Mathematics 5317 (Introduction to Modern Algebra)

Fall 2020

Homework 2

First submission due September 22, 2020.

Consider the following groups:

- 2^X : subsets of a given set X, with the symmetric difference $A \oplus B := (A \setminus B) \cup (B \setminus A)$ as the multiplication operation.
- Σ_X : bijections of sets $X \to X$ for a given set X, with the composition $f \circ g$ as the multiplication operation.
- \mathbf{Q}^{\times} : the group of invertible rational numbers with multiplication, likewise for \mathbf{R}^{\times} and \mathbf{C}^{\times} .

In the following problems, "construct all possible homomorphisms" means you have to give an explicit construction of all homomorphisms and prove that there are no others.

- 1.
- (a) For a finite set X, construct all possible homomorphisms $2^X \to \{\pm 1\}$ (the right side is the group with two elements).
- (b) For an arbitrary set X, construct all possible homomorphisms $\Sigma_X \to 2^X$. (Recall that we classified all possible homomorphisms $\Sigma_X \to \{\pm 1\}$ in class.)
- (c) Extra bonus point: for a finite set X, construct all possible homomorphisms $2^X \to \Sigma_X$.

2. Construct all possible homomorphisms $\mathbf{Q}^{\times} \to \mathbf{Z}$. (The left side refers to invertible rational numbers with multiplication, whereas the right side refers to integer numbers with addition.) You may use the following "Fundamental Theorem of Arithmetic": any positive rational number q admits a unique representation of the form

$$q = \prod_{p \in \mathbf{P}} p^{n_p},$$

where $\mathbf{P} = \{2, 3, 5, 7, ...\}$ is the set of all prime numbers, n_p are integer numbers, and the set $\{p \in \mathbf{P} \mid n_p \neq 0\}$ is finite (explain why the infinite product is well-defined in this case).

3. In this problem, $f: A \to B$ is a homomorphism of groups.

- (a) Show that injective homomorphisms of groups $f: A \to B$ can be equivalently characterized by the following property: for any homomorphisms of groups $g, h: C \to A$, the equality fg = fh implies g = h.
- (b) Show that surjective homomorphisms of groups $f: A \to B$ can be equivalently characterized by the following property: for any homomorphisms of groups $g, h: B \to C$, the equality gf = hf implies g = h. Assume all groups to be abelian if it helps. Extra bonus point for establishing the nonabelian case.
- **4.** In this problem, $f: A \to B$ is a homomorphism of groups. Prove or disprove:
- (a) Injective homomorphisms of groups $f: A \to B$ can be equivalently characterized by the following property: there is a homomorphism of groups $g: B \to A$ such that $gf = id_A$.
- (b) Surjective homomorphisms of groups $f: A \to B$ can be equivalently characterized by the following property: there is a homomorphism of groups $g: B \to A$ such that $fg = id_B$.

5*. Given a group A, show that the following data are equivalent by defining mutually inverse constructions $(1) \rightarrow (2), (2) \rightarrow (1), (1) \rightarrow (3), (3) \rightarrow (1), (2) \rightarrow (3), (3) \rightarrow (2)$ (and proving your claims). In class, we established (and proved) some of the directions, you only have to supply (and prove) the remaining ones.

- (1) A partition of A into disjoint nonempty subsets such that for any $a \in A$ the maps $A \to A$ given by $g \mapsto ag$ and $g \mapsto ga$ send any subset from this partition to some other (possibly the same) subset from this partition.
- (2) An equivalence relation R on A that is compatible with the group structure, meaning the subset $R \subset A \times A$ is a subgroup.
- (3) A surjective homomorphism of groups $q: A \to Q$ such that for every $b \in Q$ we have $b = q^*\{b\} := \{a \in A \mid q(a) = b\}$.

6*. Suppose $\{G_i\}_{i \in I}$ is a family of groups and $(R, \{p_i: R \to G_i\}_{i \in I})$ is its product. Suppose $(R', \{p'_i: R' \to G_i\}_{i \in I})$ is another product of the same family. Show that there is exactly one homomorphism $g: R \to R'$ such that $p'_i \circ g = p_i$ for all $i \in I$. Is g an isomorphism?

7*. Suppose G is a group and A is an abelian group. Consider the set of homomorphisms $G \to A$. Equip this set with a group structure. The resulting group is denoted by Hom(G, A). Is this group abelian?

8*. In this problem, Hom(G, A) denotes the group constructed in Problem 7. Construct *injective* group homomorphisms as indicated. Recall that $\mathbf{U}(1) = \{z \in \mathbf{C} \mid |z| = 1\}$ is the circle group.

- (a) $\mathbf{R} \to \operatorname{Hom}(\mathbf{R}, \mathbf{U}(1));$
- (b) $\mathbf{Z} \to \operatorname{Hom}(\mathbf{U}(1), \mathbf{U}(1));$
- (c) $\mathbf{R} \to \operatorname{Hom}(\mathbf{R}, \mathbf{R});$
- (d) $\mathbf{R} \to \operatorname{Hom}(\mathbf{R}, \mathbf{R}^{\times});$
- (e) $\mathbf{R} \to \operatorname{Hom}(\mathbf{R}^{\times}, \mathbf{R});$
- (f) $\mathbf{R} \to \operatorname{Hom}(\mathbf{R}^{\times}, \mathbf{R}^{\times}).$

9. Prove or disprove: there is $n \ge 3$ such that the symmetric group Σ_n is isomorphic to the product $\{\pm 1\} \times A_n$, where A_n denotes the subgroup of Σ_n comprising permutations of sign +1.

10. Prove or disprove: there is $n \ge 3$ such that the general linear group $GL_n(\mathbf{R})$ is isomorphic to the product $\mathbf{R}^{\times} \times SL_n(\mathbf{R})$, where $SL_n(\mathbf{R})$ denotes the subgroup of $GL_n(\mathbf{R})$ comprising matrices of determinant 1.