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Motivation: Classification in Machine Learning
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FeatureMap &: X — H

What is a good feature map?

A feature map is universal if linear functionals (¢, ®(-)) : X — R with ¢ € H are densein C(X,R) .

Example (The Monomial Map): X C R? compact
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Motivation: Characterizing Probability Measures
How can we characterize vector-valued random variables?

corresponding
Random Variable probability measure Law of X
X=(X%..., X" :(Q,F,P) - R — u=X,P e PR

Can we use feature maps to characterize measures?

o: X - H
A feature map is characteristic if the expectation E[®]: P(X) — H isinjective.

Specify coordinate in (Rd)®m

Example (Moments): X ¢ R? compact Ny :
[=(i1,.--,im)

P: X — ﬁ(le)@)m = T(R?) @(x)= (xﬁ”) .

m=0

]E[Xil . Xim]
m!

E[®'(X)] =



Paths and Surfaces

Time Series
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Paths

Surfaces

x:[0,1] - R?

X:[0,1> - R?

This talk:
How can we build feature maps for functional data?



Motivation: Fourier Transforms and Characteristic Functions

The Characteristic Function (Fourier Transform of Probability Measures)

(7*(1) = Bxelexp(iaX)))

The Fourier transform is injective (it characterizes measures).

aelR

Extension to Nonabelian Groups (Fourier-Stieltjes Transform)
G compact, Hausdorff topological group

®d* . G — U* irreducible finite-dimensional unitary representation

x € M set of (equivalence classes) of such representations

U~ unitary group of finite dimensional Hilbert space V*

The Fourier-Stieltjes transform (.7: “(n) = Ex~y [<I>“(X)]> N characterizes measures.
ne

Can we use representations of paths and surfaces to achieve a similar result?



Representations of Paths



Thin Fundamental Groupoid

How do we encode paths into a groupoid?
The thin fundamental groupoid [] is a groupoid
Objects: I1; = R” Edges: I1; = C*([0,1], RY)/ ~hin
We need to quotient out paths by thin homotopies.

A smooth homotopy /1 : [0,1]* — IR" between paths x and y is thin if rank(dh) < 1
« The homotopy sweeps out zero area

* H \\x N "




Representation of Paths

Representation of Paths as a Functor
(BGisthe group G as a groupoid with one object)

F:11 — BG
1. Parallel Transport 2. Path Signature
F*:TI — BGL" S: 11— BT, (RY)
s a functor is a functor

(00}

Tgl((le)) is the group-like elements of T(R?)) := I (R%)®m

m=0




Example 1: Parallel Transport on Principal Bundles

Consider parallel transport in a trivial G-bundle over R?

Path (Translation-Invariant) Parallel Transport
x:[0,1] — R Connection .
= L(le,g[”) dFtd(x) = F*(x) -« <@>
Group d : t !
oL =Y wdx' c Q'R gl") o € gl F(x) =1
i=1
1. Partition x(t1) x(1)
Path
x(0) x(t2)
2. Approximate dx(0) dx(t1) ( (dx(tZ)) At)
and multiply eXp <"‘ ( T xp e g ) A P\ T

. [ ° n dx(t-_ )
. Take the limit _ 1
3. Take the limit as F*(x) = lim | |exp (a ( d;‘ ) At)

partition gets finer: n—00 -



Universal and Characteristic

Compact K C II} = COO([O,l],]Rd)/ ~th

Universal: The span of linear functionals
{(é,P“(-)> K —>R:n>0acL(RgM), e g[”}
is dense in C(K,R)

Characteristic: For probability measures u, v € P(K) suchthat u # v there exists some n > 0,
« € L(R?, g"), and ¢ € gI" such that

Exp[{6, F*(x))] # Eyoy (6, F* ()]

Applications:

Time Series Classification
« Lou, Li, Hao, Path development network with finite-dimensional Lie group representations, preprint, 2022,

Time Series Generation
« Lou, Li, Hao, PCF-GAN. generating sequential data via the characteristic function on path space, preprint, 2023



Example 2: The Path Signature

The path signature is the universal translation-invariant parallel transport map.

Lie Algebra UnlversAalt;EE\r/aelopmg Lie Group
o dy  (Completion) of ._ dyy . d\@m ._ d dy) Group-Like
Fi= FL(IR ) Free Lie Algebra U(f) T T((]R )) T nEIO(]R ) G = Tgl((]R )) - T«IR )) Elements
Connection Path Signature
Z1,...,24 Liealgebra generators q5; (x) q
X X
d o = Si(x) @ — So(x) =1

=1
Universal Property

m—"+ BGL"




Example 2: The Path Signature

Path
x=(x,...,x%) e C*([0,1], RY)

Path Signature

S:C>([0,1],R?) — ﬁ (RH)®™ = T((R?))

m=0

(represents paths/time series
as an infinite sequence of tensors)

_ (c(m)
S(x)_(s (x>)m20
S(m)(x):/mx;1®...®x;mdt1...dtm
A" ={0<H <..<ty<1}

Example (m-=1):
SW(x) = x; — xg

Chen's Identity
(preserves algebraic structure of paths)

x * y = X %Y

S(x*y) = 5(x) ®5(y)

Characterization of Thin Homotopy Classes

N

X y

S(x) = S(y) ifandonlyif x~y vy

K. T. Chen, Integration of Paths - A Faithful Representation of Paths by Noncommutative Power Series, Transactions of the AMS, 1958
B. Hambly, T. Lyons, Uniqueness for the Signature of a Path of Bounded Variation and the Reduced Path Group, Annals of Math., 2010
H. Boedihardjo, X. Geng, T. Lyons, D. Yang, The Signature of a Rough Path: Uniqueness, Advances in Math., 2016



Universal and Characteristic

The path signature is universal and characteristic.

Compact X C Il = Coo([O,l],]Rd)/ ~th

Universal Characteristic
(6,5()): X = R E[S]: P(X) — T(RY)
Linear functionals can approximate Expected features characterize
continuous functions on X. probability measures on X




Why do we need Chen'’s Identity?
x x y = XKy S(x+y) = S(x) ®5(y)

Parallelism: Allows Efficient GPU Implementations

Signhature Computation: Split path into small pieces, compute signature in parallel, then multiply.

« Kidger and Lyons, Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and
GPU, ICLR 2021.

Signature Kernel Computations: Recursive algorithm for computing inner products of signatures.
« Kiraly, Oberhauser, Kernels for sequentially ordered data, Journal of Machine Learning Research, 2019.

Low Rank Approximations: Recursive algorithm for low rank approximations to signatures.
« Toth, Bonnier, Oberhauser, Seq2Tens: An efficient representation of sequences by low-rank tensor projections, ICLR 2021.

Graph Neural Networks: Recursive algorithm for signature-based graph neural network layer.
« Toth, L, Hacker, Oberhauser, Capturing graphs with hypo-elliptic diffusions, NeurlPS, 2022.



Generalizations of Universality / Characteristicness

Universal/Characteristic properties can be extended to rough paths.

« Chevyrev, Lyons, Characteristic functions of measures on geometric rough paths, Annals of Probability, 2016.

« Chevyrev, Oberhauser, Signature moments to characterize laws of stochastic processes, Journal of Machine Learning
Research, 2022,

« Cuchiero, Schmocker, Teichmann, Global universal approximation of functional input maps on weighted spaces, preprint
2023.



Representation of Surfaces



Structure Preserving Maps

Paths Surfaces
*h
*v
X * y — x*y >0 —
*1
W *x, 7, (I)(W) Op (I)(Z)
P(x*xy) = P(x) - D(y) Ol *v Ko | = O oF

X *h Y P(X) O (Y)

Other approaches to higher dimensional signatures do not preserve this algebraic structure.

C. Giusti, D. Lee, V. Nanda, H. Oberhauser, A topological approach to mapping space signatures, preprint (2022)
J. Diehl, L. Schmitz, Two-parameter sums signatures and corresponding quasisymmetric functions , preprint (2022)
J. Diehl, K. Ebrahimi-Fard, F. Harang, S. Tindel, On the signature of an image, preprint (2024)



Double Groupoids

Def: A (edge symmetric) double groupoid G is:
« A set of of objects Gy and a set of edges G7 which form a groupoid

« Aset of squares G, with (left, right, up, bottom) boundary maps 9;,9;,0,,9p, : Go — G

d
|
w




Double Groupoids PR
9l
d,
Def: A (edge symmetric) double groupoid G is; W —X—1Y
- A set of of objects Gy and a set of edges G; which form a groupoid $ 9

« Aset of squares G, with (left, right, up, bottom) boundary maps d;,09y,0,,9p : Go — G a

« Horizontal/Vertical Composition (associative):

O——03 (Vertical Composition)
X
« Interchange Law ——0 o——0 " o006 o0—0
A W 7 A A Wx, Z A )\ I\
O—>—0 (o] O—>—0
o ° *v = QXA WO*x,0 Y*x,Z O
o o O—>—0 (o] O—>—0Q
A X Y 1 A X*hY A 1 |
o0 O—>—10




Double Groupoids and Functors

 Identity Squares: For every x € Gy, there exist horizontal and vertical identity squares 1Z, 1; c Gy

h —

* Inverse Squares: For every X € Gj there exist horizontal and vertical inverse squares X _h, X ?eG

X x|l = | Lix x| x = | 1

Def: A functor F : G — H between double groupoids consist of maps

F : Gy — Hyp P1:G1—>H1 E:G, — Hy
suchthat Fi(xxvy) = F(x) % Fi(y) and identities / inverses are preserved.
B (X%, Y) = B(X) x, B(Y)

Fz (X *0 Y)

Fz (X) *0 Fz (Y)



Thin Fundamental Double Groupoids

How do we encode surfaces as a double groupoid?

The thin fundamental double groupoid [ [ is a double groupoid
Objects: ITy =R"” Morphisms: IT; = C*([0,1],R")/ ~,  Sauares: IT, = C®([0,1]%,R")/ ~y,

A smooth homotopy Z : [0,1]® — RY between surfaces X and Y is thin if rank(dZ) < 2
« The homotopy sweeps out zero volume

Squares are equipped with horizontal and vertical compositions (associativity, identity, inverse).

VA 5




*x0 *0 — O OF

X *nY D(X) @ D(Y)

What is the generalization of a group which allows for two
multiplication operators?



Trivial Double Group

Def: A double group is a double groupoid with one object.

Given a group G ., we define the trivial double group of G .denoted D(G) . by

D(G) =G D,(G) ={(x,y,z,w;E) € G° : E= xyz_lw_l}

Horizontal Composition

= x(x'y (z’)_ y )x_l(xyz_lw_l)

Vertical Composition




Double Groups

We interpret E as a relationship between the two paths wz and xy .

To obtain more general double groups, we the interior element E should be valued in another group H



Crossed Modules

Def: A crossed module G = (6 : Gy — G, >) consists of: Ex: Trivial crossed module

° Groups: (Gll ')/ (GZI *) G = (ld G — G, |>)

« Boundary Map: ¢ : G, — G (group homomorphism)

» Action:>: G1 — Aut(Gy) (g acting on & is writteng > I ) such that
CM1. S(g>h)=g-6(h)-g ! forall g€ Gy, heG

CM2. §(hy) > hy = hy * hy x hy ! forall hy, hy € Gy

Given a crossed module G = (§ : G, — Gy, >). We construct a double group D(G)

D,(G) =G D»(G) = {(x,y,z,w;E) € G x Gy : 6(E) = xyz w1}
Horizontal Composition Vertical Composition
Ex,E' = (x> E')*E ExyE' = Ex(wn> E)

The boundary formulas hold (CM1) and the interchange law holds (CM2).

XD y= xyx_1




General Linear Crossed Module

The general linear crossed module is defined by automorphisms of (Baez-Crans) 2-vector spaces:

I, O
nmp ._ pntm P pntp __ ([ 1n
Def: The crossed module GL™"P = (§: GLZ’m’p — GLT’m’p ,>) is defined by

R1+m ¢ s RPFP

A 0 A D
nm,p __ _ n-+m n+p
GL1 _{F’G_<B C)’(O E) c GL X GL } FJ/ J/G

]Rn+m (P \ Rn—l—p

R1+m ¢ v [R7HP

GL,""" = { H= (A; ! Z) € Matymunip : A E GL”} y

R1+m ¢ v [R7*HP

Group Multiplication Inverse Crossed Module Boundary | Crossed Module Action
H+«H =H+H +H¢H' | H*=-H(I+¢H) ! | 66H)=H¢+I,¢H+I) | (F,G)>H=FHG!

M. Forrester-Barker, Representations of crossed modules and cat’-groups, PhD Thesis, University of Wales, Bangor, 2003
J. Baez and A. Crans, Higher dimensional algebra VI: Lie 2-algebras, Theory and Applications of Categories, 2004.



General Linear Differential Crossed Module

Def: A differential crossed module ¢ = (0 : g» — @1,>) has;
« Lie Algebras: (91,1 °]), (82, [+ ])
- Boundary Map: 0 : go — g1 (Lie algebra homomorphism)

+ Action: >: g — Der(g,)
DCM1. 6(x > E) = [x,0(E)|forall x € g{,E € g
DCM2. 6(E) > 6(F) = |E, Fl« forall E,F € g,

Def: The general linear differential crossed module g™ = (5 : gly™"" — gli"™",1>) is defined by

A 0 A D
nm,p — — n—+m n-+p

n,m,p == {Z = (R S) c Matn+m,n+p} ’ [Z/ Z,]* — Z()DZ, o Z,¢Z

gl T U
Crossed Module Boundary Lie Algebra Action Induced Lie Group Action
5(2) = (Z¢,92) (X,Y) > Z=XZ—2ZY > GL s gl

(F,G) > X = FXG™!



Towards Surface Holonomy

Mathematical physicists (Baez, Schreiber, Waldorf + others 2000's) developed surface holonomy to study
higher gauge theories.

Martins, Picken, Surface holonomy for non-abelian 2-bundles via double groupoids, Advances in Mathematics, 2011

Surface Lie Group Lie Algebra Translation-Invariant
Connection
X: 017 > R | GLY™ < GL™™ x GL™7 | g™ C g™ ™ @ gl" P | (a,p) € L(RY, g1}

If the connection is not flat, then F(w x z) # F(x xy).

Surface holonomy of X with respect to a fake-flat 2-connection provides a chain
homotopy between F(w xz) and F(xxvy) .

2-Connection Fake Flatness Condition
v € L(A’RY, g1;™7) 6(v) = [(a,B), (a,B)]



Surface Holonomy

Surface Holonomy Functor

H : 11 — D(GL""?)

2-Connection
w = (a,B,7)

Edges
H; : T} — D;(GL"™™F) c GL""™ x GL"*?

H; 0—™—0 = 0——0
X Hi(x)

This is a classical parallel transport functor.

Squares
H2 : Hz — Dz(GLn’m’P)

Surface Holonomy Map
H:1I, — GL,™"

This provides a homotopy between the
path holonomy along paths wz and xy .



Surface Holonomy

Surface
X:[0,1> - R?
1. Partition
surface
0,1]2

]Rd

Hl,]

Double Group

GL""

aXSi,t]' aXSi,t]'
TEPAT o o

2. Approximate
on subsquares
and multiply

=

2-Connection
W = (“/ .Br '7)
d nm,
(“/:B) < L(]R /9[1 P)
v € L(A’RY, gl;"™P)

3. Take the limit as
partition gets finer



Surface Holonomy

Def: Given a 2-connection w = (&, B,7) valued in gl"™? and X € C*([0,1]?,RY) . the surface holonomy is

H¥(X) : [0,1)* — GLy™"

OH, (X) . s 90X, , 90X v
22— (s 009) [Py (S5 ) () s HG(X) =0
Tail Path

0,1 =R I (1) H*(X) := Hy; (X)

Theorem [Martins, Picken ‘11: H : II — D(GL""""?) is a functor between double groupoids.
1. H isinvariant under thin homotopy of surfaces.
2. It preserves horizontal and vertical compositions.

J. Faria Martins & Roger Picken, Surface holonomy for non-abelian 2-bundles via double groupoids, Advances in Mathematics, 2011.




Universal and Characteristic Surface Features

Main Results [L., Oberhauser ‘23]

1. Nonsmooth: Generalize surface holonomy to bounded controlled p-variation surfaces (p < 2)
Functorial: It is compatible with horizontal and vertical concatenation of surfaces.

Computable: Computational methods for piecewise linear surfaces.

X c C([0,1>,RY) (G, ®n, @) is a double group

(W *n 7 ) O(W) O, d(Z)
b *y *y — OF) OF)
X *n Y B(X) O, D(Y)

Xor = (s, Xs) : [0,1]2 — R4*2

> W N

Universal: The span of the following exponentials of linear functionals is dense in C,(CP~V¥([0,1]?, R?), C)
{exp(i(¢, H*(7))) : w = (&, B,7y) 2-connection in gl""*, ¢ € gly;""}

Characteristic: If u,v € P(CP7V([0,1]?,R?))such that u # 1 there exists a 2-connection wand ¢such that

LaWXNyM Hw( )> 7A LaWYNV<£ Hw( )>

o



Ongoing Work and Conclusion

Surface holonomy provides structure-preserving feature maps for images / surfaces
analogous to parallel transport for paths / time series.

Ongoing Work:

Machine Learning: How can we adapt path signature methodology to the setting of images?
Universal Surface Holonomy: Develop the analogue of the path signature for surfaces.
Unparametrized Surfaces: Does surface holonomy characterize thin homotopy classes of surfaces?

Rough Surfaces: How can we go beyond the Young regime?

Thank you!

Preprint: Lee, Oberhauser, Random surfaces and higher algebra, arXiv:2311.08366, 2023



