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The Maurer-Cartan form
Let G be a Lie group with Lie algebra g, and for any g ∈ G let
Lg : G → G denote the left translation by g :

Lg(h) = gh.

Observe that:
Lg is a diffeomorphism for each g
TLg−1 : TgG → TeG is an isomorphism for each g
TeG ∼= g

Definition
Denote by ωG ∈ Ω1(G , g) the (left-invariant) Maurer-Cartan form on G .
Given g ∈ G and v ∈ TgG , we define

(ωG)g(v) = (TLg−1)v .

ωG is the unique left-invariant 1-form on G .

Emilio Verdooren (TTU) 2 / 25



The Darboux derivative

Definition
Let f : M → G be a smooth map valued in a Lie group G . The (left)
Darboux derivative of f is the g-valued 1-form ωf = f ∗ωG .

Moral:
For f : M → N,

Tf : TM → TN

is usually referred to as “the derivative of f ”, but Tf still contains
information about f
In the case that N = G a Lie group, the composition:

TM Tf−→ TG ωG−−→ g

has the effect of forgetting the data of f and keeping only the
information about the “honest derivative of f ”
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The Darboux derivative cont’d

Example:
Take f : R → R
Then Tf : R × R → R × R with

Tf (x , v) = (f (x), f ′(x)v)

Recall that R is a Lie group with Lie algebra R, and Maurer-Cartan
form given by dt : R × R → R where t : R → R is the identity
function and thereby

dt(x , v) = v

The Darboux derivative ωf is then given by

(ωf )x (v) = f ′(x)v
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The nonabelian fund. theorem of calculus

Observation: Since ωG satisfies:

dωG + 1
2[ωG , ωG ] = 0

and d is natural, we have

dωf + 1
2[ωf , ωf ] = 0

Theorem
Let G be a Lie group with Lie algebra g, M a manifold, and let
ω ∈ Ω1(M; g) such that dω + 1

2 [ω, ω] = 0. Then, for each p ∈ M, there
exists an open neighborhood p ∈ U and smooth function f : U → G such
that ω|U= ωf . f is unique up to translation by an element in G .
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The Chevalley-Eilenberg algebra of a Lie algebra

Definition
Let g be a (finite-dimensional) Lie algebra, denote by CE(g) the
differential graded algebra whose underlying graded algebra is given by the
Grassmann algebra on the dual of g:

CE(g) = ∧•g∗,

and whose differential is given on generators by the dual of the Lie bracket
on g considered as a linear map, with an added sign:

−[−,−]∗ : g∗ → g∗ ∧ g∗,

and extended by the graded Leibniz rule.

Remark:
For g a finite-dimensional vector space, dg-structures on ∧•g∗ are in
bijection with Lie algebra structures on g
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Interlude: Lie algebra cohomology and extensions

Definition
Given a short exact sequence of Lie algebras:

0 → h → e → g → 0

one says that e is an extension of g by h. When [h,−]e vanishes for any
h ∈ h, the extension is said to be central. Two extensions are equivalent
when we have a diagram:

h e′ g

h e g

i ′ s′

idh

i

f

s

idg

in which f is an isomorphism.
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Interlude: Lie algebra cohomology and extensions cont’d

Proposition
Let g be a Lie algebra and M a left g-module. The second degree
cohomology of g with values in M is in bijective correspondence with
equivalence classes of central extensions:

M → e → g

Of particular interest to us is the case when M = R.
Proof sketch in one direction:

The cohomology of CE(g) is precisely the real valued Lie algebra
cohomology of g
From the definition of CE(g) we see that a 2-cocycle is a linear map

µ : g ∧ g → R

such that

µ(g1, [g2, g3]) + µ(g2, [g3, g1]) + µ(g3, [g1, g2]) = 0
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Interlude: Lie algebra cohomology and extensions cont’d

Proof sketch cont’d:
Take the following exact sequence of vector spaces:

R → g ⊕ R → g

Endow g ⊕ R with the bracket

[(g1, t1), (g2, t2)]g⊕R = ([g1, g2], µ(g1, g2))

[−,−]g⊕R satisfies the Jacobi identity as a result of the fact that µ is
a cocycle
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Flat forms as morphisms of dga’s

Proposition
Let X ∈ Man and g be a Lie algebra, there is a bijection (of sets):

DGCA(CE(g),Ω(X )) ∼= Ω1
♭ (X ; g),

where on the right we have the set of flat g-valued one-forms on X .

Proof sketch in one direction:
Given ω ∈ Ω1

♭ (X ; g) define a map ψ : CE(g) → Ω(X ) by defining it
on a generator α ∈ g∗:

ψ(α) = α ◦ ω

we verify that ψ respects differentials
ψ(dCEα) = (dCEα) ◦ (ω ∧ ω) = −α([ω ∧ ω])
ddR(ψ(α)) = ddR(α ◦ ω) = α ◦ ddRω

ddR(ψ(α)) − ψ(dCEα) = α(ddRω + [ω ∧ ω]) = α(0) = 0
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“Classical” Lie integration

Let G be a Lie group with Lie algebra g.
The non-abelian fund. theorem of calculus tells us that flat g-valued
1-forms are locally equivalent to smooth G-valued functions modulo
translation
The proposition on the previous slide then gives way to an
isomorphism of sheaves on Man:

DGCA(CE(g),Ω(−)) ∼= y(G)/G

Emilio Verdooren (TTU) 11 / 25



“Classical” Lie integration cont’d

Consider the smooth singular complex of y(G)/G , which we will
denote by Sing(y(G)/G) ∈ sSet. This is the simplicial set given by:

[n] 7→ Sh(Man)(y(∆n), y(G)/G)

where ∆n is a model for the smooth n-simplex (we will define this in
detail later, for now just think of Rn)
We have a weak equivalence of simplicial sets

cosk2(Sing(y(G)/G)) ≃ BG

We’ll revisit this example with a proof when we introduce the integration
machinery proper, this is just meant to be a preview!
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L∞-algebras

Definition
An L∞-algebra is given by that data of g a graded vector space, together
with linear maps

lk : ∧kg → g

of degree k − 2 for k ≥ 0, subject to the generalized Jacobi identity
Jn = 0 for all n ≥ 0, where Jn is the following sum:

n∑
p=1

(−1)p(n−p) ∑
σ∈unshuff(p,n−p)

(−1)σε(vσ)ln−p+1(lp(vσ(1), ..., vσ(p)), vσ(p+1), ..., vσ(n))

in which (−1)σ denotes the sign of σ as a permutation, and ε(vσ) denotes
the total Koszul sign imparted by permuting the vi by σ.
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Generalized Jacobi identity

Let’s have a look at the first few generalized Jacobi identities:
J1 = l1 ◦ l1 = 0 says that l1 is a chain differential
J2 = −l2(l1(v1), v2) + (−1)|v1||v2|l2(l1(v2), v1) + l1(l2(v1, v2)) = 0
from this one can derive the equality:

l1(l2(v1, v2)) = l2(l1(v2), v1) + (−1)|v1|l2(v1, l1(v2))

which says l1 is a graded derivation of l2
J3 = 0 is quite a long expression, but its contents are the following ...
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Generalized Jacobi identity cont’d

Let f : ∧3g → g denote the following linear map:

f =
∑

σ∈shuff(2,1)
ε(σ,−,−)l2(l2(−,−),−),

where ε(σ, v1, v2) is the total sign contribution from σ and the Koszul rule.
Consider the following diagram:

(∧3g)n−1 (∧3g)n (∧3g)n+1

gn−1 gn gn+1

f
l3

l1

f
l3

l1

f

l1 l1

The equality J3 = 0 is equivalent to the statement that l3 is a chain
homotopy between f and 0. Jn = 0 for n > 3 encode higher homotopy
coherences: homotopies between homotopies between ...
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Examples of L∞-algebras

Ordinary Lie algebras
Take g concentrated in degree 0 with lk = 0 for all k ̸= 2
l2 defines a Lie bracket on g0

Differential graded Lie algebras
Take g to be an arbitrary graded vector space with lk = 0 for all k > 2
J1 gives that l1 is a differential
l2 is a bracket and J2 gives that l1 is a graded derivation of l2 as we
have seen

The line Lie n-algebra bn−1R
Take g concentrated in degree n with gn = R
Take all brackets to be trivial
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Examples of L∞-algebras cont’d: The string Lie 2-algebra

Recall the definition of the Killing form:

Definition
Let g be a Lie algebra and consider the linear map defined for each X ∈ g

ad(X ) : g → g

given by
ad(X )(Y ) = [X ,Y ].

The Killing form
⟨−,−⟩ : g ⊗ g → g

is the symmetric non-degenerate bilinear form given by:

⟨X ,Y ⟩ = tr(ad(X )ad(Y )).
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Examples of L∞-algebras cont’d: The string Lie 2-algebra

The finite-dimensional or skeletal model of the string Lie 2-algebra is
defined as follows (does the underlying vector space look familiar?):

Definition
Let g be a Lie algebra of compact type, denote by strg or simply str the
L∞-algebra comprised of the following data:

str = g ⊕ R

as a graded vector space. The brackets are given by:
l1 : R → g is trivial
l2 : (∧2g) ⊕ (g ∧ R) ⊕ (∧2R) → g ⊕ R is trivial except for in degree 0
where l2(g1, g2) = [g1, g2]g
l3 is trivial except for in degree 0 where l3|∧3g: ∧3g → R is given by
l3(g1, g2, g3) = ⟨[g1, g2]g, g3⟩
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The Chevalley-Eilenberg algebra of an L∞-algebra

Definition
Let g be a degree-wise finite-dimensional L∞-algebra. The
Chevalley-Eilenberg algebra of g has as its underlying graded algebra the
shifted symmetric algebra of g∗:

CE(g) = Sym(g[1]∗)

and whose differential is given on generators by the sum of the duals of
the brackets:

dCE(g) =
∑

k
l∗
k

and extended by linearity + the graded Leibniz rule.

Remark:
For a degree-wise finite-dimensional graded vector space g,
dg-structures on Sym(g[1]∗) are in bijection with L∞-structures on g
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The Chevalley-Eilenberg algebra of an L∞-algebra

Let’s immediately unpack this definition, let g be an L∞-algebra:
The shifted symmetric algebra Sym(g[1]∗) looks like the following
graded vector space:

Sym(g[1]) ∼= Sym(
⊕

p
g∗

2p+1) ⊗
∧

(
⊕

q
g∗

2q)

So we have
CE(g)1 ∼= ∧1g∗

0
CE(g)2 ∼= Sym1(g∗

1) ⊕ ∧2g∗
0

CE(g)3 ∼= ∧3g∗
0 ⊕ ∧1g∗

2 ⊕ (Sym1(g∗
1) ⊗ ∧1g∗

0)
...

To see how the differential works it’s best to look at a concrete example ...
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The Chevalley-Eilenberg algebra of str

Recalling that str has underlying graded vector space given by str0 = g
and str1 = R, we have that:

CE(str)1 ∼= g∗

CE(str)2 ∼= ∧2g∗ ⊕ R
CE(str)3 ∼= ∧3g∗ ⊕ g∗

CE(str)4 ∼= ∧4g∗ ⊕ ∧2g∗ ⊕ R
The only non-trivial bracket data are the following maps:

l2|∧2g= [−,−] : ∧2g → g

and
l3|∧3g= ⟨[−,−],−⟩ : ∧3g → R
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The Chevalley-Eilenberg algebra of str cont’d

Thus the differential is computed as follows:
In degree 1

dCE(str) : g∗ → ∧2g∗ ⊕ R

is given by [−,−]∗ + 0
In degree 2

dCE(str) : ∧2g∗ ⊕ R → ∧3g∗ ⊕ g∗

is given on ∧2g∗ by extending [−,−]∗ by the graded Leibniz rule to
produce values in ∧3g∗, and on R by ⟨[−,−],−⟩∗ + 0
In degrees ≥ 3 everything follows from the extensions of what
happens in degrees 1 and 2
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str as a central extension

The underlying graded vector space of str,

str = g ⊕ R

is the same as we previously saw in the context of the central extension
associated to a 2-cocycle, this is no coincidence.

Definition
Let g be an L∞-algebra, a g-cocycle of degree n is a morphism of
L∞-algebras:

µ : g → bn−1R,

or equivalently, a morphism of their Chevalley-Eilenberg algebras:

CE(bn−1R) → CE(g)
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str as a central extension cont’d

The definition is unpackaged as follows:
A morphism CE(bn−1R) → CE(g) picks out an element µ ∈ CEn(g),
this is the image of the single generator of CE(bn−1R) in degree n
That this morphism respects differentials implies that dCE(g)µ = 0

Observe the following:
Given any n-cocycle µ : g → bn−1R we can form the homotopy
pullback (or homotopy fiber):

gµ ∗

g bn−1Rµ
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str as a central extension cont’d

Observation cont’d:
It follows that

bn−2R → gµ → g

is a central extension of L∞-algebras
We now apply this argument to the dual of the Killing form:

⟨[−,−],−⟩∗ ∈ CE(g) is a closed element of degree 3, thereby it is a
Lie 3-cocycle
The central extension it classifies is precisely str

This is the infinitesimal version of gerbes being classified by higher
cohomology classes!
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