Batalin–Vilkovisky formalism beyond perturbation theory via derived geometry

Luigi Alfonsi

Joint work with Charles Young

Talk at

Texas Tech Topology and Geometry Seminar Texas Tech University & Wichita State University, Kansas

19/03/2024

Table of contents

Introduction

- 2 Formal derived smooth manifolds
- Formal derived smooth stacks
- 4 Non-perturbative aspects of BV-theory

5 Outlook

Table of Contents

Introduction

- Pormal derived smooth manifolds
- Formal derived smooth stacks
- 4 Non-perturbative aspects of BV-theory

5 Outlook

The space of solutions of the field equations of a classical field theory can be seen as the **critical locus** Crit(S) of its action functional S.

The space of solutions of the field equations of a classical field theory can be seen as the **critical locus** Crit(S) of its action functional *S*.

$$\operatorname{Crit}(S) = \left\{ \phi \in \frac{\operatorname{configuration}}{\operatorname{space}} \mid \delta S(\phi) = \mathbf{0} \right\}$$

This is hard, and problematic if there is a gauge symmetry.

Idea of BV-theory

Look at its derived critical locus $\mathbb{R}Crit(S)$, a derived enhancement of Crit(S).

The space of solutions of the field equations of a classical field theory can be seen as the **critical locus** Crit(S) of its action functional *S*.

$$\operatorname{Crit}(S) = \left\{ \phi \in \frac{\operatorname{configuration}}{\operatorname{space}} \mid \delta S(\phi) = 0 \right\}$$

This is hard, and problematic if there is a gauge symmetry.

Idea of BV-theory

Look at its derived critical locus $\mathbb{R}Crit(S)$, a derived enhancement of Crit(S).

Informally speaking,

$$\mathbb{R}\operatorname{Crit}(S) = \left\{ \phi \in \frac{\operatorname{configuration}}{\operatorname{space}}, \ \phi^+ \in \operatorname{antifields} \mid \delta S(\phi) \xrightarrow{\phi^+} 0 \right\}$$

E.o.m. not imposed on the nose, but up to something, a 1-simplex.

Main approaches to make classical (and quantum) BV-theory precise in the literature:

● NQP-manifolds/L_∞-algebroid approach. [Jurčo, Raspollini, Sämann, Wolf, …] Algebra of classical observables is given by a Poisson dg-Lie algebra of functions on an NQP-manifold, i.e. a differential-graded manifold (dg-manifold) equipped with a (-1)-shifted symplectic form. (Equivalently, a symplectic L_∞-algebroid.)

Main approaches to make classical (and quantum) BV-theory precise in the literature:

- NQP-manifolds/L_∞-algebroid approach. [Jurčo, Raspollini, Sämann, Wolf, …] Algebra of classical observables is given by a Poisson dg-Lie algebra of functions on an NQP-manifold, i.e. a differential-graded manifold (dg-manifold) equipped with a (-1)-shifted symplectic form. (Equivalently, a symplectic L_∞-algebroid.)
- (Perturbative) Algebraic Quantum Field Theory. [Schenkel, Benini, Rejzner, ...] Algebra of observables is given by a net of differential-graded Poisson *-algebras, on spacetime.

Main approaches to make classical (and quantum) BV-theory precise in the literature:

- NQP-manifolds/L_∞-algebroid approach. [Jurčo, Raspollini, Sämann, Wolf, …] Algebra of classical observables is given by a Poisson dg-Lie algebra of functions on an NQP-manifold, i.e. a differential-graded manifold (dg-manifold) equipped with a (-1)-shifted symplectic form. (Equivalently, a symplectic L_∞-algebroid.)
- (Perturbative) Algebraic Quantum Field Theory. [Schenkel, Benini, Rejzner, ...] Algebra of observables is given by a net of differential-graded Poisson *-algebras, on spacetime.
- **3** Factorisation Algebras approach. [Costello, Gwilliam, Williams, ...] Algebra of classical observables is given by the differential-graded \mathbb{P}_0 -algebra of functions on a (-1)-shifted symplectic formal moduli problem, which is sheaved on spacetime.

Approaches (1) & (3) very close. Approaches (2) & (3) related by [Schenkel, Benini, ...].

• Ingredients:

• an L_{∞} -algebra \mathfrak{L} (*BRST-algebra*), • an element $S \in CE(\mathfrak{L})$ (action functional),

where:

$$CE(\mathfrak{L}) = (Sym \mathfrak{L}^{\vee}[-1], d_{CE(\mathfrak{L})}).$$

• Ingredients:

• an L_{∞} -algebra \mathfrak{L} (*BRST-algebra*), • an element $S \in CE(\mathfrak{L})$ (action functional),

where:

$$\operatorname{CE}(\mathfrak{L}) = (\operatorname{Sym} \mathfrak{L}^{\vee}[-1], \operatorname{d}_{\operatorname{CE}(\mathfrak{L})}).$$

• The (-1)-shifted cotangent bundle

$$\mathcal{T}^{ee}[-1]\mathfrak{L}[1] \;=\; (\mathfrak{L}\oplus\mathfrak{L}^{ee}[-3])[1]$$

comes with natural (-1)-shifted Poisson bracket $\{-,-\}$.

• Ingredients:

() an L_{∞} -algebra \mathfrak{L} (*BRST-algebra*), () an element $S \in CE(\mathfrak{L})$ (action functional),

where:

$$\operatorname{CE}(\mathfrak{L}) = (\operatorname{Sym} \mathfrak{L}^{\vee}[-1], \operatorname{d}_{\operatorname{CE}(\mathfrak{L})}).$$

• The (-1)-shifted cotangent bundle

$$T^{\vee}[-1]\mathfrak{L}[1] = (\mathfrak{L} \oplus \mathfrak{L}^{\vee}[-3])[1].$$

comes with natural (-1)-shifted Poisson bracket $\{-,-\}$.

• Construct $S_{\text{BV}} := S + S_{\text{BRST}}$ (*BV-action*) where $S_{\text{BRST}} := \widehat{d_{\text{CE}(\mathfrak{L})}}$.

• Ingredients:

() an L_{∞} -algebra \mathfrak{L} (*BRST-algebra*), () an element $S \in CE(\mathfrak{L})$ (action functional),

where:

$$\operatorname{CE}(\mathfrak{L}) = (\operatorname{Sym} \mathfrak{L}^{\vee}[-1], \operatorname{d}_{\operatorname{CE}(\mathfrak{L})}).$$

• The (-1)-shifted cotangent bundle

$$T^{ee}[-1]\mathfrak{L}[1] \;=\; (\mathfrak{L}\oplus\mathfrak{L}^{ee}[-3])[1].$$

comes with natural (-1)-shifted Poisson bracket $\{-,-\}$.

- Construct $S_{\text{BV}} := S + S_{\text{BRST}}$ (*BV-action*) where $S_{\text{BRST}} := \widehat{d_{\text{CE}(\mathfrak{L})}}$.
- Since $\{S_{\rm BV}, S_{\rm BV}\} = 0$, we have a new L_{∞} -algebra $\operatorname{Crit}(S)$ given by $\operatorname{CE}(\operatorname{Crit}(S)) := (\operatorname{Sym}(\mathfrak{L}^{\vee}[-1] \oplus \mathfrak{L}[2]), \ Q_{\rm BV} = \{S_{\rm BV}, -\}).$

This is the **BV-complex**.

BRST algebra

$$\begin{split} \mathfrak{L}[\mathbf{1}] \;=\; \left(\begin{array}{cc} \Omega^0(M,\mathfrak{g}) & \stackrel{\mathrm{d}}{\longrightarrow} \Omega^1(M,\mathfrak{g}) \end{array} \right) \\ & \overset{\mathrm{deg}\,=}{\longrightarrow} \quad 0 \\ & \ell_1(c) \;=\; \mathrm{d} c, \\ & \ell_2(c_1,c_2) \;=\; [c_1,c_2]_{\mathfrak{g}}, \\ & \ell_2(c,A) \;=\; [c,A]_{\mathfrak{g}}, \end{split}$$

BRST algebra

$$\begin{split} \mathfrak{L}[1] &= \left(\begin{array}{cc} \Omega^0(M,\mathfrak{g}) & \stackrel{\mathrm{d}}{\longrightarrow} \Omega^1(M,\mathfrak{g}) \end{array} \right) \\ & \stackrel{\mathrm{deg}\,=\, & -1 & 0 \\ & \ell_1(c) &= \mathrm{d}c, \\ & \ell_2(c_1,c_2) &= [c_1,c_2]_{\mathfrak{g}}, \\ & \ell_2(c,A) &= [c,A]_{\mathfrak{g}}, \end{split}$$

BV-BRST algebra

$$\mathfrak{Crit}(S)[1] = \left(\Omega^{0}(M,\mathfrak{g}) \xrightarrow{\mathrm{d}} \Omega^{1}(M,\mathfrak{g}) \xrightarrow{\mathrm{d} \star \mathrm{d}} \Omega^{d-1}(M,\mathfrak{g}) \xrightarrow{\mathrm{d}} \Omega^{d}(M,\mathfrak{g}) \right)$$

$$deg = -1 \qquad 0 \qquad 1 \qquad 2$$

$$S_{\rm BV}(c,A,A^+,c^+) = \int_M \bigg(\underbrace{\frac{1}{2}\langle F_A,\star F_A\rangle_{\mathfrak{g}}}_{S} - \underbrace{\langle A^+,\nabla_A c\rangle_{\mathfrak{g}} + \frac{1}{2}\langle c^+,[c,c]_{\mathfrak{g}}\rangle_{\mathfrak{g}}}_{S_{\rm BRST}}\bigg).$$

BRST algebra

$$\begin{split} \mathfrak{L}[1] &= \left(\begin{array}{c} \Omega^0(M,\mathfrak{g}) & \stackrel{\mathrm{d}}{\longrightarrow} \Omega^1(M,\mathfrak{g}) \end{array} \right) \\ \stackrel{\mathrm{deg}\,=\, -1 & 0}{\ell_1(c)} &= \, \mathrm{d}c, \\ \ell_2(c_1,c_2) &= \, [c_1,c_2]_{\mathfrak{g}}, \\ \ell_2(c,A) &= \, [c,A]_{\mathfrak{g}}, \end{split}$$

BV-BRST algebra

$$\mathfrak{Crit}(S)[1] = \left(\begin{array}{cc} \Omega^0(M,\mathfrak{g}) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^1(M,\mathfrak{g}) \stackrel{\mathrm{d} \star \mathrm{d}}{\longrightarrow} \Omega^{d-1}(M,\mathfrak{g}) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^d(M,\mathfrak{g}) \end{array} \right)$$

$$deg = -1 \qquad 0 \qquad 1 \qquad 2$$

$$\begin{split} \ell_{1}(c) &= dc, \\ \ell_{1}(A) &= d \star dA, \qquad \ell_{1}(A^{+}) = dA^{+}, \\ \ell_{2}(c_{1}, c_{2}) &= [c_{1}, c_{2}]_{\mathfrak{g}}, \qquad \ell_{2}(c, c^{+}) = [c, c^{+}]_{\mathfrak{g}}, \\ \ell_{2}(c, A) &= [c, A]_{\mathfrak{g}}, \qquad \ell_{2}(c, A^{+}) = [c, A^{+}]_{\mathfrak{g}}, \\ \ell_{2}(A, A^{+}) &= [A^{\wedge}, A^{+}]_{\mathfrak{g}}, \\ \ell_{2}(A, A_{2}) &= d \star [A_{1}^{\wedge}, A_{2}]_{\mathfrak{g}} + [A_{1}^{\wedge}, \star dA_{2}]_{\mathfrak{g}} + [A_{2}^{\wedge}, \star dA_{1}]_{\mathfrak{g}}, \\ \ell_{3}(A_{1}, A_{2}, A_{3}) &= [A_{1}^{\wedge}, \star [A_{2}^{\wedge}, A_{3}]_{\mathfrak{g}}]_{\mathfrak{g}} + [A_{2}^{\wedge}, \star [A_{3}^{\wedge}, A_{1}]_{\mathfrak{g}}]_{\mathfrak{g}} + [A_{3}^{\wedge}, \star [A_{1}^{\wedge}, A_{2}]_{\mathfrak{g}}]_{\mathfrak{g}}, \end{split}$$

1.3 BV-theory as deformation theory

- Artinian dg-algebra: finite-dimensional, non-positively graded, dg-commutative algebra \mathcal{R} s.t. it has a unique maximal differential ideal $\mathfrak{m}_{\mathcal{R}}$ which is nilpotent and $\mathcal{R}/\mathfrak{m}_{\mathcal{R}} \cong \mathbb{R}$.
- Formal Moduli Problem: (algebraic) stack on Artinian dg-algebras, i.e.

$$F: dgArt^{\leq 0} \longrightarrow sSet.$$

 Any formal moduli problem is equivalent to F ~ MC(g), for some L_∞-algebra g, where

$$\mathsf{MC}(\mathfrak{g}) : \mathcal{R} \longmapsto \mathrm{MC}(\mathfrak{g} \otimes \mathfrak{m}_{\mathcal{R}}).$$

1.3 BV-theory as deformation theory

- Artinian dg-algebra: finite-dimensional, non-positively graded, dg-commutative algebra \mathcal{R} s.t. it has a unique maximal differential ideal $\mathfrak{m}_{\mathcal{R}}$ which is nilpotent and $\mathcal{R}/\mathfrak{m}_{\mathcal{R}} \cong \mathbb{R}$.
- Formal Moduli Problem: (algebraic) stack on Artinian dg-algebras, i.e.

$$F: dgArt^{\leq 0} \longrightarrow sSet.$$

 Any formal moduli problem is equivalent to F ~ MC(g), for some L_∞-algebra g, where

$$\mathsf{MC}(\mathfrak{g}) : \mathcal{R} \longmapsto \mathrm{MC}(\mathfrak{g} \otimes \mathfrak{m}_{\mathcal{R}}).$$

In BV-theory:

 $MC(\mathfrak{Crit}(S))$ is the derived critical locus of the action functional S on $MC(\mathfrak{L})$

How does the story go for Yang-Mills theory?

 $\mathsf{MC}(\mathfrak{Crit}(S))$: $\mathcal{R} \longmapsto \mathrm{MC}(\mathfrak{Crit}(S) \otimes \mathfrak{m}_{\mathcal{R}})$

How does the story go for Yang-Mills theory?

 $\mathsf{MC}(\mathfrak{Crit}(S))$: $\mathcal{R} \longmapsto \mathrm{MC}(\mathfrak{Crit}(S) \otimes \mathfrak{m}_{\mathcal{R}})$

$$\begin{split} \mathrm{MC}(\mathfrak{Crit}(\mathsf{S})\otimes\mathfrak{m}_{\mathcal{R}})_{0} &= \left\{ \begin{array}{c|c} A &\in \Omega^{1}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},0} \\ A^{+} &\in \Omega^{d-1}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},-1} \\ c^{+} &\in \Omega^{d}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},-2} \end{array} \middle| \begin{array}{c} \nabla_{A}\star F_{A} &= \mathrm{d}_{\mathcal{R}}A^{+} \\ \nabla_{A}A^{+} &= \mathrm{d}_{\mathcal{R}}c^{+} \end{array} \right\}, \\ \\ \mathrm{MC}(\mathfrak{Crit}(\mathsf{S})\otimes\mathfrak{m}_{\mathcal{R}})_{1} &= \left\{ \begin{array}{c} c_{1}\mathrm{d}t &\in \Omega^{0}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},0}\otimes\Omega^{1}([0,1]) \\ A_{0} &\in \Omega^{1}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},0}\otimes\Omega^{0}([0,1]) \\ A^{1}\mathrm{d}t &\in \Omega^{1}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},-1}\otimes\Omega^{0}([0,1]) \\ A_{0}^{+} &\in \Omega^{d-1}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},-1}\otimes\Omega^{0}([0,1]) \\ A_{0}^{+} &\in \Omega^{d-1}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},-2}\otimes\Omega^{0}([0,1]) \\ A_{1}^{+}\mathrm{d}t &\in \Omega^{d-1}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},-2}\otimes\Omega^{0}([0,1]) \\ C_{0}^{+} &\in \Omega^{d}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},-2}\otimes\Omega^{0}([0,1]) \\ c_{0}^{+} &\in \Omega^{d}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},-3}\otimes\Omega^{1}([0,1]) \\ c_{1}^{+}\mathrm{d}t &\in \Omega^{d}(M,\mathfrak{g})\otimes\mathfrak{m}_{\mathcal{R},-3}\otimes\Omega^{1}([0,1]) \end{array} \right| \left\{ \begin{array}{c} \nabla_{A}\star F_{A} &= \mathrm{d}_{\mathcal{R}}A_{0}^{+} \\ \nabla_{A_{0}}\star F_{A_{0}} &= \mathrm{d}_{\mathcal{R}}A_{0}^{+} \\ \mathrm{d}_{d}t A_{0}^{+} + \nabla_{A_{0}}\star F_{A_{1}} &+ \\ \mathrm{d}_{d}t c_{0}^{+} + \mathrm{d}_{d}\star F_{A_{0}} &+ \\ \mathrm{d}_{d}t c_{0}^{+} +$$

$$(c_{1}dt, A_{0} + A_{1}dt, A_{0}^{+} + A_{1}^{+}dt, c_{0}^{+} + c_{1}^{+}dt)$$

$$(A, A^{+}, c^{+})$$

$$(A', A^{+'}, c^{+'})$$

Formal Moduli Problem: (algebraic) derived stack on Artinian dg-algebras, i.e.

$$F: dgArt^{\leq 0} \longrightarrow sSet$$

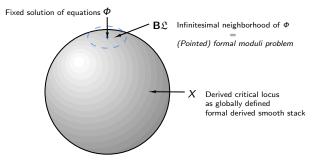
Artinian dg-algebras \simeq algebras of function on "derived thickened points".

Formal Moduli Problem: (algebraic) derived stack on Artinian dg-algebras, i.e.

$$F: dgArt^{\leq 0} \longrightarrow sSet$$

Artinian dg-algebras \simeq algebras of function on "derived thickened points".

A (-1)-symplectic Formal Moduli Problem can be seen as the formal completion of a fully-fledged (-1)-symplectic derived stack at some given point.

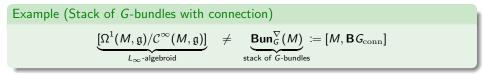


We have the following picture:

Formal Moduli Problem \longleftrightarrow Perturbative physics Formal derived smooth stack \longleftrightarrow Non-perturbative physics

We have the following picture:

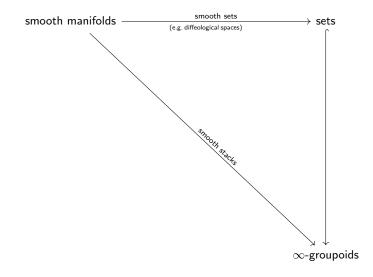
In fact, in terms of configuration spaces:



Physics includes (higher) gauge theories

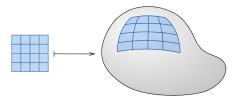
- Quantisation requires BV-theory, i.e. derived geometry
- Finite (higher) gauge transformations and global properties require stacks, i.e. **higher geometry** (e.g. Aharonov-Bohm phase and magnetic charge for electromagnetic field)

1.5 Smooth stacks



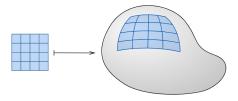
1.6 Global BRST formalism

• An ordinary geometric space can be encoded by its functor of points, which is an ordinary sheaf.



1.6 Global BRST formalism

• An ordinary geometric space can be encoded by its functor of points, which is an ordinary sheaf.



• A higher geometric space can be defined as a stack, which is a functor

 $X\,:\,\mathsf{Mfd}^{\mathrm{op}}\,\longrightarrow\,\mathsf{sSet}$

satisfying a higher sheaf condition, i.e. it is an element of

 $\textbf{SmoothStack} \ \coloneqq \ \left[\mathsf{Mfd}^{\mathrm{op}}, \, \mathsf{sSet}\right]^{\circ}_{\mathsf{proj},\mathsf{loc}}.$

 \implies geometry encompassing gauge principle from physics.

1.5 Global BRST formalism

Now, let us go back to smooth stacks.

Moduli stack of principal G-bundles:

$$\mathbf{B}G = [*/G]$$

1.5 Global BRST formalism

Now, let us go back to smooth stacks.

Moduli stack of principal G-bundles:

 $\mathbf{B}G = [*/G]$

Let M be a smooth manifold and $\coprod_{\alpha \in I} V_{\alpha} \twoheadrightarrow M$ be a good open cover of it.

A map $M \xrightarrow{g_{\alpha\beta}} BG$ is given by a *G*-bundle $\{g_{\alpha\beta} \in \mathcal{C}^{\infty}(V_{\alpha} \cap V_{\beta}, G) | g_{\alpha\beta} \cdot g_{\beta\gamma} = g_{\alpha\gamma}\}.$

1.5 Global BRST formalism

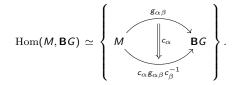
Now, let us go back to smooth stacks.

Moduli stack of principal G-bundles:

$$\mathbf{B}G = [*/G]$$

Let *M* be a smooth manifold and $\coprod_{\alpha \in I} V_{\alpha} \twoheadrightarrow M$ be a good open cover of it.

 $\mathsf{A} \text{ map } M \xrightarrow{g_{\alpha\beta}} \mathsf{B} G \text{ is given by a } G\text{-bundle } \{g_{\alpha\beta} \in \mathcal{C}^\infty(V_\alpha \cap V_\beta, G) \, | \, g_{\alpha\beta} \cdot g_{\beta\gamma} = g_{\alpha\gamma} \}.$



Smooth stack of principal *G*-bundles on the manifold *M*:

$$\operatorname{\mathsf{Bun}}_G(M) \coloneqq [M, \operatorname{\mathsf{B}} G].$$

1.6 Global BRST formalism

Smooth stack $\operatorname{Bun}_{G}^{\nabla}(M)$ of principal *G*-bundles with connection:

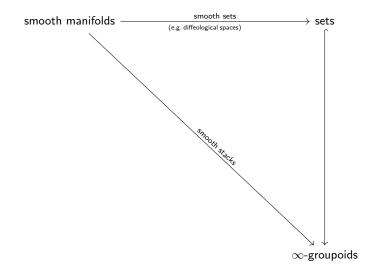
$$\operatorname{Hom}(U, \operatorname{\mathsf{Bun}}_{\mathcal{G}}^{\nabla}(M)) \simeq \operatorname{cosk}_{2} \begin{pmatrix} \begin{pmatrix} g_{\alpha\beta}, A_{\alpha} \\ g_{\alpha\beta}', A_{\alpha}' \end{pmatrix} & \\ \hline & & \\ Z_{2} & - (c_{\alpha}', g_{\alpha\beta}', A_{\alpha}') \rightarrow & Z_{1} & \\ \hline & & \\ \hline & & \\ (c_{\alpha}', c_{\alpha}, g_{\alpha\beta}', A_{\alpha}') \end{pmatrix} & \\ \hline & & \\ \hline & & \\ \hline & & \\ (c_{\alpha}', c_{\alpha}, g_{\alpha\beta}', A_{\alpha}') \end{pmatrix} & \\ \end{pmatrix},$$

where:

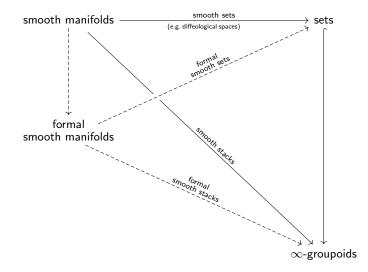
$$\begin{split} Z_{0} &= \left\{ \begin{array}{c|c} g_{\alpha\beta} \in \mathcal{C}^{\infty}(V_{\alpha} \cap V_{\beta} \times U, G) \\ A_{\alpha} \in \Omega^{1}_{\mathrm{ver}}(V_{\alpha} \times U, \mathfrak{g}) \end{array} \middle| \begin{array}{c} g_{\alpha\beta} \cdot g_{\beta\gamma} \cdot g_{\gamma\alpha} = 1 \\ A_{\alpha} = g_{\beta\alpha}^{-1}(A_{\beta} + \mathrm{d})g_{\beta\alpha} \end{array} \right\}, \\ Z_{1} &= \left\{ \begin{array}{c|c} c_{\alpha} &\in \mathcal{C}^{\infty}(V_{\alpha} \times U, G) \\ g_{\alpha\beta}, g'_{\alpha\beta} \in \mathcal{C}^{\infty}(V_{\alpha} \cap V_{\beta} \times U, G) \\ A_{\alpha}, A'_{\alpha} &\in \Omega^{1}_{\mathrm{ver}}(V_{\alpha} \times U, \mathfrak{g}) \end{array} \middle| \begin{array}{c} g_{\alpha\beta} \cdot g_{\beta\gamma} \cdot g_{\gamma\alpha} = 1 \\ A_{\alpha} = g_{\beta\alpha}^{-1}(A_{\beta} + \mathrm{d})g_{\beta\alpha} \\ g'_{\alpha\beta} \cdot g'_{\beta\gamma} \cdot g'_{\gamma\alpha} = 1 \\ A'_{\alpha} = g'_{\beta\alpha}^{-1}(A'_{\beta} + \mathrm{d})g'_{\beta\alpha} \\ g'_{\alpha\beta} = c_{\beta}^{-1}g_{\alpha\beta}c_{\alpha} \\ A'_{\alpha} &= c_{\alpha}^{-1}(A_{\alpha} + \mathrm{d})c_{\alpha} \end{array} \right\}, \end{split}$$

 $Z_2 = \{$ compositions of gauge transformations $\}$,

2.1 Family tree of smooth stacks



2.1 Family tree of smooth stacks



2.1 Family tree of smooth stacks

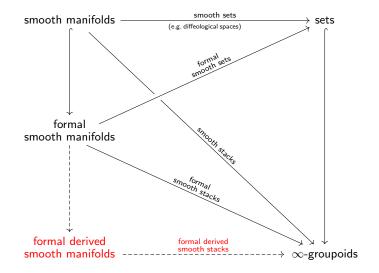


Table of Contents

Introduction

Pormal derived smooth manifolds

Formal derived smooth stacks

One of the second se

5 Outlook

2.3 Derived smooth manifolds

- Observation: given manifolds M, N → B, the intersection M ∩ N := M ×_B N is not generally well-defined in Mfd.
- Solution: derived smooth manifolds [Spivak, Joyce, Carchedi, Steffens, ...].

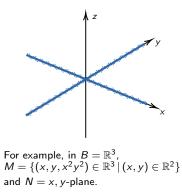
2.3 Derived smooth manifolds

- Observation: given manifolds M, N → B, the intersection M ∩ N := M ×_B N is not generally well-defined in Mfd.
- Solution: derived smooth manifolds [Spivak, Joyce, Carchedi, Steffens, ...].

Use the natural embedding:

 $i : \mathbf{N}(Mfd) \longrightarrow \mathbf{d}Mfd$

The derived intersection always exists in the $(\infty, 1)$ -category **dMfd**:



2.2 C^{∞} -algebras

Let CartSp be the category of Cartesian spaces $\{\mathbb{R}^n\}_{n\in\mathbb{N}}$ and smooth maps between them.

This is a Lawvere theory, as any object is such that $\mathbb{R}^n \cong \mathbb{R} \times \cdots \times \mathbb{R}$.

DefinitionA C^{∞} -algebra is a product-preserving functor $A : CartSp \longrightarrow Set.$

Example

Let $M \in M$ fd be a smooth manifold.

$$\mathcal{C}^{\infty}(M) : \mathbb{R}^n \longmapsto \mathcal{C}^{\infty}(M, \mathbb{R}^n)$$

There is a natural embedding:

$$\mathsf{Mfd} \hookrightarrow \mathsf{C}^\infty\mathsf{Alg}^{\mathrm{op}}$$

2.3 Derived smooth manifolds

Homotopy \mathcal{C}^{∞} -algebras: simplicial \mathcal{C}^{∞} -algebras with projective model structure, i.e.

$$\mathbf{hC}^{\infty}\mathbf{Alg} := \mathbf{N}_{hc}([\Delta^{\mathrm{op}}, \mathbf{C}^{\infty}\mathbf{Alg}]^{\circ}_{\mathrm{proj}}),$$

where Δ is the simplex category.

2.3 Derived smooth manifolds

Homotopy \mathcal{C}^{∞} -algebras: simplicial \mathcal{C}^{∞} -algebras with projective model structure, i.e.

$$\mathbf{hC}^{\infty}\mathbf{Alg} := \mathbf{N}_{hc}([\Delta^{\mathrm{op}}, \mathbf{C}^{\infty}\mathbf{Alg}]^{\circ}_{\mathrm{proj}}),$$

where Δ is the simplex category.

The following will be our effective definition of formal derived manifolds.

Theorem [Carchedi, Steffens 2019]

There is a canonical equivalence of $(\infty,1)\text{-}\mathsf{categories}$

```
dMfd~\simeq~hC^\infty Alg^{\rm op}_{\rm fp}
```

between the $(\infty, 1)$ -category of derived manifolds, and the opposite of the $(\infty, 1)$ -category of homotopically finitely presented homotopy \mathcal{C}^{∞} -algebras.

At an intuitive level, $U \in \mathbf{dMfd}$ is a geometric object whose algebra of smooth function is a homotopically finitely presented homotopy \mathcal{C}^{∞} -algebra modelled as

$$\mathcal{O}(U) = \left(\begin{array}{c} \cdots \end{array} \xrightarrow{\longrightarrow} \mathcal{O}(U)_3 \xrightarrow{\longrightarrow} \mathcal{O}(U)_2 \xrightarrow{\longrightarrow} \mathcal{O}(U)_1 \xrightarrow{\longrightarrow} \mathcal{O}(U)_0 \end{array} \right)$$

where each $\mathcal{O}(U)_i$ is an ordinary \mathcal{C}^{∞} -algebra.

2.4 Formal derived smooth manifolds

Derived smooth manifold do not include objects like

$$\operatorname{Spec}\left(\frac{\mathcal{C}^{\infty}(\mathbb{R})}{(x^2)}\right)$$

Definition

A homotopy \mathcal{C}^{∞} -algebra A is finitely generated if $\pi_0 A$ is finitely generated as an ordinary \mathcal{C}^{∞} -algebra, i.e. such that $\pi_0 A \cong \mathcal{C}^{\infty}(\mathbb{R}^n)/\mathcal{I}$.

Let $sC^{\infty}Alg_{fg}$ be the $(\infty, 1)$ -category of finitely generated homotopy \mathcal{C}^{∞} -algebras.

Definition

We define the $(\infty, 1)$ -category of formal derived smooth manifolds by

$$dFMfd := sC^{\infty}Alg_{fg}^{op}$$
.

Table of Contents

Introduction

2 Formal derived smooth manifolds

Formal derived smooth stacks

4 Non-perturbative aspects of BV-theory

5 Outlook

3.1 Formal derived smooth stacks

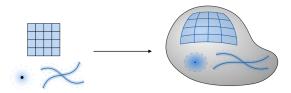
- We can define étale maps of formal derived smooth manifolds so that they truncate to ordinary étale maps (they generalise local diffeomorphisms of ordinary manifolds).
- By using étale maps, we can make dFMfd into a $(\infty, 1)$ -site.
- By [Toen, Vezzosi 2006], we can define formal derived smooth stacks by

 $\mathsf{dFSmoothStack} \ \coloneqq \ [\mathsf{dFMfd}^{\operatorname{op}}, \, \mathsf{sSet}]^\circ_{\mathsf{proj},\mathsf{loc}}.$

3.1 Formal derived smooth stacks

- We can define étale maps of formal derived smooth manifolds so that they truncate to ordinary étale maps (they generalise local diffeomorphisms of ordinary manifolds).
- $\bullet\,$ By using étale maps, we can make dFMfd into a $(\infty,1)\text{-site}.$
- By [Toen, Vezzosi 2006], we can define formal derived smooth stacks by

 $\mathsf{dFSmoothStack} \ \coloneqq \ [\mathsf{dFMfd}^{\operatorname{op}}, \, \mathsf{sSet}]^\circ_{\mathsf{proj},\mathsf{loc}}.$



One has a natural (coreflective) embedding

$$\mathsf{dFSmoothStack} \xleftarrow[t_0]{t_0} \mathsf{SmoothStack}.$$

[See Carchedi's and Steffens' current foundational work on derived differential geometry.]

3.2 Derived differential geometry

dFSmoothStack comes with differential structure, as defined in [Schreiber 2013]

de Rham stack

Given a formal derived smooth stack X, define

$$\mathfrak{I}(X): R \longmapsto X(R^{\mathrm{red}}) \quad \text{with} \quad R^{\mathrm{red}} \coloneqq \pi_0 R / \mathfrak{m}_{\pi_0 R}.$$

There is a natural map

$$\mathfrak{i}_X: X \longrightarrow \mathfrak{I}(X)$$

Similarly to [Khavkine, Schreiber], the differential structure can be used to deal with infinitesimal geometry.

3.2 Derived differential geometry

dFSmoothStack comes with differential structure, as defined in [Schreiber 2013]

de Rham stack

Given a formal derived smooth stack X, define

$$\mathfrak{I}(X): R \longmapsto X(R^{\mathrm{red}}) \quad \text{with} \quad R^{\mathrm{red}} \coloneqq \pi_0 R/\mathfrak{m}_{\pi_0 R}.$$

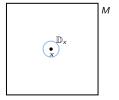
There is a natural map

$$\mathfrak{i}_X: X \longrightarrow \mathfrak{I}(X)$$

Similarly to [Khavkine, Schreiber], the differential structure can be used to deal with infinitesimal geometry.

A derived infinitesimal disks at $x \in X$ is defined by the pullback

where $\Im(X)$ is the de Rham stack of X.



3.3 Formal moduli problems as infinitesimal cohesion

Let **FMP** be the $(\infty, 1)$ -category of Formal Moduli Problems, which can be seen as formal derived stacks on derived infinitesimal disks.

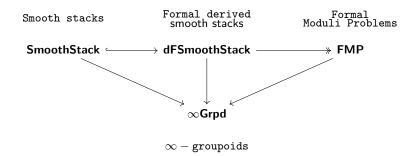


Table of Contents

Introduction

Pormal derived smooth manifolds

Formal derived smooth stacks

4 Non-perturbative aspects of BV-theory

5 Outlook

4.2 Derived critical locus of Yang-Mills action

• Yang-Mills action functional as morphism of smooth stacks

$$\begin{array}{rcl} S &:& \mathbf{Bun}_{\mathcal{G}}^{\nabla}(M) &\longrightarrow & \mathbf{Dens}_{M} \\ && (g_{\alpha\beta},\,A_{\alpha}) &\longmapsto & \frac{1}{2} \langle F_{A} \stackrel{\wedge}{,} \, \star F_{A} \rangle_{\mathfrak{g}} \end{array}$$

4.2 Derived critical locus of Yang-Mills action

• Yang-Mills action functional as morphism of smooth stacks

$$\begin{array}{rcl} S &:& \operatorname{\mathsf{Bun}}^{\nabla}_{\mathcal{G}}(M) &\longrightarrow & \operatorname{\mathsf{Dens}}_{M} \\ && (g_{\alpha\beta},\, A_{\alpha}) &\longmapsto & \frac{1}{2} \langle F_{A} \stackrel{\wedge}{,} \, \star F_{A} \rangle_{\mathfrak{g}} \end{array}$$

• Yang-Mills e.o.m as morphism of formal derived smooth stacks

$$\begin{split} \delta S : \; \mathsf{Bun}_{G}^{\nabla}(M) \; &\longrightarrow \; \mathcal{T}_{\mathrm{res}}^{\vee} \mathsf{Bun}_{G}^{\nabla}(M) \\ (g_{\alpha\beta}, \, A_{\alpha}) \; &\longmapsto \; (g_{\alpha\beta}, \, A_{\alpha}, \, \nabla_{\!A_{\alpha}} \star F_{\!A_{\alpha}}, \, \mathbf{0}), \end{split}$$

4.2 Derived critical locus of Yang-Mills action

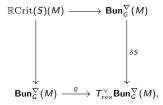
• Yang-Mills action functional as morphism of smooth stacks

$$S : \operatorname{Bun}_{\mathcal{G}}^{\nabla}(M) \longrightarrow \operatorname{Dens}_{M}$$
$$(g_{\alpha\beta}, A_{\alpha}) \longmapsto \frac{1}{2} \langle F_{A} \stackrel{\wedge}{,} \star F_{A} \rangle_{\mathfrak{g}}$$

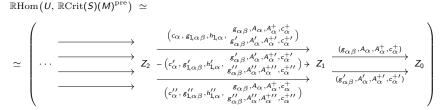
• Yang-Mills e.o.m as morphism of formal derived smooth stacks

$$\delta S : \operatorname{Bun}_{G}^{\nabla}(M) \longrightarrow T_{\operatorname{res}}^{\vee} \operatorname{Bun}_{G}^{\nabla}(M) (g_{\alpha\beta}, A_{\alpha}) \longmapsto (g_{\alpha\beta}, A_{\alpha}, \nabla_{A_{\alpha}} \star F_{A_{\alpha}}, 0),$$

• Construct the derived critical locus of Yang-Mills action



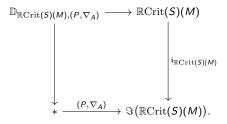
4.3 Non-perturbative classical BV-BRST theory



- 0-simplices:
 - g_{αβ} transition functions,
 - A_{α} connection,
 - A⁺_α equations of motion,
 - c_{α}^+ Noether identities,
- 1-simplices:
 - c_α gauge transformations,
 - g_{1,αβ} homotopies of transition functions,
 - $A_{1,\alpha}$ homotopies of connections,
 - $A_{1,\alpha}^+$ homotopies of equations of motions,
 - $c_{1,\alpha}^+$ homotopies of Noether identities,
- $(n \ge 2)$ -simplices: compositions of gauge transformations and homotopies of homotopies.

4.4 Recovering usual BV-BRST theory

• Use the de Rham stack to obtain the derived infinitesimal disk of $\mathbb{R}Crit(S)$ at fixed solution $(P, \nabla_A) \in \mathbb{R}Crit(S)$ of the e.o.m



• Obtain L_{∞} -algebra with underlying complex

$$\overline{\operatorname{crif}}(S)_{(P,\nabla_{A})}[1] = \left(\Omega^{0}(M,\mathfrak{g}_{P}) \xrightarrow{\nabla_{A}} \Omega^{1}(M,\mathfrak{g}_{P}) \xrightarrow{\nabla_{A}*\nabla_{A}} \Omega^{d-1}(M,\mathfrak{g}_{P}) \xrightarrow{\nabla_{A}} \Omega^{d}(M,\mathfrak{g}_{P})\right) \xrightarrow{\operatorname{deg}} = -1 \qquad 0 \qquad 1 \qquad 2$$

with expected bracket structure.

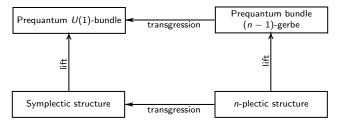
Table of Contents

Introduction

- 2 Formal derived smooth manifolds
- Formal derived smooth stacks
- 4 Non-perturbative aspects of BV-theory

5 Outlook

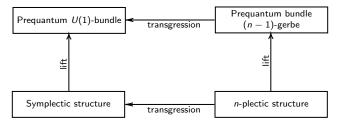
n-plectic geometry (or higher symplectic geometry) [Rogers, Baez, Saemann, Szabo, Bunk, Fiorenza, Schreiber, Sati, ...] naturally fits in the following picture:



Example (Closed string)

[Waldorf 2009]: transgression of a bundle gerbe on a smooth manifold M to a principal U(1)-bundle on the loop space $\mathcal{L}M = [S^1, M]$.

n-plectic geometry (or higher symplectic geometry) [Rogers, Baez, Saemann, Szabo, Bunk, Fiorenza, Schreiber, Sati, ...] naturally fits in the following picture:

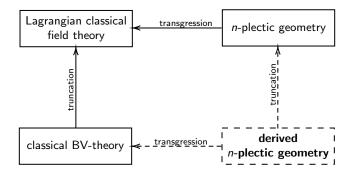


Example (Closed string)

[Waldorf 2009]: transgression of a bundle gerbe on a smooth manifold M to a principal U(1)-bundle on the loop space $\mathcal{L}M = [S^1, M]$.

- [Ševera 2000]: Courant 2-algebroid and Vinogradov n-algebroid are higher generalisations of the Poisson 1-algebroid (as symplectic L_∞-algebroids).
- [Rogers 2011], [Sämann, Ritter 2015]: relation between the L_∞-algebras of observables on *n*-plectic manifolds and Vinogradov *n*-algebroids.

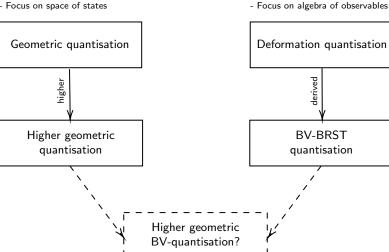
Topic of current research: derived *n*-plectic geometry.



Framework to make contact with BV-BFV theory, possibly unify:

- (-1)-shifted 2-form attached to M (*BV-form*),
- 0-shifted 2-form attached to ∂M (*BFV-form*).

- Global geometric (non-perturbative)
- Focus on space of states



- Local geometric (perturbative)

- Setting to go beyond perturbative BV-BRST theory
 - Usually one would consider Ω*(X, g) with L_∞-structure and take shifted cotangent bundle T*[-1]Ω*(X, g)
 - We can consider Bun[∇]_G(X) := [X, BG_{conn}] (or some concretification of this), and take derived critical locus ℝCrit(S)(M) for a given S : Bun[∇]_G(X) → ℝ
 - \implies Global geometric generalisation of BV-BRST theory
- Setting to go beyond BV-quantisation
 - [Bunk, Sämann, Szabo], [Fiorenza, Sati, Schreiber]: higher geometric prequantisation of n-plectic structures and prequantum bundle n-gerbes
 - [Safronov]: geometric quantisation of derived symplectic structures in derived algebraic geometry via algebraic bundle k-gerbes
 - \implies Beyond BV-quantisation by "higher derived" geometric (pre)quantisation?

Thank you for your attention!