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1.1 BV-theory

The space of solutions of the field equations of a classical field theory
can be seen as the critical locus Crit(S) of its action functional S .

Crit(S) =

{
ϕ ∈ configuration

space

∣∣∣ δS(ϕ) = 0

}
This is hard, and problematic if there is a gauge symmetry.

Idea of BV-theory

Look at its derived critical locus RCrit(S), a derived enhancement of Crit(S).

Informally speaking,

RCrit(S) =

{
ϕ ∈ configuration

space
, ϕ+∈ antifields

∣∣∣ δS(ϕ) ϕ+

−−→ 0

}
E.o.m. not imposed on the nose, but up to something, a 1-simplex.
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1.1 BV-theory

Main approaches to make classical (and quantum) BV-theory precise in the literature:

1 NQP-manifolds/L∞-algebroid approach. [Jurčo, Raspollini, Sämann, Wolf, ...]
Algebra of classical observables is given by a Poisson dg-Lie algebra of functions on
an NQP-manifold, i.e. a differential-graded manifold (dg-manifold) equipped with a
(−1)-shifted symplectic form. (Equivalently, a symplectic L∞-algebroid.)

2 (Perturbative) Algebraic Quantum Field Theory. [Schenkel, Benini, Rejzner, ...]
Algebra of observables is given by a net of differential-graded Poisson ∗-algebras, on
spacetime.

3 Factorisation Algebras approach. [Costello, Gwilliam, Williams, ...]
Algebra of classical observables is given by the differential-graded P0-algebra of
functions on a (−1)-shifted symplectic formal moduli problem, which is sheaved on
spacetime.

Approaches (1) & (3) very close. Approaches (2) & (3) related by [Schenkel, Benini, ...].
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1.2 Familiar recipe for BV-theory

Ingredients:
1 an L∞-algebra L (BRST-algebra),
2 an element S ∈ CE(L) (action functional),

where:
CE(L) =

(
SymL∨[−1], dCE(L)

)
.

The (−1)-shifted cotangent bundle

T∨[−1]L[1] = (L⊕ L∨[−3])[1].

comes with natural (−1)-shifted Poisson bracket {−,−}.

Construct SBV := S + SBRST (BV-action) where SBRST := d̂CE(L).

Since {SBV, SBV} = 0, we have a new L∞-algebra Crit(S) given by

CE
(
Crit(S)

)
:=
(
Sym(L∨[−1]⊕ L[2]), QBV = {SBV,−}

)
.

This is the BV-complex.
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Example: Yang-Mills theory

BRST algebra

L[1] =
(

Ω0(M, g) Ω1(M, g)d
)

deg = −1 0

ℓ1(c) = dc,

ℓ2(c1, c2) = [c1, c2]g,

ℓ2(c,A) = [c,A]g,

BV-BRST algebra

Crit(S)[1] =
(

Ω0(M, g) Ω1(M, g) Ωd−1(M, g) Ωd (M, g)d d⋆d d
)

deg = −1 0 1 2

SBV(c,A,A+
, c+) =

∫
M

(
1

2
⟨FA, ⋆FA⟩g︸ ︷︷ ︸

S

−⟨A+
,∇Ac⟩g +

1

2
⟨c+, [c, c]g⟩g︸ ︷︷ ︸

SBRST

)
.
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∧, A2]g + [A1

∧, ⋆ dA2]g + [A2
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ℓ3(A1,A2,A3) =
[
A1

∧, ⋆ [A2
∧, A3]g

]
g
+
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∧, ⋆ [A3
∧, A1]g

]
g
+

[
A3

∧, ⋆ [A1
∧, A2]g

]
g
,
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1.3 BV-theory as deformation theory

Artinian dg-algebra: finite-dimensional, non-positively graded, dg-commutative
algebra R s.t. it has a unique maximal differential ideal mR which is nilpotent and
R/mR ∼= R.

Formal Moduli Problem: (algebraic) stack on Artinian dg-algebras, i.e.

F : dgArt≤0 −→ sSet.

Any formal moduli problem is equivalent to F ≃MC(g), for some L∞-algebra g,
where

MC(g) : R 7−→ MC(g⊗mR).

In BV-theory:

MC(Crit(S)) is the derived critical locus of the action functional S on MC(L)
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Example: Yang-Mills theory

How does the story go for Yang-Mills theory?

MC
(
Crit(S)

)
: R 7−→ MC(Crit(S) ⊗ mR)

MC(Crit(S) ⊗ mR)0 =


A ∈ Ω1(M, g) ⊗ mR,0

A+ ∈ Ωd−1(M, g) ⊗ mR,−1

c+ ∈ Ωd (M, g) ⊗ mR,−2

∣∣∣∣∣∣∣∣
∇A ⋆FA = dRA+

∇AA
+ = dRc+

 ,

MC(Crit(S) ⊗ mR)1 =



c1dt ∈ Ω0(M, g) ⊗ mR,0 ⊗ Ω1([0, 1])

A0 ∈ Ω1(M, g) ⊗ mR,0 ⊗ Ω0([0, 1])

A1dt ∈ Ω1(M, g) ⊗ mR,−1 ⊗ Ω1([0, 1])

A+
0 ∈ Ωd−1(M, g) ⊗ mR,−1 ⊗ Ω0([0, 1])

A+
1 dt ∈ Ωd−1(M, g) ⊗ mR,−2 ⊗ Ω1([0, 1])

c+0 ∈ Ωd (M, g) ⊗ mR,−2 ⊗ Ω0([0, 1])

c+1 dt ∈ Ωd (M, g) ⊗ mR,−3 ⊗ Ω1([0, 1])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇A0
⋆FA0 = dRA+

0

∇A0
A+
0 = dRc+0

d
dt

A0 + ∇A0
c1 = dRA1

d
dt

A+
0 + ∇A0

⋆FA1 +

+ [c1, A
+
0 ] = dRA+

1
d
dt

c+0 + ∇A0
A+
1 +

+ [c1, c
+
0 ] = dRc+1


,

(A,A+, c+) (A′,A+′, c+′)

(c1dt, A0 + A1dt, A
+
0 + A+

1 dt, c
+
0 + c+1 dt)
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1.4 Global BV-theory?

Formal Moduli Problem: (algebraic) derived stack on Artinian dg-algebras, i.e.

F : dgArt≤0 −→ sSet

Artinian dg-algebras ≃ algebras of function on ”derived thickened points”.

A (−1)-symplectic Formal Moduli Problem can be seen as the formal completion of a
fully-fledged (−1)-symplectic derived stack at some given point.

BL

X

Φ

Derived critical locus
as globally defined
formal derived smooth stack

Infinitesimal neighborhood of Φ
=

(Pointed) formal moduli problem

Fixed solution of equations
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1.4 Global BV-theory?

We have the following picture:

Formal Moduli Problem ←→ Perturbative physics

Formal derived smooth stack ←→ Non-perturbative physics

In fact, in terms of configuration spaces:

Example (Stack of G -bundles with connection)

[Ω1(M, g)/C∞(M, g)]︸ ︷︷ ︸
L∞-algebroid

̸= Bun∇
G (M)︸ ︷︷ ︸

stack of G -bundles

:= [M,BGconn]

Physics includes (higher) gauge theories

Quantisation requires BV-theory, i.e. derived geometry

Finite (higher) gauge transformations and global properties require stacks, i.e.
higher geometry (e.g. Aharonov-Bohm phase and magnetic charge for
electromagnetic field)
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1.4 Global BV-theory?

We have the following picture:

Formal Moduli Problem ←→ Perturbative physics

Formal derived smooth stack ←→ Non-perturbative physics

In fact, in terms of configuration spaces:

Example (Stack of G -bundles with connection)

[Ω1(M, g)/C∞(M, g)]︸ ︷︷ ︸
L∞-algebroid

̸= Bun∇
G (M)︸ ︷︷ ︸

stack of G -bundles

:= [M,BGconn]

Physics includes (higher) gauge theories

Quantisation requires BV-theory, i.e. derived geometry

Finite (higher) gauge transformations and global properties require stacks, i.e.
higher geometry (e.g. Aharonov-Bohm phase and magnetic charge for
electromagnetic field)
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1.5 Smooth stacks

smooth manifolds sets

∞-groupoids

smooth sets

(e.g. diffeological spaces)

sm
ooth

stacks
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1.6 Global BRST formalism

An ordinary geometric space can be encoded by its functor of points,
which is an ordinary sheaf.

A higher geometric space can be defined as a stack, which is a functor

X : Mfdop −→ sSet

satisfying a higher sheaf condition, i.e. it is an element of

SmoothStack := [Mfdop, sSet]◦proj,loc.

=⇒ geometry encompassing gauge principle from physics.
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1.5 Global BRST formalism

Now, let us go back to smooth stacks.

Moduli stack of principal G -bundles:
BG = [∗/G ]

Let M be a smooth manifold and
∐

α∈IVα ↠ M be a good open cover of it.

A map M
gαβ−−−−→ BG is given by a G -bundle {gαβ ∈ C∞(Vα ∩ Vβ ,G) | gαβ · gβγ = gαγ}.

Hom(M,BG) ≃


M BG

gαβ

cαgαβc−1
β

cα


.

Smooth stack of principal G -bundles on the manifold M:

BunG (M) := [M, BG ].
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1.6 Global BRST formalism

Smooth stack Bun∇G (M) of principal G -bundles with connection:

Hom
(
U, Bun∇G (M)

)
≃ cosk2


Z2 Z1 Z0

(
cα,

gαβ,Aα

g′αβ,A′α

)
(
c′α,

g′αβ,A′α
g′′αβ,A′′α

)
(
c′α·cα,

gαβ,Aα

g′′αβ,A′′α

)

(gαβ,Aα)

(g′αβ,A′α)


,

where:

Z0 =

{
gαβ ∈ C∞(Vα ∩ Vβ × U,G)

Aα ∈ Ω1
ver(Vα × U, g)

∣∣∣∣∣ gαβ · gβγ · gγα = 1

Aα = g−1
βα(Aβ + d)gβα

}
,

Z1 =



cα ∈ C∞(Vα × U,G)

gαβ , g
′
αβ ∈ C∞(Vα ∩ Vβ × U,G)

Aα,A′
α ∈ Ω1

ver(Vα × U, g)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gαβ · gβγ · gγα = 1

Aα = g−1
βα(Aβ + d)gβα

g ′
αβ · g ′

βγ · g ′
γα = 1

A′
α = g ′−1

βα (A′
β + d)g ′

βα

g ′
αβ = c−1

β gαβcα

A′
α = c−1

α (Aα + d)cα


,

Z2 = {compositions of gauge transformations} ,

Luigi Alfonsi (Hertfordshire) BV-formalism beyond perturbation theory 19/03/2024 16 / 35

https://researchprofiles.herts.ac.uk/portal/en/persons/luigi-alfonsi(75529415-3d42-4044-b92d-3dab8b1f8918).html


2.1 Family tree of smooth stacks

smooth manifolds sets

∞-groupoids

smooth sets

(e.g. diffeological spaces)

sm
ooth

stacks
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2.1 Family tree of smooth stacks

smooth manifolds sets

formal
smooth manifolds

∞-groupoids

smooth sets

(e.g. diffeological spaces)

sm
ooth

stacks

form
al

sm
oot

h set
s

formal
smooth stacks
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2.1 Family tree of smooth stacks

smooth manifolds sets

formal
smooth manifolds

formal derived
smooth manifolds ∞-groupoids

smooth sets

(e.g. diffeological spaces)

sm
ooth

stacks

form
al

sm
oot

h set
s

formal
smooth stacks

formal derived
smooth stacks
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2.3 Derived smooth manifolds

Observation: given manifolds M,N ↪→ B, the intersection M ∩ N := M ×B N is not
generally well-defined in Mfd.

Solution: derived smooth manifolds [Spivak, Joyce, Carchedi, Steffens, ...].

Use the natural embedding:
i : N(Mfd) −→ dMfd

The derived intersection always exists in the
(∞, 1)-category dMfd:

i(M)×h
i(B) i(N) i(M)

i(N) i(B).

i(f )

i(g)

x

y

z

For example, in B = R3,
M = {(x , y , x2y2) ∈ R3 | (x , y) ∈ R2}
and N = x , y -plane.

Luigi Alfonsi (Hertfordshire) BV-formalism beyond perturbation theory 19/03/2024 19 / 35

https://researchprofiles.herts.ac.uk/portal/en/persons/luigi-alfonsi(75529415-3d42-4044-b92d-3dab8b1f8918).html


2.3 Derived smooth manifolds

Observation: given manifolds M,N ↪→ B, the intersection M ∩ N := M ×B N is not
generally well-defined in Mfd.

Solution: derived smooth manifolds [Spivak, Joyce, Carchedi, Steffens, ...].

Use the natural embedding:
i : N(Mfd) −→ dMfd

The derived intersection always exists in the
(∞, 1)-category dMfd:

i(M)×h
i(B) i(N) i(M)

i(N) i(B).

i(f )

i(g)

x

y

z

For example, in B = R3,
M = {(x , y , x2y2) ∈ R3 | (x , y) ∈ R2}
and N = x , y -plane.

Luigi Alfonsi (Hertfordshire) BV-formalism beyond perturbation theory 19/03/2024 19 / 35

https://researchprofiles.herts.ac.uk/portal/en/persons/luigi-alfonsi(75529415-3d42-4044-b92d-3dab8b1f8918).html


2.2 C∞-algebras

Let CartSp be the category of Cartesian spaces {Rn}n∈N and smooth maps between them.

This is a Lawvere theory, as any object is such that Rn ∼= R× · · · × R.

Definition

A C∞-algebra is a product-preserving functor

A : CartSp −→ Set.

Example

Let M ∈ Mfd be a smooth manifold.

C∞(M) : Rn 7−→ C∞(M,Rn)

There is a natural embedding:
Mfd ↪→ C∞Algop
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2.3 Derived smooth manifolds

Homotopy C∞-algebras: simplicial C∞-algebras with projective model structure, i.e.

hC∞Alg := Nhc([∆
op,C∞Alg]◦proj),

where ∆ is the simplex category.

The following will be our effective definition of formal derived manifolds.

Theorem [Carchedi, Steffens 2019]

There is a canonical equivalence of (∞, 1)-categories

dMfd ≃ hC∞Algop
fp

between the (∞, 1)-category of derived manifolds, and the opposite of the
(∞, 1)-category of homotopically finitely presented homotopy C∞-algebras.

At an intuitive level, U ∈ dMfd is a geometric object whose algebra of smooth function is
a homotopically finitely presented homotopy C∞-algebra modelled as

O(U) =

(
· · · O(U)3 O(U)2 O(U)1 O(U)0

)

where each O(U)i is an ordinary C∞-algebra.
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2.4 Formal derived smooth manifolds

Derived smooth manifold do not include objects like

Spec

(
C∞(R)
(x2)

)

Definition

A homotopy C∞-algebra A is finitely generated if π0A is finitely generated as an ordinary
C∞-algebra, i.e. such that π0A ∼= C∞(Rn)/I.

Let sC∞Algfg be the (∞, 1)-category of finitely generated homotopy C∞-algebras.

Definition

We define the (∞, 1)-category of formal derived smooth manifolds by

dFMfd := sC∞Algop
fg .
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3.1 Formal derived smooth stacks

We can define étale maps of formal derived smooth manifolds
so that they truncate to ordinary étale maps
(they generalise local diffeomorphisms of ordinary manifolds).

By using étale maps, we can make dFMfd into a (∞, 1)-site.

By [Toen, Vezzosi 2006], we can define formal derived smooth stacks by

dFSmoothStack := [dFMfdop, sSet]◦proj,loc.

One has a natural (coreflective) embedding

dFSmoothStack SmoothStack.
t0

[See Carchedi’s and Steffens’ current foundational work on derived differential geometry.]
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3.2 Derived differential geometry

dFSmoothStack comes with differential structure, as defined in [Schreiber 2013]

de Rham stack

Given a formal derived smooth stack X , define

I(X ) : R 7−→ X (Rred) with Rred := π0R/mπ0R .

There is a natural map
iX : X −→ I(X )

Similarly to [Khavkine, Schreiber], the differential structure can be used to deal with
infinitesimal geometry.

A derived infinitesimal disks at x ∈ X is defined by the pullback

Dx M

∗ I(X )

ιx

iX

x

M

Dx

x

where ℑ(X ) is the de Rham stack of X .
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3.3 Formal moduli problems as infinitesimal cohesion

Let FMP be the (∞, 1)-category of Formal Moduli Problems, which can be seen as
formal derived stacks on derived infinitesimal disks.

Smooth stacks Formal derived
smooth stacks

Formal
Moduli Problems

SmoothStack dFSmoothStack FMP

∞Grpd

∞− groupoids
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4.2 Derived critical locus of Yang-Mills action

Yang-Mills action functional as morphism of smooth stacks

S : Bun∇G (M) −→ DensM

(gαβ , Aα) 7−→
1

2
⟨FA

∧, ⋆FA⟩g

Yang-Mills e.o.m as morphism of formal derived smooth stacks

δS : Bun∇G (M) −→ T∨
resBun

∇
G (M)

(gαβ , Aα) 7−→ (gαβ , Aα, ∇Aα⋆FAα , 0),

Construct the derived critical locus of Yang-Mills action

RCrit(S)(M) Bun∇G (M)

Bun∇G (M) T∨
resBun

∇
G (M),

δS

0
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4.3 Non-perturbative classical BV-BRST theory

RHom
(
U, RCrit(S)(M)pre) ≃

≃


· · · Z2 Z1 Z0

(
cα, g1,αβ,h1,α,

gαβ,Aα,A+α,c+α

g′αβ,A′α,A+′
α ,c+′

α

)
(
c′α, g′1,αβ,h′1,α,

g′αβ,A′α,A+′
α ,c+′

α

g′′αβ,A′′α,A+′′
α ,c+′′

α

)
(
c′′α, g′′1,αβ,h′′1,α,

gαβ,Aα,A+α,c+α

g′′αβ,A′′α,A+′′
α ,c+′′

α

)

(gαβ,Aα,A+α,c+α)

(g′αβ,A′α,A+′
α ,c+′

α )


0-simplices:

▶ gαβ transition functions,
▶ Aα connection,
▶ A+

α equations of motion,
▶ c+α Noether identities,

1-simplices:

▶ cα gauge transformations,
▶ g1,αβ homotopies of transition functions,
▶ A1,α homotopies of connections,
▶ A+

1,α homotopies of equations of motions,

▶ c+1,α homotopies of Noether identities,

(n ≥ 2)-simplices: compositions of gauge transformations and homotopies of homotopies.
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4.4 Recovering usual BV-BRST theory

Use the de Rham stack to obtain the derived infinitesimal disk of RCrit(S) at fixed solution
(P,∇A) ∈ RCrit(S) of the e.o.m

DRCrit(S)(M),(P,∇A)
RCrit(S)(M)

∗ ℑ
(
RCrit(S)(M)

)
.

iRCrit(S)(M)

(P,∇A)

Obtain L∞-algebra with underlying complex

−−→
Crit(S)(P,∇A)[1] =

(
Ω0(M, gP ) Ω1(M, gP ) Ωd−1(M, gP ) Ωd (M, gP )

∇A ∇A⋆∇A ∇A
)

deg = −1 0 1 2

with expected bracket structure.
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Outlook: the puzzle of quantisation

n-plectic geometry (or higher symplectic geometry) [Rogers, Baez, Saemann, Szabo,
Bunk, Fiorenza, Schreiber, Sati, ...] naturally fits in the following picture:

Prequantum U(1)-bundle

Symplectic structure

Prequantum bundle
(n − 1)-gerbe

n-plectic structure

li
ft li
ft

transgression

transgression

Example (Closed string)

[Waldorf 2009]: transgression of a bundle gerbe on a smooth manifold M to a principal
U(1)-bundle on the loop space LM = [S1,M].

[Ševera 2000]: Courant 2-algebroid and Vinogradov n-algebroid are higher
generalisations of the Poisson 1-algebroid (as symplectic L∞-algebroids).

[Rogers 2011], [Sämann, Ritter 2015]: relation between the L∞-algebras of
observables on n-plectic manifolds and Vinogradov n-algebroids.
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Outlook: the puzzle of quantisation

Topic of current research: derived n-plectic geometry.

Lagrangian classical
field theory

classical BV-theory

n-plectic geometry

derived
n-plectic geometry

tr
u
n
ca
ti
o
n

tr
u
n
ca
ti
o
n

transgression

transgression

Framework to make contact with BV-BFV theory, possibly unify:

(−1)-shifted 2-form attached to M (BV-form),

0-shifted 2-form attached to ∂M (BFV-form).
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Outlook: the puzzle of quantisation

Geometric quantisation

Higher geometric
quantisation

BV-BRST
quantisation

h
ig
h
er

d
er
iv
ed

Deformation quantisation

Higher geometric
BV-quantisation?

- Global geometric (non-perturbative)
- Focus on space of states

- Local geometric (perturbative)
- Focus on algebra of observables
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Outlook: the puzzle of quantisation

Setting to go beyond perturbative BV-BRST theory

▶ Usually one would consider Ω∗(X , g) with L∞-structure
and take shifted cotangent bundle T∗[−1]Ω∗(X , g)

▶ We can consider Bun∇G (X ) := [X ,BGconn] (or some concretification of this),

and take derived critical locus RCrit(S)(M) for a given S : Bun∇G (X ) → R

=⇒ Global geometric generalisation of BV-BRST theory

Setting to go beyond BV-quantisation

▶ [Bunk, Sämann, Szabo], [Fiorenza, Sati, Schreiber]: higher geometric prequantisation
of n-plectic structures and prequantum bundle n-gerbes

▶ [Safronov]: geometric quantisation of derived symplectic structures in derived algebraic
geometry via algebraic bundle k-gerbes

=⇒ Beyond BV-quantisation by ”higher derived” geometric (pre)quantisation?

Thank you for your attention!
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