Mathematics 5325 (Topology II)

Midterm 1

1. Prove or disprove: for any $n \ge 0$ and any real-valued $n \times n$ matrix A such that for all i and j we have $A_{i,j} > 0$, there is an n-vector b such that $b_k > 0$ for all k and $Ab = \lambda b$ for some $\lambda > 0$.

2. Construct an example of a simplicial set X with a cohomology class $x \in H^2(X)$ such that $x^2 \neq 0$. (Here $x^2 = x \cup x$ is the cup product of x with itself.) Construct an example of a simplicial set Y with a cohomology class $y \in H^2(Y)$ such that $y \neq 0$ and $y^2 = 0$, but $H^4(Y) \neq 0$.

3. Consider the *n*-sphere with tubes along coordinate axes removed, i.e., the set *W* of points $x \in \mathbb{R}^{n+1}$ such that $||x|| \leq 3^n$ and $||p_i(x)|| \geq 1$ for all *i*, where $p_i: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ sets the *i*th coordinate to 0 and leaves the other coordinates unchanged. Compute the singular homology of *W* as a module over the cohomology ring with coefficients in an arbitrary ring *A*.

4. The lens space L(p, n) is defined as follows: n > 0 is an integer and $p \in \mathbb{Z}/n$ is a generator (i.e., gcd(p, n) = 1). There are n + n generating 3-simplices, denoted by c_i and d_i $(i \in \mathbb{Z}/n\mathbb{Z})$. The simplicial set looks like an orange sliced along the equatorial plane, with c_i above and d_i below, the 0th vertices being the center and the 1st vertices being the poles. The relations are as follows: $d_1(c_i) = d_1(d_i)$ (gluing along the equatorial plane), $d_2(c_i) = d_3(c_{i+1})$ and $d_2(d_i) = d_3(d_{i+1})$ (gluing along the lateral sides of carpels). To these relations we add the following: $d_0(c_i) = d_0(d_{i+p})$ (the lens space relation). Compute the homology as a module over the cohomology ring with coefficients in an arbitrary ring A.

5. Compute the homology of the group $\mathbb{Z}/2$ as a module over the cohomology ring of the group $\mathbb{Z}/2$ with coefficients in an arbitrary ring A.