MATH 6330 Notes

8-24

Resources:

- An Introduction to Manifolds - Tu
- Differential Geometry - Tu
- Manifolds and Differential Geometry - Lee
- Gauge Fields, Knots, and Gravity - Baez, Munian
- Introduction to Smooth Manifolds - Lee
- Differential Topoloy - Guillemin, Pollack
- Smooth Manifolds and Observables - Nestruev
- Mathematical Gauge Theory - Hamilton
- Principal Bundles the Classical Case - Sontz
- Mathematical Aspects of Classical Mechanics - Arnold

Recall:
Definition: A Real Vector Space is a module V over the ring \mathbb{R}. A canonical example of a real vector space is \mathbb{R}^{n} where $n \in \mathbb{N}$.

Definition: A real vector space V is finitely generated if there exists $v_{1}, \ldots, v_{d} \in V$ such that given any $u \in V$, there exists real numbers $r_{1}, \ldots, r_{d} \in \mathbb{R}$ such that

$$
u=\sum_{i=1}^{d} r_{i} v_{i}
$$

note that the dimension of the vector space V is defined to be the smallest such d that the above condition holds.

The appropriate morphisms between vector spaces are linear maps.
Definition: Given two vector spaces V_{1} and V_{2}, a linear map $f: V_{1} \longrightarrow V_{2}$ is a map of underlying sets that preserves all operations, i.e. such that

- $f(v+w)=f(v)$
- $f(0)=0$
- $f(r \cdot v)=r \cdot f(v)$
- $f(-v)=-f(v)$

8-26

Proposition: A d dimensional vector space is isomorphic to \mathbb{R}^{d}.
Proof: Look in any linear algebra book.
Given a d-dimensional vector space V, a specific choice of isomorphism $\mathbb{R}^{d} \longrightarrow V$ is referred to as a basis.
Proposition: If $f: V \longrightarrow V^{\prime}$ is a linear map, we can use the previous propsition to obtain from the diagram below, a bijection $\operatorname{VECT}\left(V, V^{\prime}\right) \cong \operatorname{VECT}\left(\mathbb{R}^{d}, \mathbb{R}^{d^{\prime}}\right) \cong\left\{\right.$ matrices of size $\left.d^{\prime} \times d\right\}$ given by $f \mapsto$ $h^{\prime-1} \circ f \circ h$

Definition: Insert definition of a topological space here.
Example: Blah blah blah metric spaces blah blah blah
Definition: Insert definition of continuity here.
Example: If V is a finite dimensional vector space, then we can define its underlying topological space (V, \mathcal{U}) where \mathcal{U} is defined as follows:

- Option 1: Pick a metric (norm induced by an inner product)(inner product: a bilinear, symmetric, and positive definite map) on V, and do the usual open ball business.
- Option 2: Let $A \in \mathcal{U}$ iff $A=\bigcup_{\alpha \in J} W_{\alpha}$ such that $W_{\alpha} \subseteq V$ and $W_{\alpha}=\bigcap_{i=1}^{n} Z_{i}$ for every $\alpha \in J$ and each Z_{i} is the form $f^{-1}((-\infty, a))$ for some $a \in \mathbb{R}, f$ is assumed to be a linear map $f: V \longrightarrow \mathbb{R}$, and $n \in \mathbb{N}$
HW Problem: I(a)Prove the above are equivalent, (b) any linear map is continuous using Option 2

8-31

Definition: Given finite dimensional \mathbb{K} vector spaces V and V^{\prime}, open subsets $U \subseteq V$ and $U^{\prime} \subseteq V^{\prime}$, and a map $f: U \longrightarrow U^{\prime}$, we can define two "types of derivatives" on these sets.

- The directional derivative of f, if it exists, is a map $V \times U \longrightarrow V^{\prime}$ which maps a vector $v \in V$ and a point $x \in U$ to the vector denoted by $\left(\partial_{v} f\right)(x)=\left(D_{v} f\right)(x)=\left(\nabla_{v} f\right)(x)=f_{v}^{\prime}(x)$ where each of these denotes $\lim _{t \rightarrow 0} \frac{f(x+t \cdot v)-f(x)}{t}=g^{\prime}(0)$ where $g(t)=f(x+t \cdot v)-f(x)$ and $t \in \mathbb{K}$.
- The differential of f, if it exists, is a map $U \longrightarrow \operatorname{Hom}\left(V, V^{\prime}\right)$ denoted by either $D f$ or $T f$. Given $x \in U$, we define $D f$ by asserting that $D f(x): V \longrightarrow V^{\prime}$ is the unique linear map with the property that: given $h: u \mapsto f(u)-f(x)-(D f)(x)(u-x)$, we have $\lim _{u \rightarrow x} \frac{h(u)}{\|u-x\|}=0$. We can generalize this definition (no mention of inner product/norm) by taking $h=\sum_{i} s_{i} \cdot r_{i}$ where $s_{i}: V \longrightarrow V^{\prime}$ are linear, and r_{i} are continuous at u and $r_{i}(u)=0$, and we only have finite i.

Lemma: If $V, V^{\prime}, U, U^{\prime}, f$ are as in the definition, $D f$ exists, and $\left(\partial_{v} f\right)(x)$ exists for all x, v then

$$
D f(v)=\left(\partial_{v} f\right)(x)
$$

for all $v \in V$ and $x \in U$.
REMARK: If we only assume that $\left(\partial_{v} f\right)(x)$ exists for all x, v we cannot recover the above equality.
Note: If $V=V^{\prime}=\mathbb{R}$, then we recover the usual notion of the derivative, $D f: U \longrightarrow \operatorname{Hom}(\mathbb{R}, \mathbb{R}) \cong \mathbb{R}$.
HW: Compute the differentials of the following maps (the V_{i} are real vector spaces)

- $\operatorname{Hom}\left(V_{2}, V_{3}\right) \times \operatorname{Hom}\left(V_{1}, V_{2}\right) \longrightarrow \operatorname{Hom}\left(V_{1}, V_{3}\right)$ which is defined by $(B, A) \mapsto B \circ A$
- $\operatorname{Hom}\left(V_{1}, V_{2}\right) \times \operatorname{Hom}\left(V_{1}, V_{2}\right) \longrightarrow \operatorname{Hom}\left(V_{1}, V_{2}\right)$ which is defined by $\left(A_{1}, A_{2}\right) \mapsto A_{1}+A_{2}$
- Consider $\operatorname{GL}(V):=\{f: V \longrightarrow V \mid f$ is iso. $\} \cong\{$ invertible square matrices $\} \subseteq \operatorname{Hom}(V, V)$ which is defined by $A \mapsto A^{-1}$.
- Bonus: Prove the equivalence of the second part of the above definitions of the differential.

9-2

The symmetry of higher differentials

Recall our setup from last time with $V, V^{\prime}, U, U^{\prime}$ and $f: U \longrightarrow U^{\prime}$. We defined the differential

$$
D f: U \longrightarrow \operatorname{Hom}\left(V, V^{\prime}\right)
$$

If the differential exists and we evaluate it for some $u \in U$, and evaluate the linear map $D f(u)$ at some $v \in V$, then we obtain $(D f)(u)(v)=\left(\partial_{v} f\right)(u)$. Suppose we take the differential of the differential, then we obtain a map

$$
D(D f)=D^{2} f: U \longrightarrow \operatorname{Hom}\left(V, \operatorname{Hom}\left(V, V^{\prime}\right)\right)
$$

Evaluating on some $u \in U$ and subsequently on some $v_{1} \in V$, and after this some other $v_{2} \in V$, we obtain

$$
\left(D^{2} f\right)(u)\left(v_{1}\left(v_{2}\right)\right)=\left(\partial_{v_{2}} \partial_{v_{1}} f\right)(u)
$$

A natural question is "what happens if you swap v_{1} and v_{2} ?" We know that nothing happens:
Proposition(Schwarz, Clairaut): $\left(D^{2} f\right)(u)\left(v_{1}\right)\left(v_{2}\right)=\left(D^{2} f\right)(u)\left(v_{2}\right)\left(v_{1}\right)$
Proof sketch: Apply the mean value theorem twice.
"Recall" the following proposition:

Proposition: Let V_{1}, V_{2}, V_{3} be real vector spaces, then we have canonical isomorphisms

$$
\operatorname{Hom}\left(V_{1}, \operatorname{Hom}\left(V_{2}, V_{3}\right)\right) \cong \operatorname{Hom}\left(V_{2}, \operatorname{Hom}\left(V_{1}, V_{3}\right)\right) \cong \operatorname{Bilin}\left(V_{1}, V_{2} ; V_{3}\right) \cong \operatorname{Hom}\left(V_{1} \otimes V_{2}, V_{3}\right)
$$

Definition: Insert the definition of a bilinear map here.
Definition: Insert definition of tensor product here.

Insert proof that the tensor product exists here.

9-7

Proposition: If $\left\{e_{i}\right\}_{i=1}^{n}$ is a basis for V and $\left\{e_{j}^{\prime}\right\}_{j=1}^{k}$ is a basis for V^{\prime}, then $\mathcal{B}:=\left\{e_{i} \otimes e_{j}^{\prime}\right\}_{i \in \mathbb{N}_{\leq n}, j \in \mathbb{N}_{\leq k}}$ is a basis for $V \otimes V^{\prime}$

Proof: The proof proceeds in two steps

1. We would like to show that $\left\{e_{i} \otimes e_{j}^{\prime}\right\}_{i \in \mathbb{N}_{\leq n}, j \in \mathbb{N}_{\leq k}}$ spans $V \otimes V^{\prime}$. It suffices to show that for $v \in V$ and $v^{\prime} \in V$, we can express $v \otimes v^{\prime}$ as a linear combination of elements of \mathcal{B}. Since both V and V^{\prime} have bases, we can express either vector in terms of their respective basis elements:

$$
v=\sum_{i=1}^{n} v_{i} e_{i} \wedge v^{\prime}=\sum_{j=1}^{k} v_{j}^{\prime} e_{j}^{\prime}
$$

therefore we recover that:

$$
v \otimes v^{\prime}=\left(\sum_{i=1}^{n} v_{i} e_{i}\right) \otimes\left(\sum_{j=1}^{k} v_{j}^{\prime} e_{j}^{\prime}\right)=\sum_{i, j} v_{i} v_{j}^{\prime}\left(e_{i} \otimes e_{j}\right)
$$

as desired.
2. We would like to show that the elements of \mathcal{B} are linearly independent. To show this recall that $\left\{f_{i}\right\}_{i \in \mathbb{N}_{\leq k}} \subseteq V$ are linearly independent if and only if $\left\{g_{i}\right\}_{i \in \mathbb{N}_{\leq k}} \subseteq \operatorname{Hom}(V, \mathbb{R})$ such that

$$
g_{i}\left(f_{i}\right)= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Take the dual bases $\left\{f_{i}\right\}_{i \in \mathbb{N}_{\leq n}} \subseteq V^{*}$ and $\left\{f_{i}^{\prime}\right\}_{i \in \mathbb{N}_{\leq k}} \subseteq V^{*}$. Consider the map $h_{i, j}$ which we define as the composition:

$$
V \otimes V^{\prime} \xrightarrow{f_{i} \otimes f_{j}^{\prime}} \mathbb{R} \otimes \mathbb{R} \xrightarrow{\cong} \mathbb{R}
$$

Observe that $h_{i, j} \in\left(V \otimes V^{\prime}\right)^{*}$. Now one can see that

$$
h_{i, j}\left(e_{i^{\prime}} \otimes e_{j^{\prime}}^{\prime}\right)=\left(f_{i} \otimes f_{j}^{\prime}\right)\left(e_{i^{\prime}} \otimes e_{j^{\prime}}^{\prime}\right)=f_{i}\left(e_{i^{\prime}}\right) \cdot f_{j}^{\prime}\left(e_{j^{\prime}}^{\prime}\right) \quad \text { (here we use the isomorphism) }
$$

where

$$
f_{i}\left(e_{i^{\prime}}\right) \cdot f_{j}^{\prime}\left(e_{j^{\prime}}^{\prime}\right)= \begin{cases}1, & \left(i, i^{\prime}\right)=\left(j, j^{\prime}\right) \\ 0, & \text { otherwise }\end{cases}
$$

This completes the proof.
Now that that's over, let's see how tensors behave under "change of coordinates". Suppose e_{1}, \ldots, e_{n} is a basis for V and $e_{1}^{\prime}, \ldots, e_{n^{\prime}}^{\prime}$ is a basis for V^{\prime}. Then

$$
e_{i}=\sum_{k} a_{i, k} e_{k}^{\prime}
$$

where the $a_{i, k}$ assemble into the "change of basis" matrix. Then

$$
\begin{gathered}
t=\sum_{i, j} t_{i, j} \cdot\left(e_{i} \otimes e_{j}\right)=\sum_{i, j} t_{i, j} \cdot\left(\sum_{k} a_{i, k} e_{k}^{\prime}\right) \otimes\left(\sum_{l} a_{l, k} e_{l}^{\prime}\right)= \\
=\sum_{i, j, k, l} t_{i, j} \cdot a_{i, k} \cdot a_{j, l} \cdot\left(e_{k}^{\prime} \otimes e_{l}^{\prime}\right)
\end{gathered}
$$

So if our old coordinates are $t_{i, j}$ (this is our coefficient before $e_{i} \otimes e_{j}$) then our new coordinates (coefficients) are $\sum_{i, j} t_{i, j} \cdot a_{i, k} \cdot a_{j, l}$ This should satisfy the question "how do physical tensors correspond to mathematical tensors?" Physical tensors are simply mathematical tensors expressed in coordinates.

HW: V and W are arbitrary real vector spaces (a) Construct a canonical map $V^{*} \otimes W \longrightarrow \operatorname{Hom}(V, W)$. (b) prove that the image of this map coincides with finite rank maps from V to $W(\operatorname{rank}(f: V \longrightarrow W):=$ $\operatorname{dim}(\operatorname{Im}(f)))$. (c) Prove that rank $=$ tensor rank where tensor $\operatorname{rank}(t):=\min \left\{n \in \mathbb{N} \mid t=\sum_{i=1}^{n} a_{i} \otimes b_{i}\right\}$

Definition: Let $V \in \mathrm{VECT}_{\mathbb{R}}$ and let $k \in \mathbb{N}$

- $V^{\otimes k}:=V \otimes \ldots \otimes V$ (k-times)
- $S y m^{k}:=V^{\otimes k} /\left(\ldots \otimes v \otimes v^{\prime} \otimes \ldots-\ldots \otimes v^{\prime} \otimes v \otimes \ldots\right)$
- $\bigwedge^{k} V:=V^{\otimes k} /\left(\ldots \otimes v \otimes v^{\prime} \otimes \ldots+\ldots \otimes v^{\prime} \otimes v \otimes \ldots\right)$

9-14

Definition: A chart on a set X is given by the following data:

- $U \subseteq X$
- W a finite $\operatorname{dim} \mathbb{R}$ vector space
- $V \subseteq W$ open subset
- $f: U \longrightarrow V$ a bijection

Definition: The transition map t from a chart (U, V, W, f) to a chart $\left(U^{\prime}, V^{\prime}, W^{\prime}, f^{\prime}\right)$ is defined as the composition

$$
f\left(U \cap U^{\prime}\right) \rightarrow U \cap U^{\prime} \rightarrow f^{\prime}\left(U \cap U^{\prime}\right)
$$

which we can write succinctly as $t=f^{\prime} \circ f^{-1}$, where it is understood we are (co)restricting to $U \cap U^{\prime}$ where necessary.

Definition: Two charts C_{1} and C_{2} on a set X are said to be compatible if the transition maps $t_{1,2}$ and $t_{2,1}$ are smooth $\left(C^{\infty}\right)$ maps between open subsets of W and W^{\prime}, note that as maps of sets $t_{1,2}^{-1}=t_{2,1}$.

Definition: An Atlas on a set X is a collection of cahrts $\left\{C_{\alpha}\right\}_{\alpha \in J}$ on X such that for any $\alpha, \beta \in J, C_{\alpha}$ and C_{β} are compatible. Moreover, we require that if given a chart D on X such that D is compatible with C_{α} for all $\alpha \in J$, then $D \in\left\{C_{\alpha}\right\}_{\alpha \in J}$, this is equivalently stated: we require that \mathcal{A} be maximal.

Definition: A Smooth Manifold is a set X together with an atlas $\mathcal{A}=\left\{C_{\alpha}\right\}_{\alpha \in J}$.
Definition: The underlying topological space of a smooth manifold (X, \mathcal{A}) is the topological space (X, τ) where $U \in \tau$ if

$$
U=\bigcup_{\alpha \in J} f_{i}^{-1}\left(V_{i}\right)
$$

where every $V_{i} \subseteq W_{i}$ is open and each W_{i} is some finite dim vector space over \mathbb{R}.
In practice, we can construct an atlas on a set X as follows:

1. Take a collection of charts $\left\{C_{\alpha}=\left(U_{\alpha}, W_{\alpha}, V_{\alpha}, f_{i}\right)\right\}_{\alpha \in J}$ on X such that the collection $\left\{U_{\alpha}\right\}$ covers X and C_{α}, C_{β} are compatible for any $\alpha, \beta \in J$.
2. Define $\mathcal{A}:=\left\{D \mid D\right.$ is a chart $\wedge D$ is compatible with C_{α} for every $\left.\alpha \in J\right\}$
3. \mathcal{A} is the unique atlas containing $\left\{C_{\alpha}\right\}_{\alpha \in J}$

Examples:

- Every finite dimensional vector space V is a smooth manifold with a single trivial chart.
- If M is a smooth manifold and $G \subseteq M$ is open, then G is itself a smooth manifold. To see this, select those charts C_{α} on M for which $U_{\alpha} \subseteq G$.
- Any open subset of \mathbb{R}^{n} is a smooth manifold using the above two examples.

The following example gets its own subheading:

Example: The Sphere

Take a finite dimensional real vector space V with inner product $\langle\cdot, \cdot\rangle: \operatorname{Sym}^{2}(V) \longrightarrow \mathbb{R}$. We define

$$
S^{V}:=\{v \in V \mid\langle v, v\rangle=1\}
$$

and claim that S^{V} is a smooth manifold. Charts on S^{V} can be constructed using the stereographic projection. Details on this next time!

9-16

Example: The Sphere

Take $p \in S^{V}$ where S^{V} is defined as last time, we define the stereographic projection as

$$
S_{p}^{V}: S^{V} \backslash\{p\} \longrightarrow\langle p\rangle^{\perp} \text { where } S_{p}^{V}(q)=\frac{1}{1-\langle q, p\rangle} \cdot(q-\langle q, p\rangle \cdot p)
$$

recall that $\langle p\rangle^{\perp}$ is the orthogonal complement of p. We can then interpret the above formula as the projection of q onto the orthogonal complement of p. We have an inverse

$$
S_{p}^{V-1}:\langle p\rangle^{\perp} \longrightarrow S^{V} \backslash\{p\} \quad \text { where } S_{p}^{V-1}(w)=\frac{2}{1+\langle w, w\rangle} \cdot w+\frac{-1+\langle w, w\rangle}{1+\langle w, w\rangle} \cdot p
$$

Recall the reason we're interested in this map: it defines a chart. For any $p \in S^{V}$ we have a chart C_{p}, we need only verify (to obtain a smooth structure) that $p, p^{\prime} \in S^{V}$, the charts C_{p} and $C_{p^{\prime}}$ are compatible. To do this we write down the transition map

$$
t:\langle p\rangle^{\perp} \backslash\left\{S_{p}^{V}\left(p^{\prime}\right)\right\} \longrightarrow\left\langle p^{\prime}\right\rangle^{\perp} \backslash\left\{S_{p^{\prime}}^{V}(p)\right\}
$$

which is simple enough granted that we can make the definition $t=S_{p^{\prime}}^{V} \circ S_{p}^{V-1}$, and observe that t is smooth because it is defined as the composition of smooth functions. Thus given any two $p, p^{\prime} \in S^{V}$, we obtain compatible charts $C_{p}, C_{p^{\prime}}$ which can be combined to provide a smooth structure on the sphere S^{V}.

Definition: Given a smooth manifold M, we define it's dimension as a map of sets $\operatorname{dim}_{M}: \pi_{0}(M) \longrightarrow \mathbb{N}$ where $\pi_{0}(M)$ is the set of connected components of M. For any $x \in \pi_{0}(M)$ (any open/closed connected subset of M), we define $\operatorname{dim}_{M}(x)=\operatorname{dim}(W)$ where W is a vector subspace in some chart $C=(U, W, V, f)$, such that $x \in U$.

Definition: Insert the definition of connectedness, local connectedness, and connected components.

Example:

- If V is a real vector space, then $\operatorname{dim}_{M}(V)=\operatorname{dim}(V)$
- If $U \subseteq V$ is open then $\operatorname{dim}_{M}(U)=\operatorname{dim}_{M}(V)$
- If V is a real vector space, then $\operatorname{dim}_{M}\left(S^{V}\right)=\operatorname{dim}\left(\langle p\rangle^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}\left(\langle p\rangle^{\perp}\right)=\operatorname{dim}(V)-1$

9-21

Example: Orientable surface of genus g

We discussed in detail the smooth structure on an orientable surface of genus g, charts were drawn and I didn't know how to typeset them!

HW: Prove that the non-orientable surface with $c>0$ cross-caps is a smooth manifold.

Definition: Let $X, X^{\prime} \in$ Man, then a smooth map $g: X \longrightarrow X^{\prime}$ is a map of underlying sets such that for any charts \mathcal{C}_{X} and $\mathcal{C}_{X^{\prime}}$ and elements of these charts $U \in \mathcal{C}_{X}$ and $U^{\prime} \in \mathcal{C}_{X^{\prime}}$, we require that the composition

$$
f\left(U \cap g^{-1}\left(U^{\prime}\right)\right) \xrightarrow{f^{-1}} U \cap g^{-1}\left(U^{\prime}\right) \xrightarrow{g} U^{\prime} \xrightarrow{f^{\prime}} f^{\prime}\left(U^{\prime}\right)
$$

is C^{∞}, where f, f^{\prime} are the usual bijections in a chart. That is, we require that the map $f^{\prime} \circ g \circ f^{-1}$: $f\left(U \cap g^{-1}\left(U^{\prime}\right)\right) \longrightarrow f^{\prime}\left(U^{\prime}\right)$ is C^{∞}, and that its domain is an open subset of W (W here is the understood
vector space on which we model \mathcal{C}_{X}).
Proposition(s):

- Smooth maps are continuous
- The identity map is smooth
- The composition of smooth maps between smooth manifolds is a smooth map

Definition: Given $X, X^{\prime} \in$ Man, we can define their product in Man denoted $X \times X^{\prime}$ as follows: We take the product of underlying sets X and X^{\prime}, and construct charts on $X \times X^{\prime}$ by taking the product of charts $\mathcal{C}_{X} \times \mathcal{C}_{X^{\prime}}$, which are defined by taking products of all of their data (including the pairing of the canonical bijections).

HW: Prove that the elements of $\mathcal{C}_{X} \times \mathcal{C}_{X^{\prime}}$ are compatible so that $X \times X^{\prime}$ is actually a manifold. Secondly, prove that the projection maps $\pi_{X}: X \times X^{\prime} \longrightarrow X$ and $\pi_{X^{\prime}}: X \times X^{\prime} \longrightarrow X^{\prime}$ are C^{∞}. Finally, prove that if given smooth maps $h: Y \longrightarrow X$ and $h^{\prime}: Y \longrightarrow X^{\prime}$, then $\left(h, h^{\prime}\right): Y \longrightarrow X \times X^{\prime}$ defined by $y \mapsto\left(h(y), h^{\prime}(y)\right)$ is a smooth map.

Preview for Thursday's class:
Definition: A Lie group is a group object in the category of smooth manifolds.

9-23

Hadamard's Lemma: Given a smooth function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ such that $f(0)=0$, there exists $g_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ such that $f=\sum_{i} x_{i} g_{i}$

Proof: Observe that

$$
f(x)-f(0)=\int_{0}^{1} f_{t}^{\prime}(t \cdot x) d t
$$

we can then write $h(t)=f(t \cdot x)$, and further note that

$$
h(1)-h(0)=\int_{0}^{1} h^{\prime}(t) d t
$$

from which it follows that

$$
f(x)=\int_{0}^{1} \sum_{i} x_{i} \frac{\partial f}{\partial x_{i}}\left(t \cdot x_{i}\right) d t
$$

we can "pull the x_{i} 's out" and let

$$
g_{i}(x)=\int_{0}^{1} \frac{\partial f}{\partial x_{i}}\left(t \cdot x_{i}\right) d t
$$

from which the result follows.

Definition: Recall here the definition of a group.
Examples: (of Lie groups)

- Fix a finite dimensional real vector space V, then $\mathrm{GL}(V)$ is a Lie group. The reason this is a group should be clear, why is it a Lie group? First observe that $\operatorname{GL}(V) \subseteq \operatorname{End}(V)$ and $\operatorname{End}(V)$ has the structure of a real vector space. We claim that $\mathrm{GL}(V)$ is an open subset of $\operatorname{End}(V)$, from which it follows that $\mathrm{GL}(V)$ is a smooth manifold. To see that $\mathrm{GL}(V)$ is open, consider the map

$$
\operatorname{det}: \operatorname{End}(V) \longrightarrow \mathbb{R}
$$

observe that $\operatorname{GL}(V)=\operatorname{det}^{-1}(\mathbb{R} \backslash\{0\})$, and since we can express det as a horrible polynomial function, in particular it is continuous. Thus, $\mathrm{GL}(V)$ is the continuous pre-image of an open subset of \mathbb{R}, so it is an open subset of $\operatorname{End}(V)$, and in particular it is a manifold. This is not sufficient to show that GL($V)$ is a Lie group, as we must still be certain that the operations are smooth. Well, one can easily realize the coordinates of the multiplication/composition map as polynomials:

$$
(B, A) \mapsto(B A)_{i j}=\sum_{k} B_{i, k} A_{k, j}
$$

which are smooth, moreover it was proven in the homework that this multiplication/composition map has a differential, one could argue by induction that this map is C^{∞}. An entirely analogous argument follows for the inverse and identity maps (it is an important point that a point realized as a map from a point is a smooth map).

- The special linear group: $\mathrm{SL}(V) \leq \mathrm{GL}(V)$ is the subset of all invertible matrices A with $\operatorname{det}(A)=1$.
- We can fix an inner product $\langle\cdot, \cdot\rangle$ on V and define the orthogonal linear group: $\mathrm{O}(V)=\{A \in \mathrm{GL}(V) \mid$ $\langle A v, A w\rangle=\langle v, w\rangle\}$
- The special orthogonal linear group: $\mathrm{SO}(V) \leq \mathrm{O}(V)$ is the subset of all orthogonal matrices of determinant one.
- Define the Hermitian inner product on a complex vector space V as $\langle\alpha, \beta\rangle=\bar{\alpha} \cdot \beta$. This inner product is a real bilinear map $V, V \longrightarrow \mathbb{C}$ that is complex linear in the second variable and complex anti-linear in the first variable, anti-symmetric, and positive definite. We define the unitary group: $\mathrm{U}(V)=\left\{A \in \mathrm{GL}_{\mathbb{C}}(V) \mid\langle A v, A w\rangle=\langle v, w\rangle\right\}$ where $\langle\cdot, \cdot\rangle$ is the Hermitian inner product on V
- There's of course a special version $\mathrm{SU}(V)$

Definition: A tangent vector to a point $x \in U \subseteq M$, where $M \in$ MAn, is an equivalence class of trajectories which we require to be smooth maps $p: \mathbb{R} \longrightarrow M$ such that $p(0)=x$, under the following identification:

$$
p \sim q \quad \Longleftrightarrow \quad \text { in some, and hence all charts, containing } x \text { we have : }
$$

$$
(f \circ p)^{\prime}(0)=(f \circ q)^{\prime}(0)
$$

where $f: U \longrightarrow f(U)$ is the chart mentioned.
HW: Show that if the above equality holds in a single chart, it must hold in all charts.

9-28

Recall our definition of the tangent vector from last time:
Definition: A tangent vector to a point $x \in U \subseteq M$, where $M \in$ Man, is an equivalence class of trajectories which we require to be smooth maps $p: \mathbb{R} \longrightarrow M$ such that $p(0)=x$, under the following identification:

$$
p \sim q \quad \Longleftrightarrow \quad \text { in some, and hence all charts, containing } x \text { we have : }
$$

$$
(f \circ p)^{\prime}(0)=(f \circ q)^{\prime}(0)
$$

where $f: U \longrightarrow f(U)$ is the chart mentioned.
This definition is functional, and motivated by physical intuition, but mathematically speaking a curve and a vector should be different concepts. We introduce the following equivalent definition to ameliorate this:

Definition: Given a smooth manifold M and point $x \in M$, a tangent vector at x is a given by a family $\left(w_{C}\right)_{C \in \mathcal{C}_{x}}$ where \mathcal{C}_{x} is the sub-collection of the atlas on M consisting of all charts that contain x, and where given a particular chart $C=(U, V, W, f), w_{C} \in W$ and

$$
w_{C^{\prime}}=\left(D t_{C, C^{\prime}}\right)(f(x))\left(w_{C}\right)
$$

where $t_{C, C^{\prime}}$ is the transition map from C to C^{\prime}.
Proof of equivalence:
$(1) \Rightarrow(2)$
Suppose a manifold M, point $x \in U \subseteq M$, and subset U are given together with an equivalence class of curves γ with $\gamma(0)=x$. To produce a family of vectors as in definition (2) we set

$$
w_{C}=(f \circ \gamma)^{\prime}(0)
$$

where $C=(U, V, W, f)$. We must show that this is well defined, to this end let $\nu \sim \gamma$. By the definition of \sim we have

$$
(f \circ \gamma)^{\prime}=(f \circ \nu)^{\prime}=w_{C}
$$

so our choice of w_{C} is indeed well defined. The family $\left(w_{C}\right)_{C \in \mathcal{C}_{x}}$ is completely determined by a single choice of vector w_{C}, as all other members of the family can be computed using the above formula.

$$
(2) \Rightarrow(1)
$$

Suppose a manifold M, point $x \in U \subseteq M$, and subset U are given together with a family $\left(w_{C}\right)_{C \in \mathcal{C}_{x}}$. To construct an equivalence class of curves, pick any chart $C=(U, V, W, f)$ and any smooth curve $\gamma: \mathbb{R} \longrightarrow V$ with $\gamma(0)=f(x)$ and $\gamma^{\prime}(0)=w_{C}$, then pull this curve back onto the manifold using f. For example pick $\gamma(t)=f(x)+t \cdot w_{C}$ and take $\left[f^{-1} \circ \gamma\right]$. We must verify the result we have recovered is independent of our choices of γ and C^{\prime}, to this end suppose we have another curve $\nu: \mathbb{R} \longrightarrow V$ with $\nu(0)=f(x)$ and $\nu^{\prime}(0)=w_{C}$. We have that $\left[f^{-1} \circ \gamma\right]=\left[f^{-1} \circ \nu\right]$ because $\left(f \circ f^{-1} \circ \gamma\right)^{\prime}(0)=\left(f \circ f^{-1} \circ \nu\right)^{\prime}(0)$. Now suppose we pick a different chart $C^{\prime}=\left(U^{\prime}, V^{\prime}, W^{\prime}, g\right)$, then we consider the class $\left[g^{-1} \circ \gamma\right]$. By means of the transition $\operatorname{map} t_{C, C^{\prime}}$ we obtain that

$$
\left[g^{-1} \circ \gamma\right]=\left[f^{-1} \circ\left(t_{C, C^{\prime}}^{-1} \circ \gamma\right)\right]
$$

so it suffices to verify that the curve $\eta:=t_{C, C^{\prime}}^{-1} \circ \gamma$ satisfies $\eta(0)=f(x)$ and $\eta^{\prime}(0)=w_{C}$. Observe that

$$
\eta(0)=\left(t_{C, C^{\prime}}^{-1} \circ \gamma\right)(0)=t_{C, C^{\prime}}^{-1}(g(x))=f(x)
$$

and

$$
\begin{gathered}
\eta^{\prime}=D\left(t_{C, C^{\prime}}^{-1}\right)(\gamma(0)) \gamma^{\prime}(0)=\left(D\left(t_{C, C^{\prime}}\right)\left(t_{C, C^{\prime}}^{-1}(\gamma(0))\right)\right)^{-1}\left(\gamma^{\prime}(0)\right)= \\
=(D(t)(f(x)))^{-1}\left(w_{C^{\prime}}\right)=w_{C}
\end{gathered}
$$

HW: Complete the proof of equivalence of the above definitions by showing that, by starting with a tangent vector as in definition one, then producing a tangent vector as in definition two using the above, then producing a new tangent vector as in definition one using the above, we get the same tangent vector back. Then do it starting with a tangent vector as in definition two.

Definition: Given a smooth manifold M, a point $x \in M$, and a tangent vector $v \in T_{x} M$, we define the directional derivative of a smooth function $f: M \longrightarrow \mathbb{R}$ in the direction of v as

$$
\left(D_{v} f\right)(x)=(f \circ \gamma)^{\prime}(0)
$$

where $v=[\gamma]$ and $\gamma: \mathbb{R} \longrightarrow M$. Note that, because the vector v is tangent to x, it is somewhat meaningless to write any evaluation at x (where else would we evaluate?), so one could equivalently write $\left(D_{v} f\right)=(f \circ \gamma)^{\prime}(0)$.

HW: Show that a different choice of representative for v produces the same directional derivative
HW: Give a definition of $D_{v} f$ using definition (2) of a tangent vector and prove its equivalence to the definition given above.

