Mathematics 5317 (Introduction to Modern Algebra)

Fall 2020

Homework 3

First submission due September 29, 2020.

1. In this problem, G denotes an arbitrary group.
(a) Show that the set of all automorphisms (i.e., invertible homomorphisms) $\varphi: G \rightarrow G$ of a group G itself forms a group $\operatorname{Aut}(G)$, with composition as multiplication.
(b) An automorphism (i.e., invertible homomorphism) $\varphi: G \rightarrow G$ of a group G is called inner if there is $g \in G$ such that for all $h \in G$ we have $\varphi(h)=g h g^{-1}$. Prove that for $G=\mathrm{GL}(2, \mathbf{R})$ the automorphism $\varphi: G \rightarrow G$ that sends $A \mapsto\left(A^{-1}\right)^{t}$ (the transpose of the inverse matrix) is not an inner automorphism.
2. In this problem, G denotes an arbitrary group.
(a) Consider the center

$$
\mathrm{Z}(G)=\{z \in G \mid \forall g \in G: g z=z g\}
$$

Show that $\mathrm{Z}(G)$ is a normal subgroup of G.
(b) Prove that the quotient of the inclusion $\mathrm{Z}(G) \rightarrow G$ is isomorphic to the subgroup $\operatorname{Inn}(G)$ of $\operatorname{\sim ul}(G)$ comprising all inner automorphisms (see Problem 1).
3. In this problem, G denotes an arbitrary group.
(a) Prove that inner automorphisms (Problem 1) form a normal subgroup of the group $\operatorname{Aut}(G)$ of automorphisms of G.
(b) Construct a nontrivial homomorphism

$$
\operatorname{Aut}(G) / \operatorname{Lnn}(G) \rightarrow \operatorname{Aut}(Z(G)) .
$$

4. Given a group G, consider

$$
N=\left\{\sigma \in \underset{\operatorname{Aut}}{ }(G) \mid \forall g \in G: \sigma(g) g^{-1} \in \mathbf{Z}(G)\right\}
$$

(See Problem 2 for a definition of $\mathrm{Z}(G)$.) Prove that N is a normal subgroup of $\operatorname{Aut}(G)$.
5. Prove that if A and B are normal subgroups of a group G such that G / A and G / B are both abelian, then the group $G /(A \cap B)$ exists and is abelian.
6. Suppose H and K are subgroups of a group G. Recall the notation:

$$
H K=\{h k \mid h \in H, k \in K\}=\{g \in G \mid \exists h \in H, k \in K: g=h k\} .
$$

(a) Show that $H K=K H$ if and only if $H K$ is a subgroup of G.
(b) Show that the cardinality of $H K$ equals $|H| \cdot|K| /|H \cap K|$.
7. Suppose G is a group such that $G / \mathrm{Z}(G)$ is cyclic. Show that G is abelian.
8. Suppose G is a group such that the map $G \rightarrow G$ that sends $g \mapsto g^{2}$ for any $g \in G$ is a homomorphism of groups. Show that G is abelian.
9. In this problem, G is a finite abelian group. A group character of G is a homomorphism $\chi: G \rightarrow \mathbf{C}^{\times}$. Denote by \hat{G} the set of group characters of G. Show that \hat{G} is a group with the operation of pointwise multiplication, i.e., $\chi_{1} \chi_{2}=\left(g \mapsto \chi_{1}(g) \chi_{2}(g)\right)$. Show that if G is cyclic, then G is isomorphic to \hat{G}.
10. In this problem, you may use the results of Problem 7 from Homework 1.
(a) Show that if $H<G$, then for any $g \in G$ we have $g H g^{-1}<G$.
(b) Classify all subgroups of Σ_{3}, the symmetric group of degree 3 .
(c) Classify all normal subgroups of Σ_{4}, the symmetric group of degree 4 .

