Characterizing Paths and Surfaces via (Higher) Holonomy

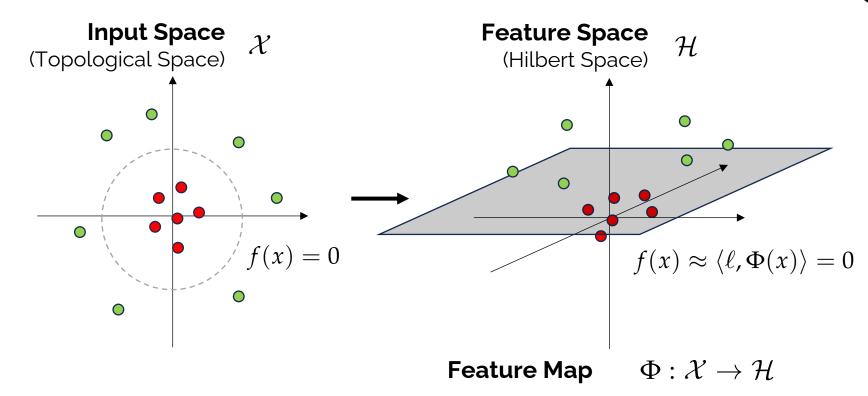
joint work with H. Oberhauser (Oxford)

Darrick Lee

University of Oxford
University of Edinburgh (starting Sept 2024)

Texas Tech Topology and Geometry Seminar April 23, 2024

Motivation: Classification in Machine Learning



Classification

Find a function $f: \mathcal{X} \to \mathbb{R}$ such that

$$f(x) < 0$$
 x is red

$$f(x) > 0$$
 x is green

What is a *good* feature map?

A feature map is **universal** if linear functionals $\langle \ell, \Phi(\cdot) \rangle : \mathcal{X} \to \mathbb{R}$ with $\ell \in \mathcal{H}$ are dense in $C(\mathcal{X}, \mathbb{R})$.

Example (The Monomial Map): $\mathcal{X} \subset \mathbb{R}^d$ compact

$$\Phi: \mathcal{X} \to \prod_{m=0}^{\infty} (\mathbb{R}^d)^{\otimes m} =: T((\mathbb{R}^d)) \quad \Phi(x) = \left(\frac{x^{\otimes m}}{m!}\right)_{m \geq 0} \quad \text{Specify coordinate in } (\mathbb{R}^d)^{\otimes m} \quad \Phi^I(x) = \frac{x^{i_1} \cdots x^{i_m}}{m!}$$

Specify coordinate in
$$(\mathbb{R}^d)^{\otimes m}$$

 $I = (i_1, \dots, i_m)$

$$\Phi^I(x) = \frac{x^{i_1} \cdots x^{i_m}}{m!}$$

Motivation: Characterizing Probability Measures

How can we characterize vector-valued random variables?

Random Variable

$$X = (X^1, \dots, X^d) : (\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}^d$$

corresponding probability measure

Law of X

$$\mu = X_* \mathbb{P} \in \mathcal{P}(\mathbb{R}^d)$$

Can we use feature maps to characterize measures?

$$\Phi: \mathcal{X} \to \mathcal{H}$$

A feature map is **characteristic** if the expectation $\mathbb{E}[\Phi]: \mathcal{P}(\mathcal{X}) \to \mathcal{H}$ is injective.

Example (Moments): $\mathcal{X} \subset \mathbb{R}^d$ compact

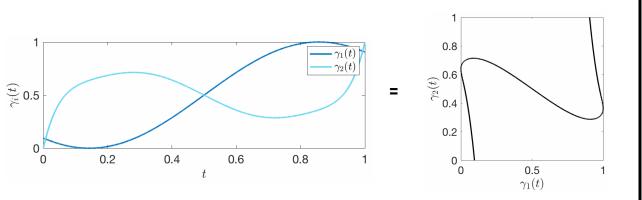
$$\Phi: \mathcal{X} \to \prod_{m=0}^{\infty} (\mathbb{R}^d)^{\otimes m} =: T((\mathbb{R}^d)) \quad \Phi(x) = \left(\frac{x^{\otimes m}}{m!}\right)_{m \geq 0}$$

Specify coordinate in $(\mathbb{R}^d)^{\otimes m}$ $I=(i_1,\ldots,i_m)$

$$\mathbb{E}[\Phi^I(X)] = \frac{\mathbb{E}[X^{i_1} \cdots X^{i_m}]}{m!}$$

Paths and Surfaces

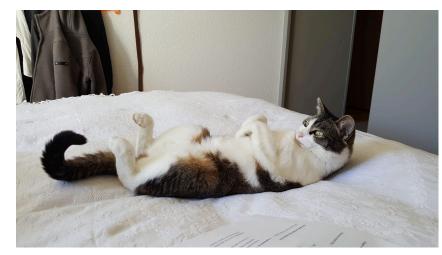
Time Series



Paths

$$x:[0,1]\to\mathbb{R}^d$$

Images



Surfaces

 $X:[0,1]^2\to\mathbb{R}^d$

This talk:
How can we build feature maps for *functional data*?

Motivation: Fourier Transforms and Characteristic Functions

The Characteristic Function (Fourier Transform of Probability Measures)

$$\left(\mathcal{F}^{\alpha}(\mu) = \mathbb{E}_{X \sim \mu}[\exp(i\alpha X)]\right)_{\alpha \in \mathbb{R}}$$

The Fourier transform is injective (it characterizes measures).

Extension to Nonabelian Groups (Fourier-Stieltjes Transform)

G compact, Hausdorff topological group

 $\Phi^{\alpha}:G o U^{\alpha}$ irreducible finite-dimensional unitary representation $\alpha\in\mathcal{M}$ set of (equivalence classes) of such representations U^{α} unitary group of finite dimensional Hilbert space V^{α}

The Fourier-Stieltjes transform $\left(\mathcal{F}^{\alpha}(\mu) = \mathbb{E}_{X \sim \mu}[\Phi^{\alpha}(X)]\right)_{\alpha \in \mathcal{M}}$ characterizes measures.

Can we use representations of paths and surfaces to achieve a similar result?

Representations of Paths

Thin Fundamental Groupoid

How do we encode paths into a groupoid?

The thin fundamental groupoid Π is a groupoid

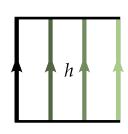
Objects:
$$\Pi_0 = \mathbb{R}^d$$

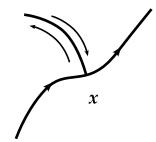
Edges:
$$\Pi_1 = C^{\infty}([0,1],\mathbb{R}^d)/\sim_{\mathsf{thin}}$$

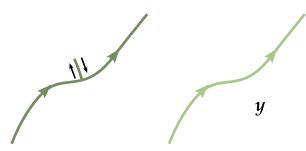
We need to quotient out paths by thin homotopies.

A smooth homotopy $h:[0,1]^2 \to \mathbb{R}^n$ between paths x and y is **thin** if $\operatorname{rank}(dh) \leq 1$

The homotopy sweeps out zero area







Representation of Paths

Representation of Paths as a Functor

(BG is the group G as a groupoid with one object)

$$F:\Pi\to\mathsf{B}G$$

1. Parallel Transport

 $F^{\alpha}:\Pi\to\mathsf{BGL}^n$

is a functor

2. Path Signature

$$S:\Pi\to \mathsf{B}T_{\mathsf{gl}}((\mathbb{R}^d))$$

is a functor

$$T_{\mathrm{gl}}(\!(\mathbb{R}^d)\!)$$
 is the group-like elements of $T(\!(\mathbb{R}^d)\!)\coloneqq\prod_{m=0}^\infty(\mathbb{R}^d)^{\otimes m}$

Example 1: Parallel Transport on Principal Bundles

Consider parallel transport in a trivial G-bundle over \mathbb{R}^d .

Path

$$x:[0,1]\to\mathbb{R}^d$$

Group

 GL^n

1. Partition Path

2. Approximate and multiply

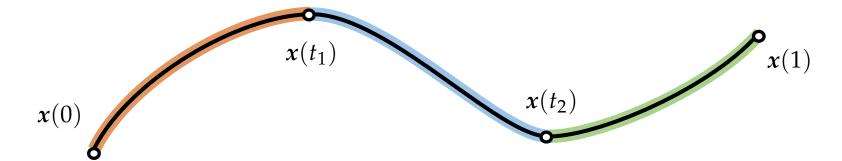
3. Take the limit as partition gets finer:

$$\alpha \in L(\mathbb{R}^d, \mathfrak{gl}^n)$$

$$lpha \in L(\mathbb{R}^d, \mathfrak{gl}^n)$$
 $lpha = \sum_{i=1}^d lpha^i dx^i \in \Omega^1(\mathbb{R}^d, \mathfrak{gl}^n) \qquad lpha^i \in \mathfrak{gl}^n$

Parallel Transport

$$\frac{dF_t^{\alpha}(\mathbf{x})}{dt} = F^{\alpha}(\mathbf{x}) \cdot \alpha \left(\frac{d\mathbf{x}_t}{dt}\right)$$
$$F_0^{\alpha}(\mathbf{x}) = I$$



$$\exp\left(\alpha\left(\frac{dx(0)}{dt}\right)\Delta t\right)$$

$$\exp\left(\alpha\left(\frac{dx(0)}{dt}\right)\Delta t\right) \qquad \exp\left(\alpha\left(\frac{dx(t_1)}{dt}\right)\Delta t\right) \qquad \exp\left(\alpha\left(\frac{dx(t_2)}{dt}\right)\Delta t\right)$$

$$\exp\left(\alpha\left(\frac{dx(t_2)}{dt}\right)\Delta t\right)$$

$$F^{\alpha}(x) = \lim_{n \to \infty} \prod_{i=1}^{n} \exp\left(\alpha \left(\frac{dx(t_{i-1})}{dt}\right) \Delta t\right)$$

Universal and Characteristic

Compact
$$\mathcal{K} \subset \Pi_1 = C^{\infty}([0,1],\mathbb{R}^d)/\sim_{\mathsf{th}}$$

Universal: The span of linear functionals

$$\left\{ \langle \ell, F^{\alpha}(\cdot) \rangle : \mathcal{K} \to \mathbb{R} : n > 0, \alpha \in L(\mathbb{R}^d, \mathfrak{gl}^n), \ell \in \mathfrak{gl}^n \right\}$$

is dense in $C(\mathcal{K}, \mathbb{R})$

Characteristic: For probability measures $\mu, \nu \in \mathcal{P}(\mathcal{K})$ such that $\mu \neq \nu$ there exists some n > 0, $\alpha \in L(\mathbb{R}^d, \mathfrak{gl}^n)$, and $\ell \in \mathfrak{gl}^n$ such that

$$\mathbb{E}_{\boldsymbol{x} \sim \mu}[\langle \ell, F^{\alpha}(\boldsymbol{x}) \rangle] \neq \mathbb{E}_{\boldsymbol{y} \sim \nu}[\langle \ell, F^{\alpha}(\boldsymbol{y}) \rangle]$$

Applications:

Time Series Classification

• Lou, Li, Hao, Path development network with finite-dimensional Lie group representations, preprint, 2022.

Time Series Generation

• Lou, Li, Hao, PCF-GAN: generating sequential data via the characteristic function on path space, preprint, 2023

Example 2: The Path Signature

The path signature is the universal translation-invariant parallel transport map.

Lie Algebra

$$\mathfrak{f} \coloneqq \mathrm{FL}(\mathbb{R}^d)$$
 (Completion) of Free Lie Algebra

Universal Enveloping Algebra

Algebra
$$U(\mathfrak{f})\coloneqq T(\!(\mathbb{R}^d)\!)\coloneqq \prod_{m\geq 0} (\mathbb{R}^d)^{\otimes m}$$
 $G\coloneqq T_{\mathrm{gl}}(\!(\mathbb{R}^d)\!)\subset T(\!(\mathbb{R}^d)\!)$ Group-Like Elements

Lie Group

$$G := T_{\operatorname{gl}}((\mathbb{R}^d)) \subset T((\mathbb{R}^d))$$
 Group-Like Elements

Connection

 Z_1, \ldots, Z_d Lie algebra generators

$$\zeta = \sum_{i=1}^d Z_i \, dx_i \in \Omega^1(\mathbb{R}^d, \mathfrak{f})$$

Path Signature

$$\frac{dS_t(x)}{dt} = S_t(x) \otimes \frac{dx}{dt} \qquad S_0(x) = 1$$

Universal Property

Example 2: The Path Signature

Path

$$\mathbf{x} = (\mathbf{x}^1, \dots, \mathbf{x}^d) \in C^{\infty}([0, 1], \mathbb{R}^d)$$

Path Signature

$$S: C^{\infty}([0,1], \mathbb{R}^d) \to \prod_{m=0}^{\infty} (\mathbb{R}^d)^{\otimes m} =: T((\mathbb{R}^d))$$

(represents paths/time series as an infinite sequence of tensors)

$$S(\mathbf{x}) = \left(S^{(m)}(\mathbf{x})\right)_{m \ge 0}$$

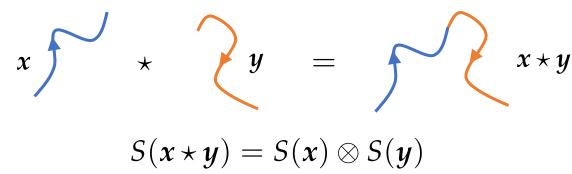
$$S^{(m)}(\mathbf{x}) = \int_{\Delta^m} \mathbf{x}'_{t_1} \otimes \ldots \otimes \mathbf{x}'_{t_m} dt_1 \ldots dt_m$$

$$\Delta^m = \{0 \le t_1 < \ldots < t_m \le 1\}$$

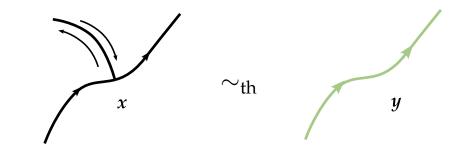
Example (m=1):

$$S^{(1)}(x) = x_1 - x_0$$

Chen's Identity (preserves algebraic structure of paths)



Characterization of Thin Homotopy Classes



$$S(\pmb{x}) = S(\pmb{y})$$
 if and only if $\pmb{x} \sim_{\sf th} \pmb{y}$

Universal and Characteristic

The path signature is universal and characteristic.

Compact
$$\mathcal{X} \subset \Pi_1 = C^{\infty}([0,1],\mathbb{R}^d)/\sim_{\mathsf{th}}$$

Universal

$$\langle \ell, S(\cdot) \rangle : \mathcal{X} \to \mathbb{R}$$

Linear functionals can approximate continuous functions on \mathcal{X} .

Characteristic

$$\mathbb{E}[S]: \mathcal{P}(\mathcal{X}) \to T((\mathbb{R}^d))$$

Expected features characterize probability measures on \mathcal{X} .

Why do we need Chen's Identity?

$$x \rightarrow y = \int \int x \star y \qquad S(x \star y) = S(x) \otimes S(y)$$

Parallelism: Allows Efficient GPU Implementations

Signature Computation: Split path into small pieces, compute signature in parallel, then multiply.

• Kidger and Lyons, Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU, ICLR 2021.

Signature Kernel Computations: Recursive algorithm for computing inner products of signatures.

• Kiraly, Oberhauser, Kernels for sequentially ordered data, Journal of Machine Learning Research, 2019.

Low Rank Approximations: Recursive algorithm for low rank approximations to signatures.

• Toth, Bonnier, Oberhauser, Seq2Tens: An efficient representation of sequences by low-rank tensor projections, ICLR 2021.

Graph Neural Networks: Recursive algorithm for signature-based graph neural network layer.

• Toth, **L**., Hacker, Oberhauser, *Capturing graphs with hypo-elliptic diffusions*, NeurIPS, 2022.

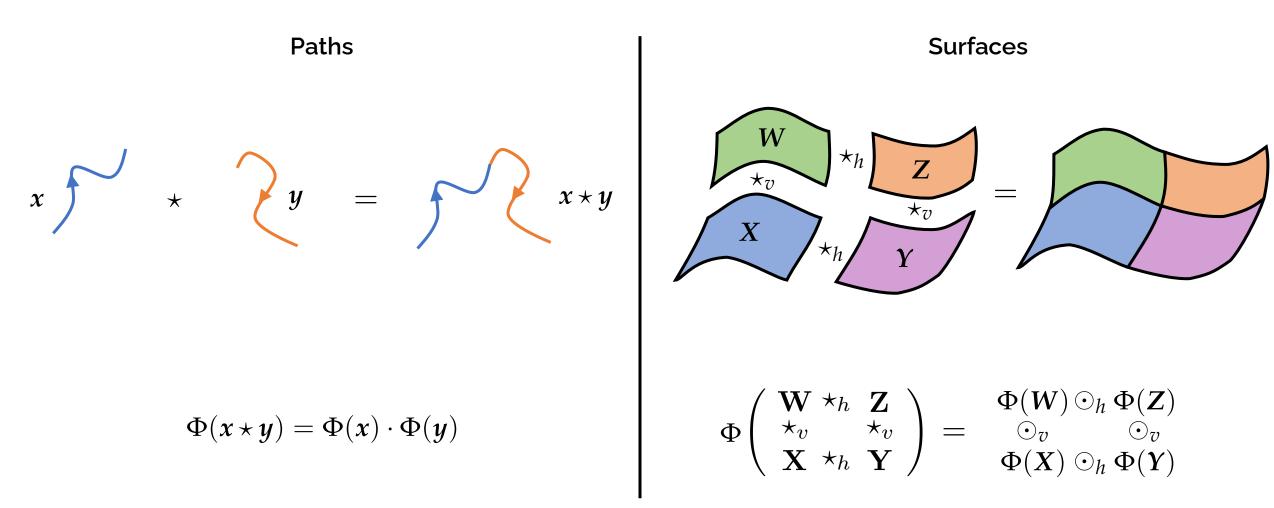
Generalizations of Universality / Characteristicness

Universal/Characteristic properties can be extended to rough paths.

- Chevyrev, Lyons, Characteristic functions of measures on geometric rough paths, Annals of Probability, 2016.
- Chevyrev, Oberhauser, Signature moments to characterize laws of stochastic processes, Journal of Machine Learning Research, 2022.
- Cuchiero, Schmocker, Teichmann, Global universal approximation of functional input maps on weighted spaces, preprint 2023.

Representation of Surfaces

Structure Preserving Maps

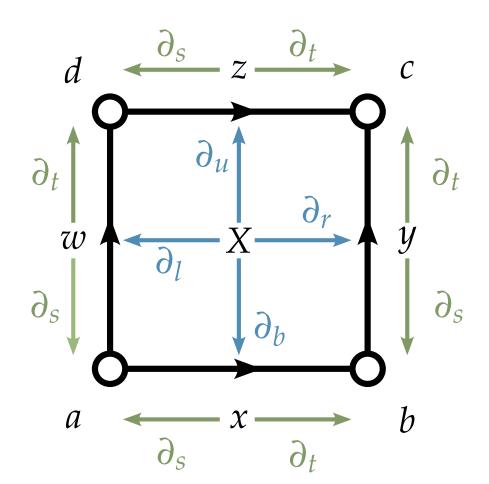


Other approaches to higher dimensional signatures do not preserve this algebraic structure.

Double Groupoids

Def: A (edge symmetric) double groupoid **G** is:

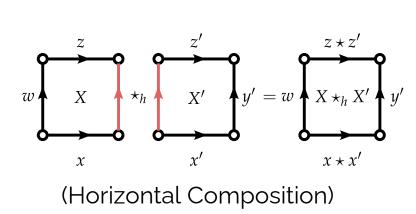
- A set of of objects G_0 and a set of edges G_1 which form a groupoid
- A set of squares ${f G}_2$ with (left, right, up, bottom) boundary maps $\partial_l,\partial_r,\partial_u,\partial_b:{f G}_2 o{f G}_1$

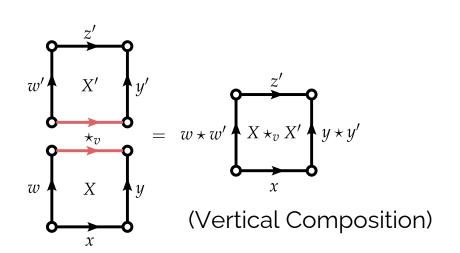


Double Groupoids

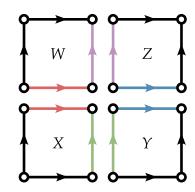
Def: A (edge symmetric) double groupoid **G** is:

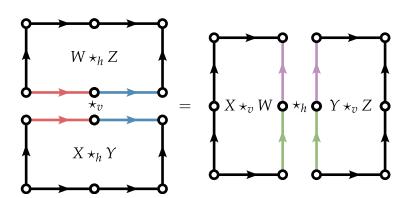
- A set of of *objects* \mathbf{G}_0 and a set of *edges* \mathbf{G}_1 which form a groupoid
- A set of squares G_2 with (left, right, up, bottom) boundary maps $\partial_l, \partial_r, \partial_u, \partial_b : G_2 \to G_1$
 - Horizontal/Vertical Composition (associative):

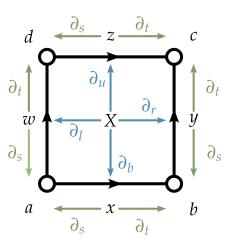




Interchange Law







Double Groupoids and Functors

• Identity Squares: For every $x \in \mathbf{G}_1$, there exist horizontal and vertical identity squares $1^h_x, 1^v_y \in \mathbf{G}_2$

• Inverse Squares: For every $X\in \mathbf{G}_2$ there exist horizontal and vertical inverse squares X^{-h} , $X^{-v}\in \mathbf{G}_2$

Def: A functor $F : G \rightarrow H$ between double groupoids consist of maps

$$F_0: \mathbf{G}_0 o \mathbf{H}_0$$
 $F_1: \mathbf{G}_1 o \mathbf{H}_1$ $F_2: \mathbf{G}_2 o \mathbf{H}_2$ such that $F_1(x \star y) = F_1(x) \star F_1(y)$ and identities / inverses are preserved.

$$F_2(X \star_v Y) = F_2(X) \star_v F_2(Y)$$

 $F_2(X \star_h Y) = F_2(X) \star_h F_2(Y)$

Thin Fundamental Double Groupoids

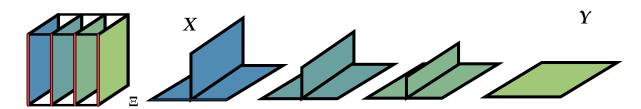
How do we encode surfaces as a double groupoid?

The thin fundamental double groupoid Π is a double groupoid

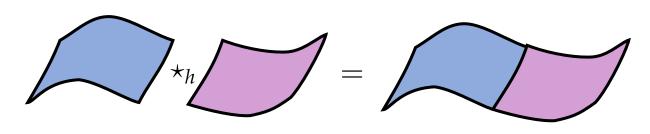
Objects:
$$\Pi_0 = \mathbb{R}^n$$
 Morphisms: $\Pi_1 = C^{\infty}([0,1],\mathbb{R}^n)/\sim_{th}$ Squares: $\Pi_2 = C^{\infty}([0,1]^2,\mathbb{R}^n)/\sim_{th}$

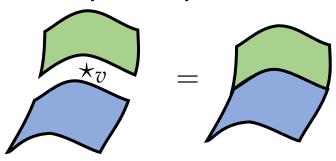
A smooth homotopy $\Xi:[0,1]^3\to\mathbb{R}^d$ between surfaces X and Y is **thin** if $\operatorname{rank}(d\Xi)\leq 2$

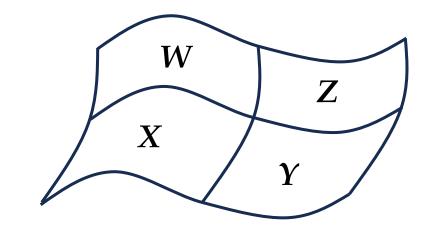
The homotopy sweeps out zero volume



Squares are equipped with horizontal and vertical compositions (associativity, identity, inverse):







$$\Phi \left(egin{array}{ccc} oldsymbol{W} \star_h oldsymbol{Z} \ \star_v & \star_v \ oldsymbol{X} \star_h oldsymbol{Y} \end{array}
ight) = egin{array}{ccc} \Phi(oldsymbol{W}) \odot_h \Phi(oldsymbol{Z}) \ \odot_v & \odot_v \ \Phi(oldsymbol{X}) \odot_h \Phi(oldsymbol{Y}) \end{array}$$

What is the generalization of a group which allows for two multiplication operators?

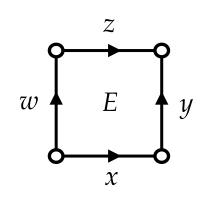
Trivial Double Group

Def: A double group is a double groupoid with one object.

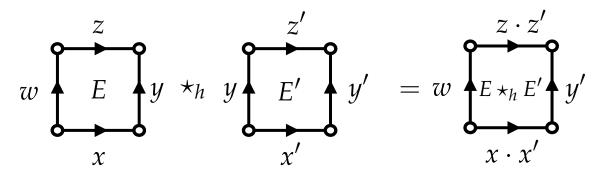
Given a group G, we define the *trivial double group of* G, denoted $\mathbf{D}(G)$, by

$$\mathbf{D}_1(G) = G$$

$$\mathbf{D}_2(G) = \{(x, y, z, w; E) \in G^5 : E = xyz^{-1}w^{-1}\}$$



Horizontal Composition



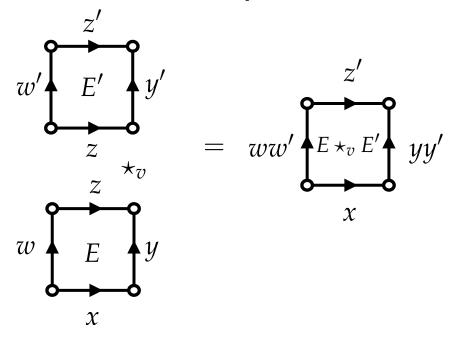
$$E \star_h E' = xx'y'(z')^{-1}z^{-1}w^{-1}$$

$$= x(x'y'(z')^{-1}y^{-1})x^{-1}(xyz^{-1}w^{-1})$$

$$= (x \triangleright E') \cdot E$$

$$x \triangleright y := xyx^{-1}$$

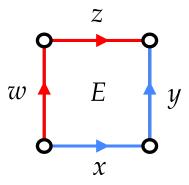
Vertical Composition



$$E \star_v E' = E \cdot (w \rhd E')$$

Double Groups

We interpret $\,E\,$ as a relationship between the two paths $\,wz\,$ and $\,xy\,$.



To obtain more general double groups, we the interior element $\,E\,$ should be valued in another group $\,H\,$

Crossed Modules

Def: A crossed module $G = (\delta : G_2 \rightarrow G_1, \triangleright)$ consists of:

- Groups: $(G_1, \cdot), (G_2, *)$
- Boundary Map: $\delta: \mathbf{G}_2 \to \mathbf{G}_1$ (group homomorphism)
- Action: \triangleright : $G_1 \to \operatorname{Aut}(G_2)$ (g acting on h is written $g \rhd h$) such that

CM₁.
$$\delta(g \triangleright h) = g \cdot \delta(h) \cdot g^{-1}$$
 for all $g \in \mathbf{G}_1, h \in \mathbf{G}_2$

CM2.
$$\delta(h_1) > h_2 = h_1 * h_2 * h_1^{-1}$$
 for all $h_1, h_2 \in \mathbf{G}_2$

Ex: Trivial crossed module

$$\mathbf{G} = (\mathrm{id} : G \to G, \rhd)$$
$$x \rhd y = xyx^{-1}$$

Given a crossed module $\mathbf{G}=(\delta:\mathbf{G}_2 o\mathbf{G}_1,\rhd)$, we construct a double group $\mathbf{D}(\mathbf{G})$

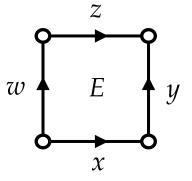
$$\mathbf{D}_1(\mathbf{G}) = \mathbf{G}_1$$
 $\mathbf{D}_2(\mathbf{G}) = \{(x, y, z, w; E) \in \mathbf{G}_1^4 \times \mathbf{G}_2 : \delta(E) = xyz^{-1}w^{-1}\}$

Horizontal Composition

$$E \star_h E' = (x \rhd E') * E$$

Vertical Composition

$$E \star_v E' = E * (w \rhd E')$$



The boundary formulas hold (CM1) and the interchange law holds (CM2).

General Linear Crossed Module

The general linear crossed module is defined by automorphisms of (Baez-Crans) 2-vector spaces:

$$\mathcal{V}^{n,m,p} := \mathbb{R}^{n+m} \xrightarrow{\phi} \mathbb{R}^{n+p} \qquad \qquad \phi = \begin{pmatrix} I_n & 0 \\ 0 & 0 \end{pmatrix}$$

Def: The crossed module $\mathbf{GL}^{n,m,p} = (\delta : \mathbf{GL}_2^{n,m,p} \to \mathbf{GL}_1^{n,m,p}, \triangleright)$ is defined by

$$\mathbf{GL}_{1}^{n,m,p} = \left\{ F, G = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix}, \begin{pmatrix} A & D \\ 0 & E \end{pmatrix} \in \mathbf{GL}^{n+m} \times \mathbf{GL}^{n+p} \right\} \qquad \qquad \stackrel{\mathbb{R}}{\downarrow} \qquad \qquad \downarrow G$$

$$\mathbb{R}^{n+m} \xrightarrow{\phi} \mathbb{R}^{n+p}$$

$$\mathbb{R}^{n+m} \xrightarrow{\phi} \mathbb{R}^{n+p}$$

$$\downarrow G$$

$$\mathbb{R}^{n+m} \xrightarrow{\phi} \mathbb{R}^{n+p}$$

$$\mathbf{GL}_{2}^{n,m,p} := \left\{ H = \begin{pmatrix} A - I & D \\ B & U \end{pmatrix} \in \mathbf{Mat}_{n+m,n+p} : A \in \mathbf{GL}^{n} \right\}$$

$$\mathbb{R}^{n+m} \xrightarrow{\phi} \mathbb{R}^{n+p}$$

$$\mathbb{R}^{n+m} \xrightarrow{\phi} \mathbb{R}^{n+p}$$

Group Multiplication

$$H * H' = H + H' + H\phi H' \mid H^{-*} = -H(I + \phi H)^{-1} \mid \delta(H) = (H\phi + I, \phi H + I)$$

Inverse

$$H^{-*} = -H(I + \phi H)^{-1}$$

Crossed Module Boundary

$$\delta(H) = (H\phi + I, \phi H + I)$$

Crossed Module Action

$$(F,G) \rhd H = FHG^{-1}$$

M. Forrester-Barker, Representations of crossed modules and cat¹-groups, PhD Thesis, University of Wales, Bangor, 2003

J. Baez and A. Crans, Higher dimensional algebra VI: Lie 2-algebras, Theory and Applications of Categories, 2004.

General Linear Differential Crossed Module

Def: A differential crossed module $\mathfrak{g}=(\delta:\mathfrak{g}_2 o\mathfrak{g}_1,\rhd)$ has:

- Lie Algebras: $(\mathfrak{g}_1, [\cdot, \cdot]), (\mathfrak{g}_2, [\cdot, \cdot]_*)$
- Boundary Map: $\delta: \mathfrak{g}_2 \to \mathfrak{g}_1$ (Lie algebra homomorphism)
- Action: \triangleright : $\mathfrak{g}_1 \to \mathrm{Der}(\mathfrak{g}_2)$ DCM1. $\delta(x \rhd E) = [x, \delta(E)]$ for all $x \in \mathfrak{g}_1, E \in \mathfrak{g}_2$ DCM2. $\delta(E) \rhd \delta(F) = [E, F]_*$ for all $E, F \in \mathfrak{g}_2$

Def: The general linear differential crossed module $\mathfrak{gl}^{n,m,p} = (\delta : \mathfrak{gl}_2^{n,m,p} \to \mathfrak{gl}_1^{n,m,p}, \triangleright)$ is defined by

$$\mathfrak{gl}_1^{n,m,p} = \left\{ X, Y = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix}, \begin{pmatrix} A & D \\ 0 & E \end{pmatrix} \in \mathfrak{gl}^{n+m} \oplus \mathfrak{gl}^{n+p} \right\}$$

$$\mathfrak{gl}_2^{n,m,p} := \left\{ Z = \begin{pmatrix} R & S \\ T & U \end{pmatrix} \in \operatorname{Mat}_{n+m,n+p} \right\}, \qquad [Z,Z']_* = Z\phi Z' - Z'\phi Z$$

Crossed Module Boundary

$$\delta(Z) = (Z\phi, \phi Z)$$

Lie Algebra Action

$$(X,Y) \rhd Z = XZ - ZY$$

Induced Lie Group Action

$$\triangleright : \mathbf{GL}_1^{n,m,p} \to \mathfrak{gl}_2^{n,m,p}$$

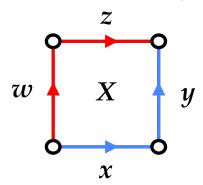
 $(F,G) \triangleright X = FXG^{-1}$

Towards Surface Holonomy

Mathematical physicists (Baez, Schreiber, Waldorf + others 2000's) developed **surface holonomy** to study higher gauge theories.

Martins, Picken, Surface holonomy for non-abelian 2-bundles via double groupoids, Advances in Mathematics, 2011

If the connection is **not flat**, then $F(w \star z) \neq F(x \star y)$.



Surface holonomy of X with respect to a **fake-flat 2-connection** provides a chain homotopy between $F(w \star z)$ and $F(x \star y)$.

2-Connection

$$\gamma \in L(\Lambda^2 \mathbb{R}^d, \mathfrak{gl}_2^{n,m,p})$$

Fake Flatness Condition

$$\delta(\gamma) = [(\alpha, \beta), (\alpha, \beta)]$$

Surface Holonomy

Surface Holonomy Functor

$$H:\Pi\to \mathsf{D}(\mathsf{GL}^{n,m,p})$$

2-Connection

$$\omega = (\alpha, \beta, \gamma)$$

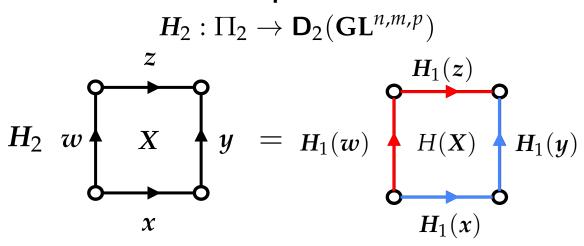
Edges

$$H_1:\Pi_1\to \mathbf{D}_1(\mathbf{GL}^{n,m,p})\subset \mathbf{GL}^{n+m}\times \mathbf{GL}^{n+p}$$

$$H_1 \circ \longrightarrow \circ = \circ \longrightarrow \circ$$

This is a classical parallel transport functor.

Squares



Surface Holonomy Map

$$H:\Pi_2\to \mathbf{GL}_2^{n,m,p}$$

This provides a homotopy between the path holonomy along paths wz and xy.

Surface Holonomy

Surface

$$X:[0,1]^2\to\mathbb{R}^d$$

Double Group

$$\mathbf{GL}^{n,m,p}$$

$$\widetilde{H}_{i,j} := \exp_* \left(\gamma \left(\frac{\partial X_{s_i,t_j}}{\partial s}, \frac{\partial X_{s_i,t_j}}{\partial t} \right) \Delta s \Delta t \right)$$

1. Partition surface

2. Approximate on subsquares and multiply

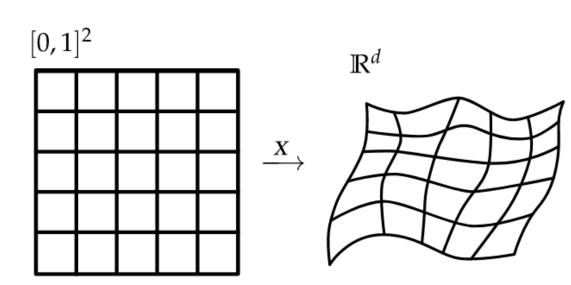
2-Connection

$$\omega = (\alpha, \beta, \gamma)$$

$$(\alpha, \beta) \in L(\mathbb{R}^d, \mathfrak{gl}_1^{n,m,p})$$

$$\gamma \in L(\Lambda^2 \mathbb{R}^d, \mathfrak{gl}_2^{n,m,p})$$

3. Take the limit as partition gets finer



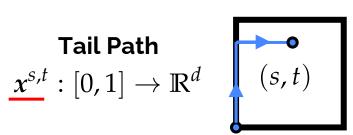
Surface Holonomy

Def: Given a 2-connection $\omega=(\alpha,\beta,\gamma)$ valued in $\mathfrak{gl}^{n,m,p}$ and $X\in C^{\infty}([0,1]^2,\mathbb{R}^d)$, the *surface holonomy* is

$$H_{s,t}^{\omega}(X):[0,1]^2\to \mathbf{GL}_2^{n,m,p}$$

$$\frac{\partial H_{s,t}^{\omega}(\mathbf{X})}{\partial t} = (I + H_{s,t}^{\omega}(\mathbf{X})\phi) \int_{0}^{s} F^{\alpha}(\underline{\mathbf{x}^{s',t}}) \gamma\left(\frac{\partial \mathbf{X}_{s',t}}{\partial s}, \frac{\partial \mathbf{X}_{s',t}}{\partial t}\right) (F^{\beta}(\underline{\mathbf{x}^{s',t}}))^{-1} ds' \qquad H_{s,0}^{\omega}(\mathbf{X}) = 0$$

$$\underline{\mathbf{x}^{s,t}}:[0,1]\to\mathbb{R}^d$$

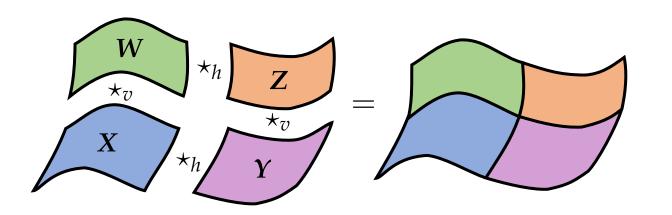


$$H^{\omega}(\mathbf{X}) := H^{\omega}_{1,1}(\mathbf{X})$$

Theorem [Martins, Picken '11]: $H:\Pi\to \mathsf{D}(\mathsf{GL}^{n,m,p})$ is a functor between double groupoids.

- H is invariant under thin homotopy of surfaces.
- It preserves horizontal and vertical compositions.

Universal and Characteristic Surface Features



$$\mathcal{X}\subset C([0,1]^2,\mathbb{R}^d)$$
 $(\mathcal{G},\odot_h,\odot_v)$ is a double group

$$\Phi \left(egin{array}{ccc} \mathbf{W} \star_h & \mathbf{Z} \ \star_v & \star_v \ \mathbf{X} \star_h & \mathbf{Y} \end{array}
ight) = egin{array}{ccc} \Phi(W) \odot_h \Phi(\mathbf{Z}) \ \odot_v & \odot_v \ \Phi(X) \odot_h \Phi(Y) \end{array}$$

$$\overline{X}_{s,t} = (s, t, X_{s,t}) : [0, 1]^2 \to \mathbb{R}^{d+2}$$

Main Results [L., Oberhauser '23]

- **1. Nonsmooth:** Generalize surface holonomy to bounded controlled p-variation surfaces (p < 2)
- 2. Functorial: It is compatible with horizontal and vertical concatenation of surfaces.
- 3. Computable: Computational methods for piecewise linear surfaces.
- **4. Universal:** The span of the following exponentials of linear functionals is dense in $C_b(C^{p-\text{cvar}}([0,1]^2,\mathbb{R}^d),\mathbb{C})$ $\{\exp(i\langle\ell,H^\omega(\bar{\cdot})\rangle):\omega=(\alpha,\beta,\gamma) \text{ 2-connection in }\mathfrak{gl}^{n,m,p},\ell\in\mathfrak{gl}_2^{n,m,p}\}$
- **5. Characteristic:** If $\mu, \nu \in \mathcal{P}(C^{p-\mathrm{var}}([0,1]^2,\mathbb{R}^d))$ such that $\mu \neq \nu$ there exists a 2-connection ω and ℓ such that $\mathrm{Law}_{X \sim \mu} \langle \ell, H^{\omega}(\overline{X}) \rangle \neq \mathrm{Law}_{Y \sim \nu} \langle \ell, H^{\omega}(\overline{Y}) \rangle$

Ongoing Work and Conclusion

Surface holonomy provides structure-preserving feature maps for images / surfaces analogous to parallel transport for paths / time series.

Ongoing Work:

- Machine Learning: How can we adapt path signature methodology to the setting of images?
- Universal Surface Holonomy: Develop the analogue of the path signature for surfaces.
- Unparametrized Surfaces: Does surface holonomy characterize thin homotopy classes of surfaces?
- Rough Surfaces: How can we go beyond the Young regime?

Thank you!

Preprint: Lee, Oberhauser, Random surfaces and higher algebra, arXiv:2311.08366, 2023