MATH 6330 (Manifold Theory)

Homework Problems

Fall 2021

First Set Tentative Due Date: 9/9

1. Let V be a finite dimensional real vector space, let $\langle\cdot, \cdot\rangle: V \times V \longrightarrow \mathbb{R}$ be an inner product (symmetric, bilinear, and positive definite map) on V, and let $f: V \longrightarrow \mathbb{R}$ be an arbitrary linear map.
(a) Construct a topology on V using its inner product and prove it is a topology.
(b) Define a topology $\tau \subset \mathcal{P}(V)$ by declaring $U \in \tau$ if and only if $U=\bigcup_{\alpha \in J} W_{\alpha}$ where $W_{\alpha} \subset V$ and $W_{\alpha}=\bigcap_{i=1}^{n} Z_{i}$ for every $\alpha \in J$, and where each Z_{i} is the form $f^{-1}((-\infty, a))$ for some $a \in \mathbb{R}$. Prove this is a topology.
(c) Show that the above topologies coincide.
(d) Use the topology constructed in (b) to prove that any linear map is continuous.
2. Let V_{1}, V_{2}, and V_{3} be finite dimensional real vector spaces. Compute the differential of the following maps:
(a) $f: \operatorname{Hom}\left(V_{2}, V_{3}\right) \times \operatorname{Hom}\left(V_{1}, V_{2}\right) \longrightarrow \operatorname{Hom}\left(V_{1}, V_{3}\right)$, where $f(B, A)=B \circ A$.
(b) $g: \operatorname{Hom}\left(V_{1}, V_{2}\right) \times \operatorname{Hom}\left(V_{1}, V_{2}\right) \longrightarrow \operatorname{Hom}\left(V_{1}, V_{2}\right)$, where $g\left(A_{1}, A_{2}\right)=A_{1}+A_{2}$.
(c) $h: G L(V) \longrightarrow \operatorname{Hom}(V, V)$, where $h(A)=A^{k}$ and $k \in \mathbb{Z}$. Recall that $G L(V):=\{A: V \longrightarrow V \mid A$ is invertible $\}$.
3. (Bonus) Recall the definition of the differential: Given finite dimensional real vector spaces V and V^{\prime}, open subsets $U \subseteq V$ and $U^{\prime} \subseteq V^{\prime}$, and a map $f: U \longrightarrow U^{\prime}$, we define the differential of f, $D f: U \longrightarrow \operatorname{Hom}\left(V, V^{\prime}\right)$ by asserting that for each $x \in U,(D f)(x): V \longrightarrow V^{\prime}$ is the unique linear map such that the function $h: U \longrightarrow V^{\prime}$ defined by $h(u)=f(u)-f(x)-(D f)(x)(u-x)$, satisfies one of the following equivalent conditions:
(a) $\lim _{u \rightarrow x} \frac{\|h(u)\|}{\|u-x\|}=0$
(b) h can be presented as a finite sum $\sum_{i} l_{i}(u-x) g_{i}(u)$, where each $l_{i}: V \longrightarrow \mathbb{R}$ is a linear form on V, and each $g_{i}: U \longrightarrow V^{\prime}$ is a function that is continuous at x and $g_{i}(x)=0$.

Prove that conditions (a) and (b) are equivalent.
Second Set Tentative Due Date: 9/16

1. Let V and W be arbitrary real vector spaces.
(a) Construct a canonical map $f: V^{*} \otimes W \longrightarrow \operatorname{Hom}(V, W)$
(b) Prove that $\operatorname{Im}(f)=\{A: V \longrightarrow W \mid \operatorname{Dim}(\operatorname{Im}(A))<\infty\}$
(c) Given an element $t \in X \otimes Y$, we define its tensor rank as:

$$
\operatorname{TRank}(t)=\operatorname{Min}\left\{n \in \mathbb{N} \mid t=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

Prove using the map constructed in (a) that the tensor rank coincides with the usual notion of rank (the rank of a linear map is the dimension of its image).
2. Suppose that V is a vector space with basis $\left\{e_{i}\right\}_{i \in I}$ and suppose that $k \geq 0$. Prove the following:
(a) $\left\{e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}\right\}_{i \in I^{k}}$ is a basis for $V^{\otimes k}$
(b) $\left\{e_{i_{1}} \cdot e_{i_{2}} \cdot \ldots \cdot e_{i_{k}}\right\}_{i_{\in I} I^{k}}$ with $i_{1} \leq i_{2} \leq \ldots \leq i_{k}$ is a basis for $\operatorname{Sym}^{k} V$
(c) $\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \ldots \wedge e_{i_{k}}\right\}_{i \in I^{k}}$ with $i_{1}<i_{2}<\ldots<i_{k}$ is a basis for $\wedge^{k} V$
(d) Compute the dimension of the above spaces.

