
All definitions used in the problems can be found in the notes, and also in the recommended textbooks.

1. Recall the category of enhanced measurable spaces (Homework 1, Problem 4). More precisely, we con-
structed two different categories: PreEMS and its quotient StrictEMS modulo the equivalence relation of
equality almost everywhere. Consider the category CAlg∗C of commutative complex *-algebras, defined as
follows. Objects are complex algebras A equipped with a complex-antilinear operation ∗:A → A (the involu-
tion) such that (ab)∗ = b∗a∗, 1∗ = 1, and a∗∗ = a. Morphisms are morphisms of complex algebras f :A → B
such that f(a∗) = f(a)∗.
• Extend the following construction to a functor L∞:PreEMSop → CAlg∗C. Send an enhanced measurable
space (X,Σ, N) to the complex *-algebra of bounded morphisms (X,Σ, N) → (C,ΣC, {∅}), where ΣC

denotes the Borel σ-algebra of C. All operations are pointwise, with f∗ being the pointwise complex
conjugate of f . Here a morphism is bounded if it factors (when restricted to a conegligible subset of X)
through some bounded subset of C.

• Show that if C is a category with an equivalence relation R on its sets of morphisms, then precomposing
a functor C/R → D with the quotient functor C → C/R establishes a bijection between functors
C/R → D and functors C → D that send equivalent morphisms in C to equal morphisms in D. Apply
this observation to construct a functor L∞: StrictEMSop → CAlg∗C

• [***] (Very optional.) Prove that the functor L∞ is not faithful: there is an object (X,Σ, N) in the
quotient StrictEMS and two different morphisms f, g: (X,Σ, N) → (C,ΣC, {∅}) such that L∞(f) =
L∞(g).

• Consider again the category PreEMS. Show that the following relation of weak equality almost every-
where gives rise to another quotient category of PreEMS, denoted simply by EMS: f ≈ g: (X,Σ, N) →
(X ′,Σ′, N ′) if for any m ∈ Σ′ the symmetric difference f∗m⊕ g∗m is a negligible subset of X.

• Construct a functor L∞:EMSop → CAlg∗C and prove that it is faithful.
• [***] (Very optional.) A functor F:C → D is full if for any objects X,Y ∈ C the map of sets C(X,Y ) →
D(X,Y ) is surjective. Show that the functor L∞ is full.

2. Recall the category Open of open subsets of Rn (for any n ≥ 0) and infinitely differentiable maps
(Homework 1, Problem 1). (Attain extra bonus points by working with arbitrary second countable Hausdorff
smooth manifolds instead.)
• Construct a functor C∞:Openop → CAlgR to the category of real commutative algebras. Send an object
U ∈ Open to its algebra of smooth functions U → R.

• Prove that the functor C∞ is faithful (see Problem 1).
• Consider the map of sets U → Hom(C∞(U),R) that sends a point u ∈ U to the homomorphism
C∞(U) → R (f 7→ f(u)). Prove that this maps of sets is bijective. Hint: consider evaluating homo-
morphisms on coordinate functions xi ∈ C∞(U). Hint: (re)familiarize yourself with Hadamard’s lemma
from elementary analysis.

• Prove that a subset W ⊂ Hom(C∞(U),R) ∼= U is closed in U if and only if there is f ∈ C∞(U) such
that W = {h:C∞(U) → R | h(f) = 0}. Hint: (re)familiarize yourself with the smooth Tietze extension
theorem, also known as the Whitney extension theorem.

• [**] (Optional.) Use the previous items to show that the functor C∞ is full (see Problem 1).

3. Suppose R is a commutative ring. A radical ideal if R is an ideal I of R such that xn ∈ I for some n ≥ 0
implies x ∈ I. Consider the poset SpecR of radical ideals of R ordered by inclusion.

• Prove that the poset SpecR admits suprema and infima for all subsets.
• Prove that in the poset SpecR we have x ∧

∨
i∈I yi =

∨
i∈I(x ∧ yi) for any arbitrary set I. Here ∧

denotes infimum and
∨

denotes the supremum of a family.
• Promote the above construction to a functor Spec:CRing → Frame. Here Frame has as objects posets
that admit arbitrary suprema, finite infima, and x∧

∨
i∈I yi =

∨
i∈I(x∧ yi) holds. Morphisms in Frame

are order-preserving maps that preserve arbitrary suprema and finite infima.
• Construct a functor Top → Frame. Prove that this functor is not faithful.
• Prove that it is faithful when restricted to Hausdorff spaces. Prove that Spec(Z) is not in the image of
the restricted functor.

4. Review the definition of a Banach space. Consider the category Ban of Banach spaces and contractive
maps. These are linear maps f such that ‖f(x)‖ ≤ ‖x‖ for all x. Consider the category Ball of compact unit
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balls. It has compact unit balls as objects, defined as pairs (V,B) consisting of a Hausdorff locally convex
topological vector space V and a compact Hausdorff topological subspace B ⊂ V such that B is balanced
(i.e., 0 ∈ B and for any x ∈ B and number t such that |t| ≤ 1 we have tx ∈ B), and B is convex (i.e., for
any x, y ∈ B and real numbers r ≥ 0 and s ≥ 0 such that r + s ≤ 1 we have rx + sy ∈ B). Morphisms
(V,B) → (V ′, B′) are continuous linear maps V → V ′ that send B to B′.

• Construct a functor Banop → Ball that sends a Banach space X to the unit ball (X∗, X∗
≤1), where X∗

denotes the space of linear functionals on X equipped with the weak-* topology and X∗
≤1 denotes its

subspace of functionals of norm at most 1. (Look up the Banach–Alaoglu theorem.)
• Construct a functor Ball → Banop that sends a unit ball (V,B) to the Banach space of continuous linear
functionals on V , with the norm given by the supremum over B.

• Show that monomorphisms in Ban are precisely injective maps.
• Show that epimorphisms in Ball are precisely those morphisms (V,B) → (V ′, B′) for which the maps
V → V ′ and B → B′ are surjective.

• Assuming the functors defined above form an equivalence of categories, prove that given an inclusion
A → B of Banach spaces, any linear functional on A can be extended to a linear functional on B that has
the same norm. You may use the fact that monomorphisms are precisely epimorphisms in the opposite
category.

5. Given a topological space X, consider the category CovX of open covers of X. Objects are open covers
of X, defined as maps of sets f : I → Open(X) such that

∪
i∈I f(i) = X, where Open(X) denotes the

collection of open subsets of X. Morphisms (f : I → Open(X)) → (g: J → Open(X)) are maps of sets
p: I → J such that for every i ∈ I we have f(i) ⊂ g(p(i)).
• Extend the following construction to a functor CovX → Set. Send an open cover f : I → Open(X) to
the set π0(f), defined as the quotient of I by the equivalence relation ∼, where i ∼ i′ if f(i)∩ f(i′) 6= ∅.

• If X is a locally connected topological space (look it up), explain how the functor π0 relates to the
traditional set of connected components.

• [**] (Optional.) Suppose X = {0, 1}N (an infinite product of two-point topological spaces; also known
as the Cantor space). Is there an open cover f of X such that the canonical map from the set of
connected components of X to π0(X)(f) is an isomorphism?

• Look up the definition of a groupoid and the category Grpd of groupoids and functors. Extend the
following construction to a functor CovX → Grpd. Send an open cover f : I → Open(X) to the groupoid
π≤1(f). Objects are elements of I. Morphisms i → i′ are equivalence classes of chains of elements of I:
i = i0, i1, . . . , ik = i′ such that f(ij) ∩ f(ij+1) 6= ∅. Two chains are equivalent if they can be connected
by a sequence of elementary transformations or their inverses. An elementary transformation takes two
consecutive elements ij , ij+1 and replaces them with a single i′j such that f(ij) ∩ f(ij+1) ∩ f(i′j) 6= ∅.

• Compute π≤1(S
1)(f), where S1 is a circle and f is a sufficiently fine cover, for example, three overlapping

intervals.

6. Look up the definition of a covering space in topology.
• Prove that for a topological space X, covering spaces A → X over X form a category. Morphisms
(A → X) → (B → X) are continuous maps A → B that commute with the map to X.

• Prove that for a topological space X, the following construction defines a category π≤1(X). Objects
are points in X. Morphisms x → x′ are equivalences classes of continuous maps p: [0, 1] → X such that
p(0) = x, p(1) = x′. Two paths p, q: [0, 1] → X are equivalent if they are homotopic. Composition is
given by concatenating paths (define exactly how).

• Given a covering space p:A → X, prove that the following construction defines a functor π≤1(X) → Set.
Send a point x ∈ X to the fiber Ax = {a ∈ A | p(a) = x}. Send a path p: [0, 1] → X to the map of sets
Ap:Ap(0) → Ap(1) defined as follows. Given a ∈ Ap(0), denote by q: [0, 1] → A the unique lift of p such
that q(0) = a. (Look up the lifting property for covering spaces.) Then Ap sends a to the point q(1).
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