element μ ∈ CE<sup>n</sup>(𝔅), this is the image of the single generator of CE(**b**<sup>n-1</sup>ℝ) in degree n
- That this morphism respects differentials implies that  $d_{{\rm CE}(\mathfrak{g})}\mu=0$ Observe the following:
  - Given any *n*-cocycle  $\mu : \mathfrak{g} \to \mathbf{b}^{n-1}\mathbb{R}$  we can form the homotopy pullback (or *homotopy fiber*):



Observation cont'd:

• It follows that

$$\mathbf{b}^{n-2}\mathbb{R} o \mathfrak{g}_{\mu} o \mathfrak{g}$$

is a central extension of  $L_\infty$ -algebras

We now apply this argument to the dual of the Killing form:

- $\langle [-,-],-\rangle^*\in {\rm CE}(\mathfrak{g})$  is a closed element of degree 3, thereby it is a Lie 3-cocycle
- The central extension it classifies is precisely  $\mathfrak{str}$

This is the infinitesimal version of gerbes being classified by higher cohomology classes!