
Notes on the Moduli of L∞ Connections
Emilio Verdooren

To begin, as per usual, let’s motivate some of the definitions of the paper. After this motivation, the defini-
tions become almost formal rephrasings.

We recall the definition of the Chevalley-Eilenberg algebra of a Lie algebra g:

Definition: Given a Lie algebra g the Chevalley-Eilenberg algebra on g, denoted CE(g), has underlying
algebra the Grassmann algebra on g∗: ∧•g∗, and differential is given on generators by the dual of the Lie
bracket and extended by linearity+Leibniz. That is,

dCE := −[−,−]∗ : g∗ → g∗ ∧ g∗

dCE(ω)(α, β) = −ω([α, β])
For later computational reference I’ll include the formula, given f ∈ ∧n−1g∗:

(dCEf)(x1, ..., xn) =
∑

1≤i<j≤n

(−1)i+jf([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xn)

where the hats denote removal from the list.

Immediately, what should come to mind since we are taking the Grassmann algebra on the dual of g, is
that this is something like the algebra of differential forms on the vector space g. In fact, we can do better
than this:

Proposition: Let G be a Lie group, and denote by (Ω•(G)G,ddR) the differential graded algebra of invari-
ant differential forms on the Lie group G. Then (CE(g),dCE) ∼= (Ω•(G)G,ddR) as differential graded algebras.

Proof: We sketch an isomorphism of cochain complexes. To begin, recall that a differential form ω ∈ Ωn(G)
is invariant precisely when

ω = ω ◦ dLg

where Lg is the left action of G on itself by multiplication on the left by g ∈ G, and dLg is the derivative
(tangent) map:

dLg : TG → TG

Now, observe that this property implies that the value of such a form ω is determined by it’s values on
vectors tangent to the identity. Take a collection of tangent vectors (v1, ..., vn) ∈ (ThG)⊗n to a point h ∈ G.
Then (dLh−1v1, ..., dLh−1vn) ∈ (TeG

⊗n) ∼= g⊗n, and invariance says that:

ω(v1, ..., vn) = ω(dLh−1v1, ..., dLh−1vn)

thus, any invariant n-form ω defines an element in (∧ng)∗ ∼= ∧ng∗ by first translating to the identity. Now,
to see that ddR = dCE, recall we have the following formula for the de Rham differential of an n-form ω:

ddRω(χ1, ..., χn+1) =
n+1∑
i=1

(−1)iLχi
ω(χ1, ..., χ̂i, ..., χn+1)+

∑
1≤i<j≤n+1

(−1)i+jω([χi, χj ], χ1, ..., χ̂i, ..., χ̂j , ..., χn+1)

where χ1, ..., χn+1 ∈ X(G) and ˆ(−) denotes the removal of (−) from the list. Immediately, one should note
that the rightmost summand is dCEω, thus we must argue that the leftmost summand vanishes. Notice that
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in the leftmost summand, since we contract ω with as many vector fields as its degree, we are taking the
directional derivative of an invariant smooth function. The fact that this sum vanishes follows from the fact
that for any f , an invariant smooth function on G, f is constant: given g ̸= h

f(g) = f(g(g−1h)) = f(h)

and thus the Lie derivatives in the leftmost sum must vanish. One can conclude after verifying that multi-
plication is respected (a fairly tautological step) that (CE(g),dCE) ∼= (Ω•(G)G,ddR) as differential graded
algebras.

While this is a remarkable fact all on its own, CE(g) is capable of encoding more than forms on G.

Proposition: : Let p : Y → X be a principal G-bundle and denote by Ω1
♭ (Y, g) the set of g-valued one

forms on Y with vanishing curvature. Then there is a bijection:

Ω1
♭ (Y, g) ∼= Homdgca(CE(g),Ω•(Y ))

Proof: We construct the datum of one side from the other in both directions. To begin, take a g-valued
one form ω with vanishing curvature, on a principal G-bundle Y → X. This defines a morphism of modules

ψ : g∗ → Ω1(Y )

α 7→ α ◦ ω

which thus defines a morphism of graded commutative algebras ψ : CE(g) → Ω•(Y ) (in degree 0 the extension
is the “inclusion of constants”) since CE(g) is generated by g∗. What remains is to see that this morphism
respects differentials, this we again check on generators. Observe that:

ψ(dCEα) = (dCEα) ◦ (ω ∧ ω) = −α([ω ∧ ω])

Now, it is a subtly non-trivial fact that given any vector space valued form ω : ∧kTM → V , the de Rham
differential commutes with postcomposition by any linear map φ : V → W , that is, d(φ ◦ω) = φ ◦ dω. Thus
in our case:

ddR(ψ(α)) = ddR(α ◦ ω) = α ◦ ddRω

We obtain then that

ddR(ψ(α)) − ψ(dCEα) = α(ddRω + [ω ∧ ω]) = α(Fω) = α(0) = 0

so this map does indeed respect the differentials. In the other direction, we start with a homomorphism of
differential graded algebras:

φ : CE(g) → Ω•(Y )

we tensor both the domain and codomain with the dga g[0] with trivial differential to obtain a map:

φ⊗ idg : CE(g) ⊗ g[0] → Ω•(Y ) ⊗ g[0]

restricting our attention to degree 1, we see a homorphism of modules:

φ1 : g∗ ⊗ g → Ω1(Y ) ⊗ g

we can canonically produce a g-valued one form by evaluating the following composition on the identity
endomorphism:

End(g)
∼=−→ g∗ ⊗ g

φ1⊗idg−−−−−→ Ω1(Y ) ⊗ g

that this one form has vanishing curvature follows from the fact that ψ respects differentials.

The above proposition immediately begs the question, what sort of differential graded algebraic gadget
will parameterize arbitrary g-valued one forms on a principal bundle? The answer, we will see, is the Weil
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algebra of the Lie algebra. First a reminder:

Definition: The free graded commutative algebra on an N graded vector space g, denoted by Sym•g, is
given by:

Sym•g = Sym(
⊕

p

g2p) ⊗
∧•

(
⊕

p

g2p+1)

With a slight abuse of notation, on the right hand side we have the ordinary symmetric and exterior
algebras of vector spaces. The grading of an element in Symr(g2p) ⊗

∧r
g2p+1 is 2pr + 2pr + r. We could

write down the direct sum decomposition by grading:

Sym•g = k ⊕ (∧1g1) ⊕ (Sym1(g2) ⊕ ∧2g1) ⊕ (∧3g1 ⊕ ∧1g3 ⊕ (Sym1(g2) ⊗ ∧1g1)) ⊕ ...

where we suppress tensor factors of Sym(g0) (the entire symmetric algebra of g0) in every degree which has
degree 0 for the sake of readability. We introduce a notation:∧•

g := Sym•g[1]

where g[1] denotes g with degrees shifted by one. It is obvious from the above definition that the entire
exterior algebra on every odd homogeneous component, and the entire symmetric algebra on every even
homogeneous component, are recovered. However, the algebra structure allows one to form products of
these which are witnessed by the mixed tensor products in the above decomposition. Take note that if g is
concentrated in degree 1 we obtain the free graded commutative algebra on a vector space, i.e., the exterior
or Grassmann algebra.

Definition: Given a Lie algebra g, the Weil algebra of g, denoted by W (g) is the semi-free differential
graded algebra whose underlying graded algebra is given by

∧•(g∗ ⊕ g∗[1]), and whose differential is defined
on generators as follows:

dW (g)
∣∣
g∗ = dCE ⊗ d : g∗ → (g∗ ∧ g∗) ⊗ g∗[1]

dW (g)
∣∣
g∗[1] = −[−,−]∗⊗ : g∗[1] ∼= g∗ → g∗ ⊗ g∗[1] ∼= g∗ ⊗ g∗

where on the unshifted generators we have the Chevalley-Eilenberg differential and the free differential which
simply sends an element of g∗ to itself shifted in degree one more and vanishes on g∗[1]. On the shifted
generators we have the dual of the Lie bracket considered as simply a map on the tensor product and not
the second exterior power:

[−,−]⊗ : g ⊗ g → g

I’m often annoyed that I have to look at sometimes terse definitions and wonder what the author meant
and whether or not I should really be doing mathematics because oh my god I’ve stared at this definition
for an hour now and have I really understood it what on earth do they mean I computed this but is it right
am I really going to call my thesis advisor at 9:00 PM on a Wednesday to ask why isn’t this on the nLab I
can’t find ... Let me save you the trouble, the Weil algebra explicitly looks like:

W (g) =
⊕
r≥0

⊕
2p+q=r

Sympg∗ ⊗ ∧qg∗ = k ⊕ (∧1g∗) ⊕ (Sym1(g∗) ⊕ ∧2g∗) ⊕ ((Sym1g∗ ⊗ ∧1g∗) ⊕ ...) ⊕ ...

where in the expansion we can see the shifted generators in degree 2 as Sym1g∗, and we can see the tensor
square of g∗ as Sym1 ⊗ ∧1g∗ where the degree difference is made clear.

Proposition: Let G be a Lie group and p : Y → X a principal G-bundle. There exists a bijection

Ω1(Y, g) ∼= Homdgca(W (g),Ω•(Y ))
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Proof: This follows the same as the case for the Weil algebra, the difference here is that the generators
we’ve added in degree 2 will account for non-trivial curvature. Let ω ∈ Ω1(Y, g) be a g-valued one form and
Fω its curvature, we define a morphism:

ψ : W (g) → Ω•(Y )

by defining it on generators:
ψ

∣∣
g∗ : g∗ → Ω1(Y )

ψ
∣∣
g∗(α) = α ◦ ω

ψ
∣∣
g∗[1] : g∗[1] → Ω2(Y )

ψ
∣∣
g∗[1](β) = β ◦ Fω

Now we verify that ψ respects differentials, again on generators. Let α ∈ g∗ and β ∈ g∗[1]. Then we have
the following:

ψ(dW (α)) = ψ(dCEα+ dα) = ψ(dCE) + ψ(dα) = −α ◦ [ω ∧ ω] + α ◦ Fω = α(Fω − [ω ∧ ω])

and
ddR(ψα) = α(ddRω)

We see that these are equal since Fω = ddRω + [ω ∧ ω]. Now on degree 2 we have:

ψ(dWβ) = −ψ(β([−,−]⊗)) = −β([ω ∧ Fω])

where here we have used that the dual of the bracket must have an entry in degree 1 and degree 2 and ψ
was defined accordingly. Lastly we have

ddR(ψ(β)) = β(ddRFω)

and we see that the commutator vanishes as a result of the Bianchi identity:

ddRFω + [ω ∧ Fω] = 0

I’ll leave the other direction to you.

As if this were not enough, one may further prod at this structure. Take notice in what exactly differs
between CE(g) and W (g). The latter contains the entire symmetric algebra on g∗ concentrated in even
degrees, these are of course, polynomial functions on the Lie algebra g. Any idea where this is going?

Definition: Given a Lie group G, we can define an invariant polynomial P on the Lie algebra as a wedge
product of elements in the shifted generators P ∈ ∧•g∗[1] ↪→ W (g) such that dWP = 0. These form a
graded sub-algebra of W (g) and we write inv(g) for the dga given by this sub-algebra equipped with the
trivial differential.

Let’s see exactly why this definition is equivalent to the usual one. The fact that P ∈ ∧•g∗[1] can be
interpretted as a polynomial should be no shock, the exterior and symmetric algebras can be obtained from
each other by degree shift and in this case we see that P ∈ ∧•g∗[1] ∼= Sym(g∗). This means that our
invariance statement comes from the closedness property, if we write P as a function:

P : g⊗n → k

then

dWP = −P ([−,−]) = −P ([−,−],−, ...,−) − P (−, [−,−], ...,−) − ...− P (−, ...,−, [−,−]) = 0

is the usual invariance statement for polynomials (albiet moved to the wrong side because of sign conven-
tions). We will see that this definition needs a bit of upgrading in order for it to be ported to L∞ algebras,
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but that is not our concern now. At this juncture we are ready to state something rather interesting:

Theorem: Let G be a compact connected Lie group, in what is written below, B∇G is the moduli
stack (simplicial presheaf) of G-bundles with connection, E∇G the moduli stack of trivial G-bundles with
connection, G is replaced by its representable simplicial presheaf, and Ω• is the moduli stack of differential
forms, all as defined in Freed-Hopkins’ Chern-Weil forms and Abstract Homotopy theory. All presheaves are
taken to be defined over cartesian spaces. We have a commutative diagram in which the horizontal arrows
are equivalences:

CE(g) Ω•(G)

W (g) Ω•(E∇G)

inv(g) Ω•(B∇G)

Now, in the above we’ve explicitly studied bijections between hom-sets of dga’s and g-valued forms on
total spaces of principal bundles with arbitrary or vanishing curvature. Of course, these need not form con-
nections. In order for such a differential form to comprise principal connection data we need the following
two “Cartan-Ehresmann” conditions to be satisfied:

Cartan-Ehresmann Conditions: Let G be a Lie group, ρ : Y ×G → Y be the action of G on the total
space of a principal G-bundle X. Further, for any v ∈ g let ρ∗(v) be left invariant the vector field on Y
which at a point y ∈ Y is the derivative of ρ(y,−) : G → Y at the identity evaluated at v. A g-valued 1-form
A ∈ Ω1(Y, g) comprises a principal connection if:

1. For any v ∈ g, ιρ∗(v)A = v.

2. For any v ∈ g, ιρ∗(v)FA = 0.

These conditions can be packaged into our framework rather easily, but first some housekeeping:

Recall: For any submersion p : Y → X we can define the vertical de Rham complex of Y with respect to
p, denoted by Ω•

vert(Y ), as a quotient of dga’s:

Ω•
vert(Y ) := Ω•(Y )/⟨Ω•

hor(Y )⟩

where ⟨Ω•
hor(Y )⟩ is the dg-ideal generated by those forms which vanish on the kernel of dp : TY → TX, this

is the ideal of horizontal forms. This is just another way of thinking about vertical forms in the usual sense
(forms on the fibers of p), but with a dg-algebraic sensibility.

Proposition: Given a surjection submersion with simply connected fibers p : Y → X, and a Lie group G,
cocycles

g : Y ×X Y → G

are in bijection with morphisms of differential graded algebras:

Avert : CE(g) → Ω•
vert(Y )

Proof: From the above discussion, it shouldn’t require too much convincing that a morphism Avert as
described above defines a flat g-valued 1-form, unsurprisingly the fact that we are mapping into the vertical
de Rham complex means this form is vertical. Thus, on each fiber we have a connection 1-form, which we
denote abusively by Avert. Given two points in the same fiber (y1, y2) ∈ Y ×X Y , the simple connectedness
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allows us to consider the parallel transport of Avert along any path γ : y1 → y2, and the flatness of Avert
allows us to disregard dependence on the choice of path. The parallel transport is an element of G:

traγAvert = P exp(
∫

γ

Avert) ∈ G

which defines for us a map
g : Y ×X Y → G

g(y1, y2) = P exp(
∫

γ

Avert)

that this map satisfies the cocycle condition is a sort of multiplicativity of the path ordered exponential.
In the other direction, given any principal G-bundle, p : Y → X, we can define the canonical invariant,
vertical, g-valued 1-form by taking the identity map TY → TY and then projecting to the vertical vectors
and composing with the isomorphism TY → TY → ker(p) ∼= g.

Disclaimer: The above proposition is perhaps a bit misleading. Morphisms of graded algebras like this
don’t coincide with any classification data for higher bundles when we replace g by an L∞ algebra, but I’ve
chosen to include it here because the proof makes obvious that these morphisms of graded algebras corre-
spond to something like fiberwise Maurer-Cartan forms on Y . These “fiber-wise Maurer-Cartan objects” are
necessary for the formulation of L∞ connections as we will see.

Proposition: For a principal G-bundle Y → X with simply connected fibers, let Avert : CE(g) → Ω•
vert(Y )

be the canonical g-descent object. If there exists data (A,FA) : W (g) → Ω•
vert(Y ) and {Ki} : inv(g) →

Ω•
vert(Y ) which lift the descent object, i.e., such that the following diagram commutes:

Ω•
vert(Y ) CE(g)

Ω•(Y ) W (g)

Ω•(X) inv(g)

Avert

q

(A,FA)

p∗

{Ki}

Then A is a principal connection with curvature FA.

The commutativity of the top square is equivalent to the first Cartan-Ehresmann condition, the bottom
square the second. Let’s see how:

Proof: The commutativity of the top square says that when A is restricted to the fibers of p : Y → X, i.e.,
when only evaluated on vertical vector fields, that we obtain Avert. If the square commutes, then Cartan-
Ehresmann (1) holds because all left invariant vector fields are vertical. Suppose that Cartan-Ehresmann
(1) holds and let χ be a vertical vector field, if χ = ρ∗(v) for some v ∈ g then the commutativity of the top
square and Cartan-Ehresmann (1) are manifestly equivalent. Suppose that χ is not of thi form, explicitly,
suppose that there does not exist a single v ∈ g such that for all points y ∈ Y , χy = ρ∗(v)y. Observe
that if we restrict Tρ(y,−) : TG → TY to the tangent space at the identity we obtain an isomorphism
g → VyY , where VyY is the vertical tangent space of Y at y. Pulling back χy along this isomorphism gives
an element vχy

∈ g, and by definition, ρ∗(vχy
)y = χy. By the previous case then, Cartan-Ehresmann (1)

implies commutativity of the top square at the point y. However, we can repeat this process for any y and
the equivalence is obtained globally for the arbitrary vertical vector field χ.

Commutativity of the bottom square amounts to saying that for any invariant polynomial Pi ∈ ∧ng∗[1],
the characteristic form Pi(FA) is pulled back from a 2n-form Ki. This in turn is equivalent to the char-
acteristic forms Pi(FA) being basic. Recall that basic forms, defined for any submersion, are those forms
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that vanish on vertical vector fields, and whose differentials also vanish on vertical vector fields. When
the submersion under consideration is a principal bundle, the condition of being basic reduces to a pair of
conditions in terms of the Cartan calculus:

Lemma: A form ω is basic relative to a principal G-bundle if and only if for every v ∈ g

1. ιρ∗(v)ω = 0

2. Lρ∗(v)ω = [ddR, ιρ∗(v)]ω = 0

Pi(FA) is basic if and only if FA is basic, so we reduce to proving that Cartan-Ehresmann (2) holds if and
only the FA is basic. Assuming Cartan-Ehresmann (2) holds gives us half of the proof trivially, the second
condition comes from the fact that principal curvature forms are invariant under the G-action on the total
space. The opposite direction is trivial.

We’re almost ready to generalize all of this, first, let’s recall the basic notions of an L∞ algebra:

Definition: An L∞ algebra is a graded vector space g together with skew symmetric multilinear maps
{ln : g⊗n → g}n∈N, the nth such map having degree 2 − n, subject to the generalized Jacobi identity for all
choices of n:

Jn :=
n∑

p=1
(−1)p(n−p)

∑
σ∈Shuff(p,n−p)

ε(σ, v1, ..., vn)ln−p+1(lp(vσ(1), ..., vσ(p)), vσ(p+1), ..., vσ(n)) = 0

Where ε(σ, v1, .., vn) is the total effect of signs by both σ and the permuting of graded elements by the Koszul
sign rule. Unpacking the above identity for some special cases is enlightening:

J1 = l1 ◦ l1 = 0

says that l1 is a differential.

J2 = −l2(l1(v1), v2) + (−1)|v1||v2|l2(l1(v2), v1) + l1(l2(v1, v2)) = 0

To clean this up observe that:

(−1)|v1||v2|l2(l1(v2), v1) = −(−1)(|v2|+1)|v1|(−1)|v1||v2|l2(v1, l1(v2)) = −(−1)|v1|l2(v1, l1(v2))

and thus
l1(l2(v1, v2)) = l2(l1(v2), v1) + (−1)|v1|l2(v1, l1(v2))

so l1 is a graded derivation of l2. Let’s have a look at n = 3, with some cleaning up:

J3 = l3(l1(v1), v2, v3) + (−1)|v1|l3(v1, l1(v2), v3) + (−1)|v1+|v2|l3(v1, v2, l1(v3))

+l2(l2(v1, v2), v3) − (−1)|v3||v2|l2(l2(v1, v3), v2) + (−1)|v1|(|v2|+|v3|)l2(l2(v2, v3), v1) + l1(l3(v1, v2, v3)) = 0

we see then that

l2(l2(v1, v2), v3) − (−1)|v3||v2|l2(l2(v1, v3), v2) + (−1)|v1|(|v2|+|v3|)l2(l2(v2, v3), v1) =

−l1(l3(v1, v2, v3)) − l3(l1(v1), v2, v3) − (−1)|v1|l3(v1, l1(v2), v3) − (−1)|v1+|v2|l3(v1, v2, l1(v3))

on the left hand side we have the sum present in the graded Jacobi identity. If we let

f =
∑

σ∈Shuff(2,1)

ε(σ,−,−)l2(l2(−,−),−)

(the left hand side of the above), then viewing l1 as a differential, and l3 as a degree 2 − 3 = −1 cochain
map, we can draw the following diagram of cochain complexes:
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(g⊗3)n−1 (g⊗3)n (g⊗3)n+1

gn−1 gn gn+1

l⊗3
1

f

l⊗3
1

f
l3

f
l3

l⊗3
1 l⊗3

1

The equality J3 = 0 states precisely that l3 witnesses f as cochain homotopic to 0. For higher values of n,
the equations Jn = 0 are the manifestations of higher homotopy coherences.

Observations: If ln = 0 for all n > 2, an L∞ algebra is just a differential graded Lie algebra. If in addition,
g is concentrated in degree 1, this is an ordinary Lie algebra.

We can characterize the degree-wise finite dimensional L∞ algebras with a more familiar structure with
a bit of work.

Definition: A co-derivation D : C → C on a co-algebra C with co-multiplication ∆ : C → C ⊗ C is a
k-linear map with the property that

∆ ◦D = (D ⊗ id + id ⊗D) ◦ ∆

Definition: The free graded commutative co-algebra on a graded vector space g, denoted
∨•

g, has the
same underlying graded vector space as

∧•
g with co-mulitplication:

∆(t1 ∨ ... ∨ tn) =
∑

p+q=n

∑
σ∈Shuff(p,q)

ε(σ, t1, ..., tn)(tσ(1) ∨ tσ(3) ∨ ... ∨ tσ(i)) ⊗ (tσ(i+1) ∨ ... ∨ tσ(n))

where here ε(σ, t1, ..., tn) is the Koszul sign.

Remark: Given an L∞ algebra g, we can define a differential graded co-algebra structure on ∨•g. Each
bracket ln is extended to indecomposables of wordlength k to graded co-derivations by the following formula:

ln(t1 ∨ ... ∨ tk) =
∑

σ∈Shuff(n,k−n)

ε(σ, t1, ..., tk)ln(tσ(1) ∨ ... ∨ tσ(n)) ∨ tσ(n+1) ∨ ... ∨ tσ(k)

Once this extension has been made, we define a graded co-derivation D : ∨•g → ∨•g by

D =
∑
n≥1

ln

The take away at this point is that L∞ algebras are equivalently semi-free differential graded co-algebras
(although we only showed one direction here). In the case of (degreewise) finite dimensional L∞ algebras,
we can dualize everything to obtain the more familiar and friendly semi-free differential graded algebras.

Definition: An L∞ algebra is a graded vector space g with a degree -1 co-derivation

D : ∨•g → ∨•g

When g is degree-wise finite dimensional, this is equivalently a degree +1 derivation

D∗ : ∧•g∗ → ∧•g∗

We define the Chevalley-Eilenberg algebra of a finite dimensional L∞ algebra as the differential graded
algebra

CE(g) := (∧•g∗,dCE := D∗)
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Theorem: The categories of degree-wise finite dimensional semi-free differential graded algebras is con-
travariantly equivalent to the category of L∞ algebras of finite type.

From here on out, we will identify a finite dimensional L∞ algebra g with its Chevalley-Eilenberg algebra
CE(g).

Example: This could serve almost as a definition, but in light of the theory of higher Lie integration, it
really is an example. The line Lie n-algebra, denoted bn−1u(1) is given by

CE(bn−1u(1)) = (∧•(R[n]),dbn−1u(1) = 0)

Although this won’t be expounded upon here, in a rigorous sense this L∞ algebra “integrates” to the ∞-
groupoid BU(1).

Example: Perhaps first non-trivial example to consider is the string Lie 2-algebra. Consider so(n), the Lie
alebra of SO(n). On any finite dimensional Lie algebra g we have a canonical symmetric bilinear invariant
polynomial ⟨−,−⟩ : g ⊗ g → k, the Killing form, given by

⟨x, y⟩ = tr([x, [y,−]])

We define a degree 3 element of CE(g) as:

µ = ⟨−, [−,−]⟩

which is in fact closed:

(dCEµ)(x1, x2, x3, x4) = −µ([x1, x2], x3, x4) + µ([x1, x3], x2, x4) − µ([x1, x4], x2, x3) − µ([x2, x3], x1, x4)
+ µ([x2, x4], x1, x3) − µ([x3, x4], x1, x2)
= −⟨[x1, x2], [x3, x4]⟩ + ⟨[x1, x3], [x2, x4]⟩ − ⟨[x1, x4], [x2, x3]⟩ − ⟨[x2, x3], [x1, x4]⟩
+ ⟨[x2, x4], [x1, x3]⟩ − ⟨[x3, x4], [x1, x2]⟩ = 0

You can see that this sum should vanish in pairs because ⟨−,−⟩ is invariant. Thus µ is a 3 cocycle in the
Lie algebra cohomology of so(n), and thus classifies a shifted extension:

bu(1) → gµ → so(n)

the object gµ is not a Lie algebra but the Lie 2-algebra string(n). We give it’s explicit description:

CE(string(n)) = (∧•(g∗ ⊕ ⟨s⟩[1]),dstring(n))

where ⟨s⟩ is a single generator placed in degree 2. The differential is given on generators by:

dstring(n)
∣∣
g∗ = dCE(g)

dstring(n)(s) = µ

This can all be generalized. For any g an L∞ algebra and µ a degree n cocycle in CE(g), there is a
corresponding extension

bn−2u(1) → stringµ(n) → g

We can now extend all of these concepts and define the moduli stack of L∞-connections.

Write ∆k for the smooth k-simplex, a manifold with boundary and corners. Write Ω•
si(∆k) for the dga

of differential forms on ∆k with sitting instants (constant around boundaries/corners). Given a Cartesian
space U , a form ω ∈ Ωn(U × ∆k) has sitting instants if for every point u : ∗ → U , the pullback of ω along
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(u, Id) : ∆k → U × ∆k has sitting instants. Finally we write Ωn
si(U × ∆k)vert for those forms with sitting

instants that are vertical with respect to the projection U × ∆k → U .

Definition: For an L∞ algebra g we define a simplicial presheaf on cartesian spaces:

exp∆(g)(U, [k]) = Homdga(CE(g),Ω•
si(U × ∆k)vert)

exp∆(g)(U) is a simplicial set of smooth U -familes of differential forms on ∆1,∆2, .... exp∆(g) is fibrant
in the projective model structure on simplicial presheaves so it takes values in Kan complexes, i.e., it is an
∞-groupoid.

Proposition: When G is a simply connected Lie group with Lie algebra g, we have an equivalence:

exp∆(g) → BG

Proof: Given a U -family of flat g-valued 1-form on the 1 simplex, we obtain a smooth function on U valued
in G by for each point u ∈ U , fixing a flat 1-form Au on [0, 1], and integrating along [0, 1] to obtain an element
in G. For higher simplices we integrate along [0, 1] and then along [1, 2], [2, 3], ..., [n − 1, n] to obtain an el-
ement in Gn+1. Since the Au are flat, this assignment is well defined and we obtain an element in BG(U)n+1.

Proposition: There is a similar equivalence:

exp∆(bn−1u(1)) → BnU(1)

We have several differential refinements of this stack to classifying stacks of various connection data.

Definition: exp∆(g)diff is the classifying stack for g-valued forms that satisfy CE(1). On a pair (U, [k])

exp∆(g)diff(U, [k]) =

Ω•
si(U × ∆k)vert CE(g)

Ω•
si(U × ∆k) W (g)

Avert

A

that is to mean, on a pair (U, [k]) we assign the set of commuting diagrams as above. This is essentially the
same (weakly equivalent in the case of a Lie algebra for simply connected Lie group) as exp∆(g). The whole
point of this resolution becomes apparent in the ∞-Chern-Weil theory as it “serves to model the canonical
curvature characteristic map BG → ♭dRBG”. This is a bit outside the scope of these notes/talks, but this
is the content of section 5 in Cech cocycles for differential characteristic classes by Schreiber, Fiorenza, and
Stasheff for those interested.

Definition: exp∆(g)CW ⊂ exp∆(g)diff is the moduli stack of g-valued forms satisfying CE(1) and CE(2),
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on a pair (U, [k]) we assign the set of commuting diagrams:

Ω•
si(U × ∆k)vert CE(g)

Ω•
si(U × ∆k) W (g)

Ω•
si(U) inv(g)

Avert

A

FA

This is almost the moduli stack of L∞ connections, and for a principal G bundle with Lie algebra g this
works, but in the general case of an L∞ algebras we have to enforce a horizontality condition (see section 5.3
of L∞ connections and applications to string and Chern-Simons n-transport by Schreiber, Sati, and Stasheff
for the definition of vertical fields in the language of dg algebras).

Definition: exp∆(g)conn = exp∆(g)CW + horizontality, is the moduli stack of L∞-connections. The hori-
zontality condition states that for FA in the above diagram, and for any vertical vector field χ on U × ∆k,
ιχFA = 0. For an L∞ algebra this vector field and this contraction are defined in the language of dgas as in
the above reference.
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