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Abstract.
The main theorem, joint with Yu Leon Liu and Christoph Weis, is the construction of the Virasoro groups, a

family of central extensions of Γ := Diff+(S1) by the circle group T, by transgression of a characteristic class in
differential cohomology. I’ll explain each of these pieces (the Virasoro groups; differential cohomology; differential
lifts of characteristic classes; the transgression) in turn, but first I’ll say what the idea of the construction is:

• Begin with p1 ∈ H∗(BGL+
n (R);Z). Lift it to a differential cohomology group – not the usual Chern-Weil

lift that Cheeger-Simons did. There is an R worth of lifts.
• Evaluate this class on the vertical tangent bundle on the universal oriented circle bundle E → B•Γ (this
notation means the classifying stack).
• Then integrate along the fiber, obtaining an R worth of differential cohomology classes for B•Γ. These can
be interpreted as cocycles defining central extensions, and sure enough these are the Virasoro extensions.

It’s possible that this came out of left field to you: it certainly did when Dan Freed and Mike Hopkins suggested it to
us. The theorem is similar (albeit with a different proof) to Brylinski-McLaughlin’s construction of the Kac-Moody
central extensions of loop groups using a different transgression in differential cohomology. And there are close
relationships between Kac-Moody groups and Virasoro groups, tied together with the Segal-Sugawara formula (or
more fundamentally, the appearance of both as symmetries of the Wess-Zumino-Witten conformal field theories).
From that perspective, it’s reasonable to conjecture that some sort of transgression procedure can also get you the
Virasoro extensions.

1. The Virasoro extensions

Definition 1.1. The Virasoro group with central charge λ is the central extension of Γ by T which as a space is
T× Γ with multiplication

(1.2) (z1, γ1) · (z2, γ2) := (z1ż1 ·Bλ(γ1, γ2), γ1 ◦ γ2),

where Bλ : Γ× Γ→ T is the Bott-Thurston cocycle

(1.3) Bλ(γ1, γ2) := exp
(
− i

48

∫
S1

log(γ′1 ◦ γ2) d(log γ′2)
)
.

The derivative of an orientation-preserving diffeomorphism is a map to R, except the derivative is never 0 (because
it’s a diffeomorphism) and it’s never negative (the diffeomorphism is orientation-preserving). So it lands in R+,
which we regard as a group under multiplication; then log : R+ → R is the usual natural logarithm.

Now the geography of central extensions of Γ. If you have a central extension, you can do two things to it.
• You can pull it back to i : PSL2(R) ↪→ Γ (the real fractional linear transformations of RP1 = S1). Ultimately
because π1(PSL2(R)) = Z, there is a T worth of central extensions of PSL2(R) by T.
• You can differentiate to a central extension of Lie algebras. The Lie algebra of Γ is called the Witt algebra w,

and is the algebra of (polynomial) vector fields on S1. Here I’m being a little imprecise about completions,
which does not matter for the groups of central extensions. There is an R worth of central extensions of the
Witt algebra by R.

Theorem 1.4 (Segal). The map (i∗, d) : CExtT(Γ)→ CExtT(PSL2(R))× CExtR(w) = T× R is an isomorphism.

That is, a central extension is uniquely determined by its restriction to PSL2(R) and its derivative, and all
combinations occur. The Virasoro extensions are trivial when restricted to PSL2(R); on the Witt algebra, they are
the Virasoro algebra extensions. These are better-studied.
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2. Differential cohomology

The basic idea of differential cohomology is to encode the idea of closed differential forms obeying some sort of
integrality condition. For example: Chern-Weil forms corresponding to integer cohomology classes. Also quantization
often involves differential forms (field strength, which knows e.g. the electric and magnetic fields), but where the
possible values are discrete.

It’s convenient, but not quite true, to think of a differential cocycle as data of a closed differential form and some
sort of integrality data. This is not literally true at the level of cocycles, but it is true at the level of cohomology
theories.

Definition 2.1. A generalized differential cohomology theory is (the cohomology theory given by) a sheaf of spectra
on the site of smooth manifolds.

“Ordinary differential cohomology” is therefore given by a sheaf of chain complexes of abelian groups. To compute
this on a manifold, take hypercohomology of the double complex. (Generalized) differential cohomology groups are
not homotopy-invariant, which is what allows them to say useful things about geometry.

Definition 2.2. TODO: R(n), then Z(n). Z(n) is the homotopy pullback.

On a manifold M , an element of Hn(M ;R(n)) is a closed n-form. So on the level of complexes of sheaves, the
Deligne complex is something like “closed forms, integer cohomology classes, and an identification in de Rham
cohomology.”

Remark 2.3. There are several other definitions of differential cohomology (Cheeger-Simons, Simons-Sullivan,
Hopkins-Singer, . . . ). The thing people usually call “differential cohomology” is Hn(–;Z(n)), the “on-diagonal” part
of what we’re looking at, but a major theme of today’s talk is that the “off-diagonal” differential cohomology groups
are interesting too. (

Fiber integration goes here.
Finally, though we defined differential cohomology on manifolds, we can also make sense of it on (some) stacks

on Man, by which we mean simplicial sheaves on Man. We can present a stack by a simplicial Fréchet manifold
X•: for M a manifold, we want a simplicial set Map(M,X•), and we declare that its n-simplices are Map(M,Xn).
The value of a (generalized) differential cohomology theory E on a stack X• is the hypercohomology of the triple
complex E∗(X•).

Example 2.4. Let G be a Fréchet Lie group. Then B•G denotes the stack pt/G of principal G-bundles, which
admits a presentation by the bar construction pt ⇔⇔ G×G . . . . The quotient pt→ pt/G = B•G is the universal
principal G-bundle in the setting of stacks on Man; it is also possible to present the total space E•G as a simplicial
manifold. (

Example 2.5. Now let G be a finite-dimensional Lie group. There is a stack B∇G of principal G-bundles with
connection, and a universal principal G-bundle with connection E∇G→ B∇G in the world of stacks. (

We can use these ingredients to (finally?) connected differential cohomology to central extensions. Recall that for
discrete groups G, central extensions by an abelian group A are classified by H2(G;A) := H2(BG;A). But for Γ, we
want to remember the smooth structure: the Virasoro groups are Fréchet Lie groups. There are various notions of
smooth group cohomology which give the right answer, including Segal-Mitchison cohomology; see Wagemann-Wockel
for a general comparison theorem. Letting G be a Fréchet Lie group and A be a (finite-dimensional) abelian Lie
group, Segal-Mitchison cohomology is naturally isomorphic to H2(B•G;A), where A denotes the sheaf of A-valued
functions where A carries its Lie group topology.

Now, there is an equivalence of complexes T[−1] ' Z(1), given by the diagram (TODO). The upshot is that
H3(B•G;Z(1)) classifies Fréchet Lie group central extensions of G by T!

Our goal is to produce classes in H3(B•Γ;Z(1)) using differential lifts of characteristic classes.

3. Differential characteristic classes

3.1. The on-diagonal story. Quick review of Chern-Weil theory: given P,Θ → M , get a ring homomorphism
I∗(G)→ Ω∗(M) doubling the degree. Here I∗(G) = Sym∗(g∨)G, the ring of G-invariant polynomials on g, where
G acts by the adjoint action. Curvature Ω is in Ω2

P (g); Ω∧k in Ω2k
P (g⊗k), evaluate using the polynomial, then

Ad-invariance means whatever you get descends to M .
This is natural in P,Θ, which ultimately means it refines to the universal object: a ring homomorphism

CW : I∗(G)→ Ω∗(B∇G).
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Theorem 3.1 (Freed-Hopkins). If G is a compact Lie group, the Chern-Weil map defines an isomorphism of DGAs
I∗(G)→ Ω∗(B∇G).

Note: because we’ve doubled the degree and put 0s in odd components, d = 0.
Where differential cohomology enters the story: suppose that c ∈ H∗(BG;Z). Its image in H∗(BG;R) is

canonically associated to an invariant polynomial by the Chern-Weil map. The data of the lift to integer cohomology
gives us: a closed form, an integer cohomology class, and data of an identification of their images in de Rham
cohomology. This suggests to us that we should get a differential cohomology class, and:

Theorem 3.2 (Cheeger-Simons, Bunke-Nikolaus-Völkl). For G a compact Lie group and c ∈ H2n(BG;Z), there is
a unique lift of c to a class č ∈ H2n(B∇G;Z(2n)) whose curvature form is the Chern-Weil form associated to the
image of c in H∗(BG;R). This lift is natural in c.

If time, describe how to use this to define Chern-Simons invariants.
What we need today, though, is a different lift, to off-diagonal differential cohomology. People who worked on

this in various contexts: Beilinson in an algebro-geometric setting; Bott and Waldorf in the smooth setting.

Theorem 3.3 (Bott). There is a natural isomorphism φ : In(G)
∼=→ H2n(B•G;R(n)) such that the composition

(3.4) In(G) φ−→ H2n(B•G;R(n)) t−→ H2n(B•G;R) = H2n(BG;R)
is the Chern-Weil homomorphism.

Note: Bott stated and proved a different-looking theorem, identifying Hp(B•G; Ωq) with the smooth cohomology
Hp−q of G with coefficients in the G-representation Symq(g∨). The reinterpretation in terms of off-diagonal
differential cohomology is due to Mike Hopkins.

We can rephrase Bott’s theorem as follows: for any Lie group G with π0(G) finite, there is a pullback square

(3.5) H2n(B•G;Z(n)) t //

��

H2n(BG;Z)

��
In(G) CW // H2n(BG;R).

(A priori it’s a Mayer-Vietoris sequence, but H2n+1(BG;R) = 0, so it breaks into a bunch of pullback squares.)
If G is compact, the bottom map is an isomorphism, and so the top map is too: every class in H2n(BG;Z) lifts

uniquely to Z(n)-cohomology!
And even if G is noncompact, we’re still in business. For example, if G = GL+

n (R), we can compute the affine
space of lifts of p1 ∈ H4(BG;Z) to H4(B•G;Z(2)) by computing the affine space of preimages of its image in
H∗(BG;R) under the Chern-Weil map. This is R⊕R when n > 1 (spanned by tr(A2) and tr(A)2) and R for n = 1
(preimages of 0).

So to summarize, we’ve identified the R worth of differential lifts of p1; now we have to transgress them.

4. Transgression

We have all the ingredients, and now we put them together.
If time: what Brylinski-McLaughlin did:
• LG is the free loop group of G, which is a Fréchet Lie group satisfying B•LG ' LB•G.
• There is an evaluation map q : S1 × LB•G→ B•G.
• There is a projection map p : S1 × LB•G→ LB•G = B•LG.

Assume G compact, simple, and simply connected. The data of a “level” h ∈ H4(BG;Z) defines a Kac-Moody
central extension of LG by T; let hKM ∈ H3(B•G;Z(1)) = H2(B•G;T) be its cohomology class.

Theorem 4.1 (Brylinski-McLaughlin). Let h̃ ∈ H4(B•G;Z(2)) be the unique differential lift of h guaranteed by
Bott’s theorem. Then p∗q∗h̃ = hKM .

Here p∗ is integration along the S1 fiber, which gets us from H4(–;Z(2)) to H3(–;Z(1)) as desired.
What we have to do is a little different. Let E := E•Γ ×Γ S

1 → B•Γ be the universal oriented circle bundle,
and let V → E be the vertical tangent bundle. Then V defines a classifying map p : E → B•GL+

1 (R), and let
q : E → B•Γ be the quotient map.

Theorem 4.2 (D.-Liu-Weis, ’21). The transgression p∗q
∗ maps the line of off-diagonal differential lifts of p1

isomorphically onto the line of Virasoro central extensions of Γ.
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Recall that H3(B•Γ;Z(1)) ∼= R× T, and this means we obtained R× {0}.
Now let’s do better, and actually identify which differential lift hits which Virasoro group.
• Which Virasoro group is canonical is mostly a matter of convention. Let’s take λ = 1, which is the Virasoro
extension for the CFT of bosonic periodic scalars. This is a common convention (i.e. that this Virasoro
group has central charge 1).
• We choose as our distinguished differential lift of p1 the unique differential lift p̂1 which satisfies the Whitney
sum formula.

(But wait, you say! Pontrjagin classes don’t satisfy the Whitney sum formula! Yes, but p1 does for
GL+

n (R).)

Theorem 4.3 (D.-Liu-Weis, ’21). The transgression p∗q∗ maps p̂1 to the Virasoro group with central charge −12.

That is, we ended up with −12 times the generator.
If time remains, say something about the proof: there are a few different ways we can think about E.
• Computing q∗ is easiest when we simplicially resolve the GL+

1 (R)-action on E, in parallel to the bar
construction simplicially resolving B•GL+

1 (R): Γ\Fr+(S1)×GL+
1 (R)×• → GL+

1 (R)×•. Then the pullback is
simple: take the cocycle x1 dx2 ∈ Ω2(R2) (R identified with GL+

1 (R)) and pull it back to a cocycle constant
along Γ\F .
• However, p∗ is very difficult to compute with this presentation. Here it makes most sense to resolve the

Γ-action on the left, in parallel with the bar resolution on B•Γ: Γ×• × Fr+(S1)→ Γ×•. Now integration
along the fiber is actually integrating along an S1 (on each simplicial level).
• We have to get from one description to another. So we resolve in both directions at once, producing a

bisimplicial object Γ×• × Fr+(S1)×GL+
1 (R)•. Then, chase x1 dx2 across the double complex for Ω1 of this

bisimplicial object, which turns into a very explicit single-variable calculus computation.
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