Mathematics 5325 (Topology II)

Midterm 2

1. Construct an example of a connected simplicial set X whose fundamental group is not commutative. (Make sure to include a proof that the computed group is indeed noncommutative.)

2. Fix a parameter n > 0 and a generator $p \in \mathbb{Z}/n$ of \mathbb{Z}/n (i.e., gcd(p, n) = 1). The lens space L(p, n) is defined as follows: There are n + n generating 3-simplices, denoted by c_i and d_i ($i \in \mathbb{Z}/n\mathbb{Z}$). The simplicial set looks like an orange sliced along the equatorial plane, with c_i above and d_i below, the 0th vertices being the center and the 1st vertices being the poles. The relations are as follows: $d_1(c_i) = d_1(d_i)$ (gluing along the equatorial plane), $d_2(c_i) = d_3(c_{i+1})$ and $d_2(d_i) = d_3(d_{i+1})$ (gluing along the lateral sides of carpels). To these relations we add the following: $d_0(c_i) = d_0(d_{i+p})$ (the lens space relation). Compute the fundamental group of the lens space, taking the north pole as the basepoint.

3. Compute the fundamental group of the classifying simplicial set BZ/2 of the group Z/2.

4. Does the real projective plane admit a nontrivial connected covering (meaning a covering $f: X \to Y$ such that X is connected and f is not an isomorphism)? (Include a complete proof of your claim.)

5. Fix $n \ge 0$. Consider the functor U: sSet \rightarrow Set that sends a simplicial set X to the set X_n and a simplicial map $f: X \rightarrow Y$ to the map of sets $f: X_n \rightarrow Y_n$.

- Prove or disprove: U has a left adjoint.
- Prove or disprove: U has a right adjoint.