Mathematics 5317 (Introduction to Modern Algebra)

Fall 2020

Homework 9

First submission due November 17, 2020.

1. In this problem, we work in the slice category CRing/ A, where A is a commutative ring and CRing is the category of commutative rings. Recall that CRing/ A denotes the slice category over A. Suppose $X \in$ CRing/ A is equipped with the following morphisms (in the category CRing/ A):

- $\mu: X \times X \rightarrow X$ (multiplication);
- $X \rightarrow X$ (inverse);
- $A \rightarrow X$ (neutral).

These morphisms must satisfy the axioms of an abelian group, when expressed diagrammatically, but using products in the category CRing/ A instead of Set. For example, the associativity axiom says $\mu \circ(X \times \mu)=$ $\mu \circ(\mu \times X)$, where products and composition are taken in the category CRing/ A. Show that any such object X is isomorphic to the following construction: given an A-module M, we set $X=A \oplus M$ with multiplication $(a, m)\left(a^{\prime}, m^{\prime}\right)=\left(a a^{\prime}, a m^{\prime}+a^{\prime} m\right)$, the homomorphism $X \rightarrow A$ given by $(a, m) \mapsto a$, and $\mu\left((a, m),\left(a, m^{\prime}\right)\right)=\left(a, m+m^{\prime}\right)$.
2. Consider the category of fields, defined as the full subcategory of commutative rings. (Recall that additional properties required of fields are $1 \neq 0$ and $x \neq 0, y \neq 0$ implies $x y \neq 0$.) Does this category have initial or terminal objects? Product or coproducts? Equalizers or coequalizers? Same question of the category of fields of a fixed characteristic p, where the characteristic of a field is the order of element $1 \in F$, i.e., the smallest p such that $p \cdot 1=0$, or 0 if no such p exists.
3. Recall that $\mathbf{Q}[[x]]$ denotes the ring of formal power series over the rational numbers. Show that the only ring endomorphism $\phi: \mathbf{Q}[[x]] \rightarrow \mathbf{Q}[[x]]$ with $\phi(x)=x$ is the identity.
4. $R=\mathbf{Z} \times \mathbf{Z}$ is a ring with addition and multiplication defined by

$$
(a, b)+(c, d)=(a+c, b+d), \quad(a, b)(c, d)=(a c+a d+b c, b d)
$$

Show that there are no nonzero nilpotents in this ring (meaning $x^{n}=0$ for $x \in R$ and $n>0$ implies $x=0$).
5. Denote by R the ring containing \mathbf{Q}, and generated over \mathbf{Q} by two elements x and y with $y x-x y=1$. Show that R is simple, i.e., has no two-sided ideals other than (0) and R.
6. An R-module X is injective if for any injective homomorphism of R-modules $f: A \rightarrow B$ and any homomorphism of R-modules $g: A \rightarrow X$ there is a homomorphism of R-modules $h: B \rightarrow X$ such that $h f=g$. Show that $M \oplus N$ is injective if and only if M and N are injective, where M and N are R-modules.
7. A ring R (assumed to be commutative for the purposes of this problem) is Noetherian if every ideal I of R is generated by finitely many elements. Consider $R=\left\{a_{0}+a_{1} x+a_{2} x^{2} / 2+\cdots+a_{n} x^{n} / n!\mid n \geq 0, a_{i} \in \mathbf{Z}\right\}$. Show that R is a subring of $\mathbf{Q}[x]$. Show that R is not Noetherian.
8. Suppose R is a commutative ring. An element $x \in R$ is nilpotent if $x^{n}=0$ for some $n>0$.
(a) Show that nilpotent elements of R form an ideal and in the quotient of R by this ideal the element [0] is the only nilpotent element..
(b) Show that any prime ideal of R (i.e., an ideal I such that R / I is an integral domain) contains all nilpotent elements.
(c) Show that the set of nilpotent elements is a maximal ideal of R (i.e., an ideal I such that R / I is a field) if and only if every element of R is either invertible or nilpotent.
9.
(a) Give an example of a commutative ring R with ideals $I \neq J$ such that R / I and R / J are isomorphic as rings.
(b) Let R be a commutative ring and let I and J be ideals in R. Show that if R / I and R / J are isomorphic as R-modules, then one has $I=J$.
10. Suppose R is a ring. Consider the ring $M_{n}(R)$ of $n \times n$ matrices with coefficients in R for some $n \geq 0$. Show that the only two-sided ideals of $M_{n}(R)$ are precisely ideals of the form $M_{n}(I)$, where I is a two-sided ideal of R.

