
MATH 6330 Notes

8-24
Resources:

• An Introduction to Manifolds - Tu

• Differential Geometry - Tu

• Manifolds and Differential Geometry - Lee

• Gauge Fields, Knots, and Gravity - Baez, Munian

• Introduction to Smooth Manifolds - Lee

• Differential Topoloy - Guillemin, Pollack

• Smooth Manifolds and Observables - Nestruev

• Mathematical Gauge Theory - Hamilton

• Principal Bundles the Classical Case - Sontz

• Mathematical Aspects of Classical Mechanics - Arnold

Recall:

Definition: A Real Vector Space is a module V over the ring R. A canonical example of a real vector space
is Rn where n ∈ N.

Definition: A real vector space V is finitely generated if there exists v1, ..., vd ∈ V such that given any
u ∈ V , there exists real numbers r1, ..., rd ∈ R such that

u =
d∑
i=1

rivi,

note that the dimension of the vector space V is defined to be the smallest such d that the above condition
holds.

The appropriate morphisms between vector spaces are linear maps.

Definition: Given two vector spaces V1 and V2, a linear map f : V1 −→ V2 is a map of underlying sets
that preserves all operations, i.e. such that

• f(v + w) = f(v)

• f(0) = 0

• f(r · v) = r · f(v)

• f(−v) = −f(v)
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8-26
Proposition: A d dimensional vector space is isomorphic to Rd.
Proof: Look in any linear algebra book.

Given a d-dimensional vector space V, a specific choice of isomorphism Rd −→ V is referred to as a basis.

Proposition: If f : V −→ V ′ is a linear map, we can use the previous propsition to obtain from
the diagram below, a bijection Vect(V, V ′) ∼= Vect(Rd,Rd′) ∼= {matrices of size d′ × d} given by f 7→
h′−1 ◦ f ◦ h

Rd Rd′

V V ′

h

h′−1◦f◦h

h′

f

Definition: Insert definition of a topological space here.

Example: Blah blah blah metric spaces blah blah blah

Definition: Insert definition of continuity here.

Example: If V is a finite dimensional vector space, then we can define its underlying topological space
(V,U) where U is defined as follows:

• Option 1: Pick a metric (norm induced by an inner product)(inner product: a bilinear, symmetric,
and positive definite map) on V , and do the usual open ball business.

• Option 2: Let A ∈ U iff A =
⋃
α∈JWα such that Wα ⊆ V and Wα =

⋂n
i=1 Zi for every α ∈ J and each

Zi is the form f−1((−∞, a)) for some a ∈ R, f is assumed to be a linear map f : V −→ R, and n ∈ N

HW Problem: I(a)Prove the above are equivalent, (b) any linear map is continuous using Option 2

8-31
Definition: Given finite dimensional K vector spaces V and V ′, open subsets U ⊆ V and U ′ ⊆ V ′, and a
map f : U −→ U ′, we can define two ”types of derivatives” on these sets.

• The directional derivative of f , if it exists, is a map V × U −→ V ′ which maps a vector v ∈ V and a
point x ∈ U to the vector denoted by (∂vf)(x) = (Dvf)(x) = (∇vf)(x) = f ′v(x) where each of these
denotes limt→0

f(x+t·v)−f(x)
t = g′(0) where g(t) = f(x+ t · v)− f(x) and t ∈ K.

• The differential of f , if it exists, is a map U −→ Hom(V, V ′) denoted by either Df or Tf . Given
x ∈ U , we define Df by asserting that Df(x) : V −→ V ′ is the unique linear map with the property
that: given h : u 7→ f(u)− f(x)− (Df)(x)(u− x), we have limu→x

h(u)
||u−x|| = 0. We can generalize this

definition (no mention of inner product/norm) by taking h =
∑
i si · ri where si : V −→ V ′ are linear,

and ri are continuous at u and ri(u) = 0, and we only have finite i.

Lemma: If V, V ′, U, U ′, f are as in the definition, Df exists, and (∂vf)(x) exists for all x, v then

Df(v) = (∂vf)(x)

for all v ∈ V and x ∈ U .

Remark: If we only assume that (∂vf)(x) exists for all x, v we cannot recover the above equality.

Note: If V = V ′ = R, then we recover the usual notion of the derivative, Df : U −→ Hom(R,R) ∼= R.

HW: Compute the differentials of the following maps (the Vi are real vector spaces)
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• Hom(V2, V3)×Hom(V1, V2) −→ Hom(V1, V3) which is defined by (B,A) 7→ B ◦A

• Hom(V1, V2)×Hom(V1, V2) −→ Hom(V1, V2) which is defined by (A1, A2) 7→ A1 +A2

• Consider GL(V ) := {f : V −→ V | f is iso.} ∼= {invertible square matrices} ⊆ Hom(V, V ) which is
defined by A 7→ A−1.

• Bonus: Prove the equivalence of the second part of the above definitions of the differential.

9-2
The symmetry of higher differentials

Recall our setup from last time with V, V ′, U, U ′ and f : U −→ U ′. We defined the differential

Df : U −→ Hom(V, V ′)

If the differential exists and we evaluate it for some u ∈ U , and evaluate the linear map Df(u) at some
v ∈ V , then we obtain (Df)(u)(v) = (∂vf)(u). Suppose we take the differential of the differential, then we
obtain a map

D(Df) = D2f : U −→ Hom(V,Hom(V, V ′))

Evaluating on some u ∈ U and subsequently on some v1 ∈ V , and after this some other v2 ∈ V , we obtain

(D2f)(u)(v1(v2)) = (∂v2∂v1f)(u)

A natural question is ”what happens if you swap v1 and v2?” We know that nothing happens:

Proposition(Schwarz, Clairaut): (D2f)(u)(v1)(v2) = (D2f)(u)(v2)(v1)

Proof sketch: Apply the mean value theorem twice.

”Recall” the following proposition:

Proposition: Let V1, V2, V3 be real vector spaces, then we have canonical isomorphisms

Hom(V1,Hom(V2, V3)) ∼= Hom(V2,Hom(V1, V3)) ∼= Bilin(V1, V2;V3) ∼= Hom(V1 ⊗ V2, V3)

Definition: Insert the definition of a bilinear map here.

Definition: Insert definition of tensor product here.

Insert proof that the tensor product exists here.

9-7
Proposition: If {ei}ni=1 is a basis for V and {e′j}kj=1 is a basis for V ′, then B := {ei ⊗ e′j}i∈N≤n, j∈N≤k

is a
basis for V ⊗ V ′

Proof: The proof proceeds in two steps

1. We would like to show that {ei ⊗ e′j}i∈N≤n, j∈N≤k
spans V ⊗ V ′. It suffices to show that for v ∈ V and

v′ ∈ V , we can express v ⊗ v′ as a linear combination of elements of B. Since both V and V ′ have
bases, we can express either vector in terms of their respective basis elements:

v =
n∑
i=1

viei ∧ v′ =
k∑
j=1

v′je
′
j ,
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therefore we recover that:

v ⊗ v′ = (
n∑
i=1

viei)⊗ (
k∑
j=1

v′je
′
j) =

∑
i,j

viv
′
j(ei ⊗ ej),

as desired.

2. We would like to show that the elements of B are linearly independent. To show this recall that
{fi}i∈N≤k

⊆ V are linearly independent if and only if {gi}i∈N≤k
⊆ Hom(V,R) such that

gi(fi) =
{

1, i = j

0, i 6= j

Take the dual bases {fi}i∈N≤n
⊆ V ∗ and {f ′i}i∈N≤k

⊆ V ′∗. Consider the map hi,j which we define as
the composition:

V ⊗ V ′ R⊗ R R
fi⊗f ′j ∼=

Observe that hi,j ∈ (V ⊗ V ′)∗. Now one can see that

hi,j(ei′ ⊗ e′j′) = (fi ⊗ f ′j)(ei′ ⊗ e′j′) = fi(ei′) · f ′j(e′j′) (here we use the isomorphism)

where

fi(ei′) · f ′j(e′j′) =
{

1, (i, i′) = (j, j′)
0, otherwise

This completes the proof.

Now that that’s over, let’s see how tensors behave under “change of coordinates”. Suppose e1, ..., en is a
basis for V and e′1, ..., e

′
n′ is a basis for V ′. Then

ei =
∑
k

ai,ke
′
k

where the ai,k assemble into the “change of basis” matrix. Then

t =
∑
i,j

ti,j · (ei ⊗ ej) =
∑
i,j

ti,j · (
∑
k

ai,ke
′
k)⊗ (

∑
l

al,ke
′
l) =

=
∑
i,j,k,l

ti,j · ai,k · aj,l · (e′k ⊗ e′l)

So if our old coordinates are ti,j (this is our coefficient before ei⊗ ej) then our new coordinates (coefficients)
are

∑
i,j ti,j · ai,k · aj,l This should satisfy the question “how do physical tensors correspond to mathematical

tensors?” Physical tensors are simply mathematical tensors expressed in coordinates.

HW: V and W are arbitrary real vector spaces (a) Construct a canonical map V ∗ ⊗W −→ Hom(V,W ).
(b) prove that the image of this map coincides with finite rank maps from V to W (rank(f : V −→ W ) :=
dim(Im(f))). (c) Prove that rank = tensor rank where tensor rank(t) := min{n ∈ N | t =

∑n
i=1 ai ⊗ bi}

Definition: Let V ∈ VectR and let k ∈ N

• V ⊗k := V ⊗ ...⊗ V (k-times)

• Symk := V ⊗k/(...⊗ v ⊗ v′ ⊗ ...− ...⊗ v′ ⊗ v ⊗ ...)

•
∧k

V := V ⊗k/(...⊗ v ⊗ v′ ⊗ ...+ ...⊗ v′ ⊗ v ⊗ ...)
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9-14
Definition: A chart on a set X is given by the following data:

• U ⊆ X

• W a finite dim R vector space

• V ⊆W open subset

• f : U −→ V a bijection

Definition: The transition map t from a chart (U, V,W, f) to a chart (U ′, V ′,W ′, f ′) is defined as the
composition

f(U ∩ U ′)→ U ∩ U ′ → f ′(U ∩ U ′),
which we can write succinctly as t = f ′ ◦ f−1, where it is understood we are (co)restricting to U ∩U ′ where
necessary.

Definition: Two charts C1 and C2 on a set X are said to be compatible if the transition maps t1,2 and t2,1
are smooth (C∞) maps between open subsets of W and W ′, note that as maps of sets t−1

1,2 = t2,1.

Definition: An Atlas on a set X is a collection of cahrts {Cα}α∈J on X such that for any α, β ∈ J , Cα
and Cβ are compatible. Moreover, we require that if given a chart D on X such that D is compatible with
Cα for all α ∈ J , then D ∈ {Cα}α∈J , this is equivalently stated: we require that A be maximal.

Definition: A Smooth Manifold is a set X together with an atlas A = {Cα}α∈J .

Definition: The underlying topological space of a smooth manifold (X,A) is the topological space (X, τ)
where U ∈ τ if

U =
⋃
α∈J

f−1
i (Vi)

where every Vi ⊆Wi is open and each Wi is some finite dim vector space over R.

In practice, we can construct an atlas on a set X as follows:

1. Take a collection of charts {Cα = (Uα,Wα, Vα, fi)}α∈J on X such that the collection {Uα} covers X
and Cα, Cβ are compatible for any α, β ∈ J .

2. Define A := {D | D is a chart ∧ D is compatible with Cα for every α ∈ J}

3. A is the unique atlas containing {Cα}α∈J
Examples:

• Every finite dimensional vector space V is a smooth manifold with a single trivial chart.

• If M is a smooth manifold and G ⊆M is open, then G is itself a smooth manifold. To see this, select
those charts Cα on M for which Uα ⊆ G.

• Any open subset of Rn is a smooth manifold using the above two examples.

The following example gets its own subheading:

Example: The Sphere

Take a finite dimensional real vector space V with inner product 〈·, ·〉 : Sym2(V ) −→ R. We define

SV := {v ∈ V | 〈v, v〉 = 1},

and claim that SV is a smooth manifold. Charts on SV can be constructed using the stereographic projection.
Details on this next time!
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9-16
Example: The Sphere

Take p ∈ SV where SV is defined as last time, we define the stereographic projection as

SVp : SV \ {p} −→ 〈p〉⊥ where SVp (q) = 1
1− 〈q, p〉 · (q − 〈q, p〉 · p),

recall that 〈p〉⊥ is the orthogonal complement of p. We can then interpret the above formula as the projection
of q onto the orthogonal complement of p. We have an inverse

SVp
−1 : 〈p〉⊥ −→ SV \ {p} where SVp

−1(w) = 2
1 + 〈w,w〉 · w + −1 + 〈w,w〉

1 + 〈w,w〉 · p.

Recall the reason we’re interested in this map: it defines a chart. For any p ∈ SV we have a chart Cp, we
need only verify (to obtain a smooth structure) that p, p′ ∈ SV , the charts Cp and Cp′ are compatible. To
do this we write down the transition map

t : 〈p〉⊥ \ {SVp (p′)} −→ 〈p′〉⊥ \ {SVp′ (p)},

which is simple enough granted that we can make the definition t = SVp′ ◦SVp −1, and observe that t is smooth
because it is defined as the composition of smooth functions. Thus given any two p, p′ ∈ SV , we obtain
compatible charts Cp, Cp′ which can be combined to provide a smooth structure on the sphere SV .

Definition: Given a smooth manifold M , we define it’s dimension as a map of sets dimM : π0(M) −→ N
where π0(M) is the set of connected components of M . For any x ∈ π0(M) (any open/closed connected
subset of M), we define dimM (x) = dim(W ) where W is a vector subspace in some chart C = (U,W, V, f),
such that x ∈ U .

Definition: Insert the definition of connectedness, local connectedness, and connected components.

Example:

• If V is a real vector space, then dimM (V ) = dim(V )

• If U ⊆ V is open then dimM (U) = dimM (V )

• If V is a real vector space, then dimM (SV ) = dim(〈p〉⊥) = dim(V )− dim(〈p〉⊥) = dim(V )− 1

9-21
Example: Orientable surface of genus g

We discussed in detail the smooth structure on an orientable surface of genus g, charts were drawn and
I didn’t know how to typeset them!

HW: Prove that the non-orientable surface with c > 0 cross-caps is a smooth manifold.

Definition: Let X,X ′ ∈Man, then a smooth map g : X −→ X ′ is a map of underlying sets such that for
any charts CX and CX′ and elements of these charts U ∈ CX and U ′ ∈ CX′ , we require that the composition

f(U ∩ g−1(U ′)) U ∩ g−1(U ′) U ′ f ′(U ′)f−1 g f ′

is C∞, where f, f ′ are the usual bijections in a chart. That is, we require that the map f ′ ◦ g ◦ f−1 :
f(U ∩ g−1(U ′)) −→ f ′(U ′) is C∞, and that its domain is an open subset of W (W here is the understood
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vector space on which we model CX).

Proposition(s):

• Smooth maps are continuous

• The identity map is smooth

• The composition of smooth maps between smooth manifolds is a smooth map

Definition: Given X,X ′ ∈Man, we can define their product in Man denoted X ×X ′ as follows: We take
the product of underlying sets X and X ′, and construct charts on X ×X ′ by taking the product of charts
CX × CX′ , which are defined by taking products of all of their data (including the pairing of the canonical
bijections).

HW: Prove that the elements of CX × CX′ are compatible so that X ×X ′ is actually a manifold. Secondly,
prove that the projection maps πX : X ×X ′ −→ X and πX′ : X ×X ′ −→ X ′ are C∞. Finally, prove that if
given smooth maps h : Y −→ X and h′ : Y −→ X ′, then (h, h′) : Y −→ X ×X ′ defined by y 7→ (h(y), h′(y))
is a smooth map.

Preview for Thursday’s class:
Definition: A Lie group is a group object in the category of smooth manifolds.

9-23
Hadamard’s Lemma: Given a smooth function f : Rn −→ R such that f(0) = 0, there exists gi : Rn −→ R
such that f =

∑
i xigi

Proof: Observe that
f(x)− f(0) =

∫ 1

0
f ′t(t · x)dt,

we can then write h(t) = f(t · x), and further note that

h(1)− h(0) =
∫ 1

0
h′(t)dt,

from which it follows that
f(x) =

∫ 1

0

∑
i

xi
∂f

∂xi
(t · xi)dt,

we can “pull the xi’s out” and let

gi(x) =
∫ 1

0

∂f

∂xi
(t · xi)dt,

from which the result follows.

Definition: Recall here the definition of a group.

Examples: (of Lie groups)

• Fix a finite dimensional real vector space V , then GL(V ) is a Lie group. The reason this is a group
should be clear, why is it a Lie group? First observe that GL(V ) ⊆ End(V ) and End(V ) has the
structure of a real vector space. We claim that GL(V ) is an open subset of End(V ), from which it
follows that GL(V ) is a smooth manifold. To see that GL(V ) is open, consider the map

det : End(V ) −→ R
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observe that GL(V ) = det−1(R \ {0}), and since we can express det as a horrible polynomial function,
in particular it is continuous. Thus, GL(V ) is the continuous pre-image of an open subset of R, so it is
an open subset of End(V ), and in particular it is a manifold. This is not sufficient to show that GL(V )
is a Lie group, as we must still be certain that the operations are smooth. Well, one can easily realize
the coordinates of the multiplication/composition map as polynomials:

(B,A) 7→ (BA)ij =
∑
k

Bi,kAk,j

which are smooth, moreover it was proven in the homework that this multiplication/composition map
has a differential, one could argue by induction that this map is C∞. An entirely analogous argument
follows for the inverse and identity maps (it is an important point that a point realized as a map from
a point is a smooth map).

• The special linear group: SL(V ) ≤ GL(V ) is the subset of all invertible matrices A with det(A) = 1.

• We can fix an inner product 〈·, ·〉 on V and define the orthogonal linear group: O(V ) = {A ∈ GL(V ) |
〈Av,Aw〉 = 〈v, w〉}

• The special orthogonal linear group: SO(V ) ≤ O(V ) is the subset of all orthogonal matrices of deter-
minant one.

• Define the Hermitian inner product on a complex vector space V as 〈α, β〉 = α · β. This inner
product is a real bilinear map V, V −→ C that is complex linear in the second variable and complex
anti-linear in the first variable, anti-symmetric, and positive definite. We define the unitary group:
U(V ) = {A ∈ GLC(V ) | 〈Av,Aw〉 = 〈v, w〉} where 〈·, ·〉 is the Hermitian inner product on V

• There’s of course a special version SU(V )

Definition: A tangent vector to a point x ∈ U ⊆M , where M ∈Man, is an equivalence class of trajectories
which we require to be smooth maps p : R −→M such that p(0) = x, under the following identification:

p ∼ q ⇐⇒ in some, and hence all charts, containing x we have :

(f ◦ p)′(0) = (f ◦ q)′(0)

where f : U −→ f(U) is the chart mentioned.

HW: Show that if the above equality holds in a single chart, it must hold in all charts.

9-28
Recall our definition of the tangent vector from last time:

Definition: A tangent vector to a point x ∈ U ⊆M , where M ∈Man, is an equivalence class of trajectories
which we require to be smooth maps p : R −→M such that p(0) = x, under the following identification:

p ∼ q ⇐⇒ in some, and hence all charts, containing x we have :

(f ◦ p)′(0) = (f ◦ q)′(0)

where f : U −→ f(U) is the chart mentioned.

This definition is functional, and motivated by physical intuition, but mathematically speaking a curve and
a vector should be different concepts. We introduce the following equivalent definition to ameliorate this:
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Definition: Given a smooth manifold M and point x ∈ M , a tangent vector at x is a given by a family
(wC)C∈Cx where Cx is the sub-collection of the atlas on M consisting of all charts that contain x, and where
given a particular chart C = (U, V,W, f), wC ∈W and

wC′ = (DtC,C′)(f(x))(wC)
where tC,C′ is the transition map from C to C ′.

Proof of equivalence:

(1)⇒ (2)

Suppose a manifold M , point x ∈ U ⊆ M , and subset U are given together with an equivalence class of
curves γ with γ(0) = x. To produce a family of vectors as in definition (2) we set

wC = (f ◦ γ)′(0)
where C = (U, V,W, f). We must show that this is well defined, to this end let ν ∼ γ. By the definition of
∼ we have

(f ◦ γ)′ = (f ◦ ν)′ = wC

so our choice of wC is indeed well defined. The family (wC)C∈Cx
is completely determined by a single choice

of vector wC , as all other members of the family can be computed using the above formula.

(2)⇒ (1)

Suppose a manifold M , point x ∈ U ⊆ M , and subset U are given together with a family (wC)C∈Cx
. To

construct an equivalence class of curves, pick any chart C = (U, V,W, f) and any smooth curve γ : R −→ V
with γ(0) = f(x) and γ′(0) = wC , then pull this curve back onto the manifold using f . For example pick
γ(t) = f(x) + t · wC and take [f−1 ◦ γ]. We must verify the result we have recovered is independent of
our choices of γ and C ′, to this end suppose we have another curve ν : R −→ V with ν(0) = f(x) and
ν′(0) = wC . We have that [f−1 ◦ γ] = [f−1 ◦ ν] because (f ◦ f−1 ◦ γ)′(0) = (f ◦ f−1 ◦ ν)′(0). Now suppose we
pick a different chart C ′ = (U ′, V ′,W ′, g), then we consider the class [g−1 ◦ γ]. By means of the transition
map tC,C′ we obtain that

[g−1 ◦ γ] = [f−1 ◦ (t−1
C,C′ ◦ γ)],

so it suffices to verify that the curve η := t−1
C,C′ ◦ γ satisfies η(0) = f(x) and η′(0) = wC . Observe that

η(0) = (t−1
C,C′ ◦ γ)(0) = t−1

C,C′(g(x)) = f(x),
and

η′ = D(t−1
C,C′)(γ(0))γ′(0) = (D(tC,C′)(t−1

C,C′(γ(0))))−1(γ′(0)) =
= (D(t)(f(x)))−1(wC′) = wC

HW: Complete the proof of equivalence of the above definitions by showing that, by starting with a tan-
gent vector as in definition one, then producing a tangent vector as in definition two using the above, then
producing a new tangent vector as in definition one using the above, we get the same tangent vector back.
Then do it starting with a tangent vector as in definition two.

Definition: Given a smooth manifold M , a point x ∈ M , and a tangent vector v ∈ TxM , we define the
directional derivative of a smooth function f : M −→ R in the direction of v as

(Dvf)(x) = (f ◦ γ)′(0)
where v = [γ] and γ : R −→M . Note that, because the vector v is tangent to x, it is somewhat meaningless to
write any evaluation at x (where else would we evaluate?), so one could equivalently write (Dvf) = (f ◦γ)′(0).

HW: Show that a different choice of representative for v produces the same directional derivative
HW: Give a definition of Dvf using definition (2) of a tangent vector and prove its equivalence to the
definition given above.
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