Mathematics 5317 (Introduction to Modern Algebra)

Fall 2020

Homework 8

First submission due November 3, 2020.
1*. In this problem, we work in the category of commutative rings.
(a) Given two commutative rings A and B, equip the abelian group $A \otimes B$ with a structure of a commutative ring.
(b) Show that the resulting commutative ring $A \otimes B$ is the coproduct of A and B. What are the injection maps?
(c) Give an example when the injection maps are not injective.

2*. Suppose A is an abelian group. Equip $T(A)=\bigoplus_{n \geq 0} \bigotimes_{1 \leq k \leq n} A=\mathbf{Z} \oplus A \oplus A \otimes A \oplus A \otimes A \otimes A \oplus \cdots$ with a structure of a ring by setting $\left(a_{1} \otimes a_{2} \otimes a_{3} \otimes \cdots\right)\left(a_{1}^{\prime} \otimes a_{2}^{\prime} \otimes \cdots\right)=\left(a_{1} \otimes a_{2} \otimes a_{3} \otimes \cdots \otimes a_{1}^{\prime} \otimes a_{2}^{\prime} \otimes \cdots\right)$. Prove the following universal property of $T(A)$: homomorphisms of rings $T(A) \rightarrow R$ (where R is an arbitrary ring) are in bijective correspondence with morphisms of abelian groups $A \rightarrow \mathrm{U}(R)$, where $\mathrm{U}(R)$ denotes the underlying abelian group of R.
3. In this problem, we work in the category of rings.
(a) Given two rings A and B, equip the abelian group $A * B=\mathbf{Z} \oplus A \oplus B \oplus A \otimes B \oplus B \otimes A \oplus A \otimes B \otimes A \oplus$ $B \otimes A \otimes B \oplus \cdots$ (all possible alternating tensor products of A and B occur in the direct sum) with a structure of a commutative ring.
(b) Show that the resulting ring $A * B$ is the coproduct of A and B. What are the injection maps?
4. Prove or disprove: the abelian group \mathbf{Q} / \mathbf{Z} can be equipped with a structure of a ring (with the given abelian group structure).
5*. Suppose $q: A \rightarrow B$ is a surjective homomorphism of rings that admits a section, i.e., a homomorphism of rings $s: B \rightarrow A$ such that $q s=\operatorname{id}_{B}$. Prove that there is an ideal I in A such that A is isomorphic as a ring to the abelian group $B \oplus I$ equipped with the multiplication $(b, i)\left(b^{\prime}, i^{\prime}\right)=\left(b b^{\prime}, b i^{\prime}+b^{\prime} i+i i^{\prime}\right)$.
6. Show that the group \mathbf{Q} does not have a maximal proper subgroup, i.e., a subgroup $A<\mathbf{Q}$ such that $A \neq \mathbf{Q}$ and if $A<B<\mathbf{Q}$, then $A=B$ or $B=\mathbf{Q}$.
7^{*}. The ring of (complex) formal power series in one variable is defined as follows. Its elements are maps of sets $\mathbf{N} \rightarrow \mathbf{C}$, where $\mathbf{N}=\{0,1,2,3, \ldots\}$ and \mathbf{C} is the set of complex numbers. We suggestively denote such an element f as $f=\sum_{n \geq 0} f_{n} x^{n}$, where x is a 'formal variable'. The abelian group structure is inherited from the product of abelian groups $\mathbf{C}^{\mathbf{N}}$, i.e., group operations are defined indexwise. The multiplicative identity is the element $1 \cdot x^{0}$. The multiplication is defined as follows:

$$
\left(\sum_{m \geq 0} f_{m} x^{m}\right)\left(\sum_{n \geq 0} g_{n} x^{n}\right)=\sum_{p \geq 0}\left(\sum_{\substack{m+n=p \\ m \geq 0, n \geq 0}} f_{m} g_{n}\right) x^{p} .
$$

(a) Prove that a formal power series has a multiplicative inverse if and only if $f_{0} \neq 0$ (here f_{0} is the coefficient before x^{0}, i.e., the free term).
(b) We say that a formal power series $\sum_{n \geq 0} f_{n} x^{n}$ is convergent if there is a real number $R>0$ such that the sequence $n \mapsto R^{n}\left|f_{n}\right|$ is bounded. Prove that convergent formal power series form a subring of formal power series.
8. Continuing Problem 7, suggest a nontrivial class of commutative monoids M that contains \mathbf{N} (and other commutative monoids) such that the definition of formal power series continues to make sense for M instead of \mathbf{N}. Does part 7(a) remain true?
9. A pe-group is a set G with a binary operation $(x, y) \mapsto x / y$ ('division') such that

$$
a / a=b / b, \quad(a / a) /((a / a) / a)=a, \quad a /(b / c)=(a /((c / c) / c)) / b
$$

Homomorphisms of pe-groups are defined in the usual manner.
(a) Define a functor from the category of groups to the category of pe-groups by sends a group G to the pe-group with the same underlying set as G and the division operation $x / y=x y^{-1}$.
(b) Does every pe-group arise from this construction? What does 'p.e.' stand for?

A torsor is a set T with a ternary operation $t: T \times T \times T \rightarrow T$ ('translation') that satisfies the following axioms: $t(b, b, c)=c=t(c, b, b), t(a, b, t(c, d, e))=t(t(a, b, c), d, e)$.
(c) Show that any group G gives rise to a torsor with the same underlying set and ternary operation $t(a, b, c)=a b^{-1} c$. (This is a good way to think about torsors.)
(d) Define a functor from torsors to pe-groups by sending a torsor (T, t) to the quotient $(T \times T) / \sim$, where $(a, b) \sim(c, d)$ if $b=t(a, c, d)$. Use part (c) to guess what the division operation should be.
10. Continuing Problem 9, show that any set with a transitive action of a group gives rise to a torsor. Can you reverse this construction?

