Mathematics 5317 (Introduction to Modern Algebra)

Fall 2020

Homework 9

First submission due November 17, 2020.

1. In this problem, we work in the slice category CRing/A , where A is a commutative ring and CRing is the category of commutative rings. Recall that CRing/A denotes the slice category over A. Suppose $X \in \mathsf{CRing}/A$ is equipped with the following morphisms (in the category CRing/A):

- $\mu: X \times X \to X$ (multiplication);
- $X \to X$ (inverse);
- $A \to X$ (neutral).

These morphisms must satisfy the axioms of an abelian group, when expressed diagrammatically, but using products in the category CRing/A instead of Set. For example, the associativity axiom says $\mu \circ (X \times \mu) = \mu \circ (\mu \times X)$, where products and composition are taken in the category CRing/A . Show that any such object X is isomorphic to the following construction: given an A-module M, we set $X = A \oplus M$ with multiplication (a,m)(a',m') = (aa',am' + a'm), the homomorphism $X \to A$ given by $(a,m) \mapsto a$, and $\mu((a,m),(a,m')) = (a,m+m')$.

2. Consider the category of fields, defined as the full subcategory of commutative rings. (Recall that additional properties required of fields are $1 \neq 0$ and $x \neq 0$, $y \neq 0$ implies $xy \neq 0$.) Does this category have initial or terminal objects? Product or coproducts? Equalizers or coequalizers? Same question of the category of fields of a fixed characteristic p, where the *characteristic of a field* is the order of element $1 \in F$, i.e., the smallest p such that $p \cdot 1 = 0$, or 0 if no such p exists.

3. Recall that $\mathbf{Q}[[x]]$ denotes the ring of formal power series over the rational numbers. Show that the only ring endomorphism $\phi: \mathbf{Q}[[x]] \to \mathbf{Q}[[x]]$ with $\phi(x) = x$ is the identity.

4. $R = \mathbf{Z} \times \mathbf{Z}$ is a ring with addition and multiplication defined by

$$(a,b) + (c,d) = (a+c,b+d),$$
 $(a,b)(c,d) = (ac+ad+bc,bd).$

Show that there are no nonzero nilpotents in this ring (meaning $x^n = 0$ for $x \in R$ and n > 0 implies x = 0).

5. Denote by R the ring containing \mathbf{Q} , and generated over \mathbf{Q} by two elements x and y with yx - xy = 1. Show that R is simple, i.e., has no two-sided ideals other than (0) and R.

6. An *R*-module *X* is *injective* if for any injective homomorphism of *R*-modules $f: A \to B$ and any homomorphism of *R*-modules $g: A \to X$ there is a homomorphism of *R*-modules $h: B \to X$ such that hf = g. Show that $M \oplus N$ is injective if and only if *M* and *N* are injective, where *M* and *N* are *R*-modules.

7. A ring R (assumed to be commutative for the purposes of this problem) is Noetherian if every ideal I of R is generated by finitely many elements. Consider $R = \{a_0 + a_1x + a_2x^2/2 + \cdots + a_nx^n/n! \mid n \ge 0, a_i \in \mathbb{Z}\}$. Show that R is a subring of $\mathbb{Q}[x]$. Show that R is not Noetherian.

8. Suppose R is a commutative ring. An element $x \in R$ is *nilpotent* if $x^n = 0$ for some n > 0.

- (a) Show that nilpotent elements of R form an ideal and in the quotient of R by this ideal the element [0] is the only nilpotent element.
- (b) Show that any prime ideal of R (i.e., an ideal I such that R/I is an integral domain) contains all nilpotent elements.
- (c) Show that the set of nilpotent elements is a maximal ideal of R (i.e., an ideal I such that R/I is a field) if and only if every element of R is either invertible or nilpotent.

9.

(a) Give an example of a commutative ring R with ideals $I \neq J$ such that R/I and R/J are isomorphic as rings.

(b) Let R be a commutative ring and let I and J be ideals in R. Show that if R/I and R/J are isomorphic as R-modules, then one has I = J.

10. Suppose R is a ring. Consider the ring $M_n(R)$ of $n \times n$ matrices with coefficients in R for some $n \ge 0$. Show that the only two-sided ideals of $M_n(R)$ are precisely ideals of the form $M_n(I)$, where I is a two-sided ideal of R.