
1. Which sets of data given below define categories? Warning: some sets of data are incomplete, e.g., do
not specify composition. You must reconstruct all missing data (this is a creative process and can have more
than one answer). Some items below have negative answers. Some are purposefully nonsensical. If some set
of data cannot be made into a category, you have to provide a proof.
• Topological spaces and proper maps. (A map f :X → Y is proper if it is continuous and for any compact
subset T ⊂ Y the subset f−1(T ) ⊂ X is also compact.)

• Sets and relations. (More precisely, given two sets X and Y , morphisms X → Y are relations from
X to Y , i.e., subsets of X × Y . Two relations R ⊂ X × Y and S ⊂ Y × Z are composed as follows:
R ◦ S = {(x, z) | ∃y ∈ Y : (x, y) ∈ R ∧ (y, z) ∈ Z}.

• Sets and surjective functions.
• Sets and partially defined functions. (A partially defined function X → Y is a function A → Y , where
A ⊂ X. If x ∈ X, we say that f is defined on x (or: f(x) is defined) if x ∈ A. Partially defined functions
are composed as follows: if f :X → Y and g:Y → Z are partially defined function, then the composition
gf is defined on x ∈ X if f is defined on x and g is defined on f(x), in which case (gf)(x):= g(f(x)).)

• Fix a topological space X and define a category as follows. Objects are continuous functions with
codomain X, i.e., f :Y → X (Y is arbitrary). (Here morphisms in Top play the role of objects in the
category that we are constructing.) Morphisms from an object f :Y → X to an object f ′:Y ′ → X are
continuous maps g:Y → Y ′ such that f ′g = f .

• The category Open. Objects are open subsets of Rn, where n is arbitrary (not fixed). Morphisms
U → V are infinitely differentiable maps U → V .

• The category Open∗. Objects are pairs (U, x), where U ⊂ Rn is an open subset and x ∈ U . Morphisms
(U, x) → (V, y) are infinitely differentiable maps U → V that map x to y.

• MatR: objects are natural numbers n ≥ 0 and morphismsm → n are matrices of size n×m. Composition
is multiplication of matrices.

• BR: there is only one object ∗. Morphisms ∗ → ∗ are real numbers. Composition of morphisms is given
by multiplication of real numbers.

• There is only one object ∗. Morphisms ∗ → ∗ are compactly supported continuous functions R → R.
Composition of morphisms is given by multiplication of functions.

• Poset: objects are partially ordered sets (i.e., a set X with a relation R that is reflexive (x ≤ x),
transitive (x ≤ y and y ≤ z implies x ≤ z), and antisymmetric (x ≤ y and y ≤ x implies x = y).
Morphisms are functions that preserve the order: if x ≤ y, then f(x) ≤ f(y).

2. Which sets of data below define functors? (Same warning as above.)
• Open∗ → VectR. Send U ⊂ Rm to Rm. Send f : (U, x) → (V, y) to the linear map Rm → Rn given by
the Jacobian matrix of f at x, i.e., the entry in ith row and jth column is the value of the ith partial
derivative of the jth coordinate of f at point x. In symbols: ai,j =

∂fj
∂xi

(x). (The jth coordinate of f is
the composition U → V ⊂ Rn → R, where Rn → R is the projection to the jth component.)

• MatR → BR: send any object n ≥ 0 of MatR to the only object of BR. Send a matrix of size m× n to
its determinant (a morphism in BR) if m = n. Otherwise send it to zero.

• OpenSet:Top → Poset: send any topological spaceX to the posetOpenSet(X) whose elements are open
subsets of X and the ordering is given by inclusion. Send any continuous map f :X → Y of topological
spaces to the map of posets g:OpenSet(X) → OpenSet(Y ) defined as follows: g(U) =

∪
V⊂f(U) V ,

where V runs over open subsets of Y .

3. Define a functor MatopR → MatR. Define a functor MatR → VectR. Define a functor BR → MatR. Define
a functor MatR → Open∗. Define a functor Topop → Poset.

4. This problem investigates how categories work with measure theory. A novel feature is that measurable
maps that differ on a set of measure 0 must be identified.
• Define a measurable space as a pair (X,Σ), where X is a set and Σ is a σ-algebra on X, i.e., a collection
of subsets of X that is closed under complements and countable unions. Define a measurable map
(X,Σ) → (X ′,Σ′) as a map of sets f :X → X ′ such that the f -preimage of any element of Σ′ is an
element of Σ. Do measurable sets and measurable maps form a category?

• Define an enhanced measurable space as a triple (X,Σ, N), where (X,Σ) is a measurable space and N
is a σ-ideal of Σ, i.e., a collection of elements of Σ that is closed under passage to subsets (if A ∈ Σ,
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B ∈ N , and A ⊂ B, then A ∈ N) and countable unions. A negligible set is defined as a subset of some
element of N . Define a measurable map (X,Σ, N) → (X ′,Σ′, N ′) as a map of sets f :Xf → X ′ (where
Xf ⊂ X is some subset) with the following properties: (1) The set X \ Xf is negligible. (2) For any
m′ ∈ Σ′ there is m ∈ Σ such that the set f∗m′ ⊕ m is negligible. (3) For any n′ ∈ Σ′ the set f∗n′ is
negligible. Do enhanced measurable sets and measurable maps form a category?

• Two mesurable maps f, g: (X,Σ, N) → (X ′,Σ′, N ′) are equal almost everywhere (f ∼ g) if {x ∈ Xf∩Xg |
f(x) 6= g(x)} is negligible. Show that equality almost everywhere defines an equivalence relation that is
compatible with composition: if f ∼ f ′ and g ∼ g′, then fg ∼ f ′g′.

• Suppose C is a category and for every pair of objects X,Y ∈ C we are given an equivalence relation
RX,Y on C(X,Y ) that is compatible with composition: if f ∼ f ′ and g ∼ g′, then fg ∼ f ′g′. Show that
taking quotients of C(X,Y ) with respect to these equivalence relations produces a category.

5. Fix a category C. A section of a morphism f :X → Y in C is a morphism g:Y → X such that fg = idY .
Give an example of a category C such that all epimorphisms have sections. Give an example of a category C
and an epimorphism f in C that does not have a section. Hint: it suffices to use the examples that we
studied in class.

6. Fix a category C. A bimorphism in C is a morphism f that is simultaneously a monomorphism and an
epimorphism. Is any isomorphism a bimorphism? Give an example of a category C and a bimorphism f in C
that is not an isomorphism.

7. Construct two functors D: Set → Set and I: Setop → Set such that for any set X we have D(X) = I(X) =
2X , where 2X denotes the set of all subsets of X. (In other words, you must define D and I on morphisms
and prove that composition and identity maps are respected.)

8. Construct a functor L1: Set → Ban1 such that for any set S the Banach space L1(S) is the space of
functions f :S → R such that the sum

∑
s∈S f(s) exists (and is finite). Construct a functor L∞: Setop → Ban1

such that L∞(S) is the space of all bounded functions S → R.

9. Show that the class of epimorphisms in the category of Hausdorff topological spaces coincides with the
class of continuous maps whose image is dense.

10. Describe concretely all monomorphisms and epimorphisms in BR. Same question for Open and Open∗.
Same question for Poset.

11. A idempotent ring is a ring R such that x2 = x for any x ∈ R. (Rings are assumed to be associative
and unital, homomorphisms of rings preserve units.)
• Show that any idempotent ring is commutative: xy = yx for all x and y.
• Show that the relation x ≤ y: = (x = xy) defines a partial order on R.
• Show that given a set X, equipping 2X (the set of subsets of X) with the following operations: 0: = ∅,
x+ y: = (x \ y) ∪ (y \ x), −x: = X \ x, 1: = X, xy: = x ∩ y produces an idempotent ring.

• Recall that the supremum of a subset A ⊂ R, if it exists, is the unique element s ∈ R such that for all
a ∈ A we have a ≤ s and if s′ is another element with the same property, then s ≤ s′. Show that in the
idempotent ring 2X every subset has a supremum.

• An atom in an idempotent ring is an element a ∈ R such that a 6= 0 and if 0 ≤ b ≤ a for some b ∈ R,
then b = 0 or b = a. Show that in the idempotent ring 2X every element can be represented as the
supremum of a set of atoms.

• Show that the assignment X 7→ 2X can be extended to a contravariant functor 2(−) from the category
of sets to the category whose objects are idempotent rings in which every subset has a supremum and
every element is the supremum of a set of atoms, and morphisms are homomorphisms of rings that
preserve suprema (f :R → R′ preserves suprema if for any S ⊂ R we have sup f(S) = f(supS)).

• Construct a contravariant functor going in the opposite direction. (Hint: it is useful to keep the example
of the idempotent ring 2X when constructing this functor.)

• Prove that the two functors together form an equivalence of categories.
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