Mathematics 5317 (Introduction to Modern Algebra)

Fall 2020

Homework 6

First submission due October 20, 2020.

Recall that the free group $F(S)$ on a set S is the coproduct $\coprod_{s \in S}$ Z. Accordingly, it has the following universal property: group homomorphisms $F(S) \rightarrow G$ are in a canonical bijective correspondence with maps of sets $S \rightarrow \mathrm{U}(G)$.

A system of generators and relations for a group is a pair (S, R), where S is a set and R is a subset of $F(S) \times F(S)$, where $F(S)$ denotes the free group on the set S. The group generated by this system is a group $\langle S \mid R\rangle$ together with a map of sets $f: S \rightarrow \mathrm{U}(\langle S \mid R\rangle)$ such that the homomorphism of groups $g: F(S) \rightarrow\langle S \mid R\rangle$ induced by f (see the previous paragraph) satisfies $g\left(r_{1}\right)=g\left(r_{2}\right)$ for any $\left(r_{1}, r_{2}\right) \in R$ and for any other group G with a map $f^{\prime}: S \rightarrow \mathrm{U}(G)$ satisfying the same property there is a unique homomorphism $h:\langle S \mid R\rangle \rightarrow G$ such that $\mathrm{U}(h) f=f^{\prime}$.

1. Prove that $\langle S \mid R\rangle$ exists and is unique up to a unique isomorphism.

The typical application of the above universal property is to construct a homomorphism $\langle S \mid R\rangle \rightarrow G$ by constructing a map of sets $S \rightarrow \mathrm{U}(G)$ and verifying that its compatible with the given relations.
2. Prove that the dihedral group D_{n} as defined in Homework 4 , Problem 6, is isomorphic to the group $\left\langle x, y \mid r^{n}=s^{2}=(s r)^{2}=1\right\rangle$.
3. Suppose G is a group and $m: G \times G \rightarrow G$ is a homomorphism of groups.
(a) Show that if $m(u, g)=g=m(g, u)$ for all $g \in G$ and some fixed $u \in G$, then $u=1$ and $\mathrm{U}(G)$ with the multiplication operation m is a group.
(b) Assuming (a), show that $m(g, h)=g h$, i.e., the resulting group coincides with G, and G is abelian.

A groupoid is a category in which all morphisms are isomorphisms. Below, we assume groupoids to be small, i.e., their objects will always form sets, not proper classes.
4. Suppose a group G acts on a set X.
(a) Show that there is a groupoid whose set of objects is X and the set of morphisms is $X \times \mathrm{U}(G)$, with the source and target of (x, g) being x and $g \cdot x$ respectively.
(b) A groupoid is connected if it has at least one object and any two objects are isomorphic. Prove that if the action of G on X is transitive, then the resulting groupoid is connected.
5. Suppose X is a G-set for some group G.
(a) For a subgroup $H<G$, compute the set of morphisms of G-sets hom $(G / H, X):=\{G / H \rightarrow X\}$, where G / H is equipped with the standard left action of G.
(b) For subgroups $H_{1}<G, H_{2}<G$, and an element $[g] \in G / H_{2}$ that defines a morphism of G-sets $h: G / H_{1} \rightarrow G / H_{2}$ such that $[g]=h\left(H_{1}\right)$, compute the induced map of sets

$$
\operatorname{mom}\left(G / H_{2}, X\right) \rightarrow \operatorname{Lom}\left(G / H_{1}, X\right)
$$

that sends $f: G / H_{2} \rightarrow X$ to $f h: G / H_{1} \rightarrow X$.
Recall that a sequence of homomorphisms of abelian groups

$$
A \rightarrow B \rightarrow C
$$

is exact if $A \rightarrow B$ is the kernel of $B \rightarrow C$ and $B \rightarrow C$ is surjective. Equivalently, $A \rightarrow B$ is injective and $B \rightarrow C$ is the cokernel of $A \rightarrow B$. Another equivalent characterization is that $A \rightarrow B$ is injective, $B \rightarrow C$ is surjective, and the image of $A \rightarrow B$ coincides with the kernel of $B \rightarrow C$.
6. Recall the group $\operatorname{Hom}(G, A)$ from Homework 2, Problem 7.
(a) Show that if $C \rightarrow D$ is the cokernel (quotient) of $B \rightarrow C$ (i.e., $D=C / B)$, then $\mathbb{H} \boldsymbol{m}(D, A) \rightarrow$

(b) Show that if $B \rightarrow C$ is the kernel of $C \rightarrow D$, then $\operatorname{HOm}(C, A) \rightarrow \operatorname{HOm}(B, A)$ need not be the cokernel of $\operatorname{Hom}(D, A) \rightarrow \operatorname{HOm}(C, A)$.
7. A group G is finitely generated if it has a finite subset S such that the only subgroup of G that contains S is G itself.
(a) Show that any finitely generated group has a maximal proper subgroup.
(b) Show that the additive group \mathbf{Q} of rational numbers is not finitely generated.
8. Suppose a group G has a trivial center and every automorphism of G is inner. If $G \triangleleft H$, show that H is isomorphic to the product of G and another group.
9. Suppose $n \geq 2$ and $\sigma \in \Sigma_{n}$. Show that if σ commutes with a permutation in Σ_{n} of sign -1 , then the conjugacy classes of σ in Σ_{n} and A_{n} are the same. (The conjugacy class of σ is $\left\{\tau \sigma \tau^{-1}\right\}$.)
10. Denote by G the free group on a set $\{a, b\}$. Denote by N the normal subgroup of G generated by $a b a$ and $a^{16} b^{5}$ (i.e., the intersection of all normal subgroups of G containing these two elements). Show that G / N is abelian.

