Algebraic category A op _____ Spaces k-Alg; C^{oo} Rings; Sheaver of rings over S << Affine>> schemes k-Alg per Ringed Top A m (Spec A A) spec M. - Aly^{op} - Topological space $|A| = Hom_{R}(A; R)$ Manifolds from R-algebras and vice versa $|R - algebra F Hom_{R}(F; R);$ $Voriety H^{m}_{R}$ VI(f) $f: \mathcal{F} \setminus [(f) = \langle \psi; |\mathcal{F}| \mid \psi(f) = 0 \in \mathbb{R} \}$ $\bigcup \subset |\mathcal{F}| \quad \bigcup = \bigcup \int (\psi) \quad f; |\mathcal{F}| \rightarrow \mathbb{R}$ $\forall c \in \mathbb{R}$ C°(M) manifold IR is not Munsdorff -s topology on M is 4 bail >> R os Hausdoff Prof: 0: M -> IF pro (f => fcy) (D & is injective (2) β is subjective $f: M \rightarrow |R|$ p. $\in M$ p. |F| $\langle \longrightarrow p(p,q)^2 \equiv :f(q)$ $\lambda := p(f) \forall m : L := f^{-1}(\lambda) f(m) \neq \lambda$ 4fx 1x: L3 $f_x(x) \neq p(f_x)$ $\nabla_x = hq: M | f_x(q) \neq p(f_x)$ $G_{x_1} - G_{x_m} = g = (f - 1)^2 + \sum_{k=1}^{\infty} (f_{x_k} - p(f_{x_m}))^2$ 970 on M $pcg) = (p(f) - \lambda)^{2} + \sum (p(f_{x_{\mu}}) - p(f_{x_{\mu}})) = 0.$

 $1 = p(1) = p(g, \frac{1}{g}) = p(g) p(\frac{1}{g}) = 0, W$ $\frac{1}{100} = \int (\mathbb{R}_{+}) = \frac{1}{2} = \int (\mathbb{R}_{+}) = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{$ $|\mathbb{R}^{n} = C^{\infty} \{x_{1}, -x_{n}\} \quad |\mathbb{R}[x_{1}, -x_{n}] \quad \{x_{n}, x_{n}\} - \text{local coordinates}$ Fisan IR-algebra of functions somewhere $\overline{Z}_{2}^{\prime}$ $\overline{F} := \underline{C}^{\circ} - completion$ $f(p_{1},...,p_{n}) \qquad f: |\mathbb{R}^{k} \to |\mathbb{R}$ $\mathbb{R}p^{n} = Spec\left(\mathbb{R}p^{k} \times \dots \times p^{n} + 1\right)$ $\mathbb{R}p^{n} = Spec\left(\mathbb{R}p^{k} \times \dots \times p^{n} + 1\right)$ Linoville's theorem (2, x; = 1)) Linoville's theorem (9(CP") = C CP" is a smooth manifold Points of I-space = homomorphisms to ? over 1 M is a smooth name fold M CS 112 (Whitney's thm) * ~ M IF, IF, Spec A Spec IFpr -> C Spec $|R \rightarrow M \leftarrow M_{R}(C^{\infty}(M); |R)$ or $< C^{\infty}(M) \leftarrow 6^{2}$ Line buridles over manifolds E M ~ return it is a C (M) - module ND Php

· · · · · · · · · · · ·	l (A : A	· · · · · · · · ·		
	U P/4f	(C~(M) f(2) =0] .	p = Eset	
$\left \overline{S^{*}(p^{\vee})} \right $	<u> [- d- p-20ject</u>	i ve		
VBM (-	B C M Mod pf			
Proof, <u>Shetch</u> of Eq - E J - L M - J G	$\frac{1}{e_{1} - e_{x}}$	$(-e_{N}) = \frac{1}{4}$	ctions of En En > 0	
Pullback of bundles = $E_{f} = \sum_{M} E_{J}$ $M = M$ $S^{*}(\Gamma(E_{f})) \leftarrow C$	induction on modules M:M S [©] (P(E)) f ^{cm)} T	P (Ff C∞(1 C∞(1	$(F(E))$ $f^{*}(E)$ $f^{*}(E)$ $f^{*}(E)$) = $\Gamma(E_{f})$
C∞ (M)	undle of derivations Def: derivation of Cm R - Cine on me the local Leibr $3(fg) = 3(f)\lambda^1 - \lambda^n$	C∞ (M) at a mp Z: C∞(M) miz rale oz = (g(z) + f(z)	a point $z \in M$ $\rightarrow R = 1$, a + i = freef; 3(g)	
Lemmer 3 - a f EC°(M) im Perz (C°(M) Kähler differentials T*M M	les. of $C^{-}(M) = f(2) + f(2) + f(2) = dim M$. (= universal derivations)	$\frac{1}{2} \sum_{i=1}^{n} \left(\int_{i=1}^{i} \right)^{2}$ $\sum_{i=1}^{n} \left(\int_{i=1}^{i} \right)^{2} \frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$	$\frac{\partial}{\partial x_{i}} = -$ $\frac{\partial}{\partial x_{i}} = -$ $\frac{\partial}{\partial x_{i}} = -$ $C^{\infty}(M) = -$ $\frac{\partial}{\partial (fy)} = -$ $\frac{\partial}{\partial (fy)} = -$ $\frac{\partial}{\partial (fy)} = -$ $\frac{\partial}{\partial (fy)} = -$	

Zith Des, (CO(M)) $\Gamma(T^{*}M) = \Lambda^{1}(M)$ Proposition: Let P be anochale over C (M) then $\begin{array}{ccc} H_{om} \left(\Lambda^{1}(M), \mathcal{P} \right) \xrightarrow{1-1} \mathcal{P} \left(\mathcal{P} \right) & \mathcal{P} \xrightarrow{1-1} \mathcal{P} \xrightarrow{1-1} \mathcal{P} \left(\mathcal{P} \right) & \mathcal{P} \xrightarrow{1-1} \mathcal{P}$ $\Lambda^* \Lambda^1(M) = \Omega^*(M) \notin general construction of difform$ $H^{\circ}_{dR}(M) = |R|$ Let M = V H^{*}_{dR}(M) = 0 *>0 $\left(\begin{array}{c} V \\ \overline{id} \end{array} \right)$ $\bigvee \sim \bigvee \sim \bigvee \sim$ $\int -\Lambda'(V) \frac{\Lambda'_{c}}{\swarrow} \quad D \subseteq C^{\infty} A$ $C \{V'\} \rightarrow \Lambda'(V)$ $\bigvee_{*}^{C_{\infty}} (O)$ R-20-20. $[\checkmark \nabla \stackrel{b}{\leadsto} \checkmark \nabla] \leftarrow \nabla$ Vect ~ CoCh(R)